2024-10-17 08:06:37 +00:00

1117 lines
42 KiB
C++

/*
* Copyright (c) 2016, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
#include "precompiled.hpp"
#include "memory/allocation.hpp"
#include "memory/resourceArea.hpp"
#include "nmt/memTracker.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/globals.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/thread.hpp"
#include "runtime/threads.hpp"
#include "utilities/align.hpp"
#include "utilities/globalDefinitions.hpp"
#include "utilities/macros.hpp"
#include "utilities/ostream.hpp"
#include "unittest.hpp"
#ifdef _WIN32
#include "os_windows.hpp"
#endif
using testing::HasSubstr;
static size_t small_page_size() {
return os::vm_page_size();
}
static size_t large_page_size() {
const size_t large_page_size_example = 4 * M;
return os::page_size_for_region_aligned(large_page_size_example, 1);
}
TEST_VM(os, page_size_for_region) {
size_t large_page_example = 4 * M;
size_t large_page = os::page_size_for_region_aligned(large_page_example, 1);
size_t small_page = os::vm_page_size();
if (large_page > small_page) {
size_t num_small_in_large = large_page / small_page;
size_t page = os::page_size_for_region_aligned(large_page, num_small_in_large);
ASSERT_EQ(page, small_page) << "Did not get a small page";
}
}
TEST_VM(os, page_size_for_region_aligned) {
if (UseLargePages) {
const size_t small_page = small_page_size();
const size_t large_page = large_page_size();
if (large_page > small_page) {
size_t num_small_pages_in_large = large_page / small_page;
size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
ASSERT_EQ(page, small_page);
}
}
}
TEST_VM(os, page_size_for_region_alignment) {
if (UseLargePages) {
const size_t small_page = small_page_size();
const size_t large_page = large_page_size();
if (large_page > small_page) {
const size_t unaligned_region = large_page + 17;
size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
ASSERT_EQ(page, small_page);
const size_t num_pages = 5;
const size_t aligned_region = large_page * num_pages;
page = os::page_size_for_region_aligned(aligned_region, num_pages);
ASSERT_EQ(page, large_page);
}
}
}
TEST_VM(os, page_size_for_region_unaligned) {
if (UseLargePages) {
// Given exact page size, should return that page size.
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
size_t actual = os::page_size_for_region_unaligned(s, 1);
ASSERT_EQ(s, actual);
}
// Given slightly larger size than a page size, return the page size.
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
size_t actual = os::page_size_for_region_unaligned(s + 17, 1);
ASSERT_EQ(s, actual);
}
// Given a slightly smaller size than a page size,
// return the next smaller page size.
for (size_t s = os::page_sizes().largest(); s != 0; s = os::page_sizes().next_smaller(s)) {
const size_t expected = os::page_sizes().next_smaller(s);
if (expected != 0) {
size_t actual = os::page_size_for_region_unaligned(s - 17, 1);
ASSERT_EQ(actual, expected);
}
}
// Return small page size for values less than a small page.
size_t small_page = os::page_sizes().smallest();
size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
ASSERT_EQ(small_page, actual);
}
}
TEST(os, test_random) {
const double m = 2147483647;
double mean = 0.0, variance = 0.0, t;
const int reps = 10000;
unsigned int seed = 1;
// tty->print_cr("seed %ld for %ld repeats...", seed, reps);
int num;
for (int k = 0; k < reps; k++) {
// Use next_random so the calculation is stateless.
num = seed = os::next_random(seed);
double u = (double)num / m;
ASSERT_TRUE(u >= 0.0 && u <= 1.0) << "bad random number!";
// calculate mean and variance of the random sequence
mean += u;
variance += (u*u);
}
mean /= reps;
variance /= (reps - 1);
ASSERT_EQ(num, 1043618065) << "bad seed";
// tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
int intmean = (int)(mean*100);
ASSERT_EQ(intmean, 50);
// tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
int intvariance = (int)(variance*100);
ASSERT_EQ(intvariance, 33);
const double eps = 0.0001;
t = fabsd(mean - 0.5018);
ASSERT_LT(t, eps) << "bad mean";
t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
ASSERT_LT(t, eps) << "bad variance";
}
#ifdef ASSERT
TEST_VM_ASSERT_MSG(os, page_size_for_region_with_zero_min_pages,
"assert.min_pages > 0. failed: sanity") {
size_t region_size = 16 * os::vm_page_size();
os::page_size_for_region_aligned(region_size, 0); // should assert
}
#endif
#ifndef AIX
// Test relies on the ability to protect memory allocated with os::reserve_memory. AIX may not be able
// to do that (mprotect won't work on System V shm).
static void do_test_print_hex_dump(const_address from, const_address to, int unitsize, int bytes_per_line,
const_address logical_start, const char* expected) {
char buf[2048];
buf[0] = '\0';
stringStream ss(buf, sizeof(buf));
os::print_hex_dump(&ss, from, to, unitsize, /* print_ascii=*/true, bytes_per_line, logical_start);
EXPECT_STREQ(buf, expected);
}
// version with a highlighted pc location
static void do_test_print_hex_dump_highlighted(const_address from, const_address to, int unitsize, int bytes_per_line,
const_address logical_start, const char* expected, const_address highlight) {
char buf[2048];
buf[0] = '\0';
stringStream ss(buf, sizeof(buf));
os::print_hex_dump(&ss, from, to, unitsize, /* print_ascii=*/true, bytes_per_line, logical_start, highlight);
EXPECT_STREQ(buf, expected);
}
TEST_VM(os, test_print_hex_dump) {
#ifdef _LP64
#define ADDRESS1 "0x0000aaaaaaaaaa00"
#define ADDRESS2 "0x0000aaaaaaaaaa20"
#define ADDRESS3 "0x0000aaaaaaaaaa40"
#else
#define ADDRESS1 "0xaaaaaa00"
#define ADDRESS2 "0xaaaaaa20"
#define ADDRESS3 "0xaaaaaa40"
#endif
#define ASCII_1 "....#.jdk/internal/loader/Native"
#define ASCII_2 "Libraries......."
#define PAT_1 ADDRESS1 ": ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??\n" \
ADDRESS2 ": ff ff e0 dc 23 00 6a 64 6b 2f 69 6e 74 65 72 6e 61 6c 2f 6c 6f 61 64 65 72 2f 4e 61 74 69 76 65 " ASCII_1 "\n" \
ADDRESS3 ": 4c 69 62 72 61 72 69 65 73 00 00 00 00 00 00 00 " ASCII_2 "\n"
#define PAT_HL_1A "=>" ADDRESS1 ": ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??\n" \
" " ADDRESS2 ": ff ff e0 dc 23 00 6a 64 6b 2f 69 6e 74 65 72 6e 61 6c 2f 6c 6f 61 64 65 72 2f 4e 61 74 69 76 65 " ASCII_1 "\n" \
" " ADDRESS3 ": 4c 69 62 72 61 72 69 65 73 00 00 00 00 00 00 00 " ASCII_2 "\n"
#define PAT_HL_1B " " ADDRESS1 ": ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??\n" \
"=>" ADDRESS2 ": ff ff e0 dc 23 00 6a 64 6b 2f 69 6e 74 65 72 6e 61 6c 2f 6c 6f 61 64 65 72 2f 4e 61 74 69 76 65 " ASCII_1 "\n" \
" " ADDRESS3 ": 4c 69 62 72 61 72 69 65 73 00 00 00 00 00 00 00 " ASCII_2 "\n"
#ifdef VM_LITTLE_ENDIAN
#define PAT_HL_1C " " ADDRESS1 ": ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????\n" \
"=>" ADDRESS2 ": ffff dce0 0023 646a 2f6b 6e69 6574 6e72 6c61 6c2f 616f 6564 2f72 614e 6974 6576 " ASCII_1 "\n" \
" " ADDRESS3 ": 694c 7262 7261 6569 0073 0000 0000 0000 " ASCII_2 "\n"
#else
#define PAT_HL_1C " " ADDRESS1 ": ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????\n" \
"=>" ADDRESS2 ": ffff e0dc 2300 6a64 6b2f 696e 7465 726e 616c 2f6c 6f61 6465 722f 4e61 7469 7665 " ASCII_1 "\n" \
" " ADDRESS3 ": 4c69 6272 6172 6965 7300 0000 0000 0000 " ASCII_2 "\n"
#endif
#ifdef VM_LITTLE_ENDIAN
#define PAT_2 ADDRESS1 ": ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????\n" \
ADDRESS2 ": ffff dce0 0023 646a 2f6b 6e69 6574 6e72 6c61 6c2f 616f 6564 2f72 614e 6974 6576 " ASCII_1 "\n" \
ADDRESS3 ": 694c 7262 7261 6569 0073 0000 0000 0000 " ASCII_2 "\n"
#define PAT_4 ADDRESS1 ": ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????????\n" \
ADDRESS2 ": dce0ffff 646a0023 6e692f6b 6e726574 6c2f6c61 6564616f 614e2f72 65766974 " ASCII_1 "\n" \
ADDRESS3 ": 7262694c 65697261 00000073 00000000 " ASCII_2 "\n"
#define PAT_8 ADDRESS1 ": ???????????????? ???????????????? ???????????????? ????????????????\n" \
ADDRESS2 ": 646a0023dce0ffff 6e7265746e692f6b 6564616f6c2f6c61 65766974614e2f72 " ASCII_1 "\n" \
ADDRESS3 ": 656972617262694c 0000000000000073 " ASCII_2 "\n"
#else
#define PAT_2 ADDRESS1 ": ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ???? ????\n" \
ADDRESS2 ": ffff e0dc 2300 6a64 6b2f 696e 7465 726e 616c 2f6c 6f61 6465 722f 4e61 7469 7665 " ASCII_1 "\n" \
ADDRESS3 ": 4c69 6272 6172 6965 7300 0000 0000 0000 " ASCII_2 "\n"
#define PAT_4 ADDRESS1 ": ???????? ???????? ???????? ???????? ???????? ???????? ???????? ????????\n" \
ADDRESS2 ": ffffe0dc 23006a64 6b2f696e 7465726e 616c2f6c 6f616465 722f4e61 74697665 " ASCII_1 "\n" \
ADDRESS3 ": 4c696272 61726965 73000000 00000000 " ASCII_2 "\n"
#define PAT_8 ADDRESS1 ": ???????????????? ???????????????? ???????????????? ????????????????\n" \
ADDRESS2 ": ffffe0dc23006a64 6b2f696e7465726e 616c2f6c6f616465 722f4e6174697665 " ASCII_1 "\n" \
ADDRESS3 ": 4c69627261726965 7300000000000000 " ASCII_2 "\n"
#endif
constexpr uint8_t bytes[] = {
0xff, 0xff, 0xe0, 0xdc, 0x23, 0x00, 0x6a, 0x64, 0x6b, 0x2f, 0x69, 0x6e, 0x74, 0x65, 0x72, 0x6e,
0x61, 0x6c, 0x2f, 0x6c, 0x6f, 0x61, 0x64, 0x65, 0x72, 0x2f, 0x4e, 0x61, 0x74, 0x69, 0x76, 0x65,
0x4c, 0x69, 0x62, 0x72, 0x61, 0x72, 0x69, 0x65, 0x73, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
// two pages, first one protected.
const size_t ps = os::vm_page_size();
char* two_pages = os::reserve_memory(ps * 2, false, mtTest);
os::commit_memory(two_pages, ps * 2, false);
os::protect_memory(two_pages, ps, os::MEM_PROT_NONE, true);
memcpy(two_pages + ps, bytes, sizeof(bytes));
// print
const const_address from = (const_address) two_pages + ps - 32;
const const_address to = (const_address) from + 32 + sizeof(bytes);
const const_address logical_start = (const_address) LP64_ONLY(0xAAAAAAAAAA00ULL) NOT_LP64(0xAAAAAA00ULL);
do_test_print_hex_dump(from, to, 1, 32, logical_start, PAT_1);
do_test_print_hex_dump(from, to, 2, 32, logical_start, PAT_2);
do_test_print_hex_dump(from, to, 4, 32, logical_start, PAT_4);
do_test_print_hex_dump(from, to, 8, 32, logical_start, PAT_8);
// unaligned printing, should align to next lower unitsize
do_test_print_hex_dump(from + 1, to, 2, 32, logical_start, PAT_2);
do_test_print_hex_dump(from + 1, to, 4, 32, logical_start, PAT_4);
do_test_print_hex_dump(from + 1, to, 8, 32, logical_start, PAT_8);
// print with highlighted address
do_test_print_hex_dump_highlighted(from, to, 1, 32, logical_start, PAT_HL_1A, from+5);
do_test_print_hex_dump_highlighted(from, to, 1, 32, logical_start, PAT_HL_1B, from+32);
do_test_print_hex_dump_highlighted(from, to, 1, 32, logical_start, PAT_HL_1B, from+60);
do_test_print_hex_dump_highlighted(from, to, 2, 32, logical_start, PAT_HL_1C, from+60);
os::release_memory(two_pages, ps * 2);
}
#endif // not AIX
//////////////////////////////////////////////////////////////////////////////
// Test os::vsnprintf and friends.
static void check_snprintf_result(int expected, size_t limit, int actual, bool expect_count) {
if (expect_count || ((size_t)expected < limit)) {
ASSERT_EQ(expected, actual);
} else {
ASSERT_GT(0, actual);
}
}
// PrintFn is expected to be int (*)(char*, size_t, const char*, ...).
// But jio_snprintf is a C-linkage function with that signature, which
// has a different type on some platforms (like Solaris).
template<typename PrintFn>
static void test_snprintf(PrintFn pf, bool expect_count) {
const char expected[] = "abcdefghijklmnopqrstuvwxyz";
const int expected_len = sizeof(expected) - 1;
const size_t padding_size = 10;
char buffer[2 * (sizeof(expected) + padding_size)];
char check_buffer[sizeof(buffer)];
const char check_char = '1'; // Something not in expected.
memset(check_buffer, check_char, sizeof(check_buffer));
const size_t sizes_to_test[] = {
sizeof(buffer) - padding_size, // Fits, with plenty of space to spare.
sizeof(buffer)/2, // Fits, with space to spare.
sizeof(buffer)/4, // Doesn't fit.
sizeof(expected) + padding_size + 1, // Fits, with a little room to spare
sizeof(expected) + padding_size, // Fits exactly.
sizeof(expected) + padding_size - 1, // Doesn't quite fit.
2, // One char + terminating NUL.
1, // Only space for terminating NUL.
0 }; // No space at all.
for (unsigned i = 0; i < ARRAY_SIZE(sizes_to_test); ++i) {
memset(buffer, check_char, sizeof(buffer)); // To catch stray writes.
size_t test_size = sizes_to_test[i];
ResourceMark rm;
stringStream s;
s.print("test_size: " SIZE_FORMAT, test_size);
SCOPED_TRACE(s.as_string());
size_t prefix_size = padding_size;
guarantee(test_size <= (sizeof(buffer) - prefix_size), "invariant");
size_t write_size = MIN2(sizeof(expected), test_size);
size_t suffix_size = sizeof(buffer) - prefix_size - write_size;
char* write_start = buffer + prefix_size;
char* write_end = write_start + write_size;
int result = pf(write_start, test_size, "%s", expected);
check_snprintf_result(expected_len, test_size, result, expect_count);
// Verify expected output.
if (test_size > 0) {
ASSERT_EQ(0, strncmp(write_start, expected, write_size - 1));
// Verify terminating NUL of output.
ASSERT_EQ('\0', write_start[write_size - 1]);
} else {
guarantee(test_size == 0, "invariant");
guarantee(write_size == 0, "invariant");
guarantee(prefix_size + suffix_size == sizeof(buffer), "invariant");
guarantee(write_start == write_end, "invariant");
}
// Verify no scribbling on prefix or suffix.
ASSERT_EQ(0, strncmp(buffer, check_buffer, prefix_size));
ASSERT_EQ(0, strncmp(write_end, check_buffer, suffix_size));
}
// Special case of 0-length buffer with empty (except for terminator) output.
check_snprintf_result(0, 0, pf(nullptr, 0, "%s", ""), expect_count);
check_snprintf_result(0, 0, pf(nullptr, 0, ""), expect_count);
}
// This is probably equivalent to os::snprintf, but we're being
// explicit about what we're testing here.
static int vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
int result = os::vsnprintf(buf, len, fmt, args);
va_end(args);
return result;
}
TEST_VM(os, vsnprintf) {
test_snprintf(vsnprintf_wrapper, true);
}
TEST_VM(os, snprintf) {
test_snprintf(os::snprintf, true);
}
// These are declared in jvm.h; test here, with related functions.
extern "C" {
int jio_vsnprintf(char*, size_t, const char*, va_list);
int jio_snprintf(char*, size_t, const char*, ...);
}
// This is probably equivalent to jio_snprintf, but we're being
// explicit about what we're testing here.
static int jio_vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
va_list args;
va_start(args, fmt);
int result = jio_vsnprintf(buf, len, fmt, args);
va_end(args);
return result;
}
TEST_VM(os, jio_vsnprintf) {
test_snprintf(jio_vsnprintf_wrapper, false);
}
TEST_VM(os, jio_snprintf) {
test_snprintf(jio_snprintf, false);
}
#ifndef MAX_PATH
#define MAX_PATH (2 * K)
#endif
TEST_VM(os, realpath) {
// POSIX requires that the file exists; Windows tests for a valid drive letter
// but may or may not test if the file exists. */
static const char* nosuchpath = "/1234567890123456789";
static const char* tmppath = "/tmp";
char buffer[MAX_PATH];
// Test a non-existant path, but provide a short buffer.
errno = 0;
const char* returnedBuffer = os::realpath(nosuchpath, buffer, sizeof(nosuchpath) - 2);
// Reports ENOENT on Linux, ENAMETOOLONG on Windows.
EXPECT_TRUE(returnedBuffer == nullptr);
#ifdef _WINDOWS
EXPECT_TRUE(errno == ENAMETOOLONG);
#else
EXPECT_TRUE(errno == ENOENT);
#endif
// Test a non-existant path, but provide an adequate buffer.
errno = 0;
buffer[0] = 0;
returnedBuffer = os::realpath(nosuchpath, buffer, sizeof(nosuchpath) + 3);
// Reports ENOENT on Linux, may return 0 (and report an error) or buffer on some versions of Windows.
#ifdef _WINDOWS
if (returnedBuffer != nullptr) {
EXPECT_TRUE(returnedBuffer == buffer);
} else {
EXPECT_TRUE(errno != 0);
}
#else
EXPECT_TRUE(returnedBuffer == nullptr);
EXPECT_TRUE(errno == ENOENT);
#endif
// Test an existing path using a large buffer.
errno = 0;
returnedBuffer = os::realpath(tmppath, buffer, MAX_PATH);
EXPECT_TRUE(returnedBuffer == buffer);
// Test an existing path using a buffer that is too small on a normal macOS install.
errno = 0;
returnedBuffer = os::realpath(tmppath, buffer, strlen(tmppath) + 3);
// On MacOS, /tmp is a symlink to /private/tmp, so doesn't fit in a small buffer.
#ifndef __APPLE__
EXPECT_TRUE(returnedBuffer == buffer);
#else
EXPECT_TRUE(returnedBuffer == nullptr);
EXPECT_TRUE(errno == ENAMETOOLONG);
#endif
// Test an existing path using a buffer that is too small.
errno = 0;
returnedBuffer = os::realpath(tmppath, buffer, strlen(tmppath) - 1);
EXPECT_TRUE(returnedBuffer == nullptr);
EXPECT_TRUE(errno == ENAMETOOLONG);
// The following tests cause an assert inside os::realpath() in fastdebug mode:
#ifndef ASSERT
errno = 0;
returnedBuffer = os::realpath(nullptr, buffer, sizeof(buffer));
EXPECT_TRUE(returnedBuffer == nullptr);
EXPECT_TRUE(errno == EINVAL);
errno = 0;
returnedBuffer = os::realpath(tmppath, nullptr, sizeof(buffer));
EXPECT_TRUE(returnedBuffer == nullptr);
EXPECT_TRUE(errno == EINVAL);
errno = 0;
returnedBuffer = os::realpath(tmppath, buffer, 0);
EXPECT_TRUE(returnedBuffer == nullptr);
EXPECT_TRUE(errno == EINVAL);
#endif
}
#ifdef __APPLE__
// Not all macOS versions can use os::reserve_memory (i.e. anon_mmap) API
// to reserve executable memory, so before attempting to use it,
// we need to verify that we can do so by asking for a tiny executable
// memory chunk.
static inline bool can_reserve_executable_memory(void) {
bool executable = true;
size_t len = 128;
char* p = os::reserve_memory(len, executable);
bool exec_supported = (p != nullptr);
if (exec_supported) {
os::release_memory(p, len);
}
return exec_supported;
}
#endif
// Test that os::release_memory() can deal with areas containing multiple mappings.
#define PRINT_MAPPINGS(s) { tty->print_cr("%s", s); os::print_memory_mappings((char*)p, total_range_len, tty); tty->cr(); }
//#define PRINT_MAPPINGS
// Release a range allocated with reserve_multiple carefully, to not trip mapping
// asserts on Windows in os::release_memory()
static void carefully_release_multiple(address start, int num_stripes, size_t stripe_len) {
for (int stripe = 0; stripe < num_stripes; stripe++) {
address q = start + (stripe * stripe_len);
EXPECT_TRUE(os::release_memory((char*)q, stripe_len));
}
}
#ifndef _AIX // JDK-8257041
// Reserve an area consisting of multiple mappings
// (from multiple calls to os::reserve_memory)
static address reserve_multiple(int num_stripes, size_t stripe_len) {
assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity");
#ifdef __APPLE__
// Workaround: try reserving executable memory to figure out
// if such operation is supported on this macOS version
const bool exec_supported = can_reserve_executable_memory();
#endif
address p = nullptr;
for (int tries = 0; tries < 256 && p == nullptr; tries ++) {
size_t total_range_len = num_stripes * stripe_len;
// Reserve a large contiguous area to get the address space...
p = (address)os::reserve_memory(total_range_len);
EXPECT_NE(p, (address)nullptr);
// .. release it...
EXPECT_TRUE(os::release_memory((char*)p, total_range_len));
// ... re-reserve in the same spot multiple areas...
for (int stripe = 0; stripe < num_stripes; stripe++) {
address q = p + (stripe * stripe_len);
// Commit, alternatingly with or without exec permission,
// to prevent kernel from folding these mappings.
#ifdef __APPLE__
const bool executable = exec_supported ? (stripe % 2 == 0) : false;
#else
const bool executable = stripe % 2 == 0;
#endif
q = (address)os::attempt_reserve_memory_at((char*)q, stripe_len, executable);
if (q == nullptr) {
// Someone grabbed that area concurrently. Cleanup, then retry.
tty->print_cr("reserve_multiple: retry (%d)...", stripe);
carefully_release_multiple(p, stripe, stripe_len);
p = nullptr;
} else {
EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, executable));
}
}
}
return p;
}
#endif // !AIX
// Reserve an area with a single call to os::reserve_memory,
// with multiple committed and uncommitted regions
static address reserve_one_commit_multiple(int num_stripes, size_t stripe_len) {
assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity");
size_t total_range_len = num_stripes * stripe_len;
address p = (address)os::reserve_memory(total_range_len);
EXPECT_NE(p, (address)nullptr);
for (int stripe = 0; stripe < num_stripes; stripe++) {
address q = p + (stripe * stripe_len);
if (stripe % 2 == 0) {
EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, false));
}
}
return p;
}
#ifdef _WIN32
struct NUMASwitcher {
const bool _b;
NUMASwitcher(bool v): _b(UseNUMAInterleaving) { UseNUMAInterleaving = v; }
~NUMASwitcher() { UseNUMAInterleaving = _b; }
};
#endif
#ifndef _AIX // JDK-8257041
TEST_VM(os, release_multi_mappings) {
// With NMT enabled, this will trigger JDK-8263464. For now disable the test if NMT=on.
if (MemTracker::tracking_level() > NMT_off) {
return;
}
// Test that we can release an area created with multiple reservation calls
// What we do:
// A) we reserve 6 small segments (stripes) adjacent to each other. We commit
// them with alternating permissions to prevent the kernel from folding them into
// a single segment.
// -stripe-stripe-stripe-stripe-stripe-stripe-
// B) we release the middle four stripes with a single os::release_memory call. This
// tests that os::release_memory indeed works across multiple segments created with
// multiple os::reserve calls.
// -stripe-___________________________-stripe-
// C) Into the now vacated address range between the first and the last stripe, we
// re-reserve a new memory range. We expect this to work as a proof that the address
// range was really released by the single release call (B).
//
// Note that this is inherently racy. Between (B) and (C), some other thread may have
// reserved something into the hole in the meantime. Therefore we keep that range small and
// entrenched between the first and last stripe, which reduces the chance of some concurrent
// thread grabbing that memory.
const size_t stripe_len = os::vm_allocation_granularity();
const int num_stripes = 6;
const size_t total_range_len = stripe_len * num_stripes;
// reserve address space...
address p = reserve_multiple(num_stripes, stripe_len);
ASSERT_NE(p, (address)nullptr);
PRINT_MAPPINGS("A");
// .. release the middle stripes...
address p_middle_stripes = p + stripe_len;
const size_t middle_stripe_len = (num_stripes - 2) * stripe_len;
{
// On Windows, temporarily switch on UseNUMAInterleaving to allow release_memory to release
// multiple mappings in one go (otherwise we assert, which we test too, see death test below).
WINDOWS_ONLY(NUMASwitcher b(true);)
ASSERT_TRUE(os::release_memory((char*)p_middle_stripes, middle_stripe_len));
}
PRINT_MAPPINGS("B");
// ...re-reserve the middle stripes. This should work unless release silently failed.
address p2 = (address)os::attempt_reserve_memory_at((char*)p_middle_stripes, middle_stripe_len);
ASSERT_EQ(p2, p_middle_stripes);
PRINT_MAPPINGS("C");
// Clean up. Release all mappings.
{
WINDOWS_ONLY(NUMASwitcher b(true);) // allow release_memory to release multiple regions
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
}
}
#endif // !AIX
#ifdef _WIN32
// On Windows, test that we recognize bad ranges.
// On debug this would assert. Test that too.
// On other platforms, we are unable to recognize bad ranges.
#ifdef ASSERT
TEST_VM_ASSERT_MSG(os, release_bad_ranges, ".*bad release") {
#else
TEST_VM(os, release_bad_ranges) {
#endif
char* p = os::reserve_memory(4 * M);
ASSERT_NE(p, (char*)nullptr);
// Release part of range
ASSERT_FALSE(os::release_memory(p, M));
// Release part of range
ASSERT_FALSE(os::release_memory(p + M, M));
// Release more than the range (explicitly switch off NUMA here
// to make os::release_memory() test more strictly and to not
// accidentally release neighbors)
{
NUMASwitcher b(false);
ASSERT_FALSE(os::release_memory(p, M * 5));
ASSERT_FALSE(os::release_memory(p - M, M * 5));
ASSERT_FALSE(os::release_memory(p - M, M * 6));
}
ASSERT_TRUE(os::release_memory(p, 4 * M)); // Release for real
ASSERT_FALSE(os::release_memory(p, 4 * M)); // Again, should fail
}
#endif // _WIN32
TEST_VM(os, release_one_mapping_multi_commits) {
// Test that we can release an area consisting of interleaved
// committed and uncommitted regions:
const size_t stripe_len = os::vm_allocation_granularity();
const int num_stripes = 6;
const size_t total_range_len = stripe_len * num_stripes;
// reserve address space...
address p = reserve_one_commit_multiple(num_stripes, stripe_len);
PRINT_MAPPINGS("A");
ASSERT_NE(p, (address)nullptr);
// // make things even more difficult by trying to reserve at the border of the region
address border = p + num_stripes * stripe_len;
address p2 = (address)os::attempt_reserve_memory_at((char*)border, stripe_len);
PRINT_MAPPINGS("B");
ASSERT_TRUE(p2 == nullptr || p2 == border);
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
PRINT_MAPPINGS("C");
if (p2 != nullptr) {
ASSERT_TRUE(os::release_memory((char*)p2, stripe_len));
PRINT_MAPPINGS("D");
}
}
static void test_show_mappings(address start, size_t size) {
// Note: should this overflow, thats okay. stream will silently truncate. Does not matter for the test.
const size_t buflen = 4 * M;
char* buf = NEW_C_HEAP_ARRAY(char, buflen, mtInternal);
buf[0] = '\0';
stringStream ss(buf, buflen);
if (start != nullptr) {
os::print_memory_mappings((char*)start, size, &ss);
} else {
os::print_memory_mappings(&ss); // prints full address space
}
// Still an empty implementation on MacOS and AIX
#if defined(LINUX) || defined(_WIN32)
EXPECT_NE(buf[0], '\0');
#endif
// buf[buflen - 1] = '\0';
// tty->print_raw(buf);
FREE_C_HEAP_ARRAY(char, buf);
}
TEST_VM(os, show_mappings_small_range) {
test_show_mappings((address)0x100000, 2 * G);
}
TEST_VM(os, show_mappings_full_range) {
// Reserve a small range and fill it with a marker string, should show up
// on implementations displaying range snippets
char* p = os::reserve_memory(1 * M, false, mtInternal);
if (p != nullptr) {
if (os::commit_memory(p, 1 * M, false)) {
strcpy(p, "ABCDEFGHIJKLMNOPQRSTUVWXYZ");
}
}
test_show_mappings(nullptr, 0);
if (p != nullptr) {
os::release_memory(p, 1 * M);
}
}
#ifdef _WIN32
// Test os::win32::find_mapping
TEST_VM(os, find_mapping_simple) {
const size_t total_range_len = 4 * M;
os::win32::mapping_info_t mapping_info;
// Some obvious negatives
ASSERT_FALSE(os::win32::find_mapping((address)nullptr, &mapping_info));
ASSERT_FALSE(os::win32::find_mapping((address)4711, &mapping_info));
// A simple allocation
{
address p = (address)os::reserve_memory(total_range_len);
ASSERT_NE(p, (address)nullptr);
PRINT_MAPPINGS("A");
for (size_t offset = 0; offset < total_range_len; offset += 4711) {
ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info));
ASSERT_EQ(mapping_info.base, p);
ASSERT_EQ(mapping_info.regions, 1);
ASSERT_EQ(mapping_info.size, total_range_len);
ASSERT_EQ(mapping_info.committed_size, 0);
}
// Test just outside the allocation
if (os::win32::find_mapping(p - 1, &mapping_info)) {
ASSERT_NE(mapping_info.base, p);
}
if (os::win32::find_mapping(p + total_range_len, &mapping_info)) {
ASSERT_NE(mapping_info.base, p);
}
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
PRINT_MAPPINGS("B");
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
}
}
TEST_VM(os, find_mapping_2) {
// A more complex allocation, consisting of multiple regions.
const size_t total_range_len = 4 * M;
os::win32::mapping_info_t mapping_info;
const size_t stripe_len = total_range_len / 4;
address p = reserve_one_commit_multiple(4, stripe_len);
ASSERT_NE(p, (address)nullptr);
PRINT_MAPPINGS("A");
for (size_t offset = 0; offset < total_range_len; offset += 4711) {
ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info));
ASSERT_EQ(mapping_info.base, p);
ASSERT_EQ(mapping_info.regions, 4);
ASSERT_EQ(mapping_info.size, total_range_len);
ASSERT_EQ(mapping_info.committed_size, total_range_len / 2);
}
// Test just outside the allocation
if (os::win32::find_mapping(p - 1, &mapping_info)) {
ASSERT_NE(mapping_info.base, p);
}
if (os::win32::find_mapping(p + total_range_len, &mapping_info)) {
ASSERT_NE(mapping_info.base, p);
}
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
PRINT_MAPPINGS("B");
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
}
TEST_VM(os, find_mapping_3) {
const size_t total_range_len = 4 * M;
os::win32::mapping_info_t mapping_info;
// A more complex case, consisting of multiple allocations.
{
const size_t stripe_len = total_range_len / 4;
address p = reserve_multiple(4, stripe_len);
ASSERT_NE(p, (address)nullptr);
PRINT_MAPPINGS("E");
for (int stripe = 0; stripe < 4; stripe++) {
ASSERT_TRUE(os::win32::find_mapping(p + (stripe * stripe_len), &mapping_info));
ASSERT_EQ(mapping_info.base, p + (stripe * stripe_len));
ASSERT_EQ(mapping_info.regions, 1);
ASSERT_EQ(mapping_info.size, stripe_len);
ASSERT_EQ(mapping_info.committed_size, stripe_len);
}
carefully_release_multiple(p, 4, stripe_len);
PRINT_MAPPINGS("F");
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
}
}
#endif // _WIN32
TEST_VM(os, os_pagesizes) {
ASSERT_EQ(os::min_page_size(), 4 * K);
ASSERT_LE(os::min_page_size(), os::vm_page_size());
// The vm_page_size should be the smallest in the set of allowed page sizes
// (contract says "default" page size but a lot of code actually assumes
// this to be the smallest page size; notable, deliberate exception is
// AIX which can have smaller page sizes but those are not part of the
// page_sizes() set).
ASSERT_EQ(os::page_sizes().smallest(), os::vm_page_size());
// The large page size, if it exists, shall be part of the set
if (UseLargePages) {
ASSERT_GT(os::large_page_size(), os::vm_page_size());
ASSERT_TRUE(os::page_sizes().contains(os::large_page_size()));
}
os::page_sizes().print_on(tty);
tty->cr();
}
static const int min_page_size_log2 = exact_log2(os::min_page_size());
static const int max_page_size_log2 = (int)BitsPerWord;
TEST_VM(os, pagesizes_test_range) {
for (int bit = min_page_size_log2; bit < max_page_size_log2; bit++) {
for (int bit2 = min_page_size_log2; bit2 < max_page_size_log2; bit2++) {
const size_t s = (size_t)1 << bit;
const size_t s2 = (size_t)1 << bit2;
os::PageSizes pss;
ASSERT_EQ((size_t)0, pss.smallest());
ASSERT_EQ((size_t)0, pss.largest());
// one size set
pss.add(s);
ASSERT_TRUE(pss.contains(s));
ASSERT_EQ(s, pss.smallest());
ASSERT_EQ(s, pss.largest());
ASSERT_EQ(pss.next_larger(s), (size_t)0);
ASSERT_EQ(pss.next_smaller(s), (size_t)0);
// two set
pss.add(s2);
ASSERT_TRUE(pss.contains(s2));
if (s2 < s) {
ASSERT_EQ(s2, pss.smallest());
ASSERT_EQ(s, pss.largest());
ASSERT_EQ(pss.next_larger(s2), (size_t)s);
ASSERT_EQ(pss.next_smaller(s2), (size_t)0);
ASSERT_EQ(pss.next_larger(s), (size_t)0);
ASSERT_EQ(pss.next_smaller(s), (size_t)s2);
} else if (s2 > s) {
ASSERT_EQ(s, pss.smallest());
ASSERT_EQ(s2, pss.largest());
ASSERT_EQ(pss.next_larger(s), (size_t)s2);
ASSERT_EQ(pss.next_smaller(s), (size_t)0);
ASSERT_EQ(pss.next_larger(s2), (size_t)0);
ASSERT_EQ(pss.next_smaller(s2), (size_t)s);
}
for (int bit3 = min_page_size_log2; bit3 < max_page_size_log2; bit3++) {
const size_t s3 = (size_t)1 << bit3;
ASSERT_EQ(s3 == s || s3 == s2, pss.contains(s3));
}
}
}
}
TEST_VM(os, pagesizes_test_print) {
os::PageSizes pss;
const size_t sizes[] = { 16 * K, 64 * K, 128 * K, 1 * M, 4 * M, 1 * G, 2 * G, 0 };
static const char* const expected = "16k, 64k, 128k, 1M, 4M, 1G, 2G";
for (int i = 0; sizes[i] != 0; i++) {
pss.add(sizes[i]);
}
char buffer[256];
stringStream ss(buffer, sizeof(buffer));
pss.print_on(&ss);
EXPECT_STREQ(expected, buffer);
}
TEST_VM(os, dll_address_to_function_and_library_name) {
char tmp[1024];
char output[1024];
stringStream st(output, sizeof(output));
#define EXPECT_CONTAINS(haystack, needle) \
EXPECT_THAT(haystack, HasSubstr(needle));
#define EXPECT_DOES_NOT_CONTAIN(haystack, needle) \
EXPECT_THAT(haystack, Not(HasSubstr(needle)));
// #define LOG(...) tty->print_cr(__VA_ARGS__); // enable if needed
#define LOG(...)
// Invalid addresses
LOG("os::print_function_and_library_name(st, -1) expects FALSE.");
address addr = (address)(intptr_t)-1;
EXPECT_FALSE(os::print_function_and_library_name(&st, addr));
LOG("os::print_function_and_library_name(st, nullptr) expects FALSE.");
addr = nullptr;
EXPECT_FALSE(os::print_function_and_library_name(&st, addr));
// Valid addresses
// Test with or without shorten-paths, demangle, and scratch buffer
for (int i = 0; i < 16; i++) {
const bool shorten_paths = (i & 1) != 0;
const bool demangle = (i & 2) != 0;
const bool strip_arguments = (i & 4) != 0;
const bool provide_scratch_buffer = (i & 8) != 0;
LOG("shorten_paths=%d, demangle=%d, strip_arguments=%d, provide_scratch_buffer=%d",
shorten_paths, demangle, strip_arguments, provide_scratch_buffer);
// Should show os::min_page_size in libjvm
addr = CAST_FROM_FN_PTR(address, Threads::create_vm);
st.reset();
EXPECT_TRUE(os::print_function_and_library_name(&st, addr,
provide_scratch_buffer ? tmp : nullptr,
sizeof(tmp),
shorten_paths, demangle,
strip_arguments));
EXPECT_CONTAINS(output, "Threads");
EXPECT_CONTAINS(output, "create_vm");
EXPECT_CONTAINS(output, "jvm"); // "jvm.dll" or "libjvm.so" or similar
LOG("%s", output);
// Test truncation on scratch buffer
if (provide_scratch_buffer) {
st.reset();
tmp[10] = 'X';
EXPECT_TRUE(os::print_function_and_library_name(&st, addr, tmp, 10,
shorten_paths, demangle));
EXPECT_EQ(tmp[10], 'X');
LOG("%s", output);
}
}
}
// Not a regex! Very primitive, just match:
// "d" - digit
// "a" - ascii
// "." - everything
// rest must match
static bool very_simple_string_matcher(const char* pattern, const char* s) {
const size_t lp = strlen(pattern);
const size_t ls = strlen(s);
if (ls < lp) {
return false;
}
for (size_t i = 0; i < lp; i ++) {
switch (pattern[i]) {
case '.': continue;
case 'd': if (!isdigit(s[i])) return false; break;
case 'a': if (!isascii(s[i])) return false; break;
default: if (s[i] != pattern[i]) return false; break;
}
}
return true;
}
TEST_VM(os, iso8601_time) {
char buffer[os::iso8601_timestamp_size + 1]; // + space for canary
buffer[os::iso8601_timestamp_size] = 'X'; // canary
const char* result = nullptr;
// YYYY-MM-DDThh:mm:ss.mmm+zzzz
const char* const pattern_utc = "dddd-dd-dd.dd:dd:dd.ddd.0000";
const char* const pattern_local = "dddd-dd-dd.dd:dd:dd.ddd.dddd";
result = os::iso8601_time(buffer, sizeof(buffer), true);
tty->print_cr("%s", result);
EXPECT_EQ(result, buffer);
EXPECT_TRUE(very_simple_string_matcher(pattern_utc, result));
result = os::iso8601_time(buffer, sizeof(buffer), false);
tty->print_cr("%s", result);
EXPECT_EQ(result, buffer);
EXPECT_TRUE(very_simple_string_matcher(pattern_local, result));
// Test with explicit timestamps
result = os::iso8601_time(0, buffer, sizeof(buffer), true);
tty->print_cr("%s", result);
EXPECT_EQ(result, buffer);
EXPECT_TRUE(very_simple_string_matcher("1970-01-01.00:00:00.000+0000", result));
result = os::iso8601_time(17, buffer, sizeof(buffer), true);
tty->print_cr("%s", result);
EXPECT_EQ(result, buffer);
EXPECT_TRUE(very_simple_string_matcher("1970-01-01.00:00:00.017+0000", result));
// Canary should still be intact
EXPECT_EQ(buffer[os::iso8601_timestamp_size], 'X');
}
TEST_VM(os, is_first_C_frame) {
#if !defined(_WIN32) && !defined(ZERO) && !defined(__thumb__)
frame invalid_frame;
EXPECT_TRUE(os::is_first_C_frame(&invalid_frame)); // the frame has zeroes for all values
frame cur_frame = os::current_frame(); // this frame has to have a sender
EXPECT_FALSE(os::is_first_C_frame(&cur_frame));
#endif // _WIN32
}
#ifdef __GLIBC__
TEST_VM(os, trim_native_heap) {
EXPECT_TRUE(os::can_trim_native_heap());
os::size_change_t sc;
sc.before = sc.after = (size_t)-1;
EXPECT_TRUE(os::trim_native_heap(&sc));
tty->print_cr(SIZE_FORMAT "->" SIZE_FORMAT, sc.before, sc.after);
// Regardless of whether we freed memory, both before and after
// should be somewhat believable numbers (RSS).
const size_t min = 5 * M;
const size_t max = LP64_ONLY(20 * G) NOT_LP64(3 * G);
ASSERT_LE(min, sc.before);
ASSERT_GT(max, sc.before);
ASSERT_LE(min, sc.after);
ASSERT_GT(max, sc.after);
// Should also work
EXPECT_TRUE(os::trim_native_heap());
}
#else
TEST_VM(os, trim_native_heap) {
EXPECT_FALSE(os::can_trim_native_heap());
}
#endif // __GLIBC__
TEST_VM(os, open_O_CLOEXEC) {
#if !defined(_WIN32)
int fd = os::open("test_file.txt", O_RDWR | O_CREAT | O_TRUNC, 0666); // open will use O_CLOEXEC
EXPECT_TRUE(fd > 0);
int flags = ::fcntl(fd, F_GETFD);
EXPECT_TRUE((flags & FD_CLOEXEC) != 0); // if O_CLOEXEC worked, then FD_CLOEXEC should be ON
::close(fd);
#endif
}
TEST_VM(os, reserve_at_wish_address_shall_not_replace_mappings_smallpages) {
char* p1 = os::reserve_memory(M, false, mtTest);
ASSERT_NE(p1, nullptr);
char* p2 = os::attempt_reserve_memory_at(p1, M);
ASSERT_EQ(p2, nullptr); // should have failed
os::release_memory(p1, M);
}
TEST_VM(os, reserve_at_wish_address_shall_not_replace_mappings_largepages) {
if (UseLargePages && !os::can_commit_large_page_memory()) { // aka special
const size_t lpsz = os::large_page_size();
char* p1 = os::reserve_memory_aligned(lpsz, lpsz, false);
ASSERT_NE(p1, nullptr);
char* p2 = os::reserve_memory_special(lpsz, lpsz, lpsz, p1, false);
ASSERT_EQ(p2, nullptr); // should have failed
os::release_memory(p1, M);
} else {
tty->print_cr("Skipped.");
}
}
TEST_VM(os, vm_min_address) {
size_t s = os::vm_min_address();
ASSERT_GE(s, M);
// Test upper limit. On Linux, its adjustable, so we just test for absurd values to prevent errors
// with high vm.mmap_min_addr settings.
#if defined(_LP64)
ASSERT_LE(s, NOT_LINUX(G * 4) LINUX_ONLY(G * 1024));
#endif
}
#if !defined(_WINDOWS) && !defined(_AIX)
TEST_VM(os, free_without_uncommit) {
const size_t page_sz = os::vm_page_size();
const size_t pages = 64;
const size_t size = pages * page_sz;
char* base = os::reserve_memory(size, false, mtTest);
ASSERT_NE(base, (char*) nullptr);
ASSERT_TRUE(os::commit_memory(base, size, false));
for (size_t index = 0; index < pages; index++) {
base[index * page_sz] = 'a';
}
os::disclaim_memory(base, size);
// Ensure we can still use the memory without having to recommit.
for (size_t index = 0; index < pages; index++) {
base[index * page_sz] = 'a';
}
os::release_memory(base, size);
}
#endif