e2d7983ab8
Reviewed-by: kvn, stuefe
2865 lines
91 KiB
C++
2865 lines
91 KiB
C++
/*
|
|
* Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "ci/ciMethodData.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "interpreter/linkResolver.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/castnode.hpp"
|
|
#include "opto/convertnode.hpp"
|
|
#include "opto/divnode.hpp"
|
|
#include "opto/idealGraphPrinter.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/mulnode.hpp"
|
|
#include "opto/opaquenode.hpp"
|
|
#include "opto/parse.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "runtime/deoptimization.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
|
|
#ifndef PRODUCT
|
|
extern int explicit_null_checks_inserted,
|
|
explicit_null_checks_elided;
|
|
#endif
|
|
|
|
//---------------------------------array_load----------------------------------
|
|
void Parse::array_load(BasicType bt) {
|
|
const Type* elemtype = Type::TOP;
|
|
bool big_val = bt == T_DOUBLE || bt == T_LONG;
|
|
Node* adr = array_addressing(bt, 0, &elemtype);
|
|
if (stopped()) return; // guaranteed null or range check
|
|
|
|
pop(); // index (already used)
|
|
Node* array = pop(); // the array itself
|
|
|
|
if (elemtype == TypeInt::BOOL) {
|
|
bt = T_BOOLEAN;
|
|
} else if (bt == T_OBJECT) {
|
|
elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
|
|
}
|
|
|
|
const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
|
|
|
|
Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
|
|
IN_HEAP | IS_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
|
|
if (big_val) {
|
|
push_pair(ld);
|
|
} else {
|
|
push(ld);
|
|
}
|
|
}
|
|
|
|
|
|
//--------------------------------array_store----------------------------------
|
|
void Parse::array_store(BasicType bt) {
|
|
const Type* elemtype = Type::TOP;
|
|
bool big_val = bt == T_DOUBLE || bt == T_LONG;
|
|
Node* adr = array_addressing(bt, big_val ? 2 : 1, &elemtype);
|
|
if (stopped()) return; // guaranteed null or range check
|
|
if (bt == T_OBJECT) {
|
|
array_store_check();
|
|
}
|
|
Node* val; // Oop to store
|
|
if (big_val) {
|
|
val = pop_pair();
|
|
} else {
|
|
val = pop();
|
|
}
|
|
pop(); // index (already used)
|
|
Node* array = pop(); // the array itself
|
|
|
|
if (elemtype == TypeInt::BOOL) {
|
|
bt = T_BOOLEAN;
|
|
} else if (bt == T_OBJECT) {
|
|
elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
|
|
}
|
|
|
|
const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
|
|
|
|
access_store_at(array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IS_ARRAY);
|
|
}
|
|
|
|
|
|
//------------------------------array_addressing-------------------------------
|
|
// Pull array and index from the stack. Compute pointer-to-element.
|
|
Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
|
|
Node *idx = peek(0+vals); // Get from stack without popping
|
|
Node *ary = peek(1+vals); // in case of exception
|
|
|
|
// Null check the array base, with correct stack contents
|
|
ary = null_check(ary, T_ARRAY);
|
|
// Compile-time detect of null-exception?
|
|
if (stopped()) return top();
|
|
|
|
const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
|
|
const TypeInt* sizetype = arytype->size();
|
|
const Type* elemtype = arytype->elem();
|
|
|
|
if (UseUniqueSubclasses && result2 != NULL) {
|
|
const Type* el = elemtype->make_ptr();
|
|
if (el && el->isa_instptr()) {
|
|
const TypeInstPtr* toop = el->is_instptr();
|
|
if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
|
|
// If we load from "AbstractClass[]" we must see "ConcreteSubClass".
|
|
const Type* subklass = Type::get_const_type(toop->klass());
|
|
elemtype = subklass->join_speculative(el);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for big class initializers with all constant offsets
|
|
// feeding into a known-size array.
|
|
const TypeInt* idxtype = _gvn.type(idx)->is_int();
|
|
// See if the highest idx value is less than the lowest array bound,
|
|
// and if the idx value cannot be negative:
|
|
bool need_range_check = true;
|
|
if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
|
|
need_range_check = false;
|
|
if (C->log() != NULL) C->log()->elem("observe that='!need_range_check'");
|
|
}
|
|
|
|
ciKlass * arytype_klass = arytype->klass();
|
|
if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
|
|
// Only fails for some -Xcomp runs
|
|
// The class is unloaded. We have to run this bytecode in the interpreter.
|
|
uncommon_trap(Deoptimization::Reason_unloaded,
|
|
Deoptimization::Action_reinterpret,
|
|
arytype->klass(), "!loaded array");
|
|
return top();
|
|
}
|
|
|
|
// Do the range check
|
|
if (GenerateRangeChecks && need_range_check) {
|
|
Node* tst;
|
|
if (sizetype->_hi <= 0) {
|
|
// The greatest array bound is negative, so we can conclude that we're
|
|
// compiling unreachable code, but the unsigned compare trick used below
|
|
// only works with non-negative lengths. Instead, hack "tst" to be zero so
|
|
// the uncommon_trap path will always be taken.
|
|
tst = _gvn.intcon(0);
|
|
} else {
|
|
// Range is constant in array-oop, so we can use the original state of mem
|
|
Node* len = load_array_length(ary);
|
|
|
|
// Test length vs index (standard trick using unsigned compare)
|
|
Node* chk = _gvn.transform( new CmpUNode(idx, len) );
|
|
BoolTest::mask btest = BoolTest::lt;
|
|
tst = _gvn.transform( new BoolNode(chk, btest) );
|
|
}
|
|
RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
|
|
_gvn.set_type(rc, rc->Value(&_gvn));
|
|
if (!tst->is_Con()) {
|
|
record_for_igvn(rc);
|
|
}
|
|
set_control(_gvn.transform(new IfTrueNode(rc)));
|
|
// Branch to failure if out of bounds
|
|
{
|
|
PreserveJVMState pjvms(this);
|
|
set_control(_gvn.transform(new IfFalseNode(rc)));
|
|
if (C->allow_range_check_smearing()) {
|
|
// Do not use builtin_throw, since range checks are sometimes
|
|
// made more stringent by an optimistic transformation.
|
|
// This creates "tentative" range checks at this point,
|
|
// which are not guaranteed to throw exceptions.
|
|
// See IfNode::Ideal, is_range_check, adjust_check.
|
|
uncommon_trap(Deoptimization::Reason_range_check,
|
|
Deoptimization::Action_make_not_entrant,
|
|
NULL, "range_check");
|
|
} else {
|
|
// If we have already recompiled with the range-check-widening
|
|
// heroic optimization turned off, then we must really be throwing
|
|
// range check exceptions.
|
|
builtin_throw(Deoptimization::Reason_range_check, idx);
|
|
}
|
|
}
|
|
}
|
|
// Check for always knowing you are throwing a range-check exception
|
|
if (stopped()) return top();
|
|
|
|
// Make array address computation control dependent to prevent it
|
|
// from floating above the range check during loop optimizations.
|
|
Node* ptr = array_element_address(ary, idx, type, sizetype, control());
|
|
|
|
if (result2 != NULL) *result2 = elemtype;
|
|
|
|
assert(ptr != top(), "top should go hand-in-hand with stopped");
|
|
|
|
return ptr;
|
|
}
|
|
|
|
|
|
// returns IfNode
|
|
IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
|
|
Node *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
|
|
Node *tst = _gvn.transform(new BoolNode(cmp, mask));
|
|
IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
|
|
return iff;
|
|
}
|
|
|
|
// return Region node
|
|
Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
|
|
Node *region = new RegionNode(3); // 2 results
|
|
record_for_igvn(region);
|
|
region->init_req(1, iffalse);
|
|
region->init_req(2, iftrue );
|
|
_gvn.set_type(region, Type::CONTROL);
|
|
region = _gvn.transform(region);
|
|
set_control (region);
|
|
return region;
|
|
}
|
|
|
|
// sentinel value for the target bci to mark never taken branches
|
|
// (according to profiling)
|
|
static const int never_reached = INT_MAX;
|
|
|
|
//------------------------------helper for tableswitch-------------------------
|
|
void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) {
|
|
// True branch, use existing map info
|
|
{ PreserveJVMState pjvms(this);
|
|
Node *iftrue = _gvn.transform( new IfTrueNode (iff) );
|
|
set_control( iftrue );
|
|
if (unc) {
|
|
repush_if_args();
|
|
uncommon_trap(Deoptimization::Reason_unstable_if,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL,
|
|
"taken always");
|
|
} else {
|
|
assert(dest_bci_if_true != never_reached, "inconsistent dest");
|
|
profile_switch_case(prof_table_index);
|
|
merge_new_path(dest_bci_if_true);
|
|
}
|
|
}
|
|
|
|
// False branch
|
|
Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
|
|
set_control( iffalse );
|
|
}
|
|
|
|
void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) {
|
|
// True branch, use existing map info
|
|
{ PreserveJVMState pjvms(this);
|
|
Node *iffalse = _gvn.transform( new IfFalseNode (iff) );
|
|
set_control( iffalse );
|
|
if (unc) {
|
|
repush_if_args();
|
|
uncommon_trap(Deoptimization::Reason_unstable_if,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL,
|
|
"taken never");
|
|
} else {
|
|
assert(dest_bci_if_true != never_reached, "inconsistent dest");
|
|
profile_switch_case(prof_table_index);
|
|
merge_new_path(dest_bci_if_true);
|
|
}
|
|
}
|
|
|
|
// False branch
|
|
Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
|
|
set_control( iftrue );
|
|
}
|
|
|
|
void Parse::jump_if_always_fork(int dest_bci, int prof_table_index, bool unc) {
|
|
// False branch, use existing map and control()
|
|
if (unc) {
|
|
repush_if_args();
|
|
uncommon_trap(Deoptimization::Reason_unstable_if,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL,
|
|
"taken never");
|
|
} else {
|
|
assert(dest_bci != never_reached, "inconsistent dest");
|
|
profile_switch_case(prof_table_index);
|
|
merge_new_path(dest_bci);
|
|
}
|
|
}
|
|
|
|
|
|
extern "C" {
|
|
static int jint_cmp(const void *i, const void *j) {
|
|
int a = *(jint *)i;
|
|
int b = *(jint *)j;
|
|
return a > b ? 1 : a < b ? -1 : 0;
|
|
}
|
|
}
|
|
|
|
|
|
// Default value for methodData switch indexing. Must be a negative value to avoid
|
|
// conflict with any legal switch index.
|
|
#define NullTableIndex -1
|
|
|
|
class SwitchRange : public StackObj {
|
|
// a range of integers coupled with a bci destination
|
|
jint _lo; // inclusive lower limit
|
|
jint _hi; // inclusive upper limit
|
|
int _dest;
|
|
int _table_index; // index into method data table
|
|
float _cnt; // how many times this range was hit according to profiling
|
|
|
|
public:
|
|
jint lo() const { return _lo; }
|
|
jint hi() const { return _hi; }
|
|
int dest() const { return _dest; }
|
|
int table_index() const { return _table_index; }
|
|
bool is_singleton() const { return _lo == _hi; }
|
|
float cnt() const { return _cnt; }
|
|
|
|
void setRange(jint lo, jint hi, int dest, int table_index, float cnt) {
|
|
assert(lo <= hi, "must be a non-empty range");
|
|
_lo = lo, _hi = hi; _dest = dest; _table_index = table_index; _cnt = cnt;
|
|
assert(_cnt >= 0, "");
|
|
}
|
|
bool adjoinRange(jint lo, jint hi, int dest, int table_index, float cnt, bool trim_ranges) {
|
|
assert(lo <= hi, "must be a non-empty range");
|
|
if (lo == _hi+1 && table_index == _table_index) {
|
|
// see merge_ranges() comment below
|
|
if (trim_ranges) {
|
|
if (cnt == 0) {
|
|
if (_cnt != 0) {
|
|
return false;
|
|
}
|
|
if (dest != _dest) {
|
|
_dest = never_reached;
|
|
}
|
|
} else {
|
|
if (_cnt == 0) {
|
|
return false;
|
|
}
|
|
if (dest != _dest) {
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
if (dest != _dest) {
|
|
return false;
|
|
}
|
|
}
|
|
_hi = hi;
|
|
_cnt += cnt;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void set (jint value, int dest, int table_index, float cnt) {
|
|
setRange(value, value, dest, table_index, cnt);
|
|
}
|
|
bool adjoin(jint value, int dest, int table_index, float cnt, bool trim_ranges) {
|
|
return adjoinRange(value, value, dest, table_index, cnt, trim_ranges);
|
|
}
|
|
bool adjoin(SwitchRange& other) {
|
|
return adjoinRange(other._lo, other._hi, other._dest, other._table_index, other._cnt, false);
|
|
}
|
|
|
|
void print() {
|
|
if (is_singleton())
|
|
tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt());
|
|
else if (lo() == min_jint)
|
|
tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt());
|
|
else if (hi() == max_jint)
|
|
tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt());
|
|
else
|
|
tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt());
|
|
}
|
|
};
|
|
|
|
// We try to minimize the number of ranges and the size of the taken
|
|
// ones using profiling data. When ranges are created,
|
|
// SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge
|
|
// if both were never hit or both were hit to build longer unreached
|
|
// ranges. Here, we now merge adjoining ranges with the same
|
|
// destination and finally set destination of unreached ranges to the
|
|
// special value never_reached because it can help minimize the number
|
|
// of tests that are necessary.
|
|
//
|
|
// For instance:
|
|
// [0, 1] to target1 sometimes taken
|
|
// [1, 2] to target1 never taken
|
|
// [2, 3] to target2 never taken
|
|
// would lead to:
|
|
// [0, 1] to target1 sometimes taken
|
|
// [1, 3] never taken
|
|
//
|
|
// (first 2 ranges to target1 are not merged)
|
|
static void merge_ranges(SwitchRange* ranges, int& rp) {
|
|
if (rp == 0) {
|
|
return;
|
|
}
|
|
int shift = 0;
|
|
for (int j = 0; j < rp; j++) {
|
|
SwitchRange& r1 = ranges[j-shift];
|
|
SwitchRange& r2 = ranges[j+1];
|
|
if (r1.adjoin(r2)) {
|
|
shift++;
|
|
} else if (shift > 0) {
|
|
ranges[j+1-shift] = r2;
|
|
}
|
|
}
|
|
rp -= shift;
|
|
for (int j = 0; j <= rp; j++) {
|
|
SwitchRange& r = ranges[j];
|
|
if (r.cnt() == 0 && r.dest() != never_reached) {
|
|
r.setRange(r.lo(), r.hi(), never_reached, r.table_index(), r.cnt());
|
|
}
|
|
}
|
|
}
|
|
|
|
//-------------------------------do_tableswitch--------------------------------
|
|
void Parse::do_tableswitch() {
|
|
Node* lookup = pop();
|
|
// Get information about tableswitch
|
|
int default_dest = iter().get_dest_table(0);
|
|
int lo_index = iter().get_int_table(1);
|
|
int hi_index = iter().get_int_table(2);
|
|
int len = hi_index - lo_index + 1;
|
|
|
|
if (len < 1) {
|
|
// If this is a backward branch, add safepoint
|
|
maybe_add_safepoint(default_dest);
|
|
merge(default_dest);
|
|
return;
|
|
}
|
|
|
|
ciMethodData* methodData = method()->method_data();
|
|
ciMultiBranchData* profile = NULL;
|
|
if (methodData->is_mature() && UseSwitchProfiling) {
|
|
ciProfileData* data = methodData->bci_to_data(bci());
|
|
if (data != NULL && data->is_MultiBranchData()) {
|
|
profile = (ciMultiBranchData*)data;
|
|
}
|
|
}
|
|
bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
|
|
|
|
// generate decision tree, using trichotomy when possible
|
|
int rnum = len+2;
|
|
bool makes_backward_branch = false;
|
|
SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
|
|
int rp = -1;
|
|
if (lo_index != min_jint) {
|
|
uint cnt = 1;
|
|
if (profile != NULL) {
|
|
cnt = profile->default_count() / (hi_index != max_jint ? 2 : 1);
|
|
}
|
|
ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex, cnt);
|
|
}
|
|
for (int j = 0; j < len; j++) {
|
|
jint match_int = lo_index+j;
|
|
int dest = iter().get_dest_table(j+3);
|
|
makes_backward_branch |= (dest <= bci());
|
|
int table_index = method_data_update() ? j : NullTableIndex;
|
|
uint cnt = 1;
|
|
if (profile != NULL) {
|
|
cnt = profile->count_at(j);
|
|
}
|
|
if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) {
|
|
ranges[++rp].set(match_int, dest, table_index, cnt);
|
|
}
|
|
}
|
|
jint highest = lo_index+(len-1);
|
|
assert(ranges[rp].hi() == highest, "");
|
|
if (highest != max_jint) {
|
|
uint cnt = 1;
|
|
if (profile != NULL) {
|
|
cnt = profile->default_count() / (lo_index != min_jint ? 2 : 1);
|
|
}
|
|
if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, cnt, trim_ranges)) {
|
|
ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, cnt);
|
|
}
|
|
}
|
|
assert(rp < len+2, "not too many ranges");
|
|
|
|
if (trim_ranges) {
|
|
merge_ranges(ranges, rp);
|
|
}
|
|
|
|
// Safepoint in case if backward branch observed
|
|
if( makes_backward_branch && UseLoopSafepoints )
|
|
add_safepoint();
|
|
|
|
jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
|
|
}
|
|
|
|
|
|
//------------------------------do_lookupswitch--------------------------------
|
|
void Parse::do_lookupswitch() {
|
|
Node *lookup = pop(); // lookup value
|
|
// Get information about lookupswitch
|
|
int default_dest = iter().get_dest_table(0);
|
|
int len = iter().get_int_table(1);
|
|
|
|
if (len < 1) { // If this is a backward branch, add safepoint
|
|
maybe_add_safepoint(default_dest);
|
|
merge(default_dest);
|
|
return;
|
|
}
|
|
|
|
ciMethodData* methodData = method()->method_data();
|
|
ciMultiBranchData* profile = NULL;
|
|
if (methodData->is_mature() && UseSwitchProfiling) {
|
|
ciProfileData* data = methodData->bci_to_data(bci());
|
|
if (data != NULL && data->is_MultiBranchData()) {
|
|
profile = (ciMultiBranchData*)data;
|
|
}
|
|
}
|
|
bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
|
|
|
|
// generate decision tree, using trichotomy when possible
|
|
jint* table = NEW_RESOURCE_ARRAY(jint, len*3);
|
|
{
|
|
for (int j = 0; j < len; j++) {
|
|
table[3*j+0] = iter().get_int_table(2+2*j);
|
|
table[3*j+1] = iter().get_dest_table(2+2*j+1);
|
|
table[3*j+2] = profile == NULL ? 1 : profile->count_at(j);
|
|
}
|
|
qsort(table, len, 3*sizeof(table[0]), jint_cmp);
|
|
}
|
|
|
|
float defaults = 0;
|
|
jint prev = min_jint;
|
|
for (int j = 0; j < len; j++) {
|
|
jint match_int = table[3*j+0];
|
|
if (match_int != prev) {
|
|
defaults += (float)match_int - prev;
|
|
}
|
|
prev = match_int+1;
|
|
}
|
|
if (prev-1 != max_jint) {
|
|
defaults += (float)max_jint - prev + 1;
|
|
}
|
|
float default_cnt = 1;
|
|
if (profile != NULL) {
|
|
default_cnt = profile->default_count()/defaults;
|
|
}
|
|
|
|
int rnum = len*2+1;
|
|
bool makes_backward_branch = false;
|
|
SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
|
|
int rp = -1;
|
|
for (int j = 0; j < len; j++) {
|
|
jint match_int = table[3*j+0];
|
|
int dest = table[3*j+1];
|
|
int cnt = table[3*j+2];
|
|
int next_lo = rp < 0 ? min_jint : ranges[rp].hi()+1;
|
|
int table_index = method_data_update() ? j : NullTableIndex;
|
|
makes_backward_branch |= (dest <= bci());
|
|
float c = default_cnt * ((float)match_int - next_lo);
|
|
if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, NullTableIndex, c, trim_ranges))) {
|
|
assert(default_dest != never_reached, "sentinel value for dead destinations");
|
|
ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex, c);
|
|
}
|
|
if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) {
|
|
assert(dest != never_reached, "sentinel value for dead destinations");
|
|
ranges[++rp].set(match_int, dest, table_index, cnt);
|
|
}
|
|
}
|
|
jint highest = table[3*(len-1)];
|
|
assert(ranges[rp].hi() == highest, "");
|
|
if (highest != max_jint &&
|
|
!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest), trim_ranges)) {
|
|
ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest));
|
|
}
|
|
assert(rp < rnum, "not too many ranges");
|
|
|
|
if (trim_ranges) {
|
|
merge_ranges(ranges, rp);
|
|
}
|
|
|
|
// Safepoint in case backward branch observed
|
|
if (makes_backward_branch && UseLoopSafepoints)
|
|
add_safepoint();
|
|
|
|
jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
|
|
}
|
|
|
|
static float if_prob(float taken_cnt, float total_cnt) {
|
|
assert(taken_cnt <= total_cnt, "");
|
|
if (total_cnt == 0) {
|
|
return PROB_FAIR;
|
|
}
|
|
float p = taken_cnt / total_cnt;
|
|
return MIN2(MAX2(p, PROB_MIN), PROB_MAX);
|
|
}
|
|
|
|
static float if_cnt(float cnt) {
|
|
if (cnt == 0) {
|
|
return COUNT_UNKNOWN;
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) {
|
|
float total_cnt = 0;
|
|
for (SwitchRange* sr = lo; sr <= hi; sr++) {
|
|
total_cnt += sr->cnt();
|
|
}
|
|
return total_cnt;
|
|
}
|
|
|
|
class SwitchRanges : public ResourceObj {
|
|
public:
|
|
SwitchRange* _lo;
|
|
SwitchRange* _hi;
|
|
SwitchRange* _mid;
|
|
float _cost;
|
|
|
|
enum {
|
|
Start,
|
|
LeftDone,
|
|
RightDone,
|
|
Done
|
|
} _state;
|
|
|
|
SwitchRanges(SwitchRange *lo, SwitchRange *hi)
|
|
: _lo(lo), _hi(hi), _mid(NULL),
|
|
_cost(0), _state(Start) {
|
|
}
|
|
|
|
SwitchRanges()
|
|
: _lo(NULL), _hi(NULL), _mid(NULL),
|
|
_cost(0), _state(Start) {}
|
|
};
|
|
|
|
// Estimate cost of performing a binary search on lo..hi
|
|
static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) {
|
|
GrowableArray<SwitchRanges> tree;
|
|
SwitchRanges root(lo, hi);
|
|
tree.push(root);
|
|
|
|
float cost = 0;
|
|
do {
|
|
SwitchRanges& r = *tree.adr_at(tree.length()-1);
|
|
if (r._hi != r._lo) {
|
|
if (r._mid == NULL) {
|
|
float r_cnt = sum_of_cnts(r._lo, r._hi);
|
|
|
|
if (r_cnt == 0) {
|
|
tree.pop();
|
|
cost = 0;
|
|
continue;
|
|
}
|
|
|
|
SwitchRange* mid = NULL;
|
|
mid = r._lo;
|
|
for (float cnt = 0; ; ) {
|
|
assert(mid <= r._hi, "out of bounds");
|
|
cnt += mid->cnt();
|
|
if (cnt > r_cnt / 2) {
|
|
break;
|
|
}
|
|
mid++;
|
|
}
|
|
assert(mid <= r._hi, "out of bounds");
|
|
r._mid = mid;
|
|
r._cost = r_cnt / total_cnt;
|
|
}
|
|
r._cost += cost;
|
|
if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) {
|
|
cost = 0;
|
|
r._state = SwitchRanges::LeftDone;
|
|
tree.push(SwitchRanges(r._lo, r._mid-1));
|
|
} else if (r._state < SwitchRanges::RightDone) {
|
|
cost = 0;
|
|
r._state = SwitchRanges::RightDone;
|
|
tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi));
|
|
} else {
|
|
tree.pop();
|
|
cost = r._cost;
|
|
}
|
|
} else {
|
|
tree.pop();
|
|
cost = r._cost;
|
|
}
|
|
} while (tree.length() > 0);
|
|
|
|
|
|
return cost;
|
|
}
|
|
|
|
// It sometimes pays off to test most common ranges before the binary search
|
|
void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) {
|
|
uint nr = hi - lo + 1;
|
|
float total_cnt = sum_of_cnts(lo, hi);
|
|
|
|
float min = compute_tree_cost(lo, hi, total_cnt);
|
|
float extra = 1;
|
|
float sub = 0;
|
|
|
|
SwitchRange* array1 = lo;
|
|
SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr);
|
|
|
|
SwitchRange* ranges = NULL;
|
|
|
|
while (nr >= 2) {
|
|
assert(lo == array1 || lo == array2, "one the 2 already allocated arrays");
|
|
ranges = (lo == array1) ? array2 : array1;
|
|
|
|
// Find highest frequency range
|
|
SwitchRange* candidate = lo;
|
|
for (SwitchRange* sr = lo+1; sr <= hi; sr++) {
|
|
if (sr->cnt() > candidate->cnt()) {
|
|
candidate = sr;
|
|
}
|
|
}
|
|
SwitchRange most_freq = *candidate;
|
|
if (most_freq.cnt() == 0) {
|
|
break;
|
|
}
|
|
|
|
// Copy remaining ranges into another array
|
|
int shift = 0;
|
|
for (uint i = 0; i < nr; i++) {
|
|
SwitchRange* sr = &lo[i];
|
|
if (sr != candidate) {
|
|
ranges[i-shift] = *sr;
|
|
} else {
|
|
shift++;
|
|
if (i > 0 && i < nr-1) {
|
|
SwitchRange prev = lo[i-1];
|
|
prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.table_index(), prev.cnt());
|
|
if (prev.adjoin(lo[i+1])) {
|
|
shift++;
|
|
i++;
|
|
}
|
|
ranges[i-shift] = prev;
|
|
}
|
|
}
|
|
}
|
|
nr -= shift;
|
|
|
|
// Evaluate cost of testing the most common range and performing a
|
|
// binary search on the other ranges
|
|
float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt);
|
|
if (cost >= min) {
|
|
break;
|
|
}
|
|
// swap arrays
|
|
lo = &ranges[0];
|
|
hi = &ranges[nr-1];
|
|
|
|
// It pays off: emit the test for the most common range
|
|
assert(most_freq.cnt() > 0, "must be taken");
|
|
Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo())));
|
|
Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(most_freq.hi() - most_freq.lo())));
|
|
Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le));
|
|
IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt()));
|
|
jump_if_true_fork(iff, most_freq.dest(), most_freq.table_index(), false);
|
|
|
|
sub += most_freq.cnt() / total_cnt;
|
|
extra += 1 - sub;
|
|
min = cost;
|
|
}
|
|
}
|
|
|
|
//----------------------------create_jump_tables-------------------------------
|
|
bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
|
|
// Are jumptables enabled
|
|
if (!UseJumpTables) return false;
|
|
|
|
// Are jumptables supported
|
|
if (!Matcher::has_match_rule(Op_Jump)) return false;
|
|
|
|
// Don't make jump table if profiling
|
|
if (method_data_update()) return false;
|
|
|
|
bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
|
|
|
|
// Decide if a guard is needed to lop off big ranges at either (or
|
|
// both) end(s) of the input set. We'll call this the default target
|
|
// even though we can't be sure that it is the true "default".
|
|
|
|
bool needs_guard = false;
|
|
int default_dest;
|
|
int64_t total_outlier_size = 0;
|
|
int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
|
|
int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
|
|
|
|
if (lo->dest() == hi->dest()) {
|
|
total_outlier_size = hi_size + lo_size;
|
|
default_dest = lo->dest();
|
|
} else if (lo_size > hi_size) {
|
|
total_outlier_size = lo_size;
|
|
default_dest = lo->dest();
|
|
} else {
|
|
total_outlier_size = hi_size;
|
|
default_dest = hi->dest();
|
|
}
|
|
|
|
float total = sum_of_cnts(lo, hi);
|
|
float cost = compute_tree_cost(lo, hi, total);
|
|
|
|
// If a guard test will eliminate very sparse end ranges, then
|
|
// it is worth the cost of an extra jump.
|
|
float trimmed_cnt = 0;
|
|
if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
|
|
needs_guard = true;
|
|
if (default_dest == lo->dest()) {
|
|
trimmed_cnt += lo->cnt();
|
|
lo++;
|
|
}
|
|
if (default_dest == hi->dest()) {
|
|
trimmed_cnt += hi->cnt();
|
|
hi--;
|
|
}
|
|
}
|
|
|
|
// Find the total number of cases and ranges
|
|
int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
|
|
int num_range = hi - lo + 1;
|
|
|
|
// Don't create table if: too large, too small, or too sparse.
|
|
if (num_cases > MaxJumpTableSize)
|
|
return false;
|
|
if (UseSwitchProfiling) {
|
|
// MinJumpTableSize is set so with a well balanced binary tree,
|
|
// when the number of ranges is MinJumpTableSize, it's cheaper to
|
|
// go through a JumpNode that a tree of IfNodes. Average cost of a
|
|
// tree of IfNodes with MinJumpTableSize is
|
|
// log2f(MinJumpTableSize) comparisons. So if the cost computed
|
|
// from profile data is less than log2f(MinJumpTableSize) then
|
|
// going with the binary search is cheaper.
|
|
if (cost < log2f(MinJumpTableSize)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (num_cases < MinJumpTableSize)
|
|
return false;
|
|
}
|
|
if (num_cases > (MaxJumpTableSparseness * num_range))
|
|
return false;
|
|
|
|
// Normalize table lookups to zero
|
|
int lowval = lo->lo();
|
|
key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
|
|
|
|
// Generate a guard to protect against input keyvals that aren't
|
|
// in the switch domain.
|
|
if (needs_guard) {
|
|
Node* size = _gvn.intcon(num_cases);
|
|
Node* cmp = _gvn.transform(new CmpUNode(key_val, size));
|
|
Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge));
|
|
IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt));
|
|
jump_if_true_fork(iff, default_dest, NullTableIndex, trim_ranges && trimmed_cnt == 0);
|
|
|
|
total -= trimmed_cnt;
|
|
}
|
|
|
|
// Create an ideal node JumpTable that has projections
|
|
// of all possible ranges for a switch statement
|
|
// The key_val input must be converted to a pointer offset and scaled.
|
|
// Compare Parse::array_addressing above.
|
|
|
|
// Clean the 32-bit int into a real 64-bit offset.
|
|
// Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
|
|
const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
|
|
// Make I2L conversion control dependent to prevent it from
|
|
// floating above the range check during loop optimizations.
|
|
key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
|
|
|
|
// Shift the value by wordsize so we have an index into the table, rather
|
|
// than a switch value
|
|
Node *shiftWord = _gvn.MakeConX(wordSize);
|
|
key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
|
|
|
|
// Create the JumpNode
|
|
Arena* arena = C->comp_arena();
|
|
float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases);
|
|
int i = 0;
|
|
if (total == 0) {
|
|
for (SwitchRange* r = lo; r <= hi; r++) {
|
|
for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
|
|
probs[i] = 1.0F / num_cases;
|
|
}
|
|
}
|
|
} else {
|
|
for (SwitchRange* r = lo; r <= hi; r++) {
|
|
float prob = r->cnt()/total;
|
|
for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
|
|
probs[i] = prob / (r->hi() - r->lo() + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
ciMethodData* methodData = method()->method_data();
|
|
ciMultiBranchData* profile = NULL;
|
|
if (methodData->is_mature()) {
|
|
ciProfileData* data = methodData->bci_to_data(bci());
|
|
if (data != NULL && data->is_MultiBranchData()) {
|
|
profile = (ciMultiBranchData*)data;
|
|
}
|
|
}
|
|
|
|
Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == NULL ? COUNT_UNKNOWN : total));
|
|
|
|
// These are the switch destinations hanging off the jumpnode
|
|
i = 0;
|
|
for (SwitchRange* r = lo; r <= hi; r++) {
|
|
for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
|
|
Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
|
|
{
|
|
PreserveJVMState pjvms(this);
|
|
set_control(input);
|
|
jump_if_always_fork(r->dest(), r->table_index(), trim_ranges && r->cnt() == 0);
|
|
}
|
|
}
|
|
}
|
|
assert(i == num_cases, "miscount of cases");
|
|
stop_and_kill_map(); // no more uses for this JVMS
|
|
return true;
|
|
}
|
|
|
|
//----------------------------jump_switch_ranges-------------------------------
|
|
void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
|
|
Block* switch_block = block();
|
|
bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
|
|
|
|
if (switch_depth == 0) {
|
|
// Do special processing for the top-level call.
|
|
assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
|
|
assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
|
|
|
|
// Decrement pred-numbers for the unique set of nodes.
|
|
#ifdef ASSERT
|
|
if (!trim_ranges) {
|
|
// Ensure that the block's successors are a (duplicate-free) set.
|
|
int successors_counted = 0; // block occurrences in [hi..lo]
|
|
int unique_successors = switch_block->num_successors();
|
|
for (int i = 0; i < unique_successors; i++) {
|
|
Block* target = switch_block->successor_at(i);
|
|
|
|
// Check that the set of successors is the same in both places.
|
|
int successors_found = 0;
|
|
for (SwitchRange* p = lo; p <= hi; p++) {
|
|
if (p->dest() == target->start()) successors_found++;
|
|
}
|
|
assert(successors_found > 0, "successor must be known");
|
|
successors_counted += successors_found;
|
|
}
|
|
assert(successors_counted == (hi-lo)+1, "no unexpected successors");
|
|
}
|
|
#endif
|
|
|
|
// Maybe prune the inputs, based on the type of key_val.
|
|
jint min_val = min_jint;
|
|
jint max_val = max_jint;
|
|
const TypeInt* ti = key_val->bottom_type()->isa_int();
|
|
if (ti != NULL) {
|
|
min_val = ti->_lo;
|
|
max_val = ti->_hi;
|
|
assert(min_val <= max_val, "invalid int type");
|
|
}
|
|
while (lo->hi() < min_val) {
|
|
lo++;
|
|
}
|
|
if (lo->lo() < min_val) {
|
|
lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index(), lo->cnt());
|
|
}
|
|
while (hi->lo() > max_val) {
|
|
hi--;
|
|
}
|
|
if (hi->hi() > max_val) {
|
|
hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index(), hi->cnt());
|
|
}
|
|
|
|
linear_search_switch_ranges(key_val, lo, hi);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (switch_depth == 0) {
|
|
_max_switch_depth = 0;
|
|
_est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
|
|
}
|
|
#endif
|
|
|
|
assert(lo <= hi, "must be a non-empty set of ranges");
|
|
if (lo == hi) {
|
|
jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0);
|
|
} else {
|
|
assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
|
|
assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
|
|
|
|
if (create_jump_tables(key_val, lo, hi)) return;
|
|
|
|
SwitchRange* mid = NULL;
|
|
float total_cnt = sum_of_cnts(lo, hi);
|
|
|
|
int nr = hi - lo + 1;
|
|
if (UseSwitchProfiling) {
|
|
// Don't keep the binary search tree balanced: pick up mid point
|
|
// that split frequencies in half.
|
|
float cnt = 0;
|
|
for (SwitchRange* sr = lo; sr <= hi; sr++) {
|
|
cnt += sr->cnt();
|
|
if (cnt >= total_cnt / 2) {
|
|
mid = sr;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
mid = lo + nr/2;
|
|
|
|
// if there is an easy choice, pivot at a singleton:
|
|
if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton()) mid--;
|
|
|
|
assert(lo < mid && mid <= hi, "good pivot choice");
|
|
assert(nr != 2 || mid == hi, "should pick higher of 2");
|
|
assert(nr != 3 || mid == hi-1, "should pick middle of 3");
|
|
}
|
|
|
|
|
|
Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo());
|
|
|
|
if (mid->is_singleton()) {
|
|
IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt()));
|
|
jump_if_false_fork(iff_ne, mid->dest(), mid->table_index(), trim_ranges && mid->cnt() == 0);
|
|
|
|
// Special Case: If there are exactly three ranges, and the high
|
|
// and low range each go to the same place, omit the "gt" test,
|
|
// since it will not discriminate anything.
|
|
bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo;
|
|
|
|
// if there is a higher range, test for it and process it:
|
|
if (mid < hi && !eq_test_only) {
|
|
// two comparisons of same values--should enable 1 test for 2 branches
|
|
// Use BoolTest::le instead of BoolTest::gt
|
|
float cnt = sum_of_cnts(lo, mid-1);
|
|
IfNode *iff_le = jump_if_fork_int(key_val, test_val, BoolTest::le, if_prob(cnt, total_cnt), if_cnt(cnt));
|
|
Node *iftrue = _gvn.transform( new IfTrueNode(iff_le) );
|
|
Node *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
|
|
{ PreserveJVMState pjvms(this);
|
|
set_control(iffalse);
|
|
jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
|
|
}
|
|
set_control(iftrue);
|
|
}
|
|
|
|
} else {
|
|
// mid is a range, not a singleton, so treat mid..hi as a unit
|
|
float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi);
|
|
IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt));
|
|
|
|
// if there is a higher range, test for it and process it:
|
|
if (mid == hi) {
|
|
jump_if_true_fork(iff_ge, mid->dest(), mid->table_index(), trim_ranges && cnt == 0);
|
|
} else {
|
|
Node *iftrue = _gvn.transform( new IfTrueNode(iff_ge) );
|
|
Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
|
|
{ PreserveJVMState pjvms(this);
|
|
set_control(iftrue);
|
|
jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1);
|
|
}
|
|
set_control(iffalse);
|
|
}
|
|
}
|
|
|
|
// in any case, process the lower range
|
|
if (mid == lo) {
|
|
if (mid->is_singleton()) {
|
|
jump_switch_ranges(key_val, lo+1, hi, switch_depth+1);
|
|
} else {
|
|
jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0);
|
|
}
|
|
} else {
|
|
jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
|
|
}
|
|
}
|
|
|
|
// Decrease pred_count for each successor after all is done.
|
|
if (switch_depth == 0) {
|
|
int unique_successors = switch_block->num_successors();
|
|
for (int i = 0; i < unique_successors; i++) {
|
|
Block* target = switch_block->successor_at(i);
|
|
// Throw away the pre-allocated path for each unique successor.
|
|
target->next_path_num();
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
_max_switch_depth = MAX2(switch_depth, _max_switch_depth);
|
|
if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
|
|
SwitchRange* r;
|
|
int nsing = 0;
|
|
for( r = lo; r <= hi; r++ ) {
|
|
if( r->is_singleton() ) nsing++;
|
|
}
|
|
tty->print(">>> ");
|
|
_method->print_short_name();
|
|
tty->print_cr(" switch decision tree");
|
|
tty->print_cr(" %d ranges (%d singletons), max_depth=%d, est_depth=%d",
|
|
(int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
|
|
if (_max_switch_depth > _est_switch_depth) {
|
|
tty->print_cr("******** BAD SWITCH DEPTH ********");
|
|
}
|
|
tty->print(" ");
|
|
for( r = lo; r <= hi; r++ ) {
|
|
r->print();
|
|
}
|
|
tty->cr();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Parse::modf() {
|
|
Node *f2 = pop();
|
|
Node *f1 = pop();
|
|
Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::frem),
|
|
"frem", NULL, //no memory effects
|
|
f1, f2);
|
|
Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
|
|
|
|
push(res);
|
|
}
|
|
|
|
void Parse::modd() {
|
|
Node *d2 = pop_pair();
|
|
Node *d1 = pop_pair();
|
|
Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::drem),
|
|
"drem", NULL, //no memory effects
|
|
d1, top(), d2, top());
|
|
Node* res_d = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
|
|
|
|
#ifdef ASSERT
|
|
Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
|
|
assert(res_top == top(), "second value must be top");
|
|
#endif
|
|
|
|
push_pair(res_d);
|
|
}
|
|
|
|
void Parse::l2f() {
|
|
Node* f2 = pop();
|
|
Node* f1 = pop();
|
|
Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
|
|
"l2f", NULL, //no memory effects
|
|
f1, f2);
|
|
Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
|
|
|
|
push(res);
|
|
}
|
|
|
|
void Parse::do_irem() {
|
|
// Must keep both values on the expression-stack during null-check
|
|
zero_check_int(peek());
|
|
// Compile-time detect of null-exception?
|
|
if (stopped()) return;
|
|
|
|
Node* b = pop();
|
|
Node* a = pop();
|
|
|
|
const Type *t = _gvn.type(b);
|
|
if (t != Type::TOP) {
|
|
const TypeInt *ti = t->is_int();
|
|
if (ti->is_con()) {
|
|
int divisor = ti->get_con();
|
|
// check for positive power of 2
|
|
if (divisor > 0 &&
|
|
(divisor & ~(divisor-1)) == divisor) {
|
|
// yes !
|
|
Node *mask = _gvn.intcon((divisor - 1));
|
|
// Sigh, must handle negative dividends
|
|
Node *zero = _gvn.intcon(0);
|
|
IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt, PROB_FAIR, COUNT_UNKNOWN);
|
|
Node *iff = _gvn.transform( new IfFalseNode(ifff) );
|
|
Node *ift = _gvn.transform( new IfTrueNode (ifff) );
|
|
Node *reg = jump_if_join(ift, iff);
|
|
Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
|
|
// Negative path; negate/and/negate
|
|
Node *neg = _gvn.transform( new SubINode(zero, a) );
|
|
Node *andn= _gvn.transform( new AndINode(neg, mask) );
|
|
Node *negn= _gvn.transform( new SubINode(zero, andn) );
|
|
phi->init_req(1, negn);
|
|
// Fast positive case
|
|
Node *andx = _gvn.transform( new AndINode(a, mask) );
|
|
phi->init_req(2, andx);
|
|
// Push the merge
|
|
push( _gvn.transform(phi) );
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
// Default case
|
|
push( _gvn.transform( new ModINode(control(),a,b) ) );
|
|
}
|
|
|
|
// Handle jsr and jsr_w bytecode
|
|
void Parse::do_jsr() {
|
|
assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
|
|
|
|
// Store information about current state, tagged with new _jsr_bci
|
|
int return_bci = iter().next_bci();
|
|
int jsr_bci = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
|
|
|
|
// Update method data
|
|
profile_taken_branch(jsr_bci);
|
|
|
|
// The way we do things now, there is only one successor block
|
|
// for the jsr, because the target code is cloned by ciTypeFlow.
|
|
Block* target = successor_for_bci(jsr_bci);
|
|
|
|
// What got pushed?
|
|
const Type* ret_addr = target->peek();
|
|
assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
|
|
|
|
// Effect on jsr on stack
|
|
push(_gvn.makecon(ret_addr));
|
|
|
|
// Flow to the jsr.
|
|
merge(jsr_bci);
|
|
}
|
|
|
|
// Handle ret bytecode
|
|
void Parse::do_ret() {
|
|
// Find to whom we return.
|
|
assert(block()->num_successors() == 1, "a ret can only go one place now");
|
|
Block* target = block()->successor_at(0);
|
|
assert(!target->is_ready(), "our arrival must be expected");
|
|
profile_ret(target->flow()->start());
|
|
int pnum = target->next_path_num();
|
|
merge_common(target, pnum);
|
|
}
|
|
|
|
static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
|
|
if (btest != BoolTest::eq && btest != BoolTest::ne) {
|
|
// Only ::eq and ::ne are supported for profile injection.
|
|
return false;
|
|
}
|
|
if (test->is_Cmp() &&
|
|
test->in(1)->Opcode() == Op_ProfileBoolean) {
|
|
ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
|
|
int false_cnt = profile->false_count();
|
|
int true_cnt = profile->true_count();
|
|
|
|
// Counts matching depends on the actual test operation (::eq or ::ne).
|
|
// No need to scale the counts because profile injection was designed
|
|
// to feed exact counts into VM.
|
|
taken = (btest == BoolTest::eq) ? false_cnt : true_cnt;
|
|
not_taken = (btest == BoolTest::eq) ? true_cnt : false_cnt;
|
|
|
|
profile->consume();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
//--------------------------dynamic_branch_prediction--------------------------
|
|
// Try to gather dynamic branch prediction behavior. Return a probability
|
|
// of the branch being taken and set the "cnt" field. Returns a -1.0
|
|
// if we need to use static prediction for some reason.
|
|
float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
|
|
ResourceMark rm;
|
|
|
|
cnt = COUNT_UNKNOWN;
|
|
|
|
int taken = 0;
|
|
int not_taken = 0;
|
|
|
|
bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
|
|
|
|
if (use_mdo) {
|
|
// Use MethodData information if it is available
|
|
// FIXME: free the ProfileData structure
|
|
ciMethodData* methodData = method()->method_data();
|
|
if (!methodData->is_mature()) return PROB_UNKNOWN;
|
|
ciProfileData* data = methodData->bci_to_data(bci());
|
|
if (data == NULL) {
|
|
return PROB_UNKNOWN;
|
|
}
|
|
if (!data->is_JumpData()) return PROB_UNKNOWN;
|
|
|
|
// get taken and not taken values
|
|
taken = data->as_JumpData()->taken();
|
|
not_taken = 0;
|
|
if (data->is_BranchData()) {
|
|
not_taken = data->as_BranchData()->not_taken();
|
|
}
|
|
|
|
// scale the counts to be commensurate with invocation counts:
|
|
taken = method()->scale_count(taken);
|
|
not_taken = method()->scale_count(not_taken);
|
|
}
|
|
|
|
// Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
|
|
// We also check that individual counters are positive first, otherwise the sum can become positive.
|
|
if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
|
|
if (C->log() != NULL) {
|
|
C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
|
|
}
|
|
return PROB_UNKNOWN;
|
|
}
|
|
|
|
// Compute frequency that we arrive here
|
|
float sum = taken + not_taken;
|
|
// Adjust, if this block is a cloned private block but the
|
|
// Jump counts are shared. Taken the private counts for
|
|
// just this path instead of the shared counts.
|
|
if( block()->count() > 0 )
|
|
sum = block()->count();
|
|
cnt = sum / FreqCountInvocations;
|
|
|
|
// Pin probability to sane limits
|
|
float prob;
|
|
if( !taken )
|
|
prob = (0+PROB_MIN) / 2;
|
|
else if( !not_taken )
|
|
prob = (1+PROB_MAX) / 2;
|
|
else { // Compute probability of true path
|
|
prob = (float)taken / (float)(taken + not_taken);
|
|
if (prob > PROB_MAX) prob = PROB_MAX;
|
|
if (prob < PROB_MIN) prob = PROB_MIN;
|
|
}
|
|
|
|
assert((cnt > 0.0f) && (prob > 0.0f),
|
|
"Bad frequency assignment in if");
|
|
|
|
if (C->log() != NULL) {
|
|
const char* prob_str = NULL;
|
|
if (prob >= PROB_MAX) prob_str = (prob == PROB_MAX) ? "max" : "always";
|
|
if (prob <= PROB_MIN) prob_str = (prob == PROB_MIN) ? "min" : "never";
|
|
char prob_str_buf[30];
|
|
if (prob_str == NULL) {
|
|
jio_snprintf(prob_str_buf, sizeof(prob_str_buf), "%20.2f", prob);
|
|
prob_str = prob_str_buf;
|
|
}
|
|
C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
|
|
iter().get_dest(), taken, not_taken, cnt, prob_str);
|
|
}
|
|
return prob;
|
|
}
|
|
|
|
//-----------------------------branch_prediction-------------------------------
|
|
float Parse::branch_prediction(float& cnt,
|
|
BoolTest::mask btest,
|
|
int target_bci,
|
|
Node* test) {
|
|
float prob = dynamic_branch_prediction(cnt, btest, test);
|
|
// If prob is unknown, switch to static prediction
|
|
if (prob != PROB_UNKNOWN) return prob;
|
|
|
|
prob = PROB_FAIR; // Set default value
|
|
if (btest == BoolTest::eq) // Exactly equal test?
|
|
prob = PROB_STATIC_INFREQUENT; // Assume its relatively infrequent
|
|
else if (btest == BoolTest::ne)
|
|
prob = PROB_STATIC_FREQUENT; // Assume its relatively frequent
|
|
|
|
// If this is a conditional test guarding a backwards branch,
|
|
// assume its a loop-back edge. Make it a likely taken branch.
|
|
if (target_bci < bci()) {
|
|
if (is_osr_parse()) { // Could be a hot OSR'd loop; force deopt
|
|
// Since it's an OSR, we probably have profile data, but since
|
|
// branch_prediction returned PROB_UNKNOWN, the counts are too small.
|
|
// Let's make a special check here for completely zero counts.
|
|
ciMethodData* methodData = method()->method_data();
|
|
if (!methodData->is_empty()) {
|
|
ciProfileData* data = methodData->bci_to_data(bci());
|
|
// Only stop for truly zero counts, which mean an unknown part
|
|
// of the OSR-ed method, and we want to deopt to gather more stats.
|
|
// If you have ANY counts, then this loop is simply 'cold' relative
|
|
// to the OSR loop.
|
|
if (data == NULL ||
|
|
(data->as_BranchData()->taken() + data->as_BranchData()->not_taken() == 0)) {
|
|
// This is the only way to return PROB_UNKNOWN:
|
|
return PROB_UNKNOWN;
|
|
}
|
|
}
|
|
}
|
|
prob = PROB_STATIC_FREQUENT; // Likely to take backwards branch
|
|
}
|
|
|
|
assert(prob != PROB_UNKNOWN, "must have some guess at this point");
|
|
return prob;
|
|
}
|
|
|
|
// The magic constants are chosen so as to match the output of
|
|
// branch_prediction() when the profile reports a zero taken count.
|
|
// It is important to distinguish zero counts unambiguously, because
|
|
// some branches (e.g., _213_javac.Assembler.eliminate) validly produce
|
|
// very small but nonzero probabilities, which if confused with zero
|
|
// counts would keep the program recompiling indefinitely.
|
|
bool Parse::seems_never_taken(float prob) const {
|
|
return prob < PROB_MIN;
|
|
}
|
|
|
|
// True if the comparison seems to be the kind that will not change its
|
|
// statistics from true to false. See comments in adjust_map_after_if.
|
|
// This question is only asked along paths which are already
|
|
// classifed as untaken (by seems_never_taken), so really,
|
|
// if a path is never taken, its controlling comparison is
|
|
// already acting in a stable fashion. If the comparison
|
|
// seems stable, we will put an expensive uncommon trap
|
|
// on the untaken path.
|
|
bool Parse::seems_stable_comparison() const {
|
|
if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//-------------------------------repush_if_args--------------------------------
|
|
// Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
|
|
inline int Parse::repush_if_args() {
|
|
if (PrintOpto && WizardMode) {
|
|
tty->print("defending against excessive implicit null exceptions on %s @%d in ",
|
|
Bytecodes::name(iter().cur_bc()), iter().cur_bci());
|
|
method()->print_name(); tty->cr();
|
|
}
|
|
int bc_depth = - Bytecodes::depth(iter().cur_bc());
|
|
assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
|
|
DEBUG_ONLY(sync_jvms()); // argument(n) requires a synced jvms
|
|
assert(argument(0) != NULL, "must exist");
|
|
assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
|
|
inc_sp(bc_depth);
|
|
return bc_depth;
|
|
}
|
|
|
|
//----------------------------------do_ifnull----------------------------------
|
|
void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
|
|
int target_bci = iter().get_dest();
|
|
|
|
Block* branch_block = successor_for_bci(target_bci);
|
|
Block* next_block = successor_for_bci(iter().next_bci());
|
|
|
|
float cnt;
|
|
float prob = branch_prediction(cnt, btest, target_bci, c);
|
|
if (prob == PROB_UNKNOWN) {
|
|
// (An earlier version of do_ifnull omitted this trap for OSR methods.)
|
|
if (PrintOpto && Verbose) {
|
|
tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
|
|
}
|
|
repush_if_args(); // to gather stats on loop
|
|
// We need to mark this branch as taken so that if we recompile we will
|
|
// see that it is possible. In the tiered system the interpreter doesn't
|
|
// do profiling and by the time we get to the lower tier from the interpreter
|
|
// the path may be cold again. Make sure it doesn't look untaken
|
|
profile_taken_branch(target_bci, !ProfileInterpreter);
|
|
uncommon_trap(Deoptimization::Reason_unreached,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL, "cold");
|
|
if (C->eliminate_boxing()) {
|
|
// Mark the successor blocks as parsed
|
|
branch_block->next_path_num();
|
|
next_block->next_path_num();
|
|
}
|
|
return;
|
|
}
|
|
|
|
NOT_PRODUCT(explicit_null_checks_inserted++);
|
|
|
|
// Generate real control flow
|
|
Node *tst = _gvn.transform( new BoolNode( c, btest ) );
|
|
|
|
// Sanity check the probability value
|
|
assert(prob > 0.0f,"Bad probability in Parser");
|
|
// Need xform to put node in hash table
|
|
IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
|
|
assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
|
|
// True branch
|
|
{ PreserveJVMState pjvms(this);
|
|
Node* iftrue = _gvn.transform( new IfTrueNode (iff) );
|
|
set_control(iftrue);
|
|
|
|
if (stopped()) { // Path is dead?
|
|
NOT_PRODUCT(explicit_null_checks_elided++);
|
|
if (C->eliminate_boxing()) {
|
|
// Mark the successor block as parsed
|
|
branch_block->next_path_num();
|
|
}
|
|
} else { // Path is live.
|
|
// Update method data
|
|
profile_taken_branch(target_bci);
|
|
adjust_map_after_if(btest, c, prob, branch_block, next_block);
|
|
if (!stopped()) {
|
|
merge(target_bci);
|
|
}
|
|
}
|
|
}
|
|
|
|
// False branch
|
|
Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
|
|
set_control(iffalse);
|
|
|
|
if (stopped()) { // Path is dead?
|
|
NOT_PRODUCT(explicit_null_checks_elided++);
|
|
if (C->eliminate_boxing()) {
|
|
// Mark the successor block as parsed
|
|
next_block->next_path_num();
|
|
}
|
|
} else { // Path is live.
|
|
// Update method data
|
|
profile_not_taken_branch();
|
|
adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
|
|
next_block, branch_block);
|
|
}
|
|
}
|
|
|
|
//------------------------------------do_if------------------------------------
|
|
void Parse::do_if(BoolTest::mask btest, Node* c) {
|
|
int target_bci = iter().get_dest();
|
|
|
|
Block* branch_block = successor_for_bci(target_bci);
|
|
Block* next_block = successor_for_bci(iter().next_bci());
|
|
|
|
float cnt;
|
|
float prob = branch_prediction(cnt, btest, target_bci, c);
|
|
float untaken_prob = 1.0 - prob;
|
|
|
|
if (prob == PROB_UNKNOWN) {
|
|
if (PrintOpto && Verbose) {
|
|
tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
|
|
}
|
|
repush_if_args(); // to gather stats on loop
|
|
// We need to mark this branch as taken so that if we recompile we will
|
|
// see that it is possible. In the tiered system the interpreter doesn't
|
|
// do profiling and by the time we get to the lower tier from the interpreter
|
|
// the path may be cold again. Make sure it doesn't look untaken
|
|
profile_taken_branch(target_bci, !ProfileInterpreter);
|
|
uncommon_trap(Deoptimization::Reason_unreached,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL, "cold");
|
|
if (C->eliminate_boxing()) {
|
|
// Mark the successor blocks as parsed
|
|
branch_block->next_path_num();
|
|
next_block->next_path_num();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Sanity check the probability value
|
|
assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
|
|
|
|
bool taken_if_true = true;
|
|
// Convert BoolTest to canonical form:
|
|
if (!BoolTest(btest).is_canonical()) {
|
|
btest = BoolTest(btest).negate();
|
|
taken_if_true = false;
|
|
// prob is NOT updated here; it remains the probability of the taken
|
|
// path (as opposed to the prob of the path guarded by an 'IfTrueNode').
|
|
}
|
|
assert(btest != BoolTest::eq, "!= is the only canonical exact test");
|
|
|
|
Node* tst0 = new BoolNode(c, btest);
|
|
Node* tst = _gvn.transform(tst0);
|
|
BoolTest::mask taken_btest = BoolTest::illegal;
|
|
BoolTest::mask untaken_btest = BoolTest::illegal;
|
|
|
|
if (tst->is_Bool()) {
|
|
// Refresh c from the transformed bool node, since it may be
|
|
// simpler than the original c. Also re-canonicalize btest.
|
|
// This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
|
|
// That can arise from statements like: if (x instanceof C) ...
|
|
if (tst != tst0) {
|
|
// Canonicalize one more time since transform can change it.
|
|
btest = tst->as_Bool()->_test._test;
|
|
if (!BoolTest(btest).is_canonical()) {
|
|
// Reverse edges one more time...
|
|
tst = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
|
|
btest = tst->as_Bool()->_test._test;
|
|
assert(BoolTest(btest).is_canonical(), "sanity");
|
|
taken_if_true = !taken_if_true;
|
|
}
|
|
c = tst->in(1);
|
|
}
|
|
BoolTest::mask neg_btest = BoolTest(btest).negate();
|
|
taken_btest = taken_if_true ? btest : neg_btest;
|
|
untaken_btest = taken_if_true ? neg_btest : btest;
|
|
}
|
|
|
|
// Generate real control flow
|
|
float true_prob = (taken_if_true ? prob : untaken_prob);
|
|
IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
|
|
assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
|
|
Node* taken_branch = new IfTrueNode(iff);
|
|
Node* untaken_branch = new IfFalseNode(iff);
|
|
if (!taken_if_true) { // Finish conversion to canonical form
|
|
Node* tmp = taken_branch;
|
|
taken_branch = untaken_branch;
|
|
untaken_branch = tmp;
|
|
}
|
|
|
|
// Branch is taken:
|
|
{ PreserveJVMState pjvms(this);
|
|
taken_branch = _gvn.transform(taken_branch);
|
|
set_control(taken_branch);
|
|
|
|
if (stopped()) {
|
|
if (C->eliminate_boxing()) {
|
|
// Mark the successor block as parsed
|
|
branch_block->next_path_num();
|
|
}
|
|
} else {
|
|
// Update method data
|
|
profile_taken_branch(target_bci);
|
|
adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
|
|
if (!stopped()) {
|
|
merge(target_bci);
|
|
}
|
|
}
|
|
}
|
|
|
|
untaken_branch = _gvn.transform(untaken_branch);
|
|
set_control(untaken_branch);
|
|
|
|
// Branch not taken.
|
|
if (stopped()) {
|
|
if (C->eliminate_boxing()) {
|
|
// Mark the successor block as parsed
|
|
next_block->next_path_num();
|
|
}
|
|
} else {
|
|
// Update method data
|
|
profile_not_taken_branch();
|
|
adjust_map_after_if(untaken_btest, c, untaken_prob,
|
|
next_block, branch_block);
|
|
}
|
|
}
|
|
|
|
bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
|
|
// Don't want to speculate on uncommon traps when running with -Xcomp
|
|
if (!UseInterpreter) {
|
|
return false;
|
|
}
|
|
return (seems_never_taken(prob) && seems_stable_comparison());
|
|
}
|
|
|
|
void Parse::maybe_add_predicate_after_if(Block* path) {
|
|
if (path->is_SEL_head() && path->preds_parsed() == 0) {
|
|
// Add predicates at bci of if dominating the loop so traps can be
|
|
// recorded on the if's profile data
|
|
int bc_depth = repush_if_args();
|
|
add_predicate();
|
|
dec_sp(bc_depth);
|
|
path->set_has_predicates();
|
|
}
|
|
}
|
|
|
|
|
|
//----------------------------adjust_map_after_if------------------------------
|
|
// Adjust the JVM state to reflect the result of taking this path.
|
|
// Basically, it means inspecting the CmpNode controlling this
|
|
// branch, seeing how it constrains a tested value, and then
|
|
// deciding if it's worth our while to encode this constraint
|
|
// as graph nodes in the current abstract interpretation map.
|
|
void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
|
|
Block* path, Block* other_path) {
|
|
if (!c->is_Cmp()) {
|
|
maybe_add_predicate_after_if(path);
|
|
return;
|
|
}
|
|
|
|
if (stopped() || btest == BoolTest::illegal) {
|
|
return; // nothing to do
|
|
}
|
|
|
|
bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
|
|
|
|
if (path_is_suitable_for_uncommon_trap(prob)) {
|
|
repush_if_args();
|
|
uncommon_trap(Deoptimization::Reason_unstable_if,
|
|
Deoptimization::Action_reinterpret,
|
|
NULL,
|
|
(is_fallthrough ? "taken always" : "taken never"));
|
|
return;
|
|
}
|
|
|
|
Node* val = c->in(1);
|
|
Node* con = c->in(2);
|
|
const Type* tcon = _gvn.type(con);
|
|
const Type* tval = _gvn.type(val);
|
|
bool have_con = tcon->singleton();
|
|
if (tval->singleton()) {
|
|
if (!have_con) {
|
|
// Swap, so constant is in con.
|
|
con = val;
|
|
tcon = tval;
|
|
val = c->in(2);
|
|
tval = _gvn.type(val);
|
|
btest = BoolTest(btest).commute();
|
|
have_con = true;
|
|
} else {
|
|
// Do we have two constants? Then leave well enough alone.
|
|
have_con = false;
|
|
}
|
|
}
|
|
if (!have_con) { // remaining adjustments need a con
|
|
maybe_add_predicate_after_if(path);
|
|
return;
|
|
}
|
|
|
|
sharpen_type_after_if(btest, con, tcon, val, tval);
|
|
maybe_add_predicate_after_if(path);
|
|
}
|
|
|
|
|
|
static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
|
|
Node* ldk;
|
|
if (n->is_DecodeNKlass()) {
|
|
if (n->in(1)->Opcode() != Op_LoadNKlass) {
|
|
return NULL;
|
|
} else {
|
|
ldk = n->in(1);
|
|
}
|
|
} else if (n->Opcode() != Op_LoadKlass) {
|
|
return NULL;
|
|
} else {
|
|
ldk = n;
|
|
}
|
|
assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
|
|
|
|
Node* adr = ldk->in(MemNode::Address);
|
|
intptr_t off = 0;
|
|
Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
|
|
if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
|
|
return NULL;
|
|
const TypePtr* tp = gvn->type(obj)->is_ptr();
|
|
if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
|
|
return NULL;
|
|
|
|
return obj;
|
|
}
|
|
|
|
void Parse::sharpen_type_after_if(BoolTest::mask btest,
|
|
Node* con, const Type* tcon,
|
|
Node* val, const Type* tval) {
|
|
// Look for opportunities to sharpen the type of a node
|
|
// whose klass is compared with a constant klass.
|
|
if (btest == BoolTest::eq && tcon->isa_klassptr()) {
|
|
Node* obj = extract_obj_from_klass_load(&_gvn, val);
|
|
const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
|
|
if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
|
|
// Found:
|
|
// Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
|
|
// or the narrowOop equivalent.
|
|
const Type* obj_type = _gvn.type(obj);
|
|
const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
|
|
if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
|
|
tboth->higher_equal(obj_type)) {
|
|
// obj has to be of the exact type Foo if the CmpP succeeds.
|
|
int obj_in_map = map()->find_edge(obj);
|
|
JVMState* jvms = this->jvms();
|
|
if (obj_in_map >= 0 &&
|
|
(jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
|
|
TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
|
|
const Type* tcc = ccast->as_Type()->type();
|
|
assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
|
|
// Delay transform() call to allow recovery of pre-cast value
|
|
// at the control merge.
|
|
_gvn.set_type_bottom(ccast);
|
|
record_for_igvn(ccast);
|
|
// Here's the payoff.
|
|
replace_in_map(obj, ccast);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int val_in_map = map()->find_edge(val);
|
|
if (val_in_map < 0) return; // replace_in_map would be useless
|
|
{
|
|
JVMState* jvms = this->jvms();
|
|
if (!(jvms->is_loc(val_in_map) ||
|
|
jvms->is_stk(val_in_map)))
|
|
return; // again, it would be useless
|
|
}
|
|
|
|
// Check for a comparison to a constant, and "know" that the compared
|
|
// value is constrained on this path.
|
|
assert(tcon->singleton(), "");
|
|
ConstraintCastNode* ccast = NULL;
|
|
Node* cast = NULL;
|
|
|
|
switch (btest) {
|
|
case BoolTest::eq: // Constant test?
|
|
{
|
|
const Type* tboth = tcon->join_speculative(tval);
|
|
if (tboth == tval) break; // Nothing to gain.
|
|
if (tcon->isa_int()) {
|
|
ccast = new CastIINode(val, tboth);
|
|
} else if (tcon == TypePtr::NULL_PTR) {
|
|
// Cast to null, but keep the pointer identity temporarily live.
|
|
ccast = new CastPPNode(val, tboth);
|
|
} else {
|
|
const TypeF* tf = tcon->isa_float_constant();
|
|
const TypeD* td = tcon->isa_double_constant();
|
|
// Exclude tests vs float/double 0 as these could be
|
|
// either +0 or -0. Just because you are equal to +0
|
|
// doesn't mean you ARE +0!
|
|
// Note, following code also replaces Long and Oop values.
|
|
if ((!tf || tf->_f != 0.0) &&
|
|
(!td || td->_d != 0.0))
|
|
cast = con; // Replace non-constant val by con.
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BoolTest::ne:
|
|
if (tcon == TypePtr::NULL_PTR) {
|
|
cast = cast_not_null(val, false);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// (At this point we could record int range types with CastII.)
|
|
break;
|
|
}
|
|
|
|
if (ccast != NULL) {
|
|
const Type* tcc = ccast->as_Type()->type();
|
|
assert(tcc != tval && tcc->higher_equal(tval), "must improve");
|
|
// Delay transform() call to allow recovery of pre-cast value
|
|
// at the control merge.
|
|
ccast->set_req(0, control());
|
|
_gvn.set_type_bottom(ccast);
|
|
record_for_igvn(ccast);
|
|
cast = ccast;
|
|
}
|
|
|
|
if (cast != NULL) { // Here's the payoff.
|
|
replace_in_map(val, cast);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Use speculative type to optimize CmpP node: if comparison is
|
|
* against the low level class, cast the object to the speculative
|
|
* type if any. CmpP should then go away.
|
|
*
|
|
* @param c expected CmpP node
|
|
* @return result of CmpP on object casted to speculative type
|
|
*
|
|
*/
|
|
Node* Parse::optimize_cmp_with_klass(Node* c) {
|
|
// If this is transformed by the _gvn to a comparison with the low
|
|
// level klass then we may be able to use speculation
|
|
if (c->Opcode() == Op_CmpP &&
|
|
(c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
|
|
c->in(2)->is_Con()) {
|
|
Node* load_klass = NULL;
|
|
Node* decode = NULL;
|
|
if (c->in(1)->Opcode() == Op_DecodeNKlass) {
|
|
decode = c->in(1);
|
|
load_klass = c->in(1)->in(1);
|
|
} else {
|
|
load_klass = c->in(1);
|
|
}
|
|
if (load_klass->in(2)->is_AddP()) {
|
|
Node* addp = load_klass->in(2);
|
|
Node* obj = addp->in(AddPNode::Address);
|
|
const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
|
|
if (obj_type->speculative_type_not_null() != NULL) {
|
|
ciKlass* k = obj_type->speculative_type();
|
|
inc_sp(2);
|
|
obj = maybe_cast_profiled_obj(obj, k);
|
|
dec_sp(2);
|
|
// Make the CmpP use the casted obj
|
|
addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
|
|
load_klass = load_klass->clone();
|
|
load_klass->set_req(2, addp);
|
|
load_klass = _gvn.transform(load_klass);
|
|
if (decode != NULL) {
|
|
decode = decode->clone();
|
|
decode->set_req(1, load_klass);
|
|
load_klass = _gvn.transform(decode);
|
|
}
|
|
c = c->clone();
|
|
c->set_req(1, load_klass);
|
|
c = _gvn.transform(c);
|
|
}
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
//------------------------------do_one_bytecode--------------------------------
|
|
// Parse this bytecode, and alter the Parsers JVM->Node mapping
|
|
void Parse::do_one_bytecode() {
|
|
Node *a, *b, *c, *d; // Handy temps
|
|
BoolTest::mask btest;
|
|
int i;
|
|
|
|
assert(!has_exceptions(), "bytecode entry state must be clear of throws");
|
|
|
|
if (C->check_node_count(NodeLimitFudgeFactor * 5,
|
|
"out of nodes parsing method")) {
|
|
return;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// for setting breakpoints
|
|
if (TraceOptoParse) {
|
|
tty->print(" @");
|
|
dump_bci(bci());
|
|
tty->cr();
|
|
}
|
|
#endif
|
|
|
|
switch (bc()) {
|
|
case Bytecodes::_nop:
|
|
// do nothing
|
|
break;
|
|
case Bytecodes::_lconst_0:
|
|
push_pair(longcon(0));
|
|
break;
|
|
|
|
case Bytecodes::_lconst_1:
|
|
push_pair(longcon(1));
|
|
break;
|
|
|
|
case Bytecodes::_fconst_0:
|
|
push(zerocon(T_FLOAT));
|
|
break;
|
|
|
|
case Bytecodes::_fconst_1:
|
|
push(makecon(TypeF::ONE));
|
|
break;
|
|
|
|
case Bytecodes::_fconst_2:
|
|
push(makecon(TypeF::make(2.0f)));
|
|
break;
|
|
|
|
case Bytecodes::_dconst_0:
|
|
push_pair(zerocon(T_DOUBLE));
|
|
break;
|
|
|
|
case Bytecodes::_dconst_1:
|
|
push_pair(makecon(TypeD::ONE));
|
|
break;
|
|
|
|
case Bytecodes::_iconst_m1:push(intcon(-1)); break;
|
|
case Bytecodes::_iconst_0: push(intcon( 0)); break;
|
|
case Bytecodes::_iconst_1: push(intcon( 1)); break;
|
|
case Bytecodes::_iconst_2: push(intcon( 2)); break;
|
|
case Bytecodes::_iconst_3: push(intcon( 3)); break;
|
|
case Bytecodes::_iconst_4: push(intcon( 4)); break;
|
|
case Bytecodes::_iconst_5: push(intcon( 5)); break;
|
|
case Bytecodes::_bipush: push(intcon(iter().get_constant_u1())); break;
|
|
case Bytecodes::_sipush: push(intcon(iter().get_constant_u2())); break;
|
|
case Bytecodes::_aconst_null: push(null()); break;
|
|
case Bytecodes::_ldc:
|
|
case Bytecodes::_ldc_w:
|
|
case Bytecodes::_ldc2_w:
|
|
// If the constant is unresolved, run this BC once in the interpreter.
|
|
{
|
|
ciConstant constant = iter().get_constant();
|
|
if (!constant.is_valid() ||
|
|
(constant.basic_type() == T_OBJECT &&
|
|
!constant.as_object()->is_loaded())) {
|
|
int index = iter().get_constant_pool_index();
|
|
constantTag tag = iter().get_constant_pool_tag(index);
|
|
uncommon_trap(Deoptimization::make_trap_request
|
|
(Deoptimization::Reason_unloaded,
|
|
Deoptimization::Action_reinterpret,
|
|
index),
|
|
NULL, tag.internal_name());
|
|
break;
|
|
}
|
|
assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
|
|
"must be java_mirror of klass");
|
|
const Type* con_type = Type::make_from_constant(constant);
|
|
if (con_type != NULL) {
|
|
push_node(con_type->basic_type(), makecon(con_type));
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case Bytecodes::_aload_0:
|
|
push( local(0) );
|
|
break;
|
|
case Bytecodes::_aload_1:
|
|
push( local(1) );
|
|
break;
|
|
case Bytecodes::_aload_2:
|
|
push( local(2) );
|
|
break;
|
|
case Bytecodes::_aload_3:
|
|
push( local(3) );
|
|
break;
|
|
case Bytecodes::_aload:
|
|
push( local(iter().get_index()) );
|
|
break;
|
|
|
|
case Bytecodes::_fload_0:
|
|
case Bytecodes::_iload_0:
|
|
push( local(0) );
|
|
break;
|
|
case Bytecodes::_fload_1:
|
|
case Bytecodes::_iload_1:
|
|
push( local(1) );
|
|
break;
|
|
case Bytecodes::_fload_2:
|
|
case Bytecodes::_iload_2:
|
|
push( local(2) );
|
|
break;
|
|
case Bytecodes::_fload_3:
|
|
case Bytecodes::_iload_3:
|
|
push( local(3) );
|
|
break;
|
|
case Bytecodes::_fload:
|
|
case Bytecodes::_iload:
|
|
push( local(iter().get_index()) );
|
|
break;
|
|
case Bytecodes::_lload_0:
|
|
push_pair_local( 0 );
|
|
break;
|
|
case Bytecodes::_lload_1:
|
|
push_pair_local( 1 );
|
|
break;
|
|
case Bytecodes::_lload_2:
|
|
push_pair_local( 2 );
|
|
break;
|
|
case Bytecodes::_lload_3:
|
|
push_pair_local( 3 );
|
|
break;
|
|
case Bytecodes::_lload:
|
|
push_pair_local( iter().get_index() );
|
|
break;
|
|
|
|
case Bytecodes::_dload_0:
|
|
push_pair_local(0);
|
|
break;
|
|
case Bytecodes::_dload_1:
|
|
push_pair_local(1);
|
|
break;
|
|
case Bytecodes::_dload_2:
|
|
push_pair_local(2);
|
|
break;
|
|
case Bytecodes::_dload_3:
|
|
push_pair_local(3);
|
|
break;
|
|
case Bytecodes::_dload:
|
|
push_pair_local(iter().get_index());
|
|
break;
|
|
case Bytecodes::_fstore_0:
|
|
case Bytecodes::_istore_0:
|
|
case Bytecodes::_astore_0:
|
|
set_local( 0, pop() );
|
|
break;
|
|
case Bytecodes::_fstore_1:
|
|
case Bytecodes::_istore_1:
|
|
case Bytecodes::_astore_1:
|
|
set_local( 1, pop() );
|
|
break;
|
|
case Bytecodes::_fstore_2:
|
|
case Bytecodes::_istore_2:
|
|
case Bytecodes::_astore_2:
|
|
set_local( 2, pop() );
|
|
break;
|
|
case Bytecodes::_fstore_3:
|
|
case Bytecodes::_istore_3:
|
|
case Bytecodes::_astore_3:
|
|
set_local( 3, pop() );
|
|
break;
|
|
case Bytecodes::_fstore:
|
|
case Bytecodes::_istore:
|
|
case Bytecodes::_astore:
|
|
set_local( iter().get_index(), pop() );
|
|
break;
|
|
// long stores
|
|
case Bytecodes::_lstore_0:
|
|
set_pair_local( 0, pop_pair() );
|
|
break;
|
|
case Bytecodes::_lstore_1:
|
|
set_pair_local( 1, pop_pair() );
|
|
break;
|
|
case Bytecodes::_lstore_2:
|
|
set_pair_local( 2, pop_pair() );
|
|
break;
|
|
case Bytecodes::_lstore_3:
|
|
set_pair_local( 3, pop_pair() );
|
|
break;
|
|
case Bytecodes::_lstore:
|
|
set_pair_local( iter().get_index(), pop_pair() );
|
|
break;
|
|
|
|
// double stores
|
|
case Bytecodes::_dstore_0:
|
|
set_pair_local( 0, dstore_rounding(pop_pair()) );
|
|
break;
|
|
case Bytecodes::_dstore_1:
|
|
set_pair_local( 1, dstore_rounding(pop_pair()) );
|
|
break;
|
|
case Bytecodes::_dstore_2:
|
|
set_pair_local( 2, dstore_rounding(pop_pair()) );
|
|
break;
|
|
case Bytecodes::_dstore_3:
|
|
set_pair_local( 3, dstore_rounding(pop_pair()) );
|
|
break;
|
|
case Bytecodes::_dstore:
|
|
set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
|
|
break;
|
|
|
|
case Bytecodes::_pop: dec_sp(1); break;
|
|
case Bytecodes::_pop2: dec_sp(2); break;
|
|
case Bytecodes::_swap:
|
|
a = pop();
|
|
b = pop();
|
|
push(a);
|
|
push(b);
|
|
break;
|
|
case Bytecodes::_dup:
|
|
a = pop();
|
|
push(a);
|
|
push(a);
|
|
break;
|
|
case Bytecodes::_dup_x1:
|
|
a = pop();
|
|
b = pop();
|
|
push( a );
|
|
push( b );
|
|
push( a );
|
|
break;
|
|
case Bytecodes::_dup_x2:
|
|
a = pop();
|
|
b = pop();
|
|
c = pop();
|
|
push( a );
|
|
push( c );
|
|
push( b );
|
|
push( a );
|
|
break;
|
|
case Bytecodes::_dup2:
|
|
a = pop();
|
|
b = pop();
|
|
push( b );
|
|
push( a );
|
|
push( b );
|
|
push( a );
|
|
break;
|
|
|
|
case Bytecodes::_dup2_x1:
|
|
// before: .. c, b, a
|
|
// after: .. b, a, c, b, a
|
|
// not tested
|
|
a = pop();
|
|
b = pop();
|
|
c = pop();
|
|
push( b );
|
|
push( a );
|
|
push( c );
|
|
push( b );
|
|
push( a );
|
|
break;
|
|
case Bytecodes::_dup2_x2:
|
|
// before: .. d, c, b, a
|
|
// after: .. b, a, d, c, b, a
|
|
// not tested
|
|
a = pop();
|
|
b = pop();
|
|
c = pop();
|
|
d = pop();
|
|
push( b );
|
|
push( a );
|
|
push( d );
|
|
push( c );
|
|
push( b );
|
|
push( a );
|
|
break;
|
|
|
|
case Bytecodes::_arraylength: {
|
|
// Must do null-check with value on expression stack
|
|
Node *ary = null_check(peek(), T_ARRAY);
|
|
// Compile-time detect of null-exception?
|
|
if (stopped()) return;
|
|
a = pop();
|
|
push(load_array_length(a));
|
|
break;
|
|
}
|
|
|
|
case Bytecodes::_baload: array_load(T_BYTE); break;
|
|
case Bytecodes::_caload: array_load(T_CHAR); break;
|
|
case Bytecodes::_iaload: array_load(T_INT); break;
|
|
case Bytecodes::_saload: array_load(T_SHORT); break;
|
|
case Bytecodes::_faload: array_load(T_FLOAT); break;
|
|
case Bytecodes::_aaload: array_load(T_OBJECT); break;
|
|
case Bytecodes::_laload: array_load(T_LONG); break;
|
|
case Bytecodes::_daload: array_load(T_DOUBLE); break;
|
|
case Bytecodes::_bastore: array_store(T_BYTE); break;
|
|
case Bytecodes::_castore: array_store(T_CHAR); break;
|
|
case Bytecodes::_iastore: array_store(T_INT); break;
|
|
case Bytecodes::_sastore: array_store(T_SHORT); break;
|
|
case Bytecodes::_fastore: array_store(T_FLOAT); break;
|
|
case Bytecodes::_aastore: array_store(T_OBJECT); break;
|
|
case Bytecodes::_lastore: array_store(T_LONG); break;
|
|
case Bytecodes::_dastore: array_store(T_DOUBLE); break;
|
|
|
|
case Bytecodes::_getfield:
|
|
do_getfield();
|
|
break;
|
|
|
|
case Bytecodes::_getstatic:
|
|
do_getstatic();
|
|
break;
|
|
|
|
case Bytecodes::_putfield:
|
|
do_putfield();
|
|
break;
|
|
|
|
case Bytecodes::_putstatic:
|
|
do_putstatic();
|
|
break;
|
|
|
|
case Bytecodes::_irem:
|
|
do_irem();
|
|
break;
|
|
case Bytecodes::_idiv:
|
|
// Must keep both values on the expression-stack during null-check
|
|
zero_check_int(peek());
|
|
// Compile-time detect of null-exception?
|
|
if (stopped()) return;
|
|
b = pop();
|
|
a = pop();
|
|
push( _gvn.transform( new DivINode(control(),a,b) ) );
|
|
break;
|
|
case Bytecodes::_imul:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new MulINode(a,b) ) );
|
|
break;
|
|
case Bytecodes::_iadd:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new AddINode(a,b) ) );
|
|
break;
|
|
case Bytecodes::_ineg:
|
|
a = pop();
|
|
push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
|
|
break;
|
|
case Bytecodes::_isub:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new SubINode(a,b) ) );
|
|
break;
|
|
case Bytecodes::_iand:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new AndINode(a,b) ) );
|
|
break;
|
|
case Bytecodes::_ior:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new OrINode(a,b) ) );
|
|
break;
|
|
case Bytecodes::_ixor:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new XorINode(a,b) ) );
|
|
break;
|
|
case Bytecodes::_ishl:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new LShiftINode(a,b) ) );
|
|
break;
|
|
case Bytecodes::_ishr:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new RShiftINode(a,b) ) );
|
|
break;
|
|
case Bytecodes::_iushr:
|
|
b = pop(); a = pop();
|
|
push( _gvn.transform( new URShiftINode(a,b) ) );
|
|
break;
|
|
|
|
case Bytecodes::_fneg:
|
|
a = pop();
|
|
b = _gvn.transform(new NegFNode (a));
|
|
push(b);
|
|
break;
|
|
|
|
case Bytecodes::_fsub:
|
|
b = pop();
|
|
a = pop();
|
|
c = _gvn.transform( new SubFNode(a,b) );
|
|
d = precision_rounding(c);
|
|
push( d );
|
|
break;
|
|
|
|
case Bytecodes::_fadd:
|
|
b = pop();
|
|
a = pop();
|
|
c = _gvn.transform( new AddFNode(a,b) );
|
|
d = precision_rounding(c);
|
|
push( d );
|
|
break;
|
|
|
|
case Bytecodes::_fmul:
|
|
b = pop();
|
|
a = pop();
|
|
c = _gvn.transform( new MulFNode(a,b) );
|
|
d = precision_rounding(c);
|
|
push( d );
|
|
break;
|
|
|
|
case Bytecodes::_fdiv:
|
|
b = pop();
|
|
a = pop();
|
|
c = _gvn.transform( new DivFNode(0,a,b) );
|
|
d = precision_rounding(c);
|
|
push( d );
|
|
break;
|
|
|
|
case Bytecodes::_frem:
|
|
if (Matcher::has_match_rule(Op_ModF)) {
|
|
// Generate a ModF node.
|
|
b = pop();
|
|
a = pop();
|
|
c = _gvn.transform( new ModFNode(0,a,b) );
|
|
d = precision_rounding(c);
|
|
push( d );
|
|
}
|
|
else {
|
|
// Generate a call.
|
|
modf();
|
|
}
|
|
break;
|
|
|
|
case Bytecodes::_fcmpl:
|
|
b = pop();
|
|
a = pop();
|
|
c = _gvn.transform( new CmpF3Node( a, b));
|
|
push(c);
|
|
break;
|
|
case Bytecodes::_fcmpg:
|
|
b = pop();
|
|
a = pop();
|
|
|
|
// Same as fcmpl but need to flip the unordered case. Swap the inputs,
|
|
// which negates the result sign except for unordered. Flip the unordered
|
|
// as well by using CmpF3 which implements unordered-lesser instead of
|
|
// unordered-greater semantics. Finally, commute the result bits. Result
|
|
// is same as using a CmpF3Greater except we did it with CmpF3 alone.
|
|
c = _gvn.transform( new CmpF3Node( b, a));
|
|
c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
|
|
push(c);
|
|
break;
|
|
|
|
case Bytecodes::_f2i:
|
|
a = pop();
|
|
push(_gvn.transform(new ConvF2INode(a)));
|
|
break;
|
|
|
|
case Bytecodes::_d2i:
|
|
a = pop_pair();
|
|
b = _gvn.transform(new ConvD2INode(a));
|
|
push( b );
|
|
break;
|
|
|
|
case Bytecodes::_f2d:
|
|
a = pop();
|
|
b = _gvn.transform( new ConvF2DNode(a));
|
|
push_pair( b );
|
|
break;
|
|
|
|
case Bytecodes::_d2f:
|
|
a = pop_pair();
|
|
b = _gvn.transform( new ConvD2FNode(a));
|
|
// This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
|
|
//b = _gvn.transform(new RoundFloatNode(0, b) );
|
|
push( b );
|
|
break;
|
|
|
|
case Bytecodes::_l2f:
|
|
if (Matcher::convL2FSupported()) {
|
|
a = pop_pair();
|
|
b = _gvn.transform( new ConvL2FNode(a));
|
|
// For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
|
|
// Rather than storing the result into an FP register then pushing
|
|
// out to memory to round, the machine instruction that implements
|
|
// ConvL2D is responsible for rounding.
|
|
// c = precision_rounding(b);
|
|
c = _gvn.transform(b);
|
|
push(c);
|
|
} else {
|
|
l2f();
|
|
}
|
|
break;
|
|
|
|
case Bytecodes::_l2d:
|
|
a = pop_pair();
|
|
b = _gvn.transform( new ConvL2DNode(a));
|
|
// For i486.ad, rounding is always necessary (see _l2f above).
|
|
// c = dprecision_rounding(b);
|
|
c = _gvn.transform(b);
|
|
push_pair(c);
|
|
break;
|
|
|
|
case Bytecodes::_f2l:
|
|
a = pop();
|
|
b = _gvn.transform( new ConvF2LNode(a));
|
|
push_pair(b);
|
|
break;
|
|
|
|
case Bytecodes::_d2l:
|
|
a = pop_pair();
|
|
b = _gvn.transform( new ConvD2LNode(a));
|
|
push_pair(b);
|
|
break;
|
|
|
|
case Bytecodes::_dsub:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new SubDNode(a,b) );
|
|
d = dprecision_rounding(c);
|
|
push_pair( d );
|
|
break;
|
|
|
|
case Bytecodes::_dadd:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new AddDNode(a,b) );
|
|
d = dprecision_rounding(c);
|
|
push_pair( d );
|
|
break;
|
|
|
|
case Bytecodes::_dmul:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new MulDNode(a,b) );
|
|
d = dprecision_rounding(c);
|
|
push_pair( d );
|
|
break;
|
|
|
|
case Bytecodes::_ddiv:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new DivDNode(0,a,b) );
|
|
d = dprecision_rounding(c);
|
|
push_pair( d );
|
|
break;
|
|
|
|
case Bytecodes::_dneg:
|
|
a = pop_pair();
|
|
b = _gvn.transform(new NegDNode (a));
|
|
push_pair(b);
|
|
break;
|
|
|
|
case Bytecodes::_drem:
|
|
if (Matcher::has_match_rule(Op_ModD)) {
|
|
// Generate a ModD node.
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
// a % b
|
|
|
|
c = _gvn.transform( new ModDNode(0,a,b) );
|
|
d = dprecision_rounding(c);
|
|
push_pair( d );
|
|
}
|
|
else {
|
|
// Generate a call.
|
|
modd();
|
|
}
|
|
break;
|
|
|
|
case Bytecodes::_dcmpl:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new CmpD3Node( a, b));
|
|
push(c);
|
|
break;
|
|
|
|
case Bytecodes::_dcmpg:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
// Same as dcmpl but need to flip the unordered case.
|
|
// Commute the inputs, which negates the result sign except for unordered.
|
|
// Flip the unordered as well by using CmpD3 which implements
|
|
// unordered-lesser instead of unordered-greater semantics.
|
|
// Finally, negate the result bits. Result is same as using a
|
|
// CmpD3Greater except we did it with CmpD3 alone.
|
|
c = _gvn.transform( new CmpD3Node( b, a));
|
|
c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
|
|
push(c);
|
|
break;
|
|
|
|
|
|
// Note for longs -> lo word is on TOS, hi word is on TOS - 1
|
|
case Bytecodes::_land:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new AndLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
case Bytecodes::_lor:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new OrLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
case Bytecodes::_lxor:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new XorLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
|
|
case Bytecodes::_lshl:
|
|
b = pop(); // the shift count
|
|
a = pop_pair(); // value to be shifted
|
|
c = _gvn.transform( new LShiftLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
case Bytecodes::_lshr:
|
|
b = pop(); // the shift count
|
|
a = pop_pair(); // value to be shifted
|
|
c = _gvn.transform( new RShiftLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
case Bytecodes::_lushr:
|
|
b = pop(); // the shift count
|
|
a = pop_pair(); // value to be shifted
|
|
c = _gvn.transform( new URShiftLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
case Bytecodes::_lmul:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new MulLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
|
|
case Bytecodes::_lrem:
|
|
// Must keep both values on the expression-stack during null-check
|
|
assert(peek(0) == top(), "long word order");
|
|
zero_check_long(peek(1));
|
|
// Compile-time detect of null-exception?
|
|
if (stopped()) return;
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new ModLNode(control(),a,b) );
|
|
push_pair(c);
|
|
break;
|
|
|
|
case Bytecodes::_ldiv:
|
|
// Must keep both values on the expression-stack during null-check
|
|
assert(peek(0) == top(), "long word order");
|
|
zero_check_long(peek(1));
|
|
// Compile-time detect of null-exception?
|
|
if (stopped()) return;
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new DivLNode(control(),a,b) );
|
|
push_pair(c);
|
|
break;
|
|
|
|
case Bytecodes::_ladd:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new AddLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
case Bytecodes::_lsub:
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new SubLNode(a,b) );
|
|
push_pair(c);
|
|
break;
|
|
case Bytecodes::_lcmp:
|
|
// Safepoints are now inserted _before_ branches. The long-compare
|
|
// bytecode painfully produces a 3-way value (-1,0,+1) which requires a
|
|
// slew of control flow. These are usually followed by a CmpI vs zero and
|
|
// a branch; this pattern then optimizes to the obvious long-compare and
|
|
// branch. However, if the branch is backwards there's a Safepoint
|
|
// inserted. The inserted Safepoint captures the JVM state at the
|
|
// pre-branch point, i.e. it captures the 3-way value. Thus if a
|
|
// long-compare is used to control a loop the debug info will force
|
|
// computation of the 3-way value, even though the generated code uses a
|
|
// long-compare and branch. We try to rectify the situation by inserting
|
|
// a SafePoint here and have it dominate and kill the safepoint added at a
|
|
// following backwards branch. At this point the JVM state merely holds 2
|
|
// longs but not the 3-way value.
|
|
if( UseLoopSafepoints ) {
|
|
switch( iter().next_bc() ) {
|
|
case Bytecodes::_ifgt:
|
|
case Bytecodes::_iflt:
|
|
case Bytecodes::_ifge:
|
|
case Bytecodes::_ifle:
|
|
case Bytecodes::_ifne:
|
|
case Bytecodes::_ifeq:
|
|
// If this is a backwards branch in the bytecodes, add Safepoint
|
|
maybe_add_safepoint(iter().next_get_dest());
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
b = pop_pair();
|
|
a = pop_pair();
|
|
c = _gvn.transform( new CmpL3Node( a, b ));
|
|
push(c);
|
|
break;
|
|
|
|
case Bytecodes::_lneg:
|
|
a = pop_pair();
|
|
b = _gvn.transform( new SubLNode(longcon(0),a));
|
|
push_pair(b);
|
|
break;
|
|
case Bytecodes::_l2i:
|
|
a = pop_pair();
|
|
push( _gvn.transform( new ConvL2INode(a)));
|
|
break;
|
|
case Bytecodes::_i2l:
|
|
a = pop();
|
|
b = _gvn.transform( new ConvI2LNode(a));
|
|
push_pair(b);
|
|
break;
|
|
case Bytecodes::_i2b:
|
|
// Sign extend
|
|
a = pop();
|
|
a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
|
|
a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
|
|
push( a );
|
|
break;
|
|
case Bytecodes::_i2s:
|
|
a = pop();
|
|
a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
|
|
a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
|
|
push( a );
|
|
break;
|
|
case Bytecodes::_i2c:
|
|
a = pop();
|
|
push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
|
|
break;
|
|
|
|
case Bytecodes::_i2f:
|
|
a = pop();
|
|
b = _gvn.transform( new ConvI2FNode(a) ) ;
|
|
c = precision_rounding(b);
|
|
push (b);
|
|
break;
|
|
|
|
case Bytecodes::_i2d:
|
|
a = pop();
|
|
b = _gvn.transform( new ConvI2DNode(a));
|
|
push_pair(b);
|
|
break;
|
|
|
|
case Bytecodes::_iinc: // Increment local
|
|
i = iter().get_index(); // Get local index
|
|
set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
|
|
break;
|
|
|
|
// Exit points of synchronized methods must have an unlock node
|
|
case Bytecodes::_return:
|
|
return_current(NULL);
|
|
break;
|
|
|
|
case Bytecodes::_ireturn:
|
|
case Bytecodes::_areturn:
|
|
case Bytecodes::_freturn:
|
|
return_current(pop());
|
|
break;
|
|
case Bytecodes::_lreturn:
|
|
return_current(pop_pair());
|
|
break;
|
|
case Bytecodes::_dreturn:
|
|
return_current(pop_pair());
|
|
break;
|
|
|
|
case Bytecodes::_athrow:
|
|
// null exception oop throws NULL pointer exception
|
|
null_check(peek());
|
|
if (stopped()) return;
|
|
// Hook the thrown exception directly to subsequent handlers.
|
|
if (BailoutToInterpreterForThrows) {
|
|
// Keep method interpreted from now on.
|
|
uncommon_trap(Deoptimization::Reason_unhandled,
|
|
Deoptimization::Action_make_not_compilable);
|
|
return;
|
|
}
|
|
if (env()->jvmti_can_post_on_exceptions()) {
|
|
// check if we must post exception events, take uncommon trap if so (with must_throw = false)
|
|
uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
|
|
}
|
|
// Here if either can_post_on_exceptions or should_post_on_exceptions is false
|
|
add_exception_state(make_exception_state(peek()));
|
|
break;
|
|
|
|
case Bytecodes::_goto: // fall through
|
|
case Bytecodes::_goto_w: {
|
|
int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
|
|
|
|
// If this is a backwards branch in the bytecodes, add Safepoint
|
|
maybe_add_safepoint(target_bci);
|
|
|
|
// Update method data
|
|
profile_taken_branch(target_bci);
|
|
|
|
// Merge the current control into the target basic block
|
|
merge(target_bci);
|
|
|
|
// See if we can get some profile data and hand it off to the next block
|
|
Block *target_block = block()->successor_for_bci(target_bci);
|
|
if (target_block->pred_count() != 1) break;
|
|
ciMethodData* methodData = method()->method_data();
|
|
if (!methodData->is_mature()) break;
|
|
ciProfileData* data = methodData->bci_to_data(bci());
|
|
assert(data != NULL && data->is_JumpData(), "need JumpData for taken branch");
|
|
int taken = ((ciJumpData*)data)->taken();
|
|
taken = method()->scale_count(taken);
|
|
target_block->set_count(taken);
|
|
break;
|
|
}
|
|
|
|
case Bytecodes::_ifnull: btest = BoolTest::eq; goto handle_if_null;
|
|
case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
|
|
handle_if_null:
|
|
// If this is a backwards branch in the bytecodes, add Safepoint
|
|
maybe_add_safepoint(iter().get_dest());
|
|
a = null();
|
|
b = pop();
|
|
if (!_gvn.type(b)->speculative_maybe_null() &&
|
|
!too_many_traps(Deoptimization::Reason_speculate_null_check)) {
|
|
inc_sp(1);
|
|
Node* null_ctl = top();
|
|
b = null_check_oop(b, &null_ctl, true, true, true);
|
|
assert(null_ctl->is_top(), "no null control here");
|
|
dec_sp(1);
|
|
} else if (_gvn.type(b)->speculative_always_null() &&
|
|
!too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
|
|
inc_sp(1);
|
|
b = null_assert(b);
|
|
dec_sp(1);
|
|
}
|
|
c = _gvn.transform( new CmpPNode(b, a) );
|
|
do_ifnull(btest, c);
|
|
break;
|
|
|
|
case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
|
|
case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
|
|
handle_if_acmp:
|
|
// If this is a backwards branch in the bytecodes, add Safepoint
|
|
maybe_add_safepoint(iter().get_dest());
|
|
a = access_resolve(pop(), 0);
|
|
b = access_resolve(pop(), 0);
|
|
c = _gvn.transform( new CmpPNode(b, a) );
|
|
c = optimize_cmp_with_klass(c);
|
|
do_if(btest, c);
|
|
break;
|
|
|
|
case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
|
|
case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
|
|
case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
|
|
case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
|
|
case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
|
|
case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
|
|
handle_ifxx:
|
|
// If this is a backwards branch in the bytecodes, add Safepoint
|
|
maybe_add_safepoint(iter().get_dest());
|
|
a = _gvn.intcon(0);
|
|
b = pop();
|
|
c = _gvn.transform( new CmpINode(b, a) );
|
|
do_if(btest, c);
|
|
break;
|
|
|
|
case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
|
|
case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
|
|
case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
|
|
case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
|
|
case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
|
|
case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
|
|
handle_if_icmp:
|
|
// If this is a backwards branch in the bytecodes, add Safepoint
|
|
maybe_add_safepoint(iter().get_dest());
|
|
a = pop();
|
|
b = pop();
|
|
c = _gvn.transform( new CmpINode( b, a ) );
|
|
do_if(btest, c);
|
|
break;
|
|
|
|
case Bytecodes::_tableswitch:
|
|
do_tableswitch();
|
|
break;
|
|
|
|
case Bytecodes::_lookupswitch:
|
|
do_lookupswitch();
|
|
break;
|
|
|
|
case Bytecodes::_invokestatic:
|
|
case Bytecodes::_invokedynamic:
|
|
case Bytecodes::_invokespecial:
|
|
case Bytecodes::_invokevirtual:
|
|
case Bytecodes::_invokeinterface:
|
|
do_call();
|
|
break;
|
|
case Bytecodes::_checkcast:
|
|
do_checkcast();
|
|
break;
|
|
case Bytecodes::_instanceof:
|
|
do_instanceof();
|
|
break;
|
|
case Bytecodes::_anewarray:
|
|
do_anewarray();
|
|
break;
|
|
case Bytecodes::_newarray:
|
|
do_newarray((BasicType)iter().get_index());
|
|
break;
|
|
case Bytecodes::_multianewarray:
|
|
do_multianewarray();
|
|
break;
|
|
case Bytecodes::_new:
|
|
do_new();
|
|
break;
|
|
|
|
case Bytecodes::_jsr:
|
|
case Bytecodes::_jsr_w:
|
|
do_jsr();
|
|
break;
|
|
|
|
case Bytecodes::_ret:
|
|
do_ret();
|
|
break;
|
|
|
|
|
|
case Bytecodes::_monitorenter:
|
|
do_monitor_enter();
|
|
break;
|
|
|
|
case Bytecodes::_monitorexit:
|
|
do_monitor_exit();
|
|
break;
|
|
|
|
case Bytecodes::_breakpoint:
|
|
// Breakpoint set concurrently to compile
|
|
// %%% use an uncommon trap?
|
|
C->record_failure("breakpoint in method");
|
|
return;
|
|
|
|
default:
|
|
#ifndef PRODUCT
|
|
map()->dump(99);
|
|
#endif
|
|
tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
IdealGraphPrinter *printer = C->printer();
|
|
if (printer && printer->should_print(1)) {
|
|
char buffer[256];
|
|
jio_snprintf(buffer, sizeof(buffer), "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
|
|
bool old = printer->traverse_outs();
|
|
printer->set_traverse_outs(true);
|
|
printer->print_method(buffer, 4);
|
|
printer->set_traverse_outs(old);
|
|
}
|
|
#endif
|
|
}
|