jdk-24/src/hotspot/share/gc/g1/g1CollectedHeap.cpp
Kim Barrett f8596b57f3 8247740: Inline derived CollectedHeap access for G1 and ParallelGC
Added shared helper in CollectedHeap, and inlined for G1 and ParallelGC

Reviewed-by: stefank, pliden
2020-06-23 05:58:52 -04:00

4981 lines
185 KiB
C++

/*
* Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/classLoaderDataGraph.hpp"
#include "classfile/metadataOnStackMark.hpp"
#include "classfile/stringTable.hpp"
#include "code/codeCache.hpp"
#include "code/icBuffer.hpp"
#include "gc/g1/g1Allocator.inline.hpp"
#include "gc/g1/g1Arguments.hpp"
#include "gc/g1/g1BarrierSet.hpp"
#include "gc/g1/g1CardTableEntryClosure.hpp"
#include "gc/g1/g1CollectedHeap.inline.hpp"
#include "gc/g1/g1CollectionSet.hpp"
#include "gc/g1/g1CollectorState.hpp"
#include "gc/g1/g1ConcurrentRefine.hpp"
#include "gc/g1/g1ConcurrentRefineThread.hpp"
#include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
#include "gc/g1/g1DirtyCardQueue.hpp"
#include "gc/g1/g1EvacStats.inline.hpp"
#include "gc/g1/g1FullCollector.hpp"
#include "gc/g1/g1GCParPhaseTimesTracker.hpp"
#include "gc/g1/g1GCPhaseTimes.hpp"
#include "gc/g1/g1HeapSizingPolicy.hpp"
#include "gc/g1/g1HeapTransition.hpp"
#include "gc/g1/g1HeapVerifier.hpp"
#include "gc/g1/g1HotCardCache.hpp"
#include "gc/g1/g1InitLogger.hpp"
#include "gc/g1/g1MemoryPool.hpp"
#include "gc/g1/g1OopClosures.inline.hpp"
#include "gc/g1/g1ParallelCleaning.hpp"
#include "gc/g1/g1ParScanThreadState.inline.hpp"
#include "gc/g1/g1Policy.hpp"
#include "gc/g1/g1RedirtyCardsQueue.hpp"
#include "gc/g1/g1RegionToSpaceMapper.hpp"
#include "gc/g1/g1RemSet.hpp"
#include "gc/g1/g1RootClosures.hpp"
#include "gc/g1/g1RootProcessor.hpp"
#include "gc/g1/g1SATBMarkQueueSet.hpp"
#include "gc/g1/g1StringDedup.hpp"
#include "gc/g1/g1ThreadLocalData.hpp"
#include "gc/g1/g1Trace.hpp"
#include "gc/g1/g1YCTypes.hpp"
#include "gc/g1/g1YoungRemSetSamplingThread.hpp"
#include "gc/g1/g1VMOperations.hpp"
#include "gc/g1/heapRegion.inline.hpp"
#include "gc/g1/heapRegionRemSet.hpp"
#include "gc/g1/heapRegionSet.inline.hpp"
#include "gc/shared/concurrentGCBreakpoints.hpp"
#include "gc/shared/gcBehaviours.hpp"
#include "gc/shared/gcHeapSummary.hpp"
#include "gc/shared/gcId.hpp"
#include "gc/shared/gcLocker.hpp"
#include "gc/shared/gcTimer.hpp"
#include "gc/shared/gcTraceTime.inline.hpp"
#include "gc/shared/generationSpec.hpp"
#include "gc/shared/isGCActiveMark.hpp"
#include "gc/shared/locationPrinter.inline.hpp"
#include "gc/shared/oopStorageParState.hpp"
#include "gc/shared/preservedMarks.inline.hpp"
#include "gc/shared/suspendibleThreadSet.hpp"
#include "gc/shared/referenceProcessor.inline.hpp"
#include "gc/shared/taskTerminator.hpp"
#include "gc/shared/taskqueue.inline.hpp"
#include "gc/shared/weakProcessor.inline.hpp"
#include "gc/shared/workerPolicy.hpp"
#include "logging/log.hpp"
#include "memory/allocation.hpp"
#include "memory/iterator.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/access.inline.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/oop.inline.hpp"
#include "runtime/atomic.hpp"
#include "runtime/flags/flagSetting.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/threadSMR.hpp"
#include "runtime/vmThread.hpp"
#include "utilities/align.hpp"
#include "utilities/bitMap.inline.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/stack.inline.hpp"
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
// INVARIANTS/NOTES
//
// All allocation activity covered by the G1CollectedHeap interface is
// serialized by acquiring the HeapLock. This happens in mem_allocate
// and allocate_new_tlab, which are the "entry" points to the
// allocation code from the rest of the JVM. (Note that this does not
// apply to TLAB allocation, which is not part of this interface: it
// is done by clients of this interface.)
class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
private:
size_t _num_dirtied;
G1CollectedHeap* _g1h;
G1CardTable* _g1_ct;
HeapRegion* region_for_card(CardValue* card_ptr) const {
return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
}
bool will_become_free(HeapRegion* hr) const {
// A region will be freed by free_collection_set if the region is in the
// collection set and has not had an evacuation failure.
return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
}
public:
RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
_num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
void do_card_ptr(CardValue* card_ptr, uint worker_id) {
HeapRegion* hr = region_for_card(card_ptr);
// Should only dirty cards in regions that won't be freed.
if (!will_become_free(hr)) {
*card_ptr = G1CardTable::dirty_card_val();
_num_dirtied++;
}
}
size_t num_dirtied() const { return _num_dirtied; }
};
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
}
void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
// The from card cache is not the memory that is actually committed. So we cannot
// take advantage of the zero_filled parameter.
reset_from_card_cache(start_idx, num_regions);
}
Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
Ticks start = Ticks::now();
workers()->run_task(task, workers()->active_workers());
return Ticks::now() - start;
}
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
MemRegion mr) {
return new HeapRegion(hrs_index, bot(), mr);
}
// Private methods.
HeapRegion* G1CollectedHeap::new_region(size_t word_size,
HeapRegionType type,
bool do_expand,
uint node_index) {
assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
"the only time we use this to allocate a humongous region is "
"when we are allocating a single humongous region");
HeapRegion* res = _hrm->allocate_free_region(type, node_index);
if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
// Currently, only attempts to allocate GC alloc regions set
// do_expand to true. So, we should only reach here during a
// safepoint. If this assumption changes we might have to
// reconsider the use of _expand_heap_after_alloc_failure.
assert(SafepointSynchronize::is_at_safepoint(), "invariant");
log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
word_size * HeapWordSize);
assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
"This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
word_size * HeapWordSize);
if (expand_single_region(node_index)) {
// Given that expand_single_region() succeeded in expanding the heap, and we
// always expand the heap by an amount aligned to the heap
// region size, the free list should in theory not be empty.
// In either case allocate_free_region() will check for NULL.
res = _hrm->allocate_free_region(type, node_index);
} else {
_expand_heap_after_alloc_failure = false;
}
}
return res;
}
HeapWord*
G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
uint num_regions,
size_t word_size) {
assert(first_hr != NULL, "pre-condition");
assert(is_humongous(word_size), "word_size should be humongous");
assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
// Index of last region in the series.
uint first = first_hr->hrm_index();
uint last = first + num_regions - 1;
// We need to initialize the region(s) we just discovered. This is
// a bit tricky given that it can happen concurrently with
// refinement threads refining cards on these regions and
// potentially wanting to refine the BOT as they are scanning
// those cards (this can happen shortly after a cleanup; see CR
// 6991377). So we have to set up the region(s) carefully and in
// a specific order.
// The word size sum of all the regions we will allocate.
size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
assert(word_size <= word_size_sum, "sanity");
// The passed in hr will be the "starts humongous" region. The header
// of the new object will be placed at the bottom of this region.
HeapWord* new_obj = first_hr->bottom();
// This will be the new top of the new object.
HeapWord* obj_top = new_obj + word_size;
// First, we need to zero the header of the space that we will be
// allocating. When we update top further down, some refinement
// threads might try to scan the region. By zeroing the header we
// ensure that any thread that will try to scan the region will
// come across the zero klass word and bail out.
//
// NOTE: It would not have been correct to have used
// CollectedHeap::fill_with_object() and make the space look like
// an int array. The thread that is doing the allocation will
// later update the object header to a potentially different array
// type and, for a very short period of time, the klass and length
// fields will be inconsistent. This could cause a refinement
// thread to calculate the object size incorrectly.
Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
// Next, pad out the unused tail of the last region with filler
// objects, for improved usage accounting.
// How many words we use for filler objects.
size_t word_fill_size = word_size_sum - word_size;
// How many words memory we "waste" which cannot hold a filler object.
size_t words_not_fillable = 0;
if (word_fill_size >= min_fill_size()) {
fill_with_objects(obj_top, word_fill_size);
} else if (word_fill_size > 0) {
// We have space to fill, but we cannot fit an object there.
words_not_fillable = word_fill_size;
word_fill_size = 0;
}
// We will set up the first region as "starts humongous". This
// will also update the BOT covering all the regions to reflect
// that there is a single object that starts at the bottom of the
// first region.
first_hr->set_starts_humongous(obj_top, word_fill_size);
_policy->remset_tracker()->update_at_allocate(first_hr);
// Then, if there are any, we will set up the "continues
// humongous" regions.
HeapRegion* hr = NULL;
for (uint i = first + 1; i <= last; ++i) {
hr = region_at(i);
hr->set_continues_humongous(first_hr);
_policy->remset_tracker()->update_at_allocate(hr);
}
// Up to this point no concurrent thread would have been able to
// do any scanning on any region in this series. All the top
// fields still point to bottom, so the intersection between
// [bottom,top] and [card_start,card_end] will be empty. Before we
// update the top fields, we'll do a storestore to make sure that
// no thread sees the update to top before the zeroing of the
// object header and the BOT initialization.
OrderAccess::storestore();
// Now, we will update the top fields of the "continues humongous"
// regions except the last one.
for (uint i = first; i < last; ++i) {
hr = region_at(i);
hr->set_top(hr->end());
}
hr = region_at(last);
// If we cannot fit a filler object, we must set top to the end
// of the humongous object, otherwise we cannot iterate the heap
// and the BOT will not be complete.
hr->set_top(hr->end() - words_not_fillable);
assert(hr->bottom() < obj_top && obj_top <= hr->end(),
"obj_top should be in last region");
_verifier->check_bitmaps("Humongous Region Allocation", first_hr);
assert(words_not_fillable == 0 ||
first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
"Miscalculation in humongous allocation");
increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
for (uint i = first; i <= last; ++i) {
hr = region_at(i);
_humongous_set.add(hr);
_hr_printer.alloc(hr);
}
return new_obj;
}
size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
}
// If could fit into free regions w/o expansion, try.
// Otherwise, if can expand, do so.
// Otherwise, if using ex regions might help, try with ex given back.
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
_verifier->verify_region_sets_optional();
uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
// Policy: First try to allocate a humongous object in the free list.
HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions);
if (humongous_start == NULL) {
// Policy: We could not find enough regions for the humongous object in the
// free list. Look through the heap to find a mix of free and uncommitted regions.
// If so, expand the heap and allocate the humongous object.
humongous_start = _hrm->expand_and_allocate_humongous(obj_regions);
if (humongous_start != NULL) {
// We managed to find a region by expanding the heap.
log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
word_size * HeapWordSize);
policy()->record_new_heap_size(num_regions());
} else {
// Policy: Potentially trigger a defragmentation GC.
}
}
HeapWord* result = NULL;
if (humongous_start != NULL) {
result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
assert(result != NULL, "it should always return a valid result");
// A successful humongous object allocation changes the used space
// information of the old generation so we need to recalculate the
// sizes and update the jstat counters here.
g1mm()->update_sizes();
}
_verifier->verify_region_sets_optional();
return result;
}
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
size_t requested_size,
size_t* actual_size) {
assert_heap_not_locked_and_not_at_safepoint();
assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
return attempt_allocation(min_size, requested_size, actual_size);
}
HeapWord*
G1CollectedHeap::mem_allocate(size_t word_size,
bool* gc_overhead_limit_was_exceeded) {
assert_heap_not_locked_and_not_at_safepoint();
if (is_humongous(word_size)) {
return attempt_allocation_humongous(word_size);
}
size_t dummy = 0;
return attempt_allocation(word_size, word_size, &dummy);
}
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
ResourceMark rm; // For retrieving the thread names in log messages.
// Make sure you read the note in attempt_allocation_humongous().
assert_heap_not_locked_and_not_at_safepoint();
assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
"be called for humongous allocation requests");
// We should only get here after the first-level allocation attempt
// (attempt_allocation()) failed to allocate.
// We will loop until a) we manage to successfully perform the
// allocation or b) we successfully schedule a collection which
// fails to perform the allocation. b) is the only case when we'll
// return NULL.
HeapWord* result = NULL;
for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
bool should_try_gc;
uint gc_count_before;
{
MutexLocker x(Heap_lock);
result = _allocator->attempt_allocation_locked(word_size);
if (result != NULL) {
return result;
}
// If the GCLocker is active and we are bound for a GC, try expanding young gen.
// This is different to when only GCLocker::needs_gc() is set: try to avoid
// waiting because the GCLocker is active to not wait too long.
if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
// No need for an ergo message here, can_expand_young_list() does this when
// it returns true.
result = _allocator->attempt_allocation_force(word_size);
if (result != NULL) {
return result;
}
}
// Only try a GC if the GCLocker does not signal the need for a GC. Wait until
// the GCLocker initiated GC has been performed and then retry. This includes
// the case when the GC Locker is not active but has not been performed.
should_try_gc = !GCLocker::needs_gc();
// Read the GC count while still holding the Heap_lock.
gc_count_before = total_collections();
}
if (should_try_gc) {
bool succeeded;
result = do_collection_pause(word_size, gc_count_before, &succeeded,
GCCause::_g1_inc_collection_pause);
if (result != NULL) {
assert(succeeded, "only way to get back a non-NULL result");
log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
Thread::current()->name(), p2i(result));
return result;
}
if (succeeded) {
// We successfully scheduled a collection which failed to allocate. No
// point in trying to allocate further. We'll just return NULL.
log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
SIZE_FORMAT " words", Thread::current()->name(), word_size);
return NULL;
}
log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
Thread::current()->name(), word_size);
} else {
// Failed to schedule a collection.
if (gclocker_retry_count > GCLockerRetryAllocationCount) {
log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
SIZE_FORMAT " words", Thread::current()->name(), word_size);
return NULL;
}
log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
// The GCLocker is either active or the GCLocker initiated
// GC has not yet been performed. Stall until it is and
// then retry the allocation.
GCLocker::stall_until_clear();
gclocker_retry_count += 1;
}
// We can reach here if we were unsuccessful in scheduling a
// collection (because another thread beat us to it) or if we were
// stalled due to the GC locker. In either can we should retry the
// allocation attempt in case another thread successfully
// performed a collection and reclaimed enough space. We do the
// first attempt (without holding the Heap_lock) here and the
// follow-on attempt will be at the start of the next loop
// iteration (after taking the Heap_lock).
size_t dummy = 0;
result = _allocator->attempt_allocation(word_size, word_size, &dummy);
if (result != NULL) {
return result;
}
// Give a warning if we seem to be looping forever.
if ((QueuedAllocationWarningCount > 0) &&
(try_count % QueuedAllocationWarningCount == 0)) {
log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
Thread::current()->name(), try_count, word_size);
}
}
ShouldNotReachHere();
return NULL;
}
void G1CollectedHeap::begin_archive_alloc_range(bool open) {
assert_at_safepoint_on_vm_thread();
if (_archive_allocator == NULL) {
_archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
}
}
bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
// Allocations in archive regions cannot be of a size that would be considered
// humongous even for a minimum-sized region, because G1 region sizes/boundaries
// may be different at archive-restore time.
return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
}
HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
assert_at_safepoint_on_vm_thread();
assert(_archive_allocator != NULL, "_archive_allocator not initialized");
if (is_archive_alloc_too_large(word_size)) {
return NULL;
}
return _archive_allocator->archive_mem_allocate(word_size);
}
void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
size_t end_alignment_in_bytes) {
assert_at_safepoint_on_vm_thread();
assert(_archive_allocator != NULL, "_archive_allocator not initialized");
// Call complete_archive to do the real work, filling in the MemRegion
// array with the archive regions.
_archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
delete _archive_allocator;
_archive_allocator = NULL;
}
bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
assert(ranges != NULL, "MemRegion array NULL");
assert(count != 0, "No MemRegions provided");
MemRegion reserved = _hrm->reserved();
for (size_t i = 0; i < count; i++) {
if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
return false;
}
}
return true;
}
bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
size_t count,
bool open) {
assert(!is_init_completed(), "Expect to be called at JVM init time");
assert(ranges != NULL, "MemRegion array NULL");
assert(count != 0, "No MemRegions provided");
MutexLocker x(Heap_lock);
MemRegion reserved = _hrm->reserved();
HeapWord* prev_last_addr = NULL;
HeapRegion* prev_last_region = NULL;
// Temporarily disable pretouching of heap pages. This interface is used
// when mmap'ing archived heap data in, so pre-touching is wasted.
FlagSetting fs(AlwaysPreTouch, false);
// Enable archive object checking used by G1MarkSweep. We have to let it know
// about each archive range, so that objects in those ranges aren't marked.
G1ArchiveAllocator::enable_archive_object_check();
// For each specified MemRegion range, allocate the corresponding G1
// regions and mark them as archive regions. We expect the ranges
// in ascending starting address order, without overlap.
for (size_t i = 0; i < count; i++) {
MemRegion curr_range = ranges[i];
HeapWord* start_address = curr_range.start();
size_t word_size = curr_range.word_size();
HeapWord* last_address = curr_range.last();
size_t commits = 0;
guarantee(reserved.contains(start_address) && reserved.contains(last_address),
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
p2i(start_address), p2i(last_address));
guarantee(start_address > prev_last_addr,
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
p2i(start_address), p2i(prev_last_addr));
prev_last_addr = last_address;
// Check for ranges that start in the same G1 region in which the previous
// range ended, and adjust the start address so we don't try to allocate
// the same region again. If the current range is entirely within that
// region, skip it, just adjusting the recorded top.
HeapRegion* start_region = _hrm->addr_to_region(start_address);
if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
start_address = start_region->end();
if (start_address > last_address) {
increase_used(word_size * HeapWordSize);
start_region->set_top(last_address + 1);
continue;
}
start_region->set_top(start_address);
curr_range = MemRegion(start_address, last_address + 1);
start_region = _hrm->addr_to_region(start_address);
}
// Perform the actual region allocation, exiting if it fails.
// Then note how much new space we have allocated.
if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
return false;
}
increase_used(word_size * HeapWordSize);
if (commits != 0) {
log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
HeapRegion::GrainWords * HeapWordSize * commits);
}
// Mark each G1 region touched by the range as archive, add it to
// the old set, and set top.
HeapRegion* curr_region = _hrm->addr_to_region(start_address);
HeapRegion* last_region = _hrm->addr_to_region(last_address);
prev_last_region = last_region;
while (curr_region != NULL) {
assert(curr_region->is_empty() && !curr_region->is_pinned(),
"Region already in use (index %u)", curr_region->hrm_index());
if (open) {
curr_region->set_open_archive();
} else {
curr_region->set_closed_archive();
}
_hr_printer.alloc(curr_region);
_archive_set.add(curr_region);
HeapWord* top;
HeapRegion* next_region;
if (curr_region != last_region) {
top = curr_region->end();
next_region = _hrm->next_region_in_heap(curr_region);
} else {
top = last_address + 1;
next_region = NULL;
}
curr_region->set_top(top);
curr_region = next_region;
}
// Notify mark-sweep of the archive
G1ArchiveAllocator::set_range_archive(curr_range, open);
}
return true;
}
void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
assert(!is_init_completed(), "Expect to be called at JVM init time");
assert(ranges != NULL, "MemRegion array NULL");
assert(count != 0, "No MemRegions provided");
MemRegion reserved = _hrm->reserved();
HeapWord *prev_last_addr = NULL;
HeapRegion* prev_last_region = NULL;
// For each MemRegion, create filler objects, if needed, in the G1 regions
// that contain the address range. The address range actually within the
// MemRegion will not be modified. That is assumed to have been initialized
// elsewhere, probably via an mmap of archived heap data.
MutexLocker x(Heap_lock);
for (size_t i = 0; i < count; i++) {
HeapWord* start_address = ranges[i].start();
HeapWord* last_address = ranges[i].last();
assert(reserved.contains(start_address) && reserved.contains(last_address),
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
p2i(start_address), p2i(last_address));
assert(start_address > prev_last_addr,
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
p2i(start_address), p2i(prev_last_addr));
HeapRegion* start_region = _hrm->addr_to_region(start_address);
HeapRegion* last_region = _hrm->addr_to_region(last_address);
HeapWord* bottom_address = start_region->bottom();
// Check for a range beginning in the same region in which the
// previous one ended.
if (start_region == prev_last_region) {
bottom_address = prev_last_addr + 1;
}
// Verify that the regions were all marked as archive regions by
// alloc_archive_regions.
HeapRegion* curr_region = start_region;
while (curr_region != NULL) {
guarantee(curr_region->is_archive(),
"Expected archive region at index %u", curr_region->hrm_index());
if (curr_region != last_region) {
curr_region = _hrm->next_region_in_heap(curr_region);
} else {
curr_region = NULL;
}
}
prev_last_addr = last_address;
prev_last_region = last_region;
// Fill the memory below the allocated range with dummy object(s),
// if the region bottom does not match the range start, or if the previous
// range ended within the same G1 region, and there is a gap.
if (start_address != bottom_address) {
size_t fill_size = pointer_delta(start_address, bottom_address);
G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
increase_used(fill_size * HeapWordSize);
}
}
}
inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
size_t desired_word_size,
size_t* actual_word_size) {
assert_heap_not_locked_and_not_at_safepoint();
assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
"be called for humongous allocation requests");
HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
if (result == NULL) {
*actual_word_size = desired_word_size;
result = attempt_allocation_slow(desired_word_size);
}
assert_heap_not_locked();
if (result != NULL) {
assert(*actual_word_size != 0, "Actual size must have been set here");
dirty_young_block(result, *actual_word_size);
} else {
*actual_word_size = 0;
}
return result;
}
void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
assert(!is_init_completed(), "Expect to be called at JVM init time");
assert(ranges != NULL, "MemRegion array NULL");
assert(count != 0, "No MemRegions provided");
MemRegion reserved = _hrm->reserved();
HeapWord* prev_last_addr = NULL;
HeapRegion* prev_last_region = NULL;
size_t size_used = 0;
size_t uncommitted_regions = 0;
// For each Memregion, free the G1 regions that constitute it, and
// notify mark-sweep that the range is no longer to be considered 'archive.'
MutexLocker x(Heap_lock);
for (size_t i = 0; i < count; i++) {
HeapWord* start_address = ranges[i].start();
HeapWord* last_address = ranges[i].last();
assert(reserved.contains(start_address) && reserved.contains(last_address),
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
p2i(start_address), p2i(last_address));
assert(start_address > prev_last_addr,
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
p2i(start_address), p2i(prev_last_addr));
size_used += ranges[i].byte_size();
prev_last_addr = last_address;
HeapRegion* start_region = _hrm->addr_to_region(start_address);
HeapRegion* last_region = _hrm->addr_to_region(last_address);
// Check for ranges that start in the same G1 region in which the previous
// range ended, and adjust the start address so we don't try to free
// the same region again. If the current range is entirely within that
// region, skip it.
if (start_region == prev_last_region) {
start_address = start_region->end();
if (start_address > last_address) {
continue;
}
start_region = _hrm->addr_to_region(start_address);
}
prev_last_region = last_region;
// After verifying that each region was marked as an archive region by
// alloc_archive_regions, set it free and empty and uncommit it.
HeapRegion* curr_region = start_region;
while (curr_region != NULL) {
guarantee(curr_region->is_archive(),
"Expected archive region at index %u", curr_region->hrm_index());
uint curr_index = curr_region->hrm_index();
_archive_set.remove(curr_region);
curr_region->set_free();
curr_region->set_top(curr_region->bottom());
if (curr_region != last_region) {
curr_region = _hrm->next_region_in_heap(curr_region);
} else {
curr_region = NULL;
}
_hrm->shrink_at(curr_index, 1);
uncommitted_regions++;
}
// Notify mark-sweep that this is no longer an archive range.
G1ArchiveAllocator::clear_range_archive(ranges[i]);
}
if (uncommitted_regions != 0) {
log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
}
decrease_used(size_used);
}
oop G1CollectedHeap::materialize_archived_object(oop obj) {
assert(obj != NULL, "archived obj is NULL");
assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
// Loading an archived object makes it strongly reachable. If it is
// loaded during concurrent marking, it must be enqueued to the SATB
// queue, shading the previously white object gray.
G1BarrierSet::enqueue(obj);
return obj;
}
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
ResourceMark rm; // For retrieving the thread names in log messages.
// The structure of this method has a lot of similarities to
// attempt_allocation_slow(). The reason these two were not merged
// into a single one is that such a method would require several "if
// allocation is not humongous do this, otherwise do that"
// conditional paths which would obscure its flow. In fact, an early
// version of this code did use a unified method which was harder to
// follow and, as a result, it had subtle bugs that were hard to
// track down. So keeping these two methods separate allows each to
// be more readable. It will be good to keep these two in sync as
// much as possible.
assert_heap_not_locked_and_not_at_safepoint();
assert(is_humongous(word_size), "attempt_allocation_humongous() "
"should only be called for humongous allocations");
// Humongous objects can exhaust the heap quickly, so we should check if we
// need to start a marking cycle at each humongous object allocation. We do
// the check before we do the actual allocation. The reason for doing it
// before the allocation is that we avoid having to keep track of the newly
// allocated memory while we do a GC.
if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
word_size)) {
collect(GCCause::_g1_humongous_allocation);
}
// We will loop until a) we manage to successfully perform the
// allocation or b) we successfully schedule a collection which
// fails to perform the allocation. b) is the only case when we'll
// return NULL.
HeapWord* result = NULL;
for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
bool should_try_gc;
uint gc_count_before;
{
MutexLocker x(Heap_lock);
// Given that humongous objects are not allocated in young
// regions, we'll first try to do the allocation without doing a
// collection hoping that there's enough space in the heap.
result = humongous_obj_allocate(word_size);
if (result != NULL) {
size_t size_in_regions = humongous_obj_size_in_regions(word_size);
policy()->old_gen_alloc_tracker()->
add_allocated_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
return result;
}
// Only try a GC if the GCLocker does not signal the need for a GC. Wait until
// the GCLocker initiated GC has been performed and then retry. This includes
// the case when the GC Locker is not active but has not been performed.
should_try_gc = !GCLocker::needs_gc();
// Read the GC count while still holding the Heap_lock.
gc_count_before = total_collections();
}
if (should_try_gc) {
bool succeeded;
result = do_collection_pause(word_size, gc_count_before, &succeeded,
GCCause::_g1_humongous_allocation);
if (result != NULL) {
assert(succeeded, "only way to get back a non-NULL result");
log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
Thread::current()->name(), p2i(result));
return result;
}
if (succeeded) {
// We successfully scheduled a collection which failed to allocate. No
// point in trying to allocate further. We'll just return NULL.
log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
SIZE_FORMAT " words", Thread::current()->name(), word_size);
return NULL;
}
log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
Thread::current()->name(), word_size);
} else {
// Failed to schedule a collection.
if (gclocker_retry_count > GCLockerRetryAllocationCount) {
log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
SIZE_FORMAT " words", Thread::current()->name(), word_size);
return NULL;
}
log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
// The GCLocker is either active or the GCLocker initiated
// GC has not yet been performed. Stall until it is and
// then retry the allocation.
GCLocker::stall_until_clear();
gclocker_retry_count += 1;
}
// We can reach here if we were unsuccessful in scheduling a
// collection (because another thread beat us to it) or if we were
// stalled due to the GC locker. In either can we should retry the
// allocation attempt in case another thread successfully
// performed a collection and reclaimed enough space.
// Humongous object allocation always needs a lock, so we wait for the retry
// in the next iteration of the loop, unlike for the regular iteration case.
// Give a warning if we seem to be looping forever.
if ((QueuedAllocationWarningCount > 0) &&
(try_count % QueuedAllocationWarningCount == 0)) {
log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
Thread::current()->name(), try_count, word_size);
}
}
ShouldNotReachHere();
return NULL;
}
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
bool expect_null_mutator_alloc_region) {
assert_at_safepoint_on_vm_thread();
assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
"the current alloc region was unexpectedly found to be non-NULL");
if (!is_humongous(word_size)) {
return _allocator->attempt_allocation_locked(word_size);
} else {
HeapWord* result = humongous_obj_allocate(word_size);
if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
collector_state()->set_initiate_conc_mark_if_possible(true);
}
return result;
}
ShouldNotReachHere();
}
class PostCompactionPrinterClosure: public HeapRegionClosure {
private:
G1HRPrinter* _hr_printer;
public:
bool do_heap_region(HeapRegion* hr) {
assert(!hr->is_young(), "not expecting to find young regions");
_hr_printer->post_compaction(hr);
return false;
}
PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
: _hr_printer(hr_printer) { }
};
void G1CollectedHeap::print_hrm_post_compaction() {
if (_hr_printer.is_active()) {
PostCompactionPrinterClosure cl(hr_printer());
heap_region_iterate(&cl);
}
}
void G1CollectedHeap::abort_concurrent_cycle() {
// If we start the compaction before the CM threads finish
// scanning the root regions we might trip them over as we'll
// be moving objects / updating references. So let's wait until
// they are done. By telling them to abort, they should complete
// early.
_cm->root_regions()->abort();
_cm->root_regions()->wait_until_scan_finished();
// Disable discovery and empty the discovered lists
// for the CM ref processor.
_ref_processor_cm->disable_discovery();
_ref_processor_cm->abandon_partial_discovery();
_ref_processor_cm->verify_no_references_recorded();
// Abandon current iterations of concurrent marking and concurrent
// refinement, if any are in progress.
concurrent_mark()->concurrent_cycle_abort();
}
void G1CollectedHeap::prepare_heap_for_full_collection() {
// Make sure we'll choose a new allocation region afterwards.
_allocator->release_mutator_alloc_regions();
_allocator->abandon_gc_alloc_regions();
// We may have added regions to the current incremental collection
// set between the last GC or pause and now. We need to clear the
// incremental collection set and then start rebuilding it afresh
// after this full GC.
abandon_collection_set(collection_set());
tear_down_region_sets(false /* free_list_only */);
hrm()->prepare_for_full_collection_start();
}
void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
assert_used_and_recalculate_used_equal(this);
_verifier->verify_region_sets_optional();
_verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
_verifier->check_bitmaps("Full GC Start");
}
void G1CollectedHeap::prepare_heap_for_mutators() {
hrm()->prepare_for_full_collection_end();
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
ClassLoaderDataGraph::purge();
MetaspaceUtils::verify_metrics();
// Prepare heap for normal collections.
assert(num_free_regions() == 0, "we should not have added any free regions");
rebuild_region_sets(false /* free_list_only */);
abort_refinement();
resize_heap_if_necessary();
// Rebuild the strong code root lists for each region
rebuild_strong_code_roots();
// Purge code root memory
purge_code_root_memory();
// Start a new incremental collection set for the next pause
start_new_collection_set();
_allocator->init_mutator_alloc_regions();
// Post collection state updates.
MetaspaceGC::compute_new_size();
}
void G1CollectedHeap::abort_refinement() {
if (_hot_card_cache->use_cache()) {
_hot_card_cache->reset_hot_cache();
}
// Discard all remembered set updates and reset refinement statistics.
G1BarrierSet::dirty_card_queue_set().abandon_logs();
assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
"DCQS should be empty");
concurrent_refine()->get_and_reset_refinement_stats();
}
void G1CollectedHeap::verify_after_full_collection() {
_hrm->verify_optional();
_verifier->verify_region_sets_optional();
_verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
// Clear the previous marking bitmap, if needed for bitmap verification.
// Note we cannot do this when we clear the next marking bitmap in
// G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
// objects marked during a full GC against the previous bitmap.
// But we need to clear it before calling check_bitmaps below since
// the full GC has compacted objects and updated TAMS but not updated
// the prev bitmap.
if (G1VerifyBitmaps) {
GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
_cm->clear_prev_bitmap(workers());
}
// This call implicitly verifies that the next bitmap is clear after Full GC.
_verifier->check_bitmaps("Full GC End");
// At this point there should be no regions in the
// entire heap tagged as young.
assert(check_young_list_empty(), "young list should be empty at this point");
// Note: since we've just done a full GC, concurrent
// marking is no longer active. Therefore we need not
// re-enable reference discovery for the CM ref processor.
// That will be done at the start of the next marking cycle.
// We also know that the STW processor should no longer
// discover any new references.
assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
_ref_processor_stw->verify_no_references_recorded();
_ref_processor_cm->verify_no_references_recorded();
}
void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
// Post collection logging.
// We should do this after we potentially resize the heap so
// that all the COMMIT / UNCOMMIT events are generated before
// the compaction events.
print_hrm_post_compaction();
heap_transition->print();
print_heap_after_gc();
print_heap_regions();
}
bool G1CollectedHeap::do_full_collection(bool explicit_gc,
bool clear_all_soft_refs) {
assert_at_safepoint_on_vm_thread();
if (GCLocker::check_active_before_gc()) {
// Full GC was not completed.
return false;
}
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
soft_ref_policy()->should_clear_all_soft_refs();
G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
collector.prepare_collection();
collector.collect();
collector.complete_collection();
// Full collection was successfully completed.
return true;
}
void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
// Currently, there is no facility in the do_full_collection(bool) API to notify
// the caller that the collection did not succeed (e.g., because it was locked
// out by the GC locker). So, right now, we'll ignore the return value.
bool dummy = do_full_collection(true, /* explicit_gc */
clear_all_soft_refs);
}
void G1CollectedHeap::resize_heap_if_necessary() {
assert_at_safepoint_on_vm_thread();
// Capacity, free and used after the GC counted as full regions to
// include the waste in the following calculations.
const size_t capacity_after_gc = capacity();
const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
// This is enforced in arguments.cpp.
assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
"otherwise the code below doesn't make sense");
// We don't have floating point command-line arguments
const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
const double maximum_used_percentage = 1.0 - minimum_free_percentage;
const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
const double minimum_used_percentage = 1.0 - maximum_free_percentage;
// We have to be careful here as these two calculations can overflow
// 32-bit size_t's.
double used_after_gc_d = (double) used_after_gc;
double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
// Let's make sure that they are both under the max heap size, which
// by default will make them fit into a size_t.
double desired_capacity_upper_bound = (double) MaxHeapSize;
minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
desired_capacity_upper_bound);
maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
desired_capacity_upper_bound);
// We can now safely turn them into size_t's.
size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
// This assert only makes sense here, before we adjust them
// with respect to the min and max heap size.
assert(minimum_desired_capacity <= maximum_desired_capacity,
"minimum_desired_capacity = " SIZE_FORMAT ", "
"maximum_desired_capacity = " SIZE_FORMAT,
minimum_desired_capacity, maximum_desired_capacity);
// Should not be greater than the heap max size. No need to adjust
// it with respect to the heap min size as it's a lower bound (i.e.,
// we'll try to make the capacity larger than it, not smaller).
minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
// Should not be less than the heap min size. No need to adjust it
// with respect to the heap max size as it's an upper bound (i.e.,
// we'll try to make the capacity smaller than it, not greater).
maximum_desired_capacity = MAX2(maximum_desired_capacity, MinHeapSize);
if (capacity_after_gc < minimum_desired_capacity) {
// Don't expand unless it's significant
size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
"Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
"min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
expand(expand_bytes, _workers);
// No expansion, now see if we want to shrink
} else if (capacity_after_gc > maximum_desired_capacity) {
// Capacity too large, compute shrinking size
size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
"Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
"maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
shrink(shrink_bytes);
}
}
HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
bool do_gc,
bool clear_all_soft_refs,
bool expect_null_mutator_alloc_region,
bool* gc_succeeded) {
*gc_succeeded = true;
// Let's attempt the allocation first.
HeapWord* result =
attempt_allocation_at_safepoint(word_size,
expect_null_mutator_alloc_region);
if (result != NULL) {
return result;
}
// In a G1 heap, we're supposed to keep allocation from failing by
// incremental pauses. Therefore, at least for now, we'll favor
// expansion over collection. (This might change in the future if we can
// do something smarter than full collection to satisfy a failed alloc.)
result = expand_and_allocate(word_size);
if (result != NULL) {
return result;
}
if (do_gc) {
// Expansion didn't work, we'll try to do a Full GC.
*gc_succeeded = do_full_collection(false, /* explicit_gc */
clear_all_soft_refs);
}
return NULL;
}
HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
bool* succeeded) {
assert_at_safepoint_on_vm_thread();
// Attempts to allocate followed by Full GC.
HeapWord* result =
satisfy_failed_allocation_helper(word_size,
true, /* do_gc */
false, /* clear_all_soft_refs */
false, /* expect_null_mutator_alloc_region */
succeeded);
if (result != NULL || !*succeeded) {
return result;
}
// Attempts to allocate followed by Full GC that will collect all soft references.
result = satisfy_failed_allocation_helper(word_size,
true, /* do_gc */
true, /* clear_all_soft_refs */
true, /* expect_null_mutator_alloc_region */
succeeded);
if (result != NULL || !*succeeded) {
return result;
}
// Attempts to allocate, no GC
result = satisfy_failed_allocation_helper(word_size,
false, /* do_gc */
false, /* clear_all_soft_refs */
true, /* expect_null_mutator_alloc_region */
succeeded);
if (result != NULL) {
return result;
}
assert(!soft_ref_policy()->should_clear_all_soft_refs(),
"Flag should have been handled and cleared prior to this point");
// What else? We might try synchronous finalization later. If the total
// space available is large enough for the allocation, then a more
// complete compaction phase than we've tried so far might be
// appropriate.
return NULL;
}
// Attempting to expand the heap sufficiently
// to support an allocation of the given "word_size". If
// successful, perform the allocation and return the address of the
// allocated block, or else "NULL".
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
assert_at_safepoint_on_vm_thread();
_verifier->verify_region_sets_optional();
size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
word_size * HeapWordSize);
if (expand(expand_bytes, _workers)) {
_hrm->verify_optional();
_verifier->verify_region_sets_optional();
return attempt_allocation_at_safepoint(word_size,
false /* expect_null_mutator_alloc_region */);
}
return NULL;
}
bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
aligned_expand_bytes = align_up(aligned_expand_bytes,
HeapRegion::GrainBytes);
log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
expand_bytes, aligned_expand_bytes);
if (is_maximal_no_gc()) {
log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
return false;
}
double expand_heap_start_time_sec = os::elapsedTime();
uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
assert(regions_to_expand > 0, "Must expand by at least one region");
uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
if (expand_time_ms != NULL) {
*expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
}
if (expanded_by > 0) {
size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
policy()->record_new_heap_size(num_regions());
} else {
log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
// The expansion of the virtual storage space was unsuccessful.
// Let's see if it was because we ran out of swap.
if (G1ExitOnExpansionFailure &&
_hrm->available() >= regions_to_expand) {
// We had head room...
vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
}
}
return regions_to_expand > 0;
}
bool G1CollectedHeap::expand_single_region(uint node_index) {
uint expanded_by = _hrm->expand_on_preferred_node(node_index);
if (expanded_by == 0) {
assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
return false;
}
policy()->record_new_heap_size(num_regions());
return true;
}
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
size_t aligned_shrink_bytes =
ReservedSpace::page_align_size_down(shrink_bytes);
aligned_shrink_bytes = align_down(aligned_shrink_bytes,
HeapRegion::GrainBytes);
uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
if (num_regions_removed > 0) {
policy()->record_new_heap_size(num_regions());
} else {
log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
}
}
void G1CollectedHeap::shrink(size_t shrink_bytes) {
_verifier->verify_region_sets_optional();
// We should only reach here at the end of a Full GC or during Remark which
// means we should not not be holding to any GC alloc regions. The method
// below will make sure of that and do any remaining clean up.
_allocator->abandon_gc_alloc_regions();
// Instead of tearing down / rebuilding the free lists here, we
// could instead use the remove_all_pending() method on free_list to
// remove only the ones that we need to remove.
tear_down_region_sets(true /* free_list_only */);
shrink_helper(shrink_bytes);
rebuild_region_sets(true /* free_list_only */);
_hrm->verify_optional();
_verifier->verify_region_sets_optional();
}
class OldRegionSetChecker : public HeapRegionSetChecker {
public:
void check_mt_safety() {
// Master Old Set MT safety protocol:
// (a) If we're at a safepoint, operations on the master old set
// should be invoked:
// - by the VM thread (which will serialize them), or
// - by the GC workers while holding the FreeList_lock, if we're
// at a safepoint for an evacuation pause (this lock is taken
// anyway when an GC alloc region is retired so that a new one
// is allocated from the free list), or
// - by the GC workers while holding the OldSets_lock, if we're at a
// safepoint for a cleanup pause.
// (b) If we're not at a safepoint, operations on the master old set
// should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
"master old set MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
}
}
bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
const char* get_description() { return "Old Regions"; }
};
class ArchiveRegionSetChecker : public HeapRegionSetChecker {
public:
void check_mt_safety() {
guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
"May only change archive regions during initialization or safepoint.");
}
bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
const char* get_description() { return "Archive Regions"; }
};
class HumongousRegionSetChecker : public HeapRegionSetChecker {
public:
void check_mt_safety() {
// Humongous Set MT safety protocol:
// (a) If we're at a safepoint, operations on the master humongous
// set should be invoked by either the VM thread (which will
// serialize them) or by the GC workers while holding the
// OldSets_lock.
// (b) If we're not at a safepoint, operations on the master
// humongous set should be invoked while holding the Heap_lock.
if (SafepointSynchronize::is_at_safepoint()) {
guarantee(Thread::current()->is_VM_thread() ||
OldSets_lock->owned_by_self(),
"master humongous set MT safety protocol at a safepoint");
} else {
guarantee(Heap_lock->owned_by_self(),
"master humongous set MT safety protocol outside a safepoint");
}
}
bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
const char* get_description() { return "Humongous Regions"; }
};
G1CollectedHeap::G1CollectedHeap() :
CollectedHeap(),
_young_gen_sampling_thread(NULL),
_workers(NULL),
_card_table(NULL),
_soft_ref_policy(),
_old_set("Old Region Set", new OldRegionSetChecker()),
_archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
_humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
_bot(NULL),
_listener(),
_numa(G1NUMA::create()),
_hrm(NULL),
_allocator(NULL),
_verifier(NULL),
_summary_bytes_used(0),
_bytes_used_during_gc(0),
_archive_allocator(NULL),
_survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
_old_evac_stats("Old", OldPLABSize, PLABWeight),
_expand_heap_after_alloc_failure(true),
_g1mm(NULL),
_humongous_reclaim_candidates(),
_has_humongous_reclaim_candidates(false),
_hr_printer(),
_collector_state(),
_old_marking_cycles_started(0),
_old_marking_cycles_completed(0),
_eden(),
_survivor(),
_gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
_gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
_policy(G1Policy::create_policy(_gc_timer_stw)),
_heap_sizing_policy(NULL),
_collection_set(this, _policy),
_hot_card_cache(NULL),
_rem_set(NULL),
_cm(NULL),
_cm_thread(NULL),
_cr(NULL),
_task_queues(NULL),
_evacuation_failed(false),
_evacuation_failed_info_array(NULL),
_preserved_marks_set(true /* in_c_heap */),
#ifndef PRODUCT
_evacuation_failure_alot_for_current_gc(false),
_evacuation_failure_alot_gc_number(0),
_evacuation_failure_alot_count(0),
#endif
_ref_processor_stw(NULL),
_is_alive_closure_stw(this),
_is_subject_to_discovery_stw(this),
_ref_processor_cm(NULL),
_is_alive_closure_cm(this),
_is_subject_to_discovery_cm(this),
_region_attr() {
_verifier = new G1HeapVerifier(this);
_allocator = new G1Allocator(this);
_heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
_humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
// Override the default _filler_array_max_size so that no humongous filler
// objects are created.
_filler_array_max_size = _humongous_object_threshold_in_words;
uint n_queues = ParallelGCThreads;
_task_queues = new G1ScannerTasksQueueSet(n_queues);
_evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
for (uint i = 0; i < n_queues; i++) {
G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
q->initialize();
_task_queues->register_queue(i, q);
::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
}
// Initialize the G1EvacuationFailureALot counters and flags.
NOT_PRODUCT(reset_evacuation_should_fail();)
_gc_tracer_stw->initialize();
guarantee(_task_queues != NULL, "task_queues allocation failure.");
}
static size_t actual_reserved_page_size(ReservedSpace rs) {
size_t page_size = os::vm_page_size();
if (UseLargePages) {
// There are two ways to manage large page memory.
// 1. OS supports committing large page memory.
// 2. OS doesn't support committing large page memory so ReservedSpace manages it.
// And ReservedSpace calls it 'special'. If we failed to set 'special',
// we reserved memory without large page.
if (os::can_commit_large_page_memory() || rs.special()) {
// An alignment at ReservedSpace comes from preferred page size or
// heap alignment, and if the alignment came from heap alignment, it could be
// larger than large pages size. So need to cap with the large page size.
page_size = MIN2(rs.alignment(), os::large_page_size());
}
}
return page_size;
}
G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
size_t size,
size_t translation_factor) {
size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
// Allocate a new reserved space, preferring to use large pages.
ReservedSpace rs(size, preferred_page_size);
size_t page_size = actual_reserved_page_size(rs);
G1RegionToSpaceMapper* result =
G1RegionToSpaceMapper::create_mapper(rs,
size,
page_size,
HeapRegion::GrainBytes,
translation_factor,
mtGC);
os::trace_page_sizes_for_requested_size(description,
size,
preferred_page_size,
page_size,
rs.base(),
rs.size());
return result;
}
jint G1CollectedHeap::initialize_concurrent_refinement() {
jint ecode = JNI_OK;
_cr = G1ConcurrentRefine::create(&ecode);
return ecode;
}
jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
_young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
if (_young_gen_sampling_thread->osthread() == NULL) {
vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
return JNI_ENOMEM;
}
return JNI_OK;
}
jint G1CollectedHeap::initialize() {
// Necessary to satisfy locking discipline assertions.
MutexLocker x(Heap_lock);
// While there are no constraints in the GC code that HeapWordSize
// be any particular value, there are multiple other areas in the
// system which believe this to be true (e.g. oop->object_size in some
// cases incorrectly returns the size in wordSize units rather than
// HeapWordSize).
guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
size_t init_byte_size = InitialHeapSize;
size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
// Ensure that the sizes are properly aligned.
Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
// Reserve the maximum.
// When compressed oops are enabled, the preferred heap base
// is calculated by subtracting the requested size from the
// 32Gb boundary and using the result as the base address for
// heap reservation. If the requested size is not aligned to
// HeapRegion::GrainBytes (i.e. the alignment that is passed
// into the ReservedHeapSpace constructor) then the actual
// base of the reserved heap may end up differing from the
// address that was requested (i.e. the preferred heap base).
// If this happens then we could end up using a non-optimal
// compressed oops mode.
ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
HeapAlignment);
initialize_reserved_region(heap_rs);
// Create the barrier set for the entire reserved region.
G1CardTable* ct = new G1CardTable(heap_rs.region());
ct->initialize();
G1BarrierSet* bs = new G1BarrierSet(ct);
bs->initialize();
assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
BarrierSet::set_barrier_set(bs);
_card_table = ct;
{
G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
}
// Create the hot card cache.
_hot_card_cache = new G1HotCardCache(this);
// Carve out the G1 part of the heap.
ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
size_t page_size = actual_reserved_page_size(heap_rs);
G1RegionToSpaceMapper* heap_storage =
G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
g1_rs.size(),
page_size,
HeapRegion::GrainBytes,
1,
mtJavaHeap);
if(heap_storage == NULL) {
vm_shutdown_during_initialization("Could not initialize G1 heap");
return JNI_ERR;
}
os::trace_page_sizes("Heap",
MinHeapSize,
reserved_byte_size,
page_size,
heap_rs.base(),
heap_rs.size());
heap_storage->set_mapping_changed_listener(&_listener);
// Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
G1RegionToSpaceMapper* bot_storage =
create_aux_memory_mapper("Block Offset Table",
G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
G1BlockOffsetTable::heap_map_factor());
G1RegionToSpaceMapper* cardtable_storage =
create_aux_memory_mapper("Card Table",
G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
G1CardTable::heap_map_factor());
G1RegionToSpaceMapper* card_counts_storage =
create_aux_memory_mapper("Card Counts Table",
G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
G1CardCounts::heap_map_factor());
size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
G1RegionToSpaceMapper* prev_bitmap_storage =
create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
G1RegionToSpaceMapper* next_bitmap_storage =
create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
_hrm = HeapRegionManager::create_manager(this);
_hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
_card_table->initialize(cardtable_storage);
// Do later initialization work for concurrent refinement.
_hot_card_cache->initialize(card_counts_storage);
// 6843694 - ensure that the maximum region index can fit
// in the remembered set structures.
const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
// The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
// start within the first card.
guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
// Also create a G1 rem set.
_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
_rem_set->initialize(max_reserved_capacity(), max_regions());
size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
"too many cards per region");
FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
_bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
{
HeapWord* start = _hrm->reserved().start();
HeapWord* end = _hrm->reserved().end();
size_t granularity = HeapRegion::GrainBytes;
_region_attr.initialize(start, end, granularity);
_humongous_reclaim_candidates.initialize(start, end, granularity);
}
_workers = new WorkGang("GC Thread", ParallelGCThreads,
true /* are_GC_task_threads */,
false /* are_ConcurrentGC_threads */);
if (_workers == NULL) {
return JNI_ENOMEM;
}
_workers->initialize_workers();
_numa->set_region_info(HeapRegion::GrainBytes, page_size);
// Create the G1ConcurrentMark data structure and thread.
// (Must do this late, so that "max_regions" is defined.)
_cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
_cm_thread = _cm->cm_thread();
// Now expand into the initial heap size.
if (!expand(init_byte_size, _workers)) {
vm_shutdown_during_initialization("Failed to allocate initial heap.");
return JNI_ENOMEM;
}
// Perform any initialization actions delegated to the policy.
policy()->init(this, &_collection_set);
jint ecode = initialize_concurrent_refinement();
if (ecode != JNI_OK) {
return ecode;
}
ecode = initialize_young_gen_sampling_thread();
if (ecode != JNI_OK) {
return ecode;
}
{
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
dcqs.set_max_cards(concurrent_refine()->red_zone());
}
// Here we allocate the dummy HeapRegion that is required by the
// G1AllocRegion class.
HeapRegion* dummy_region = _hrm->get_dummy_region();
// We'll re-use the same region whether the alloc region will
// require BOT updates or not and, if it doesn't, then a non-young
// region will complain that it cannot support allocations without
// BOT updates. So we'll tag the dummy region as eden to avoid that.
dummy_region->set_eden();
// Make sure it's full.
dummy_region->set_top(dummy_region->end());
G1AllocRegion::setup(this, dummy_region);
_allocator->init_mutator_alloc_regions();
// Do create of the monitoring and management support so that
// values in the heap have been properly initialized.
_g1mm = new G1MonitoringSupport(this);
G1StringDedup::initialize();
_preserved_marks_set.init(ParallelGCThreads);
_collection_set.initialize(max_regions());
G1InitLogger::print();
return JNI_OK;
}
void G1CollectedHeap::stop() {
// Stop all concurrent threads. We do this to make sure these threads
// do not continue to execute and access resources (e.g. logging)
// that are destroyed during shutdown.
_cr->stop();
_young_gen_sampling_thread->stop();
_cm_thread->stop();
if (G1StringDedup::is_enabled()) {
G1StringDedup::stop();
}
}
void G1CollectedHeap::safepoint_synchronize_begin() {
SuspendibleThreadSet::synchronize();
}
void G1CollectedHeap::safepoint_synchronize_end() {
SuspendibleThreadSet::desynchronize();
}
void G1CollectedHeap::post_initialize() {
CollectedHeap::post_initialize();
ref_processing_init();
}
void G1CollectedHeap::ref_processing_init() {
// Reference processing in G1 currently works as follows:
//
// * There are two reference processor instances. One is
// used to record and process discovered references
// during concurrent marking; the other is used to
// record and process references during STW pauses
// (both full and incremental).
// * Both ref processors need to 'span' the entire heap as
// the regions in the collection set may be dotted around.
//
// * For the concurrent marking ref processor:
// * Reference discovery is enabled at initial marking.
// * Reference discovery is disabled and the discovered
// references processed etc during remarking.
// * Reference discovery is MT (see below).
// * Reference discovery requires a barrier (see below).
// * Reference processing may or may not be MT
// (depending on the value of ParallelRefProcEnabled
// and ParallelGCThreads).
// * A full GC disables reference discovery by the CM
// ref processor and abandons any entries on it's
// discovered lists.
//
// * For the STW processor:
// * Non MT discovery is enabled at the start of a full GC.
// * Processing and enqueueing during a full GC is non-MT.
// * During a full GC, references are processed after marking.
//
// * Discovery (may or may not be MT) is enabled at the start
// of an incremental evacuation pause.
// * References are processed near the end of a STW evacuation pause.
// * For both types of GC:
// * Discovery is atomic - i.e. not concurrent.
// * Reference discovery will not need a barrier.
bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
// Concurrent Mark ref processor
_ref_processor_cm =
new ReferenceProcessor(&_is_subject_to_discovery_cm,
mt_processing, // mt processing
ParallelGCThreads, // degree of mt processing
(ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
false, // Reference discovery is not atomic
&_is_alive_closure_cm, // is alive closure
true); // allow changes to number of processing threads
// STW ref processor
_ref_processor_stw =
new ReferenceProcessor(&_is_subject_to_discovery_stw,
mt_processing, // mt processing
ParallelGCThreads, // degree of mt processing
(ParallelGCThreads > 1), // mt discovery
ParallelGCThreads, // degree of mt discovery
true, // Reference discovery is atomic
&_is_alive_closure_stw, // is alive closure
true); // allow changes to number of processing threads
}
SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
return &_soft_ref_policy;
}
size_t G1CollectedHeap::capacity() const {
return _hrm->length() * HeapRegion::GrainBytes;
}
size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
return _hrm->total_free_bytes();
}
void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
_hot_card_cache->drain(cl, worker_id);
}
// Computes the sum of the storage used by the various regions.
size_t G1CollectedHeap::used() const {
size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
if (_archive_allocator != NULL) {
result += _archive_allocator->used();
}
return result;
}
size_t G1CollectedHeap::used_unlocked() const {
return _summary_bytes_used;
}
class SumUsedClosure: public HeapRegionClosure {
size_t _used;
public:
SumUsedClosure() : _used(0) {}
bool do_heap_region(HeapRegion* r) {
_used += r->used();
return false;
}
size_t result() { return _used; }
};
size_t G1CollectedHeap::recalculate_used() const {
SumUsedClosure blk;
heap_region_iterate(&blk);
return blk.result();
}
bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
switch (cause) {
case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent;
case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent;
case GCCause::_wb_conc_mark: return true;
default : return false;
}
}
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
switch (cause) {
case GCCause::_g1_humongous_allocation: return true;
case GCCause::_g1_periodic_collection: return G1PeriodicGCInvokesConcurrent;
case GCCause::_wb_breakpoint: return true;
default: return is_user_requested_concurrent_full_gc(cause);
}
}
bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
if (policy()->force_upgrade_to_full()) {
return true;
} else if (should_do_concurrent_full_gc(_gc_cause)) {
return false;
} else if (has_regions_left_for_allocation()) {
return false;
} else {
return true;
}
}
#ifndef PRODUCT
void G1CollectedHeap::allocate_dummy_regions() {
// Let's fill up most of the region
size_t word_size = HeapRegion::GrainWords - 1024;
// And as a result the region we'll allocate will be humongous.
guarantee(is_humongous(word_size), "sanity");
// _filler_array_max_size is set to humongous object threshold
// but temporarily change it to use CollectedHeap::fill_with_object().
SizeTFlagSetting fs(_filler_array_max_size, word_size);
for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
// Let's use the existing mechanism for the allocation
HeapWord* dummy_obj = humongous_obj_allocate(word_size);
if (dummy_obj != NULL) {
MemRegion mr(dummy_obj, word_size);
CollectedHeap::fill_with_object(mr);
} else {
// If we can't allocate once, we probably cannot allocate
// again. Let's get out of the loop.
break;
}
}
}
#endif // !PRODUCT
void G1CollectedHeap::increment_old_marking_cycles_started() {
assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
_old_marking_cycles_started == _old_marking_cycles_completed + 1,
"Wrong marking cycle count (started: %d, completed: %d)",
_old_marking_cycles_started, _old_marking_cycles_completed);
_old_marking_cycles_started++;
}
void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
// We assume that if concurrent == true, then the caller is a
// concurrent thread that was joined the Suspendible Thread
// Set. If there's ever a cheap way to check this, we should add an
// assert here.
// Given that this method is called at the end of a Full GC or of a
// concurrent cycle, and those can be nested (i.e., a Full GC can
// interrupt a concurrent cycle), the number of full collections
// completed should be either one (in the case where there was no
// nesting) or two (when a Full GC interrupted a concurrent cycle)
// behind the number of full collections started.
// This is the case for the inner caller, i.e. a Full GC.
assert(concurrent ||
(_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
(_old_marking_cycles_started == _old_marking_cycles_completed + 2),
"for inner caller (Full GC): _old_marking_cycles_started = %u "
"is inconsistent with _old_marking_cycles_completed = %u",
_old_marking_cycles_started, _old_marking_cycles_completed);
// This is the case for the outer caller, i.e. the concurrent cycle.
assert(!concurrent ||
(_old_marking_cycles_started == _old_marking_cycles_completed + 1),
"for outer caller (concurrent cycle): "
"_old_marking_cycles_started = %u "
"is inconsistent with _old_marking_cycles_completed = %u",
_old_marking_cycles_started, _old_marking_cycles_completed);
_old_marking_cycles_completed += 1;
// We need to clear the "in_progress" flag in the CM thread before
// we wake up any waiters (especially when ExplicitInvokesConcurrent
// is set) so that if a waiter requests another System.gc() it doesn't
// incorrectly see that a marking cycle is still in progress.
if (concurrent) {
_cm_thread->set_idle();
}
// Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
// for a full GC to finish that their wait is over.
ml.notify_all();
}
void G1CollectedHeap::collect(GCCause::Cause cause) {
try_collect(cause);
}
// Return true if (x < y) with allowance for wraparound.
static bool gc_counter_less_than(uint x, uint y) {
return (x - y) > (UINT_MAX/2);
}
// LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
// Macro so msg printing is format-checked.
#define LOG_COLLECT_CONCURRENTLY(cause, ...) \
do { \
LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt; \
if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) { \
ResourceMark rm; /* For thread name. */ \
LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
Thread::current()->name(), \
GCCause::to_string(cause)); \
LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__); \
} \
} while (0)
#define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
uint gc_counter,
uint old_marking_started_before) {
assert_heap_not_locked();
assert(should_do_concurrent_full_gc(cause),
"Non-concurrent cause %s", GCCause::to_string(cause));
for (uint i = 1; true; ++i) {
// Try to schedule an initial-mark evacuation pause that will
// start a concurrent cycle.
LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
VM_G1TryInitiateConcMark op(gc_counter,
cause,
policy()->max_pause_time_ms());
VMThread::execute(&op);
// Request is trivially finished.
if (cause == GCCause::_g1_periodic_collection) {
LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
return op.gc_succeeded();
}
// If VMOp skipped initiating concurrent marking cycle because
// we're terminating, then we're done.
if (op.terminating()) {
LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
return false;
}
// Lock to get consistent set of values.
uint old_marking_started_after;
uint old_marking_completed_after;
{
MutexLocker ml(Heap_lock);
// Update gc_counter for retrying VMOp if needed. Captured here to be
// consistent with the values we use below for termination tests. If
// a retry is needed after a possible wait, and another collection
// occurs in the meantime, it will cause our retry to be skipped and
// we'll recheck for termination with updated conditions from that
// more recent collection. That's what we want, rather than having
// our retry possibly perform an unnecessary collection.
gc_counter = total_collections();
old_marking_started_after = _old_marking_cycles_started;
old_marking_completed_after = _old_marking_cycles_completed;
}
if (cause == GCCause::_wb_breakpoint) {
if (op.gc_succeeded()) {
LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
return true;
}
// When _wb_breakpoint there can't be another cycle or deferred.
assert(!op.cycle_already_in_progress(), "invariant");
assert(!op.whitebox_attached(), "invariant");
// Concurrent cycle attempt might have been cancelled by some other
// collection, so retry. Unlike other cases below, we want to retry
// even if cancelled by a STW full collection, because we really want
// to start a concurrent cycle.
if (old_marking_started_before != old_marking_started_after) {
LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
old_marking_started_before = old_marking_started_after;
}
} else if (!GCCause::is_user_requested_gc(cause)) {
// For an "automatic" (not user-requested) collection, we just need to
// ensure that progress is made.
//
// Request is finished if any of
// (1) the VMOp successfully performed a GC,
// (2) a concurrent cycle was already in progress,
// (3) whitebox is controlling concurrent cycles,
// (4) a new cycle was started (by this thread or some other), or
// (5) a Full GC was performed.
// Cases (4) and (5) are detected together by a change to
// _old_marking_cycles_started.
//
// Note that (1) does not imply (4). If we're still in the mixed
// phase of an earlier concurrent collection, the request to make the
// collection an initial-mark won't be honored. If we don't check for
// both conditions we'll spin doing back-to-back collections.
if (op.gc_succeeded() ||
op.cycle_already_in_progress() ||
op.whitebox_attached() ||
(old_marking_started_before != old_marking_started_after)) {
LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
return true;
}
} else { // User-requested GC.
// For a user-requested collection, we want to ensure that a complete
// full collection has been performed before returning, but without
// waiting for more than needed.
// For user-requested GCs (unlike non-UR), a successful VMOp implies a
// new cycle was started. That's good, because it's not clear what we
// should do otherwise. Trying again just does back to back GCs.
// Can't wait for someone else to start a cycle. And returning fails
// to meet the goal of ensuring a full collection was performed.
assert(!op.gc_succeeded() ||
(old_marking_started_before != old_marking_started_after),
"invariant: succeeded %s, started before %u, started after %u",
BOOL_TO_STR(op.gc_succeeded()),
old_marking_started_before, old_marking_started_after);
// Request is finished if a full collection (concurrent or stw)
// was started after this request and has completed, e.g.
// started_before < completed_after.
if (gc_counter_less_than(old_marking_started_before,
old_marking_completed_after)) {
LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
return true;
}
if (old_marking_started_after != old_marking_completed_after) {
// If there is an in-progress cycle (possibly started by us), then
// wait for that cycle to complete, e.g.
// while completed_now < started_after.
LOG_COLLECT_CONCURRENTLY(cause, "wait");
MonitorLocker ml(G1OldGCCount_lock);
while (gc_counter_less_than(_old_marking_cycles_completed,
old_marking_started_after)) {
ml.wait();
}
// Request is finished if the collection we just waited for was
// started after this request.
if (old_marking_started_before != old_marking_started_after) {
LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
return true;
}
}
// If VMOp was successful then it started a new cycle that the above
// wait &etc should have recognized as finishing this request. This
// differs from a non-user-request, where gc_succeeded does not imply
// a new cycle was started.
assert(!op.gc_succeeded(), "invariant");
if (op.cycle_already_in_progress()) {
// If VMOp failed because a cycle was already in progress, it
// is now complete. But it didn't finish this user-requested
// GC, so try again.
LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
continue;
} else if (op.whitebox_attached()) {
// If WhiteBox wants control, wait for notification of a state
// change in the controller, then try again. Don't wait for
// release of control, since collections may complete while in
// control. Note: This won't recognize a STW full collection
// while waiting; we can't wait on multiple monitors.
LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
if (ConcurrentGCBreakpoints::is_controlled()) {
ml.wait();
}
continue;
}
}
// Collection failed and should be retried.
assert(op.transient_failure(), "invariant");
if (GCLocker::is_active_and_needs_gc()) {
// If GCLocker is active, wait until clear before retrying.
LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
GCLocker::stall_until_clear();
}
LOG_COLLECT_CONCURRENTLY(cause, "retry");
}
}
bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
assert_heap_not_locked();
// Lock to get consistent set of values.
uint gc_count_before;
uint full_gc_count_before;
uint old_marking_started_before;
{
MutexLocker ml(Heap_lock);
gc_count_before = total_collections();
full_gc_count_before = total_full_collections();
old_marking_started_before = _old_marking_cycles_started;
}
if (should_do_concurrent_full_gc(cause)) {
return try_collect_concurrently(cause,
gc_count_before,
old_marking_started_before);
} else if (GCLocker::should_discard(cause, gc_count_before)) {
// Indicate failure to be consistent with VMOp failure due to
// another collection slipping in after our gc_count but before
// our request is processed.
return false;
} else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
// Schedule a standard evacuation pause. We're setting word_size
// to 0 which means that we are not requesting a post-GC allocation.
VM_G1CollectForAllocation op(0, /* word_size */
gc_count_before,
cause,
policy()->max_pause_time_ms());
VMThread::execute(&op);
return op.gc_succeeded();
} else {
// Schedule a Full GC.
VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
VMThread::execute(&op);
return op.gc_succeeded();
}
}
bool G1CollectedHeap::is_in(const void* p) const {
if (_hrm->reserved().contains(p)) {
// Given that we know that p is in the reserved space,
// heap_region_containing() should successfully
// return the containing region.
HeapRegion* hr = heap_region_containing(p);
return hr->is_in(p);
} else {
return false;
}
}
#ifdef ASSERT
bool G1CollectedHeap::is_in_exact(const void* p) const {
bool contains = reserved_region().contains(p);
bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
if (contains && available) {
return true;
} else {
return false;
}
}
#endif
// Iteration functions.
// Iterates an ObjectClosure over all objects within a HeapRegion.
class IterateObjectClosureRegionClosure: public HeapRegionClosure {
ObjectClosure* _cl;
public:
IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
bool do_heap_region(HeapRegion* r) {
if (!r->is_continues_humongous()) {
r->object_iterate(_cl);
}
return false;
}
};
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
IterateObjectClosureRegionClosure blk(cl);
heap_region_iterate(&blk);
}
void G1CollectedHeap::keep_alive(oop obj) {
G1BarrierSet::enqueue(obj);
}
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
_hrm->iterate(cl);
}
void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
HeapRegionClaimer *hrclaimer,
uint worker_id) const {
_hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
}
void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
HeapRegionClaimer *hrclaimer) const {
_hrm->par_iterate(cl, hrclaimer, 0);
}
void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
_collection_set.iterate(cl);
}
void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
_collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
}
void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
_collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
}
HeapWord* G1CollectedHeap::block_start(const void* addr) const {
HeapRegion* hr = heap_region_containing(addr);
return hr->block_start(addr);
}
bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
HeapRegion* hr = heap_region_containing(addr);
return hr->block_is_obj(addr);
}
bool G1CollectedHeap::supports_tlab_allocation() const {
return true;
}
size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
}
size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
return _eden.length() * HeapRegion::GrainBytes;
}
// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
// must be equal to the humongous object limit.
size_t G1CollectedHeap::max_tlab_size() const {
return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
}
size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
return _allocator->unsafe_max_tlab_alloc();
}
size_t G1CollectedHeap::max_capacity() const {
return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
}
size_t G1CollectedHeap::max_reserved_capacity() const {
return _hrm->max_length() * HeapRegion::GrainBytes;
}
jlong G1CollectedHeap::millis_since_last_gc() {
// See the notes in GenCollectedHeap::millis_since_last_gc()
// for more information about the implementation.
jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
_policy->collection_pause_end_millis();
if (ret_val < 0) {
log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
". returning zero instead.", ret_val);
return 0;
}
return ret_val;
}
void G1CollectedHeap::deduplicate_string(oop str) {
assert(java_lang_String::is_instance(str), "invariant");
if (G1StringDedup::is_enabled()) {
G1StringDedup::deduplicate(str);
}
}
void G1CollectedHeap::prepare_for_verify() {
_verifier->prepare_for_verify();
}
void G1CollectedHeap::verify(VerifyOption vo) {
_verifier->verify(vo);
}
bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
return true;
}
bool G1CollectedHeap::is_heterogeneous_heap() const {
return G1Arguments::is_heterogeneous_heap();
}
class PrintRegionClosure: public HeapRegionClosure {
outputStream* _st;
public:
PrintRegionClosure(outputStream* st) : _st(st) {}
bool do_heap_region(HeapRegion* r) {
r->print_on(_st);
return false;
}
};
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
const HeapRegion* hr,
const VerifyOption vo) const {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
default: ShouldNotReachHere();
}
return false; // keep some compilers happy
}
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
const VerifyOption vo) const {
switch (vo) {
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
default: ShouldNotReachHere();
}
return false; // keep some compilers happy
}
void G1CollectedHeap::print_heap_regions() const {
LogTarget(Trace, gc, heap, region) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
print_regions_on(&ls);
}
}
void G1CollectedHeap::print_on(outputStream* st) const {
st->print(" %-20s", "garbage-first heap");
if (_hrm != NULL) {
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
capacity()/K, used_unlocked()/K);
st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
p2i(_hrm->reserved().start()),
p2i(_hrm->reserved().end()));
}
st->cr();
st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
uint young_regions = young_regions_count();
st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
(size_t) young_regions * HeapRegion::GrainBytes / K);
uint survivor_regions = survivor_regions_count();
st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
(size_t) survivor_regions * HeapRegion::GrainBytes / K);
st->cr();
if (_numa->is_enabled()) {
uint num_nodes = _numa->num_active_nodes();
st->print(" remaining free region(s) on each NUMA node: ");
const int* node_ids = _numa->node_ids();
for (uint node_index = 0; node_index < num_nodes; node_index++) {
uint num_free_regions = (_hrm != NULL ? _hrm->num_free_regions(node_index) : 0);
st->print("%d=%u ", node_ids[node_index], num_free_regions);
}
st->cr();
}
MetaspaceUtils::print_on(st);
}
void G1CollectedHeap::print_regions_on(outputStream* st) const {
if (_hrm == NULL) {
return;
}
st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
"HS=humongous(starts), HC=humongous(continues), "
"CS=collection set, F=free, "
"OA=open archive, CA=closed archive, "
"TAMS=top-at-mark-start (previous, next)");
PrintRegionClosure blk(st);
heap_region_iterate(&blk);
}
void G1CollectedHeap::print_extended_on(outputStream* st) const {
print_on(st);
// Print the per-region information.
if (_hrm != NULL) {
st->cr();
print_regions_on(st);
}
}
void G1CollectedHeap::print_on_error(outputStream* st) const {
this->CollectedHeap::print_on_error(st);
if (_cm != NULL) {
st->cr();
_cm->print_on_error(st);
}
}
void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
workers()->threads_do(tc);
tc->do_thread(_cm_thread);
_cm->threads_do(tc);
_cr->threads_do(tc);
tc->do_thread(_young_gen_sampling_thread);
if (G1StringDedup::is_enabled()) {
G1StringDedup::threads_do(tc);
}
}
void G1CollectedHeap::print_tracing_info() const {
rem_set()->print_summary_info();
concurrent_mark()->print_summary_info();
}
#ifndef PRODUCT
// Helpful for debugging RSet issues.
class PrintRSetsClosure : public HeapRegionClosure {
private:
const char* _msg;
size_t _occupied_sum;
public:
bool do_heap_region(HeapRegion* r) {
HeapRegionRemSet* hrrs = r->rem_set();
size_t occupied = hrrs->occupied();
_occupied_sum += occupied;
tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
if (occupied == 0) {
tty->print_cr(" RSet is empty");
} else {
hrrs->print();
}
tty->print_cr("----------");
return false;
}
PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
tty->cr();
tty->print_cr("========================================");
tty->print_cr("%s", msg);
tty->cr();
}
~PrintRSetsClosure() {
tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
tty->print_cr("========================================");
tty->cr();
}
};
void G1CollectedHeap::print_cset_rsets() {
PrintRSetsClosure cl("Printing CSet RSets");
collection_set_iterate_all(&cl);
}
void G1CollectedHeap::print_all_rsets() {
PrintRSetsClosure cl("Printing All RSets");;
heap_region_iterate(&cl);
}
#endif // PRODUCT
bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
}
G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
size_t eden_used_bytes = _eden.used_bytes();
size_t survivor_used_bytes = _survivor.used_bytes();
size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
size_t eden_capacity_bytes =
(policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
VirtualSpaceSummary heap_summary = create_heap_space_summary();
return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
eden_capacity_bytes, survivor_used_bytes, num_regions());
}
G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
stats->unused(), stats->used(), stats->region_end_waste(),
stats->regions_filled(), stats->direct_allocated(),
stats->failure_used(), stats->failure_waste());
}
void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
const G1HeapSummary& heap_summary = create_g1_heap_summary();
gc_tracer->report_gc_heap_summary(when, heap_summary);
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
gc_tracer->report_metaspace_summary(when, metaspace_summary);
}
void G1CollectedHeap::gc_prologue(bool full) {
assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
// This summary needs to be printed before incrementing total collections.
rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
// Update common counters.
increment_total_collections(full /* full gc */);
if (full || collector_state()->in_initial_mark_gc()) {
increment_old_marking_cycles_started();
}
// Fill TLAB's and such
{
Ticks start = Ticks::now();
ensure_parsability(true);
Tickspan dt = Ticks::now() - start;
phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
}
if (!full) {
// Flush dirty card queues to qset, so later phases don't need to account
// for partially filled per-thread queues and such. Not needed for full
// collections, which ignore those logs.
Ticks start = Ticks::now();
G1BarrierSet::dirty_card_queue_set().concatenate_logs();
Tickspan dt = Ticks::now() - start;
phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
}
}
void G1CollectedHeap::gc_epilogue(bool full) {
// Update common counters.
if (full) {
// Update the number of full collections that have been completed.
increment_old_marking_cycles_completed(false /* concurrent */);
}
// We are at the end of the GC. Total collections has already been increased.
rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
// FIXME: what is this about?
// I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
// is set.
#if COMPILER2_OR_JVMCI
assert(DerivedPointerTable::is_empty(), "derived pointer present");
#endif
double start = os::elapsedTime();
resize_all_tlabs();
phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
MemoryService::track_memory_usage();
// We have just completed a GC. Update the soft reference
// policy with the new heap occupancy
Universe::update_heap_info_at_gc();
// Print NUMA statistics.
_numa->print_statistics();
}
void G1CollectedHeap::verify_numa_regions(const char* desc) {
LogTarget(Trace, gc, heap, verify) lt;
if (lt.is_enabled()) {
LogStream ls(lt);
// Iterate all heap regions to print matching between preferred numa id and actual numa id.
G1NodeIndexCheckClosure cl(desc, _numa, &ls);
heap_region_iterate(&cl);
}
}
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
uint gc_count_before,
bool* succeeded,
GCCause::Cause gc_cause) {
assert_heap_not_locked_and_not_at_safepoint();
VM_G1CollectForAllocation op(word_size,
gc_count_before,
gc_cause,
policy()->max_pause_time_ms());
VMThread::execute(&op);
HeapWord* result = op.result();
bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
assert(result == NULL || ret_succeeded,
"the result should be NULL if the VM did not succeed");
*succeeded = ret_succeeded;
assert_heap_not_locked();
return result;
}
void G1CollectedHeap::do_concurrent_mark() {
MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
if (!_cm_thread->in_progress()) {
_cm_thread->set_started();
CGC_lock->notify();
}
}
bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
// We don't nominate objects with many remembered set entries, on
// the assumption that such objects are likely still live.
HeapRegionRemSet* rem_set = r->rem_set();
return G1EagerReclaimHumongousObjectsWithStaleRefs ?
rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
G1EagerReclaimHumongousObjects && rem_set->is_empty();
}
#ifndef PRODUCT
void G1CollectedHeap::verify_region_attr_remset_update() {
class VerifyRegionAttrRemSet : public HeapRegionClosure {
public:
virtual bool do_heap_region(HeapRegion* r) {
G1CollectedHeap* g1h = G1CollectedHeap::heap();
bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
assert(r->rem_set()->is_tracked() == needs_remset_update,
"Region %u remset tracking status (%s) different to region attribute (%s)",
r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
return false;
}
} cl;
heap_region_iterate(&cl);
}
#endif
class VerifyRegionRemSetClosure : public HeapRegionClosure {
public:
bool do_heap_region(HeapRegion* hr) {
if (!hr->is_archive() && !hr->is_continues_humongous()) {
hr->verify_rem_set();
}
return false;
}
};
uint G1CollectedHeap::num_task_queues() const {
return _task_queues->size();
}
#if TASKQUEUE_STATS
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
st->print_raw_cr("GC Task Stats");
st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
}
void G1CollectedHeap::print_taskqueue_stats() const {
if (!log_is_enabled(Trace, gc, task, stats)) {
return;
}
Log(gc, task, stats) log;
ResourceMark rm;
LogStream ls(log.trace());
outputStream* st = &ls;
print_taskqueue_stats_hdr(st);
TaskQueueStats totals;
const uint n = num_task_queues();
for (uint i = 0; i < n; ++i) {
st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
totals += task_queue(i)->stats;
}
st->print_raw("tot "); totals.print(st); st->cr();
DEBUG_ONLY(totals.verify());
}
void G1CollectedHeap::reset_taskqueue_stats() {
const uint n = num_task_queues();
for (uint i = 0; i < n; ++i) {
task_queue(i)->stats.reset();
}
}
#endif // TASKQUEUE_STATS
void G1CollectedHeap::wait_for_root_region_scanning() {
double scan_wait_start = os::elapsedTime();
// We have to wait until the CM threads finish scanning the
// root regions as it's the only way to ensure that all the
// objects on them have been correctly scanned before we start
// moving them during the GC.
bool waited = _cm->root_regions()->wait_until_scan_finished();
double wait_time_ms = 0.0;
if (waited) {
double scan_wait_end = os::elapsedTime();
wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
}
phase_times()->record_root_region_scan_wait_time(wait_time_ms);
}
class G1PrintCollectionSetClosure : public HeapRegionClosure {
private:
G1HRPrinter* _hr_printer;
public:
G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
virtual bool do_heap_region(HeapRegion* r) {
_hr_printer->cset(r);
return false;
}
};
void G1CollectedHeap::start_new_collection_set() {
double start = os::elapsedTime();
collection_set()->start_incremental_building();
clear_region_attr();
guarantee(_eden.length() == 0, "eden should have been cleared");
policy()->transfer_survivors_to_cset(survivor());
// We redo the verification but now wrt to the new CSet which
// has just got initialized after the previous CSet was freed.
_cm->verify_no_collection_set_oops();
phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
}
void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
_collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
evacuation_info.set_collectionset_regions(collection_set()->region_length() +
collection_set()->optional_region_length());
_cm->verify_no_collection_set_oops();
if (_hr_printer.is_active()) {
G1PrintCollectionSetClosure cl(&_hr_printer);
_collection_set.iterate(&cl);
_collection_set.iterate_optional(&cl);
}
}
G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
if (collector_state()->in_initial_mark_gc()) {
return G1HeapVerifier::G1VerifyConcurrentStart;
} else if (collector_state()->in_young_only_phase()) {
return G1HeapVerifier::G1VerifyYoungNormal;
} else {
return G1HeapVerifier::G1VerifyMixed;
}
}
void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
if (VerifyRememberedSets) {
log_info(gc, verify)("[Verifying RemSets before GC]");
VerifyRegionRemSetClosure v_cl;
heap_region_iterate(&v_cl);
}
_verifier->verify_before_gc(type);
_verifier->check_bitmaps("GC Start");
verify_numa_regions("GC Start");
}
void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
if (VerifyRememberedSets) {
log_info(gc, verify)("[Verifying RemSets after GC]");
VerifyRegionRemSetClosure v_cl;
heap_region_iterate(&v_cl);
}
_verifier->verify_after_gc(type);
_verifier->check_bitmaps("GC End");
verify_numa_regions("GC End");
}
void G1CollectedHeap::expand_heap_after_young_collection(){
size_t expand_bytes = _heap_sizing_policy->expansion_amount();
if (expand_bytes > 0) {
// No need for an ergo logging here,
// expansion_amount() does this when it returns a value > 0.
double expand_ms;
if (!expand(expand_bytes, _workers, &expand_ms)) {
// We failed to expand the heap. Cannot do anything about it.
}
phase_times()->record_expand_heap_time(expand_ms);
}
}
const char* G1CollectedHeap::young_gc_name() const {
if (collector_state()->in_initial_mark_gc()) {
return "Pause Young (Concurrent Start)";
} else if (collector_state()->in_young_only_phase()) {
if (collector_state()->in_young_gc_before_mixed()) {
return "Pause Young (Prepare Mixed)";
} else {
return "Pause Young (Normal)";
}
} else {
return "Pause Young (Mixed)";
}
}
bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
assert_at_safepoint_on_vm_thread();
guarantee(!is_gc_active(), "collection is not reentrant");
if (GCLocker::check_active_before_gc()) {
return false;
}
do_collection_pause_at_safepoint_helper(target_pause_time_ms);
if (should_upgrade_to_full_gc(gc_cause())) {
log_info(gc, ergo)("Attempting maximally compacting collection");
bool result = do_full_collection(false /* explicit gc */,
true /* clear_all_soft_refs */);
// do_full_collection only fails if blocked by GC locker, but
// we've already checked for that above.
assert(result, "invariant");
}
return true;
}
void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
GCIdMark gc_id_mark;
SvcGCMarker sgcm(SvcGCMarker::MINOR);
ResourceMark rm;
policy()->note_gc_start();
_gc_timer_stw->register_gc_start();
_gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
wait_for_root_region_scanning();
print_heap_before_gc();
print_heap_regions();
trace_heap_before_gc(_gc_tracer_stw);
_verifier->verify_region_sets_optional();
_verifier->verify_dirty_young_regions();
// We should not be doing initial mark unless the conc mark thread is running
if (!_cm_thread->should_terminate()) {
// This call will decide whether this pause is an initial-mark
// pause. If it is, in_initial_mark_gc() will return true
// for the duration of this pause.
policy()->decide_on_conc_mark_initiation();
}
// We do not allow initial-mark to be piggy-backed on a mixed GC.
assert(!collector_state()->in_initial_mark_gc() ||
collector_state()->in_young_only_phase(), "sanity");
// We also do not allow mixed GCs during marking.
assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
// Record whether this pause is an initial mark. When the current
// thread has completed its logging output and it's safe to signal
// the CM thread, the flag's value in the policy has been reset.
bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
if (should_start_conc_mark) {
_cm->gc_tracer_cm()->set_gc_cause(gc_cause());
}
// Inner scope for scope based logging, timers, and stats collection
{
G1EvacuationInfo evacuation_info;
_gc_tracer_stw->report_yc_type(collector_state()->yc_type());
GCTraceCPUTime tcpu;
GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
workers()->active_workers(),
Threads::number_of_non_daemon_threads());
active_workers = workers()->update_active_workers(active_workers);
log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
G1MonitoringScope ms(g1mm(),
false /* full_gc */,
collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
G1HeapTransition heap_transition(this);
{
IsGCActiveMark x;
gc_prologue(false);
G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
verify_before_young_collection(verify_type);
{
// The elapsed time induced by the start time below deliberately elides
// the possible verification above.
double sample_start_time_sec = os::elapsedTime();
// Please see comment in g1CollectedHeap.hpp and
// G1CollectedHeap::ref_processing_init() to see how
// reference processing currently works in G1.
_ref_processor_stw->enable_discovery();
// We want to temporarily turn off discovery by the
// CM ref processor, if necessary, and turn it back on
// on again later if we do. Using a scoped
// NoRefDiscovery object will do this.
NoRefDiscovery no_cm_discovery(_ref_processor_cm);
policy()->record_collection_pause_start(sample_start_time_sec);
// Forget the current allocation region (we might even choose it to be part
// of the collection set!).
_allocator->release_mutator_alloc_regions();
calculate_collection_set(evacuation_info, target_pause_time_ms);
G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
G1ParScanThreadStateSet per_thread_states(this,
&rdcqs,
workers()->active_workers(),
collection_set()->young_region_length(),
collection_set()->optional_region_length());
pre_evacuate_collection_set(evacuation_info, &per_thread_states);
// Actually do the work...
evacuate_initial_collection_set(&per_thread_states);
if (_collection_set.optional_region_length() != 0) {
evacuate_optional_collection_set(&per_thread_states);
}
post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
start_new_collection_set();
_survivor_evac_stats.adjust_desired_plab_sz();
_old_evac_stats.adjust_desired_plab_sz();
if (should_start_conc_mark) {
// We have to do this before we notify the CM threads that
// they can start working to make sure that all the
// appropriate initialization is done on the CM object.
concurrent_mark()->post_initial_mark();
// Note that we don't actually trigger the CM thread at
// this point. We do that later when we're sure that
// the current thread has completed its logging output.
}
allocate_dummy_regions();
_allocator->init_mutator_alloc_regions();
expand_heap_after_young_collection();
double sample_end_time_sec = os::elapsedTime();
double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
policy()->record_collection_pause_end(pause_time_ms);
}
verify_after_young_collection(verify_type);
gc_epilogue(false);
}
// Print the remainder of the GC log output.
if (evacuation_failed()) {
log_info(gc)("To-space exhausted");
}
policy()->print_phases();
heap_transition.print();
_hrm->verify_optional();
_verifier->verify_region_sets_optional();
TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
print_heap_after_gc();
print_heap_regions();
trace_heap_after_gc(_gc_tracer_stw);
// We must call G1MonitoringSupport::update_sizes() in the same scoping level
// as an active TraceMemoryManagerStats object (i.e. before the destructor for the
// TraceMemoryManagerStats is called) so that the G1 memory pools are updated
// before any GC notifications are raised.
g1mm()->update_sizes();
_gc_tracer_stw->report_evacuation_info(&evacuation_info);
_gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
_gc_timer_stw->register_gc_end();
_gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
}
// It should now be safe to tell the concurrent mark thread to start
// without its logging output interfering with the logging output
// that came from the pause.
if (should_start_conc_mark) {
// CAUTION: after the doConcurrentMark() call below, the concurrent marking
// thread(s) could be running concurrently with us. Make sure that anything
// after this point does not assume that we are the only GC thread running.
// Note: of course, the actual marking work will not start until the safepoint
// itself is released in SuspendibleThreadSet::desynchronize().
do_concurrent_mark();
ConcurrentGCBreakpoints::notify_idle_to_active();
}
}
void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
workers()->run_task(&rsfp_task);
}
void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
double remove_self_forwards_start = os::elapsedTime();
remove_self_forwarding_pointers(rdcqs);
_preserved_marks_set.restore(workers());
phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
}
void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
if (!_evacuation_failed) {
_evacuation_failed = true;
}
_evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
_preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
}
bool G1ParEvacuateFollowersClosure::offer_termination() {
EventGCPhaseParallel event;
G1ParScanThreadState* const pss = par_scan_state();
start_term_time();
const bool res = terminator()->offer_termination();
end_term_time();
event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
return res;
}
void G1ParEvacuateFollowersClosure::do_void() {
EventGCPhaseParallel event;
G1ParScanThreadState* const pss = par_scan_state();
pss->trim_queue();
event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
do {
EventGCPhaseParallel event;
pss->steal_and_trim_queue(queues());
event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
} while (!offer_termination());
}
void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
bool class_unloading_occurred) {
uint num_workers = workers()->active_workers();
G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
workers()->run_task(&unlink_task);
}
// Clean string dedup data structures.
// Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
// record the durations of the phases. Hence the almost-copy.
class G1StringDedupCleaningTask : public AbstractGangTask {
BoolObjectClosure* _is_alive;
OopClosure* _keep_alive;
G1GCPhaseTimes* _phase_times;
public:
G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
G1GCPhaseTimes* phase_times) :
AbstractGangTask("Partial Cleaning Task"),
_is_alive(is_alive),
_keep_alive(keep_alive),
_phase_times(phase_times)
{
assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
StringDedup::gc_prologue(true);
}
~G1StringDedupCleaningTask() {
StringDedup::gc_epilogue();
}
void work(uint worker_id) {
StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
{
G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
StringDedupQueue::unlink_or_oops_do(&cl);
}
{
G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
StringDedupTable::unlink_or_oops_do(&cl, worker_id);
}
}
};
void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
OopClosure* keep_alive,
G1GCPhaseTimes* phase_times) {
G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
workers()->run_task(&cl);
}
class G1RedirtyLoggedCardsTask : public AbstractGangTask {
private:
G1RedirtyCardsQueueSet* _qset;
G1CollectedHeap* _g1h;
BufferNode* volatile _nodes;
void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
size_t buffer_size = _qset->buffer_size();
BufferNode* next = Atomic::load(&_nodes);
while (next != NULL) {
BufferNode* node = next;
next = Atomic::cmpxchg(&_nodes, node, node->next());
if (next == node) {
cl->apply_to_buffer(node, buffer_size, worker_id);
next = node->next();
}
}
}
public:
G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
AbstractGangTask("Redirty Cards"),
_qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
virtual void work(uint worker_id) {
G1GCPhaseTimes* p = _g1h->phase_times();
G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
RedirtyLoggedCardTableEntryClosure cl(_g1h);
par_apply(&cl, worker_id);
p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
}
};
void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
double redirty_logged_cards_start = os::elapsedTime();
G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
workers()->run_task(&redirty_task);
G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
dcq.merge_bufferlists(rdcqs);
phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
}
// Weak Reference Processing support
bool G1STWIsAliveClosure::do_object_b(oop p) {
// An object is reachable if it is outside the collection set,
// or is inside and copied.
return !_g1h->is_in_cset(p) || p->is_forwarded();
}
bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
assert(obj != NULL, "must not be NULL");
assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
// The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
// may falsely indicate that this is not the case here: however the collection set only
// contains old regions when concurrent mark is not running.
return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
}
// Non Copying Keep Alive closure
class G1KeepAliveClosure: public OopClosure {
G1CollectedHeap*_g1h;
public:
G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
void do_oop(oop* p) {
oop obj = *p;
assert(obj != NULL, "the caller should have filtered out NULL values");
const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
if (!region_attr.is_in_cset_or_humongous()) {
return;
}
if (region_attr.is_in_cset()) {
assert( obj->is_forwarded(), "invariant" );
*p = obj->forwardee();
} else {
assert(!obj->is_forwarded(), "invariant" );
assert(region_attr.is_humongous(),
"Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
_g1h->set_humongous_is_live(obj);
}
}
};
// Copying Keep Alive closure - can be called from both
// serial and parallel code as long as different worker
// threads utilize different G1ParScanThreadState instances
// and different queues.
class G1CopyingKeepAliveClosure: public OopClosure {
G1CollectedHeap* _g1h;
G1ParScanThreadState* _par_scan_state;
public:
G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
G1ParScanThreadState* pss):
_g1h(g1h),
_par_scan_state(pss)
{}
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
virtual void do_oop( oop* p) { do_oop_work(p); }
template <class T> void do_oop_work(T* p) {
oop obj = RawAccess<>::oop_load(p);
if (_g1h->is_in_cset_or_humongous(obj)) {
// If the referent object has been forwarded (either copied
// to a new location or to itself in the event of an
// evacuation failure) then we need to update the reference
// field and, if both reference and referent are in the G1
// heap, update the RSet for the referent.
//
// If the referent has not been forwarded then we have to keep
// it alive by policy. Therefore we have copy the referent.
//
// When the queue is drained (after each phase of reference processing)
// the object and it's followers will be copied, the reference field set
// to point to the new location, and the RSet updated.
_par_scan_state->push_on_queue(ScannerTask(p));
}
}
};
// Serial drain queue closure. Called as the 'complete_gc'
// closure for each discovered list in some of the
// reference processing phases.
class G1STWDrainQueueClosure: public VoidClosure {
protected:
G1CollectedHeap* _g1h;
G1ParScanThreadState* _par_scan_state;
G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
public:
G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
_g1h(g1h),
_par_scan_state(pss)
{ }
void do_void() {
G1ParScanThreadState* const pss = par_scan_state();
pss->trim_queue();
}
};
// Parallel Reference Processing closures
// Implementation of AbstractRefProcTaskExecutor for parallel reference
// processing during G1 evacuation pauses.
class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
private:
G1CollectedHeap* _g1h;
G1ParScanThreadStateSet* _pss;
G1ScannerTasksQueueSet* _queues;
WorkGang* _workers;
public:
G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
G1ParScanThreadStateSet* per_thread_states,
WorkGang* workers,
G1ScannerTasksQueueSet *task_queues) :
_g1h(g1h),
_pss(per_thread_states),
_queues(task_queues),
_workers(workers)
{
g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
}
// Executes the given task using concurrent marking worker threads.
virtual void execute(ProcessTask& task, uint ergo_workers);
};
// Gang task for possibly parallel reference processing
class G1STWRefProcTaskProxy: public AbstractGangTask {
typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
ProcessTask& _proc_task;
G1CollectedHeap* _g1h;
G1ParScanThreadStateSet* _pss;
G1ScannerTasksQueueSet* _task_queues;
TaskTerminator* _terminator;
public:
G1STWRefProcTaskProxy(ProcessTask& proc_task,
G1CollectedHeap* g1h,
G1ParScanThreadStateSet* per_thread_states,
G1ScannerTasksQueueSet *task_queues,
TaskTerminator* terminator) :
AbstractGangTask("Process reference objects in parallel"),
_proc_task(proc_task),
_g1h(g1h),
_pss(per_thread_states),
_task_queues(task_queues),
_terminator(terminator)
{}
virtual void work(uint worker_id) {
// The reference processing task executed by a single worker.
ResourceMark rm;
HandleMark hm;
G1STWIsAliveClosure is_alive(_g1h);
G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
pss->set_ref_discoverer(NULL);
// Keep alive closure.
G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
// Complete GC closure
G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
// Call the reference processing task's work routine.
_proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
// Note we cannot assert that the refs array is empty here as not all
// of the processing tasks (specifically phase2 - pp2_work) execute
// the complete_gc closure (which ordinarily would drain the queue) so
// the queue may not be empty.
}
};
// Driver routine for parallel reference processing.
// Creates an instance of the ref processing gang
// task and has the worker threads execute it.
void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
assert(_workers != NULL, "Need parallel worker threads.");
assert(_workers->active_workers() >= ergo_workers,
"Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
ergo_workers, _workers->active_workers());
TaskTerminator terminator(ergo_workers, _queues);
G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
_workers->run_task(&proc_task_proxy, ergo_workers);
}
// End of weak reference support closures
void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
double ref_proc_start = os::elapsedTime();
ReferenceProcessor* rp = _ref_processor_stw;
assert(rp->discovery_enabled(), "should have been enabled");
// Closure to test whether a referent is alive.
G1STWIsAliveClosure is_alive(this);
// Even when parallel reference processing is enabled, the processing
// of JNI refs is serial and performed serially by the current thread
// rather than by a worker. The following PSS will be used for processing
// JNI refs.
// Use only a single queue for this PSS.
G1ParScanThreadState* pss = per_thread_states->state_for_worker(0);
pss->set_ref_discoverer(NULL);
assert(pss->queue_is_empty(), "pre-condition");
// Keep alive closure.
G1CopyingKeepAliveClosure keep_alive(this, pss);
// Serial Complete GC closure
G1STWDrainQueueClosure drain_queue(this, pss);
// Setup the soft refs policy...
rp->setup_policy(false);
ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
ReferenceProcessorStats stats;
if (!rp->processing_is_mt()) {
// Serial reference processing...
stats = rp->process_discovered_references(&is_alive,
&keep_alive,
&drain_queue,
NULL,
pt);
} else {
uint no_of_gc_workers = workers()->active_workers();
// Parallel reference processing
assert(no_of_gc_workers <= rp->max_num_queues(),
"Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
no_of_gc_workers, rp->max_num_queues());
G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
stats = rp->process_discovered_references(&is_alive,
&keep_alive,
&drain_queue,
&par_task_executor,
pt);
}
_gc_tracer_stw->report_gc_reference_stats(stats);
// We have completed copying any necessary live referent objects.
assert(pss->queue_is_empty(), "both queue and overflow should be empty");
make_pending_list_reachable();
assert(!rp->discovery_enabled(), "Postcondition");
rp->verify_no_references_recorded();
double ref_proc_time = os::elapsedTime() - ref_proc_start;
phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
}
void G1CollectedHeap::make_pending_list_reachable() {
if (collector_state()->in_initial_mark_gc()) {
oop pll_head = Universe::reference_pending_list();
if (pll_head != NULL) {
// Any valid worker id is fine here as we are in the VM thread and single-threaded.
_cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
}
}
}
void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
Ticks start = Ticks::now();
per_thread_states->flush();
phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
}
class G1PrepareEvacuationTask : public AbstractGangTask {
class G1PrepareRegionsClosure : public HeapRegionClosure {
G1CollectedHeap* _g1h;
G1PrepareEvacuationTask* _parent_task;
size_t _worker_humongous_total;
size_t _worker_humongous_candidates;
bool humongous_region_is_candidate(HeapRegion* region) const {
assert(region->is_starts_humongous(), "Must start a humongous object");
oop obj = oop(region->bottom());
// Dead objects cannot be eager reclaim candidates. Due to class
// unloading it is unsafe to query their classes so we return early.
if (_g1h->is_obj_dead(obj, region)) {
return false;
}
// If we do not have a complete remembered set for the region, then we can
// not be sure that we have all references to it.
if (!region->rem_set()->is_complete()) {
return false;
}
// Candidate selection must satisfy the following constraints
// while concurrent marking is in progress:
//
// * In order to maintain SATB invariants, an object must not be
// reclaimed if it was allocated before the start of marking and
// has not had its references scanned. Such an object must have
// its references (including type metadata) scanned to ensure no
// live objects are missed by the marking process. Objects
// allocated after the start of concurrent marking don't need to
// be scanned.
//
// * An object must not be reclaimed if it is on the concurrent
// mark stack. Objects allocated after the start of concurrent
// marking are never pushed on the mark stack.
//
// Nominating only objects allocated after the start of concurrent
// marking is sufficient to meet both constraints. This may miss
// some objects that satisfy the constraints, but the marking data
// structures don't support efficiently performing the needed
// additional tests or scrubbing of the mark stack.
//
// However, we presently only nominate is_typeArray() objects.
// A humongous object containing references induces remembered
// set entries on other regions. In order to reclaim such an
// object, those remembered sets would need to be cleaned up.
//
// We also treat is_typeArray() objects specially, allowing them
// to be reclaimed even if allocated before the start of
// concurrent mark. For this we rely on mark stack insertion to
// exclude is_typeArray() objects, preventing reclaiming an object
// that is in the mark stack. We also rely on the metadata for
// such objects to be built-in and so ensured to be kept live.
// Frequent allocation and drop of large binary blobs is an
// important use case for eager reclaim, and this special handling
// may reduce needed headroom.
return obj->is_typeArray() &&
_g1h->is_potential_eager_reclaim_candidate(region);
}
public:
G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
_g1h(g1h),
_parent_task(parent_task),
_worker_humongous_total(0),
_worker_humongous_candidates(0) { }
~G1PrepareRegionsClosure() {
_parent_task->add_humongous_candidates(_worker_humongous_candidates);
_parent_task->add_humongous_total(_worker_humongous_total);
}
virtual bool do_heap_region(HeapRegion* hr) {
// First prepare the region for scanning
_g1h->rem_set()->prepare_region_for_scan(hr);
// Now check if region is a humongous candidate
if (!hr->is_starts_humongous()) {
_g1h->register_region_with_region_attr(hr);
return false;
}
uint index = hr->hrm_index();
if (humongous_region_is_candidate(hr)) {
_g1h->set_humongous_reclaim_candidate(index, true);
_g1h->register_humongous_region_with_region_attr(index);
_worker_humongous_candidates++;
// We will later handle the remembered sets of these regions.
} else {
_g1h->set_humongous_reclaim_candidate(index, false);
_g1h->register_region_with_region_attr(hr);
}
_worker_humongous_total++;
return false;
}
};
G1CollectedHeap* _g1h;
HeapRegionClaimer _claimer;
volatile size_t _humongous_total;
volatile size_t _humongous_candidates;
public:
G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
AbstractGangTask("Prepare Evacuation"),
_g1h(g1h),
_claimer(_g1h->workers()->active_workers()),
_humongous_total(0),
_humongous_candidates(0) { }
~G1PrepareEvacuationTask() {
_g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
}
void work(uint worker_id) {
G1PrepareRegionsClosure cl(_g1h, this);
_g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
}
void add_humongous_candidates(size_t candidates) {
Atomic::add(&_humongous_candidates, candidates);
}
void add_humongous_total(size_t total) {
Atomic::add(&_humongous_total, total);
}
size_t humongous_candidates() {
return _humongous_candidates;
}
size_t humongous_total() {
return _humongous_total;
}
};
void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
_bytes_used_during_gc = 0;
_expand_heap_after_alloc_failure = true;
_evacuation_failed = false;
// Disable the hot card cache.
_hot_card_cache->reset_hot_cache_claimed_index();
_hot_card_cache->set_use_cache(false);
// Initialize the GC alloc regions.
_allocator->init_gc_alloc_regions(evacuation_info);
{
Ticks start = Ticks::now();
rem_set()->prepare_for_scan_heap_roots();
phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
}
{
G1PrepareEvacuationTask g1_prep_task(this);
Tickspan task_time = run_task(&g1_prep_task);
phase_times()->record_register_regions(task_time.seconds() * 1000.0,
g1_prep_task.humongous_total(),
g1_prep_task.humongous_candidates());
}
assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
_preserved_marks_set.assert_empty();
#if COMPILER2_OR_JVMCI
DerivedPointerTable::clear();
#endif
// InitialMark needs claim bits to keep track of the marked-through CLDs.
if (collector_state()->in_initial_mark_gc()) {
concurrent_mark()->pre_initial_mark();
double start_clear_claimed_marks = os::elapsedTime();
ClassLoaderDataGraph::clear_claimed_marks();
double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
}
// Should G1EvacuationFailureALot be in effect for this GC?
NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
}
class G1EvacuateRegionsBaseTask : public AbstractGangTask {
protected:
G1CollectedHeap* _g1h;
G1ParScanThreadStateSet* _per_thread_states;
G1ScannerTasksQueueSet* _task_queues;
TaskTerminator _terminator;
uint _num_workers;
void evacuate_live_objects(G1ParScanThreadState* pss,
uint worker_id,
G1GCPhaseTimes::GCParPhases objcopy_phase,
G1GCPhaseTimes::GCParPhases termination_phase) {
G1GCPhaseTimes* p = _g1h->phase_times();
Ticks start = Ticks::now();
G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
cl.do_void();
assert(pss->queue_is_empty(), "should be empty");
Tickspan evac_time = (Ticks::now() - start);
p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
if (termination_phase == G1GCPhaseTimes::Termination) {
p->record_time_secs(termination_phase, worker_id, cl.term_time());
p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
} else {
p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
}
assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
}
virtual void start_work(uint worker_id) { }
virtual void end_work(uint worker_id) { }
virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
public:
G1EvacuateRegionsBaseTask(const char* name,
G1ParScanThreadStateSet* per_thread_states,
G1ScannerTasksQueueSet* task_queues,
uint num_workers) :
AbstractGangTask(name),
_g1h(G1CollectedHeap::heap()),
_per_thread_states(per_thread_states),
_task_queues(task_queues),
_terminator(num_workers, _task_queues),
_num_workers(num_workers)
{ }
void work(uint worker_id) {
start_work(worker_id);
{
ResourceMark rm;
HandleMark hm;
G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
pss->set_ref_discoverer(_g1h->ref_processor_stw());
scan_roots(pss, worker_id);
evacuate_live_objects(pss, worker_id);
}
end_work(worker_id);
}
};
class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
G1RootProcessor* _root_processor;
void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
_root_processor->evacuate_roots(pss, worker_id);
_g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
_g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
}
void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
}
void start_work(uint worker_id) {
_g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
}
void end_work(uint worker_id) {
_g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
}
public:
G1EvacuateRegionsTask(G1CollectedHeap* g1h,
G1ParScanThreadStateSet* per_thread_states,
G1ScannerTasksQueueSet* task_queues,
G1RootProcessor* root_processor,
uint num_workers) :
G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
_root_processor(root_processor)
{ }
};
void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
G1GCPhaseTimes* p = phase_times();
{
Ticks start = Ticks::now();
rem_set()->merge_heap_roots(true /* initial_evacuation */);
p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
}
Tickspan task_time;
const uint num_workers = workers()->active_workers();
Ticks start_processing = Ticks::now();
{
G1RootProcessor root_processor(this, num_workers);
G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
task_time = run_task(&g1_par_task);
// Closing the inner scope will execute the destructor for the G1RootProcessor object.
// To extract its code root fixup time we measure total time of this scope and
// subtract from the time the WorkGang task took.
}
Tickspan total_processing = Ticks::now() - start_processing;
p->record_initial_evac_time(task_time.seconds() * 1000.0);
p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
}
class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
_g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
_g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
}
void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
}
public:
G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
G1ScannerTasksQueueSet* queues,
uint num_workers) :
G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
}
};
void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
class G1MarkScope : public MarkScope { };
Tickspan task_time;
Ticks start_processing = Ticks::now();
{
G1MarkScope code_mark_scope;
G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
task_time = run_task(&task);
// See comment in evacuate_collection_set() for the reason of the scope.
}
Tickspan total_processing = Ticks::now() - start_processing;
G1GCPhaseTimes* p = phase_times();
p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
}
void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
double time_left_ms = MaxGCPauseMillis - time_used_ms;
if (time_left_ms < 0 ||
!_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
_collection_set.optional_region_length(), time_left_ms);
break;
}
{
Ticks start = Ticks::now();
rem_set()->merge_heap_roots(false /* initial_evacuation */);
phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
}
{
Ticks start = Ticks::now();
evacuate_next_optional_regions(per_thread_states);
phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
}
}
_collection_set.abandon_optional_collection_set(per_thread_states);
}
void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
G1RedirtyCardsQueueSet* rdcqs,
G1ParScanThreadStateSet* per_thread_states) {
G1GCPhaseTimes* p = phase_times();
rem_set()->cleanup_after_scan_heap_roots();
// Process any discovered reference objects - we have
// to do this _before_ we retire the GC alloc regions
// as we may have to copy some 'reachable' referent
// objects (and their reachable sub-graphs) that were
// not copied during the pause.
process_discovered_references(per_thread_states);
G1STWIsAliveClosure is_alive(this);
G1KeepAliveClosure keep_alive(this);
WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
if (G1StringDedup::is_enabled()) {
double string_dedup_time_ms = os::elapsedTime();
string_dedup_cleaning(&is_alive, &keep_alive, p);
double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
p->record_string_deduplication_time(string_cleanup_time_ms);
}
_allocator->release_gc_alloc_regions(evacuation_info);
if (evacuation_failed()) {
restore_after_evac_failure(rdcqs);
// Reset the G1EvacuationFailureALot counters and flags
NOT_PRODUCT(reset_evacuation_should_fail();)
double recalculate_used_start = os::elapsedTime();
set_used(recalculate_used());
p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
if (_archive_allocator != NULL) {
_archive_allocator->clear_used();
}
for (uint i = 0; i < ParallelGCThreads; i++) {
if (_evacuation_failed_info_array[i].has_failed()) {
_gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
}
}
} else {
// The "used" of the the collection set have already been subtracted
// when they were freed. Add in the bytes used.
increase_used(_bytes_used_during_gc);
}
_preserved_marks_set.assert_empty();
merge_per_thread_state_info(per_thread_states);
// Reset and re-enable the hot card cache.
// Note the counts for the cards in the regions in the
// collection set are reset when the collection set is freed.
_hot_card_cache->reset_hot_cache();
_hot_card_cache->set_use_cache(true);
purge_code_root_memory();
redirty_logged_cards(rdcqs);
free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
eagerly_reclaim_humongous_regions();
record_obj_copy_mem_stats();
evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
evacuation_info.set_bytes_used(_bytes_used_during_gc);
#if COMPILER2_OR_JVMCI
double start = os::elapsedTime();
DerivedPointerTable::update_pointers();
phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
#endif
policy()->print_age_table();
}
void G1CollectedHeap::record_obj_copy_mem_stats() {
policy()->old_gen_alloc_tracker()->
add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
_gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
create_g1_evac_summary(&_old_evac_stats));
}
void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
assert(!hr->is_free(), "the region should not be free");
assert(!hr->is_empty(), "the region should not be empty");
assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
if (G1VerifyBitmaps) {
MemRegion mr(hr->bottom(), hr->end());
concurrent_mark()->clear_range_in_prev_bitmap(mr);
}
// Clear the card counts for this region.
// Note: we only need to do this if the region is not young
// (since we don't refine cards in young regions).
if (!hr->is_young()) {
_hot_card_cache->reset_card_counts(hr);
}
// Reset region metadata to allow reuse.
hr->hr_clear(true /* clear_space */);
_policy->remset_tracker()->update_at_free(hr);
if (free_list != NULL) {
free_list->add_ordered(hr);
}
}
void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
FreeRegionList* free_list) {
assert(hr->is_humongous(), "this is only for humongous regions");
assert(free_list != NULL, "pre-condition");
hr->clear_humongous();
free_region(hr, free_list);
}
void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
const uint humongous_regions_removed) {
if (old_regions_removed > 0 || humongous_regions_removed > 0) {
MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
_old_set.bulk_remove(old_regions_removed);
_humongous_set.bulk_remove(humongous_regions_removed);
}
}
void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
assert(list != NULL, "list can't be null");
if (!list->is_empty()) {
MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
_hrm->insert_list_into_free_list(list);
}
}
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
decrease_used(bytes);
}
class G1FreeCollectionSetTask : public AbstractGangTask {
// Helper class to keep statistics for the collection set freeing
class FreeCSetStats {
size_t _before_used_bytes; // Usage in regions successfully evacutate
size_t _after_used_bytes; // Usage in regions failing evacuation
size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
size_t _failure_used_words; // Live size in failed regions
size_t _failure_waste_words; // Wasted size in failed regions
size_t _rs_length; // Remembered set size
uint _regions_freed; // Number of regions freed
public:
FreeCSetStats() :
_before_used_bytes(0),
_after_used_bytes(0),
_bytes_allocated_in_old_since_last_gc(0),
_failure_used_words(0),
_failure_waste_words(0),
_rs_length(0),
_regions_freed(0) { }
void merge_stats(FreeCSetStats* other) {
assert(other != NULL, "invariant");
_before_used_bytes += other->_before_used_bytes;
_after_used_bytes += other->_after_used_bytes;
_bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
_failure_used_words += other->_failure_used_words;
_failure_waste_words += other->_failure_waste_words;
_rs_length += other->_rs_length;
_regions_freed += other->_regions_freed;
}
void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
evacuation_info->set_regions_freed(_regions_freed);
evacuation_info->increment_collectionset_used_after(_after_used_bytes);
g1h->decrement_summary_bytes(_before_used_bytes);
g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
G1Policy *policy = g1h->policy();
policy->old_gen_alloc_tracker()->add_allocated_bytes_since_last_gc(_bytes_allocated_in_old_since_last_gc);
policy->record_rs_length(_rs_length);
policy->cset_regions_freed();
}
void account_failed_region(HeapRegion* r) {
size_t used_words = r->marked_bytes() / HeapWordSize;
_failure_used_words += used_words;
_failure_waste_words += HeapRegion::GrainWords - used_words;
_after_used_bytes += r->used();
// When moving a young gen region to old gen, we "allocate" that whole
// region there. This is in addition to any already evacuated objects.
// Notify the policy about that. Old gen regions do not cause an
// additional allocation: both the objects still in the region and the
// ones already moved are accounted for elsewhere.
if (r->is_young()) {
_bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
}
}
void account_evacuated_region(HeapRegion* r) {
_before_used_bytes += r->used();
_regions_freed += 1;
}
void account_rs_length(HeapRegion* r) {
_rs_length += r->rem_set()->occupied();
}
};
// Closure applied to all regions in the collection set.
class FreeCSetClosure : public HeapRegionClosure {
// Helper to send JFR events for regions.
class JFREventForRegion {
EventGCPhaseParallel _event;
public:
JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
_event.set_gcId(GCId::current());
_event.set_gcWorkerId(worker_id);
if (region->is_young()) {
_event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
} else {
_event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
}
}
~JFREventForRegion() {
_event.commit();
}
};
// Helper to do timing for region work.
class TimerForRegion {
Tickspan& _time;
Ticks _start_time;
public:
TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
~TimerForRegion() {
_time += Ticks::now() - _start_time;
}
};
// FreeCSetClosure members
G1CollectedHeap* _g1h;
const size_t* _surviving_young_words;
uint _worker_id;
Tickspan _young_time;
Tickspan _non_young_time;
FreeCSetStats* _stats;
void assert_in_cset(HeapRegion* r) {
assert(r->young_index_in_cset() != 0 &&
(uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
"Young index %u is wrong for region %u of type %s with %u young regions",
r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
}
void handle_evacuated_region(HeapRegion* r) {
assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
stats()->account_evacuated_region(r);
// Free the region and and its remembered set.
_g1h->free_region(r, NULL);
}
void handle_failed_region(HeapRegion* r) {
// Do some allocation statistics accounting. Regions that failed evacuation
// are always made old, so there is no need to update anything in the young
// gen statistics, but we need to update old gen statistics.
stats()->account_failed_region(r);
// Update the region state due to the failed evacuation.
r->handle_evacuation_failure();
// Add region to old set, need to hold lock.
MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
_g1h->old_set_add(r);
}
Tickspan& timer_for_region(HeapRegion* r) {
return r->is_young() ? _young_time : _non_young_time;
}
FreeCSetStats* stats() {
return _stats;
}
public:
FreeCSetClosure(const size_t* surviving_young_words,
uint worker_id,
FreeCSetStats* stats) :
HeapRegionClosure(),
_g1h(G1CollectedHeap::heap()),
_surviving_young_words(surviving_young_words),
_worker_id(worker_id),
_young_time(),
_non_young_time(),
_stats(stats) { }
virtual bool do_heap_region(HeapRegion* r) {
assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
JFREventForRegion event(r, _worker_id);
TimerForRegion timer(timer_for_region(r));
_g1h->clear_region_attr(r);
stats()->account_rs_length(r);
if (r->is_young()) {
assert_in_cset(r);
r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
}
if (r->evacuation_failed()) {
handle_failed_region(r);
} else {
handle_evacuated_region(r);
}
assert(!_g1h->is_on_master_free_list(r), "sanity");
return false;
}
void report_timing(Tickspan parallel_time) {
G1GCPhaseTimes* pt = _g1h->phase_times();
pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
if (_young_time.value() > 0) {
pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
}
if (_non_young_time.value() > 0) {
pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
}
}
};
// G1FreeCollectionSetTask members
G1CollectedHeap* _g1h;
G1EvacuationInfo* _evacuation_info;
FreeCSetStats* _worker_stats;
HeapRegionClaimer _claimer;
const size_t* _surviving_young_words;
uint _active_workers;
FreeCSetStats* worker_stats(uint worker) {
return &_worker_stats[worker];
}
void report_statistics() {
// Merge the accounting
FreeCSetStats total_stats;
for (uint worker = 0; worker < _active_workers; worker++) {
total_stats.merge_stats(worker_stats(worker));
}
total_stats.report(_g1h, _evacuation_info);
}
public:
G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
AbstractGangTask("G1 Free Collection Set"),
_g1h(G1CollectedHeap::heap()),
_evacuation_info(evacuation_info),
_worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
_claimer(active_workers),
_surviving_young_words(surviving_young_words),
_active_workers(active_workers) {
for (uint worker = 0; worker < active_workers; worker++) {
::new (&_worker_stats[worker]) FreeCSetStats();
}
}
~G1FreeCollectionSetTask() {
Ticks serial_time = Ticks::now();
report_statistics();
for (uint worker = 0; worker < _active_workers; worker++) {
_worker_stats[worker].~FreeCSetStats();
}
FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
_g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
}
virtual void work(uint worker_id) {
EventGCPhaseParallel event;
Ticks start = Ticks::now();
FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
_g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
// Report the total parallel time along with some more detailed metrics.
cl.report_timing(Ticks::now() - start);
event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
}
};
void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
_eden.clear();
// The free collections set is split up in two tasks, the first
// frees the collection set and records what regions are free,
// and the second one rebuilds the free list. This proved to be
// more efficient than adding a sorted list to another.
Ticks free_cset_start_time = Ticks::now();
{
uint const num_cs_regions = _collection_set.region_length();
uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
cl.name(), num_workers, num_cs_regions, num_regions());
workers()->run_task(&cl, num_workers);
}
Ticks free_cset_end_time = Ticks::now();
phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
// Now rebuild the free region list.
hrm()->rebuild_free_list(workers());
phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
collection_set->clear();
}
class G1FreeHumongousRegionClosure : public HeapRegionClosure {
private:
FreeRegionList* _free_region_list;
HeapRegionSet* _proxy_set;
uint _humongous_objects_reclaimed;
uint _humongous_regions_reclaimed;
size_t _freed_bytes;
public:
G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
_free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
}
virtual bool do_heap_region(HeapRegion* r) {
if (!r->is_starts_humongous()) {
return false;
}
G1CollectedHeap* g1h = G1CollectedHeap::heap();
oop obj = (oop)r->bottom();
G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
// The following checks whether the humongous object is live are sufficient.
// The main additional check (in addition to having a reference from the roots
// or the young gen) is whether the humongous object has a remembered set entry.
//
// A humongous object cannot be live if there is no remembered set for it
// because:
// - there can be no references from within humongous starts regions referencing
// the object because we never allocate other objects into them.
// (I.e. there are no intra-region references that may be missed by the
// remembered set)
// - as soon there is a remembered set entry to the humongous starts region
// (i.e. it has "escaped" to an old object) this remembered set entry will stay
// until the end of a concurrent mark.
//
// It is not required to check whether the object has been found dead by marking
// or not, in fact it would prevent reclamation within a concurrent cycle, as
// all objects allocated during that time are considered live.
// SATB marking is even more conservative than the remembered set.
// So if at this point in the collection there is no remembered set entry,
// nobody has a reference to it.
// At the start of collection we flush all refinement logs, and remembered sets
// are completely up-to-date wrt to references to the humongous object.
//
// Other implementation considerations:
// - never consider object arrays at this time because they would pose
// considerable effort for cleaning up the the remembered sets. This is
// required because stale remembered sets might reference locations that
// are currently allocated into.
uint region_idx = r->hrm_index();
if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
!r->rem_set()->is_empty()) {
log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
region_idx,
(size_t)obj->size() * HeapWordSize,
p2i(r->bottom()),
r->rem_set()->occupied(),
r->rem_set()->strong_code_roots_list_length(),
next_bitmap->is_marked(r->bottom()),
g1h->is_humongous_reclaim_candidate(region_idx),
obj->is_typeArray()
);
return false;
}
guarantee(obj->is_typeArray(),
"Only eagerly reclaiming type arrays is supported, but the object "
PTR_FORMAT " is not.", p2i(r->bottom()));
log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
region_idx,
(size_t)obj->size() * HeapWordSize,
p2i(r->bottom()),
r->rem_set()->occupied(),
r->rem_set()->strong_code_roots_list_length(),
next_bitmap->is_marked(r->bottom()),
g1h->is_humongous_reclaim_candidate(region_idx),
obj->is_typeArray()
);
G1ConcurrentMark* const cm = g1h->concurrent_mark();
cm->humongous_object_eagerly_reclaimed(r);
assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
"Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
region_idx,
BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
_humongous_objects_reclaimed++;
do {
HeapRegion* next = g1h->next_region_in_humongous(r);
_freed_bytes += r->used();
r->set_containing_set(NULL);
_humongous_regions_reclaimed++;
g1h->free_humongous_region(r, _free_region_list);
r = next;
} while (r != NULL);
return false;
}
uint humongous_objects_reclaimed() {
return _humongous_objects_reclaimed;
}
uint humongous_regions_reclaimed() {
return _humongous_regions_reclaimed;
}
size_t bytes_freed() const {
return _freed_bytes;
}
};
void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
assert_at_safepoint_on_vm_thread();
if (!G1EagerReclaimHumongousObjects ||
(!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
return;
}
double start_time = os::elapsedTime();
FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
G1FreeHumongousRegionClosure cl(&local_cleanup_list);
heap_region_iterate(&cl);
remove_from_old_sets(0, cl.humongous_regions_reclaimed());
G1HRPrinter* hrp = hr_printer();
if (hrp->is_active()) {
FreeRegionListIterator iter(&local_cleanup_list);
while (iter.more_available()) {
HeapRegion* hr = iter.get_next();
hrp->cleanup(hr);
}
}
prepend_to_freelist(&local_cleanup_list);
decrement_summary_bytes(cl.bytes_freed());
phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
cl.humongous_objects_reclaimed());
}
class G1AbandonCollectionSetClosure : public HeapRegionClosure {
public:
virtual bool do_heap_region(HeapRegion* r) {
assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
G1CollectedHeap::heap()->clear_region_attr(r);
r->clear_young_index_in_cset();
return false;
}
};
void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
G1AbandonCollectionSetClosure cl;
collection_set_iterate_all(&cl);
collection_set->clear();
collection_set->stop_incremental_building();
}
bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
return _allocator->is_retained_old_region(hr);
}
void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
_eden.add(hr);
_policy->set_region_eden(hr);
}
#ifdef ASSERT
class NoYoungRegionsClosure: public HeapRegionClosure {
private:
bool _success;
public:
NoYoungRegionsClosure() : _success(true) { }
bool do_heap_region(HeapRegion* r) {
if (r->is_young()) {
log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
p2i(r->bottom()), p2i(r->end()));
_success = false;
}
return false;
}
bool success() { return _success; }
};
bool G1CollectedHeap::check_young_list_empty() {
bool ret = (young_regions_count() == 0);
NoYoungRegionsClosure closure;
heap_region_iterate(&closure);
ret = ret && closure.success();
return ret;
}
#endif // ASSERT
class TearDownRegionSetsClosure : public HeapRegionClosure {
HeapRegionSet *_old_set;
public:
TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
bool do_heap_region(HeapRegion* r) {
if (r->is_old()) {
_old_set->remove(r);
} else if(r->is_young()) {
r->uninstall_surv_rate_group();
} else {
// We ignore free regions, we'll empty the free list afterwards.
// We ignore humongous and archive regions, we're not tearing down these
// sets.
assert(r->is_archive() || r->is_free() || r->is_humongous(),
"it cannot be another type");
}
return false;
}
~TearDownRegionSetsClosure() {
assert(_old_set->is_empty(), "post-condition");
}
};
void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
assert_at_safepoint_on_vm_thread();
if (!free_list_only) {
TearDownRegionSetsClosure cl(&_old_set);
heap_region_iterate(&cl);
// Note that emptying the _young_list is postponed and instead done as
// the first step when rebuilding the regions sets again. The reason for
// this is that during a full GC string deduplication needs to know if
// a collected region was young or old when the full GC was initiated.
}
_hrm->remove_all_free_regions();
}
void G1CollectedHeap::increase_used(size_t bytes) {
_summary_bytes_used += bytes;
}
void G1CollectedHeap::decrease_used(size_t bytes) {
assert(_summary_bytes_used >= bytes,
"invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
_summary_bytes_used, bytes);
_summary_bytes_used -= bytes;
}
void G1CollectedHeap::set_used(size_t bytes) {
_summary_bytes_used = bytes;
}
class RebuildRegionSetsClosure : public HeapRegionClosure {
private:
bool _free_list_only;
HeapRegionSet* _old_set;
HeapRegionManager* _hrm;
size_t _total_used;
public:
RebuildRegionSetsClosure(bool free_list_only,
HeapRegionSet* old_set,
HeapRegionManager* hrm) :
_free_list_only(free_list_only),
_old_set(old_set), _hrm(hrm), _total_used(0) {
assert(_hrm->num_free_regions() == 0, "pre-condition");
if (!free_list_only) {
assert(_old_set->is_empty(), "pre-condition");
}
}
bool do_heap_region(HeapRegion* r) {
if (r->is_empty()) {
assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
// Add free regions to the free list
r->set_free();
_hrm->insert_into_free_list(r);
} else if (!_free_list_only) {
assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
if (r->is_archive() || r->is_humongous()) {
// We ignore archive and humongous regions. We left these sets unchanged.
} else {
assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
// We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
r->move_to_old();
_old_set->add(r);
}
_total_used += r->used();
}
return false;
}
size_t total_used() {
return _total_used;
}
};
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
assert_at_safepoint_on_vm_thread();
if (!free_list_only) {
_eden.clear();
_survivor.clear();
}
RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
heap_region_iterate(&cl);
if (!free_list_only) {
set_used(cl.total_used());
if (_archive_allocator != NULL) {
_archive_allocator->clear_used();
}
}
assert_used_and_recalculate_used_equal(this);
}
// Methods for the mutator alloc region
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
bool force,
uint node_index) {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
bool should_allocate = policy()->should_allocate_mutator_region();
if (force || should_allocate) {
HeapRegion* new_alloc_region = new_region(word_size,
HeapRegionType::Eden,
false /* do_expand */,
node_index);
if (new_alloc_region != NULL) {
set_region_short_lived_locked(new_alloc_region);
_hr_printer.alloc(new_alloc_region, !should_allocate);
_verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
_policy->remset_tracker()->update_at_allocate(new_alloc_region);
return new_alloc_region;
}
}
return NULL;
}
void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
size_t allocated_bytes) {
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
collection_set()->add_eden_region(alloc_region);
increase_used(allocated_bytes);
_eden.add_used_bytes(allocated_bytes);
_hr_printer.retire(alloc_region);
// We update the eden sizes here, when the region is retired,
// instead of when it's allocated, since this is the point that its
// used space has been recorded in _summary_bytes_used.
g1mm()->update_eden_size();
}
// Methods for the GC alloc regions
bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
if (dest.is_old()) {
return true;
} else {
return survivor_regions_count() < policy()->max_survivor_regions();
}
}
HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
assert(FreeList_lock->owned_by_self(), "pre-condition");
if (!has_more_regions(dest)) {
return NULL;
}
HeapRegionType type;
if (dest.is_young()) {
type = HeapRegionType::Survivor;
} else {
type = HeapRegionType::Old;
}
HeapRegion* new_alloc_region = new_region(word_size,
type,
true /* do_expand */,
node_index);
if (new_alloc_region != NULL) {
if (type.is_survivor()) {
new_alloc_region->set_survivor();
_survivor.add(new_alloc_region);
_verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
} else {
new_alloc_region->set_old();
_verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
}
_policy->remset_tracker()->update_at_allocate(new_alloc_region);
register_region_with_region_attr(new_alloc_region);
_hr_printer.alloc(new_alloc_region);
return new_alloc_region;
}
return NULL;
}
void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
size_t allocated_bytes,
G1HeapRegionAttr dest) {
_bytes_used_during_gc += allocated_bytes;
if (dest.is_old()) {
old_set_add(alloc_region);
} else {
assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
_survivor.add_used_bytes(allocated_bytes);
}
bool const during_im = collector_state()->in_initial_mark_gc();
if (during_im && allocated_bytes > 0) {
_cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
}
_hr_printer.retire(alloc_region);
}
HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
bool expanded = false;
uint index = _hrm->find_highest_free(&expanded);
if (index != G1_NO_HRM_INDEX) {
if (expanded) {
log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
HeapRegion::GrainWords * HeapWordSize);
}
return _hrm->allocate_free_regions_starting_at(index, 1);
}
return NULL;
}
// Optimized nmethod scanning
class RegisterNMethodOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
nmethod* _nm;
template <class T> void do_oop_work(T* p) {
T heap_oop = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(heap_oop)) {
oop obj = CompressedOops::decode_not_null(heap_oop);
HeapRegion* hr = _g1h->heap_region_containing(obj);
assert(!hr->is_continues_humongous(),
"trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
" starting at " HR_FORMAT,
p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
// HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
hr->add_strong_code_root_locked(_nm);
}
}
public:
RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
_g1h(g1h), _nm(nm) {}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
};
class UnregisterNMethodOopClosure: public OopClosure {
G1CollectedHeap* _g1h;
nmethod* _nm;
template <class T> void do_oop_work(T* p) {
T heap_oop = RawAccess<>::oop_load(p);
if (!CompressedOops::is_null(heap_oop)) {
oop obj = CompressedOops::decode_not_null(heap_oop);
HeapRegion* hr = _g1h->heap_region_containing(obj);
assert(!hr->is_continues_humongous(),
"trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
" starting at " HR_FORMAT,
p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
hr->remove_strong_code_root(_nm);
}
}
public:
UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
_g1h(g1h), _nm(nm) {}
void do_oop(oop* p) { do_oop_work(p); }
void do_oop(narrowOop* p) { do_oop_work(p); }
};
void G1CollectedHeap::register_nmethod(nmethod* nm) {
guarantee(nm != NULL, "sanity");
RegisterNMethodOopClosure reg_cl(this, nm);
nm->oops_do(&reg_cl);
}
void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
guarantee(nm != NULL, "sanity");
UnregisterNMethodOopClosure reg_cl(this, nm);
nm->oops_do(&reg_cl, true);
}
void G1CollectedHeap::purge_code_root_memory() {
double purge_start = os::elapsedTime();
G1CodeRootSet::purge();
double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
phase_times()->record_strong_code_root_purge_time(purge_time_ms);
}
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
G1CollectedHeap* _g1h;
public:
RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
_g1h(g1h) {}
void do_code_blob(CodeBlob* cb) {
nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
if (nm == NULL) {
return;
}
_g1h->register_nmethod(nm);
}
};
void G1CollectedHeap::rebuild_strong_code_roots() {
RebuildStrongCodeRootClosure blob_cl(this);
CodeCache::blobs_do(&blob_cl);
}
void G1CollectedHeap::initialize_serviceability() {
_g1mm->initialize_serviceability();
}
MemoryUsage G1CollectedHeap::memory_usage() {
return _g1mm->memory_usage();
}
GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
return _g1mm->memory_managers();
}
GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
return _g1mm->memory_pools();
}