b8f42f53da
Reviewed-by: kbarrett, dfazunen, ehelin
418 lines
13 KiB
Java
418 lines
13 KiB
Java
/*
|
|
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test TestGCOld
|
|
* @key gc
|
|
* @key stress
|
|
* @requires vm.gc=="null"
|
|
* @summary Stress the GC by trying to make old objects more likely to be garbage than young objects.
|
|
* @run main/othervm -Xmx384M -XX:+UseSerialGC TestGCOld 50 1 20 10 10000
|
|
* @run main/othervm -Xmx384M -XX:+UseParallelGC TestGCOld 50 1 20 10 10000
|
|
* @run main/othervm -Xmx384M -XX:+UseParallelGC -XX:-UseParallelOldGC TestGCOld 50 1 20 10 10000
|
|
* @run main/othervm -Xmx384M -XX:+UseConcMarkSweepGC TestGCOld 50 1 20 10 10000
|
|
* @run main/othervm -Xmx384M -XX:+UseG1GC TestGCOld 50 1 20 10 10000
|
|
*/
|
|
|
|
import java.text.*;
|
|
import java.util.Random;
|
|
|
|
class TreeNode {
|
|
public TreeNode left, right;
|
|
public int val; // will always be the height of the tree
|
|
}
|
|
|
|
|
|
/* Args:
|
|
live-data-size: in megabytes (approximate, will be rounded down).
|
|
work: units of mutator non-allocation work per byte allocated,
|
|
(in unspecified units. This will affect the promotion rate
|
|
printed at the end of the run: more mutator work per step implies
|
|
fewer steps per second implies fewer bytes promoted per second.)
|
|
short/long ratio: ratio of short-lived bytes allocated to long-lived
|
|
bytes allocated.
|
|
pointer mutation rate: number of pointer mutations per step.
|
|
steps: number of steps to do.
|
|
*/
|
|
|
|
public class TestGCOld {
|
|
|
|
// Command-line parameters.
|
|
|
|
private static int size, workUnits, promoteRate, ptrMutRate, steps;
|
|
|
|
// Constants.
|
|
|
|
private static final int MEG = 1000000;
|
|
private static final int INSIGNIFICANT = 999; // this many bytes don't matter
|
|
private static final int BYTES_PER_WORD = 4;
|
|
private static final int BYTES_PER_NODE = 20; // bytes per TreeNode
|
|
private static final int WORDS_DEAD = 100; // size of young garbage object
|
|
|
|
private final static int treeHeight = 14;
|
|
private final static long treeSize = heightToBytes(treeHeight);
|
|
|
|
private static final String msg1
|
|
= "Usage: java TestGCOld <size> <work> <ratio> <mutation> <steps>";
|
|
private static final String msg2
|
|
= " where <size> is the live storage in megabytes";
|
|
private static final String msg3
|
|
= " <work> is the mutator work per step (arbitrary units)";
|
|
private static final String msg4
|
|
= " <ratio> is the ratio of short-lived to long-lived allocation";
|
|
private static final String msg5
|
|
= " <mutation> is the mutations per step";
|
|
private static final String msg6
|
|
= " <steps> is the number of steps";
|
|
|
|
// Counters (and global variables that discourage optimization)
|
|
|
|
private static long youngBytes = 0; // total young bytes allocated
|
|
private static long nodes = 0; // total tree nodes allocated
|
|
private static long actuallyMut = 0; // pointer mutations in old trees
|
|
private static long mutatorSum = 0; // checksum to discourage optimization
|
|
public static int[] aexport; // exported array to discourage opt
|
|
|
|
// Global variables.
|
|
|
|
private static TreeNode[] trees;
|
|
private static int where = 0; // roving index into trees
|
|
private static Random rnd = new Random();
|
|
|
|
// Returns the height of the given tree.
|
|
|
|
private static int height (TreeNode t) {
|
|
if (t == null) {
|
|
return 0;
|
|
}
|
|
else {
|
|
return 1 + Math.max (height (t.left), height (t.right));
|
|
}
|
|
}
|
|
|
|
// Returns the length of the shortest path in the given tree.
|
|
|
|
private static int shortestPath (TreeNode t) {
|
|
if (t == null) {
|
|
return 0;
|
|
}
|
|
else {
|
|
return 1 + Math.min (shortestPath (t.left), shortestPath (t.right));
|
|
}
|
|
}
|
|
|
|
// Returns the number of nodes in a balanced tree of the given height.
|
|
|
|
private static long heightToNodes (int h) {
|
|
if (h == 0) {
|
|
return 0;
|
|
}
|
|
else {
|
|
long n = 1;
|
|
while (h > 1) {
|
|
n = n + n;
|
|
h = h - 1;
|
|
}
|
|
return n + n - 1;
|
|
}
|
|
}
|
|
|
|
// Returns the number of bytes in a balanced tree of the given height.
|
|
|
|
private static long heightToBytes (int h) {
|
|
return BYTES_PER_NODE * heightToNodes (h);
|
|
}
|
|
|
|
// Returns the height of the largest balanced tree
|
|
// that has no more than the given number of nodes.
|
|
|
|
private static int nodesToHeight (long nodes) {
|
|
int h = 1;
|
|
long n = 1;
|
|
while (n + n - 1 <= nodes) {
|
|
n = n + n;
|
|
h = h + 1;
|
|
}
|
|
return h - 1;
|
|
}
|
|
|
|
// Returns the height of the largest balanced tree
|
|
// that occupies no more than the given number of bytes.
|
|
|
|
private static int bytesToHeight (long bytes) {
|
|
return nodesToHeight (bytes / BYTES_PER_NODE);
|
|
}
|
|
|
|
// Returns a newly allocated balanced binary tree of height h.
|
|
|
|
private static TreeNode makeTree(int h) {
|
|
if (h == 0) return null;
|
|
else {
|
|
TreeNode res = new TreeNode();
|
|
nodes++;
|
|
res.left = makeTree(h-1);
|
|
res.right = makeTree(h-1);
|
|
res.val = h;
|
|
return res;
|
|
}
|
|
}
|
|
|
|
// Allocates approximately size megabytes of trees and stores
|
|
// them into a global array.
|
|
|
|
private static void init() {
|
|
int ntrees = (int) ((size * MEG) / treeSize);
|
|
trees = new TreeNode[ntrees];
|
|
|
|
System.err.println("Allocating " + ntrees + " trees.");
|
|
System.err.println(" (" + (ntrees * treeSize) + " bytes)");
|
|
for (int i = 0; i < ntrees; i++) {
|
|
trees[i] = makeTree(treeHeight);
|
|
// doYoungGenAlloc(promoteRate*ntrees*treeSize, WORDS_DEAD);
|
|
}
|
|
System.err.println(" (" + nodes + " nodes)");
|
|
|
|
/* Allow any in-progress GC to catch up... */
|
|
// try { Thread.sleep(20000); } catch (InterruptedException x) {}
|
|
}
|
|
|
|
// Confirms that all trees are balanced and have the correct height.
|
|
|
|
private static void checkTrees() {
|
|
int ntrees = trees.length;
|
|
for (int i = 0; i < ntrees; i++) {
|
|
TreeNode t = trees[i];
|
|
int h1 = height(t);
|
|
int h2 = shortestPath(t);
|
|
if ((h1 != treeHeight) || (h2 != treeHeight)) {
|
|
System.err.println("*****BUG: " + h1 + " " + h2);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Called only by replaceTree (below) and by itself.
|
|
|
|
private static void replaceTreeWork(TreeNode full, TreeNode partial, boolean dir) {
|
|
boolean canGoLeft = full.left != null && full.left.val > partial.val;
|
|
boolean canGoRight = full.right != null && full.right.val > partial.val;
|
|
if (canGoLeft && canGoRight) {
|
|
if (dir)
|
|
replaceTreeWork(full.left, partial, !dir);
|
|
else
|
|
replaceTreeWork(full.right, partial, !dir);
|
|
} else if (!canGoLeft && !canGoRight) {
|
|
if (dir)
|
|
full.left = partial;
|
|
else
|
|
full.right = partial;
|
|
} else if (!canGoLeft) {
|
|
full.left = partial;
|
|
} else {
|
|
full.right = partial;
|
|
}
|
|
}
|
|
|
|
// Given a balanced tree full and a smaller balanced tree partial,
|
|
// replaces an appropriate subtree of full by partial, taking care
|
|
// to preserve the shape of the full tree.
|
|
|
|
private static void replaceTree(TreeNode full, TreeNode partial) {
|
|
boolean dir = (partial.val % 2) == 0;
|
|
actuallyMut++;
|
|
replaceTreeWork(full, partial, dir);
|
|
}
|
|
|
|
// Allocates approximately n bytes of long-lived storage,
|
|
// replacing oldest existing long-lived storage.
|
|
|
|
private static void oldGenAlloc(long n) {
|
|
int full = (int) (n / treeSize);
|
|
long partial = n % treeSize;
|
|
// System.out.println("In oldGenAlloc, doing " + full + " full trees "
|
|
// + "and one partial tree of size " + partial);
|
|
for (int i = 0; i < full; i++) {
|
|
trees[where++] = makeTree(treeHeight);
|
|
if (where == trees.length) where = 0;
|
|
}
|
|
while (partial > INSIGNIFICANT) {
|
|
int h = bytesToHeight(partial);
|
|
TreeNode newTree = makeTree(h);
|
|
replaceTree(trees[where++], newTree);
|
|
if (where == trees.length) where = 0;
|
|
partial = partial - heightToBytes(h);
|
|
}
|
|
}
|
|
|
|
// Interchanges two randomly selected subtrees (of same size and depth).
|
|
|
|
private static void oldGenSwapSubtrees() {
|
|
// Randomly pick:
|
|
// * two tree indices
|
|
// * A depth
|
|
// * A path to that depth.
|
|
int index1 = rnd.nextInt(trees.length);
|
|
int index2 = rnd.nextInt(trees.length);
|
|
int depth = rnd.nextInt(treeHeight);
|
|
int path = rnd.nextInt();
|
|
TreeNode tn1 = trees[index1];
|
|
TreeNode tn2 = trees[index2];
|
|
for (int i = 0; i < depth; i++) {
|
|
if ((path & 1) == 0) {
|
|
tn1 = tn1.left;
|
|
tn2 = tn2.left;
|
|
} else {
|
|
tn1 = tn1.right;
|
|
tn2 = tn2.right;
|
|
}
|
|
path >>= 1;
|
|
}
|
|
TreeNode tmp;
|
|
if ((path & 1) == 0) {
|
|
tmp = tn1.left;
|
|
tn1.left = tn2.left;
|
|
tn2.left = tmp;
|
|
} else {
|
|
tmp = tn1.right;
|
|
tn1.right = tn2.right;
|
|
tn2.right = tmp;
|
|
}
|
|
actuallyMut += 2;
|
|
}
|
|
|
|
// Update "n" old-generation pointers.
|
|
|
|
private static void oldGenMut(long n) {
|
|
for (int i = 0; i < n/2; i++) {
|
|
oldGenSwapSubtrees();
|
|
}
|
|
}
|
|
|
|
// Does the amount of mutator work appropriate for n bytes of young-gen
|
|
// garbage allocation.
|
|
|
|
private static void doMutWork(long n) {
|
|
int sum = 0;
|
|
long limit = workUnits*n/10;
|
|
for (long k = 0; k < limit; k++) sum++;
|
|
// We don't want dead code elimination to eliminate the loop above.
|
|
mutatorSum = mutatorSum + sum;
|
|
}
|
|
|
|
// Allocate n bytes of young-gen garbage, in units of "nwords"
|
|
// words.
|
|
|
|
private static void doYoungGenAlloc(long n, int nwords) {
|
|
final int nbytes = nwords*BYTES_PER_WORD;
|
|
int allocated = 0;
|
|
while (allocated < n) {
|
|
aexport = new int[nwords];
|
|
/* System.err.println("Step"); */
|
|
allocated += nbytes;
|
|
}
|
|
youngBytes = youngBytes + allocated;
|
|
}
|
|
|
|
// Allocate "n" bytes of young-gen data; and do the
|
|
// corresponding amount of old-gen allocation and pointer
|
|
// mutation.
|
|
|
|
// oldGenAlloc may perform some mutations, so this code
|
|
// takes those mutations into account.
|
|
|
|
private static void doStep(long n) {
|
|
long mutations = actuallyMut;
|
|
|
|
doYoungGenAlloc(n, WORDS_DEAD);
|
|
doMutWork(n);
|
|
oldGenAlloc(n / promoteRate);
|
|
oldGenMut(Math.max(0L, (mutations + ptrMutRate) - actuallyMut));
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
if (args.length != 5) {
|
|
System.err.println(msg1);
|
|
System.err.println(msg2);
|
|
System.err.println(msg3);
|
|
System.err.println(msg4);
|
|
System.err.println(msg5);
|
|
System.err.println(msg6);
|
|
return;
|
|
}
|
|
|
|
size = Integer.parseInt(args[0]);
|
|
workUnits = Integer.parseInt(args[1]);
|
|
promoteRate = Integer.parseInt(args[2]);
|
|
ptrMutRate = Integer.parseInt(args[3]);
|
|
steps = Integer.parseInt(args[4]);
|
|
|
|
System.out.println(size + " megabytes of live storage");
|
|
System.out.println(workUnits + " work units per step");
|
|
System.out.println("promotion ratio is 1:" + promoteRate);
|
|
System.out.println("pointer mutation rate is " + ptrMutRate);
|
|
System.out.println(steps + " steps");
|
|
|
|
init();
|
|
// checkTrees();
|
|
youngBytes = 0;
|
|
nodes = 0;
|
|
|
|
System.err.println("Initialization complete...");
|
|
|
|
long start = System.currentTimeMillis();
|
|
|
|
for (int step = 0; step < steps; step++) {
|
|
doStep(MEG);
|
|
}
|
|
|
|
long end = System.currentTimeMillis();
|
|
float secs = ((float)(end-start))/1000.0F;
|
|
|
|
// checkTrees();
|
|
|
|
NumberFormat nf = NumberFormat.getInstance();
|
|
nf.setMaximumFractionDigits(1);
|
|
System.out.println("\nTook " + nf.format(secs) + " sec in steady state.");
|
|
nf.setMaximumFractionDigits(2);
|
|
System.out.println("Allocated " + steps + " Mb of young gen garbage"
|
|
+ " (= " + nf.format(((float)steps)/secs) +
|
|
" Mb/sec)");
|
|
System.out.println(" (actually allocated " +
|
|
nf.format(((float) youngBytes)/MEG) + " megabytes)");
|
|
float promoted = ((float)steps) / (float)promoteRate;
|
|
System.out.println("Promoted " + promoted +
|
|
" Mb (= " + nf.format(promoted/secs) + " Mb/sec)");
|
|
System.out.println(" (actually promoted " +
|
|
nf.format(((float) (nodes * BYTES_PER_NODE))/MEG) +
|
|
" megabytes)");
|
|
if (ptrMutRate != 0) {
|
|
System.out.println("Mutated " + actuallyMut +
|
|
" pointers (= " +
|
|
nf.format(actuallyMut/secs) + " ptrs/sec)");
|
|
|
|
}
|
|
// This output serves mainly to discourage optimization.
|
|
System.out.println("Checksum = " + (mutatorSum + aexport.length));
|
|
|
|
}
|
|
}
|