jdk-24/src/hotspot/share/utilities/count_leading_zeros.hpp
2020-01-08 14:22:30 +01:00

217 lines
6.2 KiB
C++

/*
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_UTILITIES_COUNT_LEADING_ZEROS_HPP
#define SHARE_UTILITIES_COUNT_LEADING_ZEROS_HPP
#include "utilities/debug.hpp"
#include "utilities/globalDefinitions.hpp"
// uint32_t count_leading_zeros(T x)
// Return the number of leading zeros in x, e.g. the zero-based index
// of the most significant set bit in x. Undefined for 0.
// We implement and support variants for 8, 16, 32 and 64 bit integral types.
template <typename T, size_t n> struct CountLeadingZerosImpl;
template <typename T> unsigned count_leading_zeros(T v) {
assert(v != 0, "precondition");
return CountLeadingZerosImpl<T, sizeof(T)>::doit(v);
}
/*****************************************************************************
* GCC and compatible (including Clang)
*****************************************************************************/
#if defined(TARGET_COMPILER_gcc)
template <typename T> struct CountLeadingZerosImpl<T, 1> {
static unsigned doit(T v) {
return __builtin_clz((uint32_t)v & 0xFF) - 24u;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 2> {
static unsigned doit(T v) {
return __builtin_clz((uint32_t)v & 0xFFFF) - 16u;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 4> {
static unsigned doit(T v) {
return __builtin_clz(v);
}
};
template <typename T> struct CountLeadingZerosImpl<T, 8> {
static unsigned doit(T v) {
return __builtin_clzll(v);
}
};
/*****************************************************************************
* Microsoft Visual Studio
*****************************************************************************/
#elif defined(TARGET_COMPILER_visCPP)
#include <intrin.h>
#pragma intrinsic(_BitScanReverse)
#ifdef _LP64
#pragma intrinsic(_BitScanReverse64)
#endif
template <typename T> struct CountLeadingZerosImpl<T, 1> {
static unsigned doit(T v) {
unsigned long index;
_BitScanReverse(&index, (uint32_t)v & 0xFF);
return 7u - index;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 2> {
static unsigned doit(T v) {
unsigned long index;
_BitScanReverse(&index, (uint32_t)v & 0xFFFF);
return 15u - index;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 4> {
static unsigned doit(T v) {
unsigned long index;
_BitScanReverse(&index, v);
return 31u - index;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 8> {
static unsigned doit(T v) {
#ifdef _LP64
unsigned long index;
_BitScanReverse64(&index, v);
return 63u - index;
#else
uint64_t high = ((uint64_t)v) >> 32ULL;
if (high != 0) {
return count_leading_zeros((uint32_t)high);
} else {
return count_leading_zeros((uint32_t)v) + 32;
}
#endif
}
};
/*****************************************************************************
* IBM XL C/C++
*****************************************************************************/
#elif defined(TARGET_COMPILER_xlc)
#include <builtins.h>
template <typename T> struct CountLeadingZerosImpl<T, 1> {
static unsigned doit(T v) {
return __cntlz4((uint32_t)v & 0xFF) - 24u;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 2> {
static unsigned doit(T v) {
return __cntlz4((uint32_t)v & 0xFFFF) - 16u;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 4> {
static unsigned doit(T v) {
return __cntlz4(v);
}
};
template <typename T> struct CountLeadingZerosImpl<T, 8> {
static unsigned doit(T v) {
return __cntlz8(v);
}
};
/*****************************************************************************
* Fallback
*****************************************************************************/
#else
inline uint32_t count_leading_zeros_32(uint32_t x) {
assert(x != 0, "precondition");
// Efficient and portable fallback implementation:
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn
// - with positions xor'd by 31 to get number of leading zeros
// rather than position of highest bit.
static const uint32_t MultiplyDeBruijnBitPosition[32] = {
31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1,
23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0
};
// First round down to one less than a power of 2
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
// Multiply by a magic constant which ensure the highest 5 bits point to
// the right index in the lookup table
return MultiplyDeBruijnBitPosition[(x * 0x07c4acddu) >> 27u];
}
template <typename T> struct CountLeadingZerosImpl<T, 1> {
static unsigned doit(T v) {
return count_leading_zeros_32((uint32_t)v & 0xFF) - 24u;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 2> {
static unsigned doit(T v) {
return count_leading_zeros_32((uint32_t)v & 0xFFFF) - 16u;
}
};
template <typename T> struct CountLeadingZerosImpl<T, 4> {
static unsigned doit(T v) {
return count_leading_zeros_32(v);
}
};
template <typename T> struct CountLeadingZerosImpl<T, 8> {
static unsigned doit(T v) {
uint64_t high = ((uint64_t)v) >> 32ULL;
if (high != 0) {
return count_leading_zeros_32((uint32_t)high);
} else {
return count_leading_zeros_32((uint32_t)v) + 32u;
}
}
};
#endif
#endif // SHARE_UTILITIES_COUNT_LEADING_ZEROS_HPP