jdk-24/test/hotspot/jtreg/compiler/loopopts/superword/TestMemorySegment.java
Emanuel Peter c4867c62c4 8329273: C2 SuperWord: Some basic MemorySegment IR tests
Reviewed-by: kvn, chagedorn
2024-05-15 13:16:08 +00:00

811 lines
34 KiB
Java

/*
* Copyright (c) 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package compiler.loopopts.superword;
import compiler.lib.ir_framework.*;
import jdk.test.lib.Utils;
import java.nio.ByteBuffer;
import java.util.Map;
import java.util.HashMap;
import java.util.Random;
import java.lang.foreign.*;
/*
* @test id=byte-array
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment ByteArray
*/
/*
* @test id=char-array
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment CharArray
*/
/*
* @test id=short-array
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment ShortArray
*/
/*
* @test id=int-array
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment IntArray
*/
/*
* @test id=long-array
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment LongArray
*/
/*
* @test id=float-array
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment FloatArray
*/
/*
* @test id=double-array
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment DoubleArray
*/
/*
* @test id=byte-buffer
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment ByteBuffer
*/
/*
* @test id=byte-buffer-direct
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment ByteBufferDirect
*/
/*
* @test id=native
* @bug 8329273
* @summary Test vectorization of loops over MemorySegment
* @library /test/lib /
* @run driver compiler.loopopts.superword.TestMemorySegment Native
*/
// FAILS: mixed providers currently do not vectorize. Maybe there is some inlining issue.
// /*
// * @test id=mixed-array
// * @bug 8329273
// * @summary Test vectorization of loops over MemorySegment
// * @library /test/lib /
// * @run driver compiler.loopopts.superword.TestMemorySegment MixedArray
// */
//
// /*
// * @test id=MixedBuffer
// * @bug 8329273
// * @summary Test vectorization of loops over MemorySegment
// * @library /test/lib /
// * @run driver compiler.loopopts.superword.TestMemorySegment MixedBuffer
// */
//
// /*
// * @test id=mixed
// * @bug 8329273
// * @summary Test vectorization of loops over MemorySegment
// * @library /test/lib /
// * @run driver compiler.loopopts.superword.TestMemorySegment Mixed
// */
public class TestMemorySegment {
public static void main(String[] args) {
TestFramework framework = new TestFramework(TestMemorySegmentImpl.class);
framework.addFlags("-DmemorySegmentProviderNameForTestVM=" + args[0]);
framework.setDefaultWarmup(100);
framework.start();
}
}
class TestMemorySegmentImpl {
static final int BACKING_SIZE = 1024 * 8;
static final Random RANDOM = Utils.getRandomInstance();
interface TestFunction {
Object[] run();
}
interface MemorySegmentProvider {
MemorySegment newMemorySegment();
}
static MemorySegmentProvider provider;
static {
String providerName = System.getProperty("memorySegmentProviderNameForTestVM");
provider = switch (providerName) {
case "ByteArray" -> TestMemorySegmentImpl::newMemorySegmentOfByteArray;
case "CharArray" -> TestMemorySegmentImpl::newMemorySegmentOfCharArray;
case "ShortArray" -> TestMemorySegmentImpl::newMemorySegmentOfShortArray;
case "IntArray" -> TestMemorySegmentImpl::newMemorySegmentOfIntArray;
case "LongArray" -> TestMemorySegmentImpl::newMemorySegmentOfLongArray;
case "FloatArray" -> TestMemorySegmentImpl::newMemorySegmentOfFloatArray;
case "DoubleArray" -> TestMemorySegmentImpl::newMemorySegmentOfDoubleArray;
case "ByteBuffer" -> TestMemorySegmentImpl::newMemorySegmentOfByteBuffer;
case "ByteBufferDirect" -> TestMemorySegmentImpl::newMemorySegmentOfByteBufferDirect;
case "Native" -> TestMemorySegmentImpl::newMemorySegmentOfNative;
case "MixedArray" -> TestMemorySegmentImpl::newMemorySegmentOfMixedArray;
case "MixedBuffer" -> TestMemorySegmentImpl::newMemorySegmentOfMixedBuffer;
case "Mixed" -> TestMemorySegmentImpl::newMemorySegmentOfMixed;
default -> throw new RuntimeException("Test argument not recognized: " + providerName);
};
}
// List of tests
Map<String, TestFunction> tests = new HashMap<>();
// List of gold, the results from the first run before compilation
Map<String, Object[]> golds = new HashMap<>();
public TestMemorySegmentImpl () {
// Generate two MemorySegments as inputs
MemorySegment a = newMemorySegment();
MemorySegment b = newMemorySegment();
fillRandom(a);
fillRandom(b);
// Add all tests to list
tests.put("testMemorySegmentBadExitCheck", () -> testMemorySegmentBadExitCheck(copy(a)));
tests.put("testIntLoop_iv_byte", () -> testIntLoop_iv_byte(copy(a)));
tests.put("testIntLoop_longIndex_intInvar_sameAdr_byte", () -> testIntLoop_longIndex_intInvar_sameAdr_byte(copy(a), 0));
tests.put("testIntLoop_longIndex_longInvar_sameAdr_byte", () -> testIntLoop_longIndex_longInvar_sameAdr_byte(copy(a), 0));
tests.put("testIntLoop_longIndex_intInvar_byte", () -> testIntLoop_longIndex_intInvar_byte(copy(a), 0));
tests.put("testIntLoop_longIndex_longInvar_byte", () -> testIntLoop_longIndex_longInvar_byte(copy(a), 0));
tests.put("testIntLoop_intIndex_intInvar_byte", () -> testIntLoop_intIndex_intInvar_byte(copy(a), 0));
tests.put("testIntLoop_iv_int", () -> testIntLoop_iv_int(copy(a)));
tests.put("testIntLoop_longIndex_intInvar_sameAdr_int", () -> testIntLoop_longIndex_intInvar_sameAdr_int(copy(a), 0));
tests.put("testIntLoop_longIndex_longInvar_sameAdr_int", () -> testIntLoop_longIndex_longInvar_sameAdr_int(copy(a), 0));
tests.put("testIntLoop_longIndex_intInvar_int", () -> testIntLoop_longIndex_intInvar_int(copy(a), 0));
tests.put("testIntLoop_longIndex_longInvar_int", () -> testIntLoop_longIndex_longInvar_int(copy(a), 0));
tests.put("testIntLoop_intIndex_intInvar_int", () -> testIntLoop_intIndex_intInvar_int(copy(a), 0));
tests.put("testLongLoop_iv_byte", () -> testLongLoop_iv_byte(copy(a)));
tests.put("testLongLoop_longIndex_intInvar_sameAdr_byte", () -> testLongLoop_longIndex_intInvar_sameAdr_byte(copy(a), 0));
tests.put("testLongLoop_longIndex_longInvar_sameAdr_byte", () -> testLongLoop_longIndex_longInvar_sameAdr_byte(copy(a), 0));
tests.put("testLongLoop_longIndex_intInvar_byte", () -> testLongLoop_longIndex_intInvar_byte(copy(a), 0));
tests.put("testLongLoop_longIndex_longInvar_byte", () -> testLongLoop_longIndex_longInvar_byte(copy(a), 0));
tests.put("testLongLoop_intIndex_intInvar_byte", () -> testLongLoop_intIndex_intInvar_byte(copy(a), 0));
tests.put("testLongLoop_iv_int", () -> testLongLoop_iv_int(copy(a)));
tests.put("testLongLoop_longIndex_intInvar_sameAdr_int", () -> testLongLoop_longIndex_intInvar_sameAdr_int(copy(a), 0));
tests.put("testLongLoop_longIndex_longInvar_sameAdr_int", () -> testLongLoop_longIndex_longInvar_sameAdr_int(copy(a), 0));
tests.put("testLongLoop_longIndex_intInvar_int", () -> testLongLoop_longIndex_intInvar_int(copy(a), 0));
tests.put("testLongLoop_longIndex_longInvar_int", () -> testLongLoop_longIndex_longInvar_int(copy(a), 0));
tests.put("testLongLoop_intIndex_intInvar_int", () -> testLongLoop_intIndex_intInvar_int(copy(a), 0));
// Compute gold value for all test methods before compilation
for (Map.Entry<String,TestFunction> entry : tests.entrySet()) {
String name = entry.getKey();
TestFunction test = entry.getValue();
Object[] gold = test.run();
golds.put(name, gold);
}
}
MemorySegment newMemorySegment() {
return provider.newMemorySegment();
}
MemorySegment copy(MemorySegment src) {
MemorySegment dst = newMemorySegment();
MemorySegment.copy(src, 0, dst, 0, src.byteSize());
return dst;
}
static MemorySegment newMemorySegmentOfByteArray() {
return MemorySegment.ofArray(new byte[BACKING_SIZE]);
}
static MemorySegment newMemorySegmentOfCharArray() {
return MemorySegment.ofArray(new char[BACKING_SIZE / 2]);
}
static MemorySegment newMemorySegmentOfShortArray() {
return MemorySegment.ofArray(new short[BACKING_SIZE / 2]);
}
static MemorySegment newMemorySegmentOfIntArray() {
return MemorySegment.ofArray(new int[BACKING_SIZE / 4]);
}
static MemorySegment newMemorySegmentOfLongArray() {
return MemorySegment.ofArray(new long[BACKING_SIZE / 8]);
}
static MemorySegment newMemorySegmentOfFloatArray() {
return MemorySegment.ofArray(new float[BACKING_SIZE / 4]);
}
static MemorySegment newMemorySegmentOfDoubleArray() {
return MemorySegment.ofArray(new double[BACKING_SIZE / 8]);
}
static MemorySegment newMemorySegmentOfByteBuffer() {
return MemorySegment.ofBuffer(ByteBuffer.allocate(BACKING_SIZE));
}
static MemorySegment newMemorySegmentOfByteBufferDirect() {
return MemorySegment.ofBuffer(ByteBuffer.allocateDirect(BACKING_SIZE));
}
static MemorySegment newMemorySegmentOfNative() {
// Auto arena: GC decides when there is no reference to the MemorySegment,
// and then it deallocates the backing memory.
return Arena.ofAuto().allocate(BACKING_SIZE, 1);
}
static MemorySegment newMemorySegmentOfMixedArray() {
switch(RANDOM.nextInt(7)) {
case 0 -> { return newMemorySegmentOfByteArray(); }
case 1 -> { return newMemorySegmentOfCharArray(); }
case 2 -> { return newMemorySegmentOfShortArray(); }
case 3 -> { return newMemorySegmentOfIntArray(); }
case 4 -> { return newMemorySegmentOfLongArray(); }
case 5 -> { return newMemorySegmentOfFloatArray(); }
default -> { return newMemorySegmentOfDoubleArray(); }
}
}
static MemorySegment newMemorySegmentOfMixedBuffer() {
switch (RANDOM.nextInt(2)) {
case 0 -> { return newMemorySegmentOfByteBuffer(); }
default -> { return newMemorySegmentOfByteBufferDirect(); }
}
}
static MemorySegment newMemorySegmentOfMixed() {
switch (RANDOM.nextInt(3)) {
case 0 -> { return newMemorySegmentOfMixedArray(); }
case 1 -> { return newMemorySegmentOfMixedBuffer(); }
default -> { return newMemorySegmentOfNative(); }
}
}
static void fillRandom(MemorySegment data) {
for (int i = 0; i < (int)data.byteSize(); i += 8) {
data.set(ValueLayout.JAVA_LONG_UNALIGNED, i, RANDOM.nextLong());
}
}
static void verify(String name, Object[] gold, Object[] result) {
if (gold.length != result.length) {
throw new RuntimeException("verify " + name + ": not the same number of outputs: gold.length = " +
gold.length + ", result.length = " + result.length);
}
for (int i = 0; i < gold.length; i++) {
Object g = gold[i];
Object r = result[i];
if (g == r) {
throw new RuntimeException("verify " + name + ": should be two separate objects (with identical content):" +
" gold[" + i + "] == result[" + i + "]");
}
if (!(g instanceof MemorySegment && r instanceof MemorySegment)) {
throw new RuntimeException("verify " + name + ": only MemorySegment supported, i=" + i);
}
MemorySegment mg = (MemorySegment)g;
MemorySegment mr = (MemorySegment)r;
if (mg.byteSize() != mr.byteSize()) {
throw new RuntimeException("verify " + name + ": MemorySegment must have same byteSize:" +
" gold[" + i + "].byteSize = " + mg.byteSize() +
" result[" + i + "].byteSize = " + mr.byteSize());
}
for (int j = 0; j < (int)mg.byteSize(); j++) {
byte vg = mg.get(ValueLayout.JAVA_BYTE, j);
byte vr = mr.get(ValueLayout.JAVA_BYTE, j);
if (vg != vr) {
throw new RuntimeException("verify " + name + ": MemorySegment must have same content:" +
" gold[" + i + "][" + j + "] = " + vg +
" result[" + i + "][" + j + "] = " + vr);
}
}
}
}
@Run(test = {"testMemorySegmentBadExitCheck",
"testIntLoop_iv_byte",
"testIntLoop_longIndex_intInvar_sameAdr_byte",
"testIntLoop_longIndex_longInvar_sameAdr_byte",
"testIntLoop_longIndex_intInvar_byte",
"testIntLoop_longIndex_longInvar_byte",
"testIntLoop_intIndex_intInvar_byte",
"testIntLoop_iv_int",
"testIntLoop_longIndex_intInvar_sameAdr_int",
"testIntLoop_longIndex_longInvar_sameAdr_int",
"testIntLoop_longIndex_intInvar_int",
"testIntLoop_longIndex_longInvar_int",
"testIntLoop_intIndex_intInvar_int",
"testLongLoop_iv_byte",
"testLongLoop_longIndex_intInvar_sameAdr_byte",
"testLongLoop_longIndex_longInvar_sameAdr_byte",
"testLongLoop_longIndex_intInvar_byte",
"testLongLoop_longIndex_longInvar_byte",
"testLongLoop_intIndex_intInvar_byte",
"testLongLoop_iv_int",
"testLongLoop_longIndex_intInvar_sameAdr_int",
"testLongLoop_longIndex_longInvar_sameAdr_int",
"testLongLoop_longIndex_intInvar_int",
"testLongLoop_longIndex_longInvar_int",
"testLongLoop_intIndex_intInvar_int"})
void runTests() {
for (Map.Entry<String,TestFunction> entry : tests.entrySet()) {
String name = entry.getKey();
TestFunction test = entry.getValue();
// Recall gold value from before compilation
Object[] gold = golds.get(name);
// Compute new result
Object[] result = test.run();
// Compare gold and new result
verify(name, gold, result);
}
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "= 0",
IRNode.ADD_VB, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS
// Exit check: iv < long_limit -> (long)iv < long_limit
// Thus, we have an int-iv, but a long-exit-check.
// Is not properly recognized by either CountedLoop or LongCountedLoop
static Object[] testMemorySegmentBadExitCheck(MemorySegment a) {
for (int i = 0; i < a.byteSize(); i++) {
long adr = i;
byte v = a.get(ValueLayout.JAVA_BYTE, adr);
a.set(ValueLayout.JAVA_BYTE, adr, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "> 0",
IRNode.ADD_VB, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testIntLoop_iv_byte(MemorySegment a) {
for (int i = 0; i < (int)a.byteSize(); i++) {
long adr = i;
byte v = a.get(ValueLayout.JAVA_BYTE, adr);
a.set(ValueLayout.JAVA_BYTE, adr, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "> 0",
IRNode.ADD_VB, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testIntLoop_longIndex_intInvar_sameAdr_byte(MemorySegment a, int invar) {
for (int i = 0; i < (int)a.byteSize(); i++) {
long adr = (long)(i) + (long)(invar);
byte v = a.get(ValueLayout.JAVA_BYTE, adr);
a.set(ValueLayout.JAVA_BYTE, adr, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "> 0",
IRNode.ADD_VB, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testIntLoop_longIndex_longInvar_sameAdr_byte(MemorySegment a, long invar) {
for (int i = 0; i < (int)a.byteSize(); i++) {
long adr = (long)(i) + (long)(invar);
byte v = a.get(ValueLayout.JAVA_BYTE, adr);
a.set(ValueLayout.JAVA_BYTE, adr, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "= 0",
IRNode.ADD_VB, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: invariants are sorted differently, because of differently inserted Cast.
// See: JDK-8330274
static Object[] testIntLoop_longIndex_intInvar_byte(MemorySegment a, int invar) {
for (int i = 0; i < (int)a.byteSize(); i++) {
long adr1 = (long)(i) + (long)(invar);
byte v = a.get(ValueLayout.JAVA_BYTE, adr1);
long adr2 = (long)(i) + (long)(invar);
a.set(ValueLayout.JAVA_BYTE, adr2, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "= 0",
IRNode.ADD_VB, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: invariants are sorted differently, because of differently inserted Cast.
// See: JDK-8330274
static Object[] testIntLoop_longIndex_longInvar_byte(MemorySegment a, long invar) {
for (int i = 0; i < (int)a.byteSize(); i++) {
long adr1 = (long)(i) + (long)(invar);
byte v = a.get(ValueLayout.JAVA_BYTE, adr1);
long adr2 = (long)(i) + (long)(invar);
a.set(ValueLayout.JAVA_BYTE, adr2, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "= 0",
IRNode.ADD_VB, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: RangeCheck cannot be eliminated because of int_index
static Object[] testIntLoop_intIndex_intInvar_byte(MemorySegment a, int invar) {
for (int i = 0; i < (int)a.byteSize(); i++) {
int int_index = i + invar;
byte v = a.get(ValueLayout.JAVA_BYTE, int_index);
a.set(ValueLayout.JAVA_BYTE, int_index, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIf = {"AlignVector", "false"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testIntLoop_iv_int(MemorySegment a) {
for (int i = 0; i < (int)a.byteSize()/4; i++ ) {
long adr = 4L * i;
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIf = {"AlignVector", "false"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testIntLoop_longIndex_intInvar_sameAdr_int(MemorySegment a, int invar) {
for (int i = 0; i < (int)a.byteSize()/4; i++) {
long adr = 4L * (long)(i) + 4L * (long)(invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIf = {"AlignVector", "false"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testIntLoop_longIndex_longInvar_sameAdr_int(MemorySegment a, long invar) {
for (int i = 0; i < (int)a.byteSize()/4; i++) {
long adr = 4L * (long)(i) + 4L * (long)(invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "= 0",
IRNode.ADD_VI, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: invariants are sorted differently, because of differently inserted Cast.
// See: JDK-8330274
static Object[] testIntLoop_longIndex_intInvar_int(MemorySegment a, int invar) {
for (int i = 0; i < (int)a.byteSize()/4; i++) {
long adr1 = 4L * (long)(i) + 4L * (long)(invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr1);
long adr2 = 4L * (long)(i) + 4L * (long)(invar);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr2, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "= 0",
IRNode.ADD_VI, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: invariants are sorted differently, because of differently inserted Cast.
// See: JDK-8330274
static Object[] testIntLoop_longIndex_longInvar_int(MemorySegment a, long invar) {
for (int i = 0; i < (int)a.byteSize()/4; i++) {
long adr1 = 4L * (long)(i) + 4L * (long)(invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr1);
long adr2 = 4L * (long)(i) + 4L * (long)(invar);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr2, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "= 0",
IRNode.ADD_VI, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: RangeCheck cannot be eliminated because of int_index
static Object[] testIntLoop_intIndex_intInvar_int(MemorySegment a, int invar) {
for (int i = 0; i < (int)a.byteSize()/4; i++) {
int int_index = i + invar;
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, 4L * int_index);
a.set(ValueLayout.JAVA_INT_UNALIGNED, 4L * int_index, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "> 0",
IRNode.ADD_VB, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testLongLoop_iv_byte(MemorySegment a) {
for (long i = 0; i < a.byteSize(); i++) {
long adr = i;
byte v = a.get(ValueLayout.JAVA_BYTE, adr);
a.set(ValueLayout.JAVA_BYTE, adr, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "> 0",
IRNode.ADD_VB, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testLongLoop_longIndex_intInvar_sameAdr_byte(MemorySegment a, int invar) {
for (long i = 0; i < a.byteSize(); i++) {
long adr = (long)(i) + (long)(invar);
byte v = a.get(ValueLayout.JAVA_BYTE, adr);
a.set(ValueLayout.JAVA_BYTE, adr, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "> 0",
IRNode.ADD_VB, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testLongLoop_longIndex_longInvar_sameAdr_byte(MemorySegment a, long invar) {
for (long i = 0; i < a.byteSize(); i++) {
long adr = (long)(i) + (long)(invar);
byte v = a.get(ValueLayout.JAVA_BYTE, adr);
a.set(ValueLayout.JAVA_BYTE, adr, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "= 0",
IRNode.ADD_VB, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: invariants are sorted differently, because of differently inserted Cast.
// See: JDK-8330274
static Object[] testLongLoop_longIndex_intInvar_byte(MemorySegment a, int invar) {
for (long i = 0; i < a.byteSize(); i++) {
long adr1 = (long)(i) + (long)(invar);
byte v = a.get(ValueLayout.JAVA_BYTE, adr1);
long adr2 = (long)(i) + (long)(invar);
a.set(ValueLayout.JAVA_BYTE, adr2, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "= 0",
IRNode.ADD_VB, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: invariants are sorted differently, because of differently inserted Cast.
// See: JDK-8330274
static Object[] testLongLoop_longIndex_longInvar_byte(MemorySegment a, long invar) {
for (long i = 0; i < a.byteSize(); i++) {
long adr1 = (long)(i) + (long)(invar);
byte v = a.get(ValueLayout.JAVA_BYTE, adr1);
long adr2 = (long)(i) + (long)(invar);
a.set(ValueLayout.JAVA_BYTE, adr2, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_B, "= 0",
IRNode.ADD_VB, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: RangeCheck cannot be eliminated because of int_index
static Object[] testLongLoop_intIndex_intInvar_byte(MemorySegment a, int invar) {
for (long i = 0; i < a.byteSize(); i++) {
int int_index = (int)(i + invar);
byte v = a.get(ValueLayout.JAVA_BYTE, int_index);
a.set(ValueLayout.JAVA_BYTE, int_index, (byte)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
IRNode.ADD_VI, "> 0",
IRNode.STORE_VECTOR, "> 0"},
applyIfPlatform = {"64-bit", "true"},
applyIf = {"AlignVector", "false"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
static Object[] testLongLoop_iv_int(MemorySegment a) {
for (long i = 0; i < a.byteSize()/4; i++ ) {
long adr = 4L * i;
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
//@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
// IRNode.ADD_VI, "> 0",
// IRNode.STORE_VECTOR, "> 0"},
// applyIfPlatform = {"64-bit", "true"},
// applyIf = {"AlignVector", "false"},
// applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: for native memory. I think it is because of invariants, but need investigation.
// The long -> int loop conversion introduces extra invariants.
static Object[] testLongLoop_longIndex_intInvar_sameAdr_int(MemorySegment a, int invar) {
for (long i = 0; i < a.byteSize()/4; i++) {
long adr = 4L * (long)(i) + 4L * (long)(invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
//@IR(counts = {IRNode.LOAD_VECTOR_I, "> 0",
// IRNode.ADD_VI, "> 0",
// IRNode.STORE_VECTOR, "> 0"},
// applyIfPlatform = {"64-bit", "true"},
// applyIf = {"AlignVector", "false"},
// applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: for native memory. I think it is because of invariants, but need investigation.
// The long -> int loop conversion introduces extra invariants.
static Object[] testLongLoop_longIndex_longInvar_sameAdr_int(MemorySegment a, long invar) {
for (long i = 0; i < a.byteSize()/4; i++) {
long adr = 4L * (long)(i) + 4L * (long)(invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "= 0",
IRNode.ADD_VI, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: invariants are sorted differently, because of differently inserted Cast.
// See: JDK-8330274
static Object[] testLongLoop_longIndex_intInvar_int(MemorySegment a, int invar) {
for (long i = 0; i < a.byteSize()/4; i++) {
long adr1 = 4L * (long)(i) + 4L * (long)(invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr1);
long adr2 = 4L * (long)(i) + 4L * (long)(invar);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr2, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "= 0",
IRNode.ADD_VI, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: invariants are sorted differently, because of differently inserted Cast.
// See: JDK-8330274
static Object[] testLongLoop_longIndex_longInvar_int(MemorySegment a, long invar) {
for (long i = 0; i < a.byteSize()/4; i++) {
long adr1 = 4L * (long)(i) + 4L * (long)(invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, adr1);
long adr2 = 4L * (long)(i) + 4L * (long)(invar);
a.set(ValueLayout.JAVA_INT_UNALIGNED, adr2, (int)(v + 1));
}
return new Object[]{ a };
}
@Test
@IR(counts = {IRNode.LOAD_VECTOR_I, "= 0",
IRNode.ADD_VI, "= 0",
IRNode.STORE_VECTOR, "= 0"},
applyIfPlatform = {"64-bit", "true"},
applyIfCPUFeatureOr = {"sse4.1", "true", "asimd", "true"})
// FAILS: RangeCheck cannot be eliminated because of int_index
static Object[] testLongLoop_intIndex_intInvar_int(MemorySegment a, int invar) {
for (long i = 0; i < a.byteSize()/4; i++) {
int int_index = (int)(i + invar);
int v = a.get(ValueLayout.JAVA_INT_UNALIGNED, 4L * int_index);
a.set(ValueLayout.JAVA_INT_UNALIGNED, 4L * int_index, (int)(v + 1));
}
return new Object[]{ a };
}
}