ec504ecf84
Reviewed-by: shade, rkennke
7163 lines
261 KiB
C++
7163 lines
261 KiB
C++
/*
|
|
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2016, 2018, SAP SE. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/codeBuffer.hpp"
|
|
#include "asm/macroAssembler.inline.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/barrierSetAssembler.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "gc/shared/cardTableBarrierSet.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "oops/compressedOops.inline.hpp"
|
|
#include "oops/klass.inline.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/intrinsicnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "prims/methodHandles.hpp"
|
|
#include "registerSaver_s390.hpp"
|
|
#include "runtime/biasedLocking.hpp"
|
|
#include "runtime/icache.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/objectMonitor.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/safepoint.hpp"
|
|
#include "runtime/safepointMechanism.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/macros.hpp"
|
|
|
|
#include <ucontext.h>
|
|
|
|
#define BLOCK_COMMENT(str) block_comment(str)
|
|
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
|
|
|
|
// Move 32-bit register if destination and source are different.
|
|
void MacroAssembler::lr_if_needed(Register rd, Register rs) {
|
|
if (rs != rd) { z_lr(rd, rs); }
|
|
}
|
|
|
|
// Move register if destination and source are different.
|
|
void MacroAssembler::lgr_if_needed(Register rd, Register rs) {
|
|
if (rs != rd) { z_lgr(rd, rs); }
|
|
}
|
|
|
|
// Zero-extend 32-bit register into 64-bit register if destination and source are different.
|
|
void MacroAssembler::llgfr_if_needed(Register rd, Register rs) {
|
|
if (rs != rd) { z_llgfr(rd, rs); }
|
|
}
|
|
|
|
// Move float register if destination and source are different.
|
|
void MacroAssembler::ldr_if_needed(FloatRegister rd, FloatRegister rs) {
|
|
if (rs != rd) { z_ldr(rd, rs); }
|
|
}
|
|
|
|
// Move integer register if destination and source are different.
|
|
// It is assumed that shorter-than-int types are already
|
|
// appropriately sign-extended.
|
|
void MacroAssembler::move_reg_if_needed(Register dst, BasicType dst_type, Register src,
|
|
BasicType src_type) {
|
|
assert((dst_type != T_FLOAT) && (dst_type != T_DOUBLE), "use move_freg for float types");
|
|
assert((src_type != T_FLOAT) && (src_type != T_DOUBLE), "use move_freg for float types");
|
|
|
|
if (dst_type == src_type) {
|
|
lgr_if_needed(dst, src); // Just move all 64 bits.
|
|
return;
|
|
}
|
|
|
|
switch (dst_type) {
|
|
// Do not support these types for now.
|
|
// case T_BOOLEAN:
|
|
case T_BYTE: // signed byte
|
|
switch (src_type) {
|
|
case T_INT:
|
|
z_lgbr(dst, src);
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
return;
|
|
|
|
case T_CHAR:
|
|
case T_SHORT:
|
|
switch (src_type) {
|
|
case T_INT:
|
|
if (dst_type == T_CHAR) {
|
|
z_llghr(dst, src);
|
|
} else {
|
|
z_lghr(dst, src);
|
|
}
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
return;
|
|
|
|
case T_INT:
|
|
switch (src_type) {
|
|
case T_BOOLEAN:
|
|
case T_BYTE:
|
|
case T_CHAR:
|
|
case T_SHORT:
|
|
case T_INT:
|
|
case T_LONG:
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
case T_VOID:
|
|
case T_ADDRESS:
|
|
lr_if_needed(dst, src);
|
|
// llgfr_if_needed(dst, src); // zero-extend (in case we need to find a bug).
|
|
return;
|
|
|
|
default:
|
|
assert(false, "non-integer src type");
|
|
return;
|
|
}
|
|
case T_LONG:
|
|
switch (src_type) {
|
|
case T_BOOLEAN:
|
|
case T_BYTE:
|
|
case T_CHAR:
|
|
case T_SHORT:
|
|
case T_INT:
|
|
z_lgfr(dst, src); // sign extension
|
|
return;
|
|
|
|
case T_LONG:
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
case T_VOID:
|
|
case T_ADDRESS:
|
|
lgr_if_needed(dst, src);
|
|
return;
|
|
|
|
default:
|
|
assert(false, "non-integer src type");
|
|
return;
|
|
}
|
|
return;
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
case T_VOID:
|
|
case T_ADDRESS:
|
|
switch (src_type) {
|
|
// These types don't make sense to be converted to pointers:
|
|
// case T_BOOLEAN:
|
|
// case T_BYTE:
|
|
// case T_CHAR:
|
|
// case T_SHORT:
|
|
|
|
case T_INT:
|
|
z_llgfr(dst, src); // zero extension
|
|
return;
|
|
|
|
case T_LONG:
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
case T_VOID:
|
|
case T_ADDRESS:
|
|
lgr_if_needed(dst, src);
|
|
return;
|
|
|
|
default:
|
|
assert(false, "non-integer src type");
|
|
return;
|
|
}
|
|
return;
|
|
default:
|
|
assert(false, "non-integer dst type");
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Move float register if destination and source are different.
|
|
void MacroAssembler::move_freg_if_needed(FloatRegister dst, BasicType dst_type,
|
|
FloatRegister src, BasicType src_type) {
|
|
assert((dst_type == T_FLOAT) || (dst_type == T_DOUBLE), "use move_reg for int types");
|
|
assert((src_type == T_FLOAT) || (src_type == T_DOUBLE), "use move_reg for int types");
|
|
if (dst_type == src_type) {
|
|
ldr_if_needed(dst, src); // Just move all 64 bits.
|
|
} else {
|
|
switch (dst_type) {
|
|
case T_FLOAT:
|
|
assert(src_type == T_DOUBLE, "invalid float type combination");
|
|
z_ledbr(dst, src);
|
|
return;
|
|
case T_DOUBLE:
|
|
assert(src_type == T_FLOAT, "invalid float type combination");
|
|
z_ldebr(dst, src);
|
|
return;
|
|
default:
|
|
assert(false, "non-float dst type");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Optimized emitter for reg to mem operations.
|
|
// Uses modern instructions if running on modern hardware, classic instructions
|
|
// otherwise. Prefers (usually shorter) classic instructions if applicable.
|
|
// Data register (reg) cannot be used as work register.
|
|
//
|
|
// Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
|
|
// CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
|
|
void MacroAssembler::freg2mem_opt(FloatRegister reg,
|
|
int64_t disp,
|
|
Register index,
|
|
Register base,
|
|
void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
|
|
void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
|
|
Register scratch) {
|
|
index = (index == noreg) ? Z_R0 : index;
|
|
if (Displacement::is_shortDisp(disp)) {
|
|
(this->*classic)(reg, disp, index, base);
|
|
} else {
|
|
if (Displacement::is_validDisp(disp)) {
|
|
(this->*modern)(reg, disp, index, base);
|
|
} else {
|
|
if (scratch != Z_R0 && scratch != Z_R1) {
|
|
(this->*modern)(reg, disp, index, base); // Will fail with disp out of range.
|
|
} else {
|
|
if (scratch != Z_R0) { // scratch == Z_R1
|
|
if ((scratch == index) || (index == base)) {
|
|
(this->*modern)(reg, disp, index, base); // Will fail with disp out of range.
|
|
} else {
|
|
add2reg(scratch, disp, base);
|
|
(this->*classic)(reg, 0, index, scratch);
|
|
if (base == scratch) {
|
|
add2reg(base, -disp); // Restore base.
|
|
}
|
|
}
|
|
} else { // scratch == Z_R0
|
|
z_lgr(scratch, base);
|
|
add2reg(base, disp);
|
|
(this->*classic)(reg, 0, index, base);
|
|
z_lgr(base, scratch); // Restore base.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::freg2mem_opt(FloatRegister reg, const Address &a, bool is_double) {
|
|
if (is_double) {
|
|
freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stdy), CLASSIC_FFUN(z_std));
|
|
} else {
|
|
freg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_stey), CLASSIC_FFUN(z_ste));
|
|
}
|
|
}
|
|
|
|
// Optimized emitter for mem to reg operations.
|
|
// Uses modern instructions if running on modern hardware, classic instructions
|
|
// otherwise. Prefers (usually shorter) classic instructions if applicable.
|
|
// data register (reg) cannot be used as work register.
|
|
//
|
|
// Don't rely on register locking, instead pass a scratch register (Z_R0 by default).
|
|
// CAUTION! Passing registers >= Z_R2 may produce bad results on old CPUs!
|
|
void MacroAssembler::mem2freg_opt(FloatRegister reg,
|
|
int64_t disp,
|
|
Register index,
|
|
Register base,
|
|
void (MacroAssembler::*modern) (FloatRegister, int64_t, Register, Register),
|
|
void (MacroAssembler::*classic)(FloatRegister, int64_t, Register, Register),
|
|
Register scratch) {
|
|
index = (index == noreg) ? Z_R0 : index;
|
|
if (Displacement::is_shortDisp(disp)) {
|
|
(this->*classic)(reg, disp, index, base);
|
|
} else {
|
|
if (Displacement::is_validDisp(disp)) {
|
|
(this->*modern)(reg, disp, index, base);
|
|
} else {
|
|
if (scratch != Z_R0 && scratch != Z_R1) {
|
|
(this->*modern)(reg, disp, index, base); // Will fail with disp out of range.
|
|
} else {
|
|
if (scratch != Z_R0) { // scratch == Z_R1
|
|
if ((scratch == index) || (index == base)) {
|
|
(this->*modern)(reg, disp, index, base); // Will fail with disp out of range.
|
|
} else {
|
|
add2reg(scratch, disp, base);
|
|
(this->*classic)(reg, 0, index, scratch);
|
|
if (base == scratch) {
|
|
add2reg(base, -disp); // Restore base.
|
|
}
|
|
}
|
|
} else { // scratch == Z_R0
|
|
z_lgr(scratch, base);
|
|
add2reg(base, disp);
|
|
(this->*classic)(reg, 0, index, base);
|
|
z_lgr(base, scratch); // Restore base.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::mem2freg_opt(FloatRegister reg, const Address &a, bool is_double) {
|
|
if (is_double) {
|
|
mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ldy), CLASSIC_FFUN(z_ld));
|
|
} else {
|
|
mem2freg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_FFUN(z_ley), CLASSIC_FFUN(z_le));
|
|
}
|
|
}
|
|
|
|
// Optimized emitter for reg to mem operations.
|
|
// Uses modern instructions if running on modern hardware, classic instructions
|
|
// otherwise. Prefers (usually shorter) classic instructions if applicable.
|
|
// Data register (reg) cannot be used as work register.
|
|
//
|
|
// Don't rely on register locking, instead pass a scratch register
|
|
// (Z_R0 by default)
|
|
// CAUTION! passing registers >= Z_R2 may produce bad results on old CPUs!
|
|
void MacroAssembler::reg2mem_opt(Register reg,
|
|
int64_t disp,
|
|
Register index,
|
|
Register base,
|
|
void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
|
|
void (MacroAssembler::*classic)(Register, int64_t, Register, Register),
|
|
Register scratch) {
|
|
index = (index == noreg) ? Z_R0 : index;
|
|
if (Displacement::is_shortDisp(disp)) {
|
|
(this->*classic)(reg, disp, index, base);
|
|
} else {
|
|
if (Displacement::is_validDisp(disp)) {
|
|
(this->*modern)(reg, disp, index, base);
|
|
} else {
|
|
if (scratch != Z_R0 && scratch != Z_R1) {
|
|
(this->*modern)(reg, disp, index, base); // Will fail with disp out of range.
|
|
} else {
|
|
if (scratch != Z_R0) { // scratch == Z_R1
|
|
if ((scratch == index) || (index == base)) {
|
|
(this->*modern)(reg, disp, index, base); // Will fail with disp out of range.
|
|
} else {
|
|
add2reg(scratch, disp, base);
|
|
(this->*classic)(reg, 0, index, scratch);
|
|
if (base == scratch) {
|
|
add2reg(base, -disp); // Restore base.
|
|
}
|
|
}
|
|
} else { // scratch == Z_R0
|
|
if ((scratch == reg) || (scratch == base) || (reg == base)) {
|
|
(this->*modern)(reg, disp, index, base); // Will fail with disp out of range.
|
|
} else {
|
|
z_lgr(scratch, base);
|
|
add2reg(base, disp);
|
|
(this->*classic)(reg, 0, index, base);
|
|
z_lgr(base, scratch); // Restore base.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int MacroAssembler::reg2mem_opt(Register reg, const Address &a, bool is_double) {
|
|
int store_offset = offset();
|
|
if (is_double) {
|
|
reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_stg), CLASSIC_IFUN(z_stg));
|
|
} else {
|
|
reg2mem_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_sty), CLASSIC_IFUN(z_st));
|
|
}
|
|
return store_offset;
|
|
}
|
|
|
|
// Optimized emitter for mem to reg operations.
|
|
// Uses modern instructions if running on modern hardware, classic instructions
|
|
// otherwise. Prefers (usually shorter) classic instructions if applicable.
|
|
// Data register (reg) will be used as work register where possible.
|
|
void MacroAssembler::mem2reg_opt(Register reg,
|
|
int64_t disp,
|
|
Register index,
|
|
Register base,
|
|
void (MacroAssembler::*modern) (Register, int64_t, Register, Register),
|
|
void (MacroAssembler::*classic)(Register, int64_t, Register, Register)) {
|
|
index = (index == noreg) ? Z_R0 : index;
|
|
if (Displacement::is_shortDisp(disp)) {
|
|
(this->*classic)(reg, disp, index, base);
|
|
} else {
|
|
if (Displacement::is_validDisp(disp)) {
|
|
(this->*modern)(reg, disp, index, base);
|
|
} else {
|
|
if ((reg == index) && (reg == base)) {
|
|
z_sllg(reg, reg, 1);
|
|
add2reg(reg, disp);
|
|
(this->*classic)(reg, 0, noreg, reg);
|
|
} else if ((reg == index) && (reg != Z_R0)) {
|
|
add2reg(reg, disp);
|
|
(this->*classic)(reg, 0, reg, base);
|
|
} else if (reg == base) {
|
|
add2reg(reg, disp);
|
|
(this->*classic)(reg, 0, index, reg);
|
|
} else if (reg != Z_R0) {
|
|
add2reg(reg, disp, base);
|
|
(this->*classic)(reg, 0, index, reg);
|
|
} else { // reg == Z_R0 && reg != base here
|
|
add2reg(base, disp);
|
|
(this->*classic)(reg, 0, index, base);
|
|
add2reg(base, -disp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::mem2reg_opt(Register reg, const Address &a, bool is_double) {
|
|
if (is_double) {
|
|
z_lg(reg, a);
|
|
} else {
|
|
mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_ly), CLASSIC_IFUN(z_l));
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::mem2reg_signed_opt(Register reg, const Address &a) {
|
|
mem2reg_opt(reg, a.disp20(), a.indexOrR0(), a.baseOrR0(), MODERN_IFUN(z_lgf), CLASSIC_IFUN(z_lgf));
|
|
}
|
|
|
|
void MacroAssembler::and_imm(Register r, long mask,
|
|
Register tmp /* = Z_R0 */,
|
|
bool wide /* = false */) {
|
|
assert(wide || Immediate::is_simm32(mask), "mask value too large");
|
|
|
|
if (!wide) {
|
|
z_nilf(r, mask);
|
|
return;
|
|
}
|
|
|
|
assert(r != tmp, " need a different temporary register !");
|
|
load_const_optimized(tmp, mask);
|
|
z_ngr(r, tmp);
|
|
}
|
|
|
|
// Calculate the 1's complement.
|
|
// Note: The condition code is neither preserved nor correctly set by this code!!!
|
|
// Note: (wide == false) does not protect the high order half of the target register
|
|
// from alteration. It only serves as optimization hint for 32-bit results.
|
|
void MacroAssembler::not_(Register r1, Register r2, bool wide) {
|
|
|
|
if ((r2 == noreg) || (r2 == r1)) { // Calc 1's complement in place.
|
|
z_xilf(r1, -1);
|
|
if (wide) {
|
|
z_xihf(r1, -1);
|
|
}
|
|
} else { // Distinct src and dst registers.
|
|
if (VM_Version::has_DistinctOpnds()) {
|
|
load_const_optimized(r1, -1);
|
|
z_xgrk(r1, r2, r1);
|
|
} else {
|
|
if (wide) {
|
|
z_lgr(r1, r2);
|
|
z_xilf(r1, -1);
|
|
z_xihf(r1, -1);
|
|
} else {
|
|
z_lr(r1, r2);
|
|
z_xilf(r1, -1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned long MacroAssembler::create_mask(int lBitPos, int rBitPos) {
|
|
assert(lBitPos >= 0, "zero is leftmost bit position");
|
|
assert(rBitPos <= 63, "63 is rightmost bit position");
|
|
assert(lBitPos <= rBitPos, "inverted selection interval");
|
|
return (lBitPos == 0 ? (unsigned long)(-1L) : ((1UL<<(63-lBitPos+1))-1)) & (~((1UL<<(63-rBitPos))-1));
|
|
}
|
|
|
|
// Helper function for the "Rotate_then_<logicalOP>" emitters.
|
|
// Rotate src, then mask register contents such that only bits in range survive.
|
|
// For oneBits == false, all bits not in range are set to 0. Useful for deleting all bits outside range.
|
|
// For oneBits == true, all bits not in range are set to 1. Useful for preserving all bits outside range.
|
|
// The caller must ensure that the selected range only contains bits with defined value.
|
|
void MacroAssembler::rotate_then_mask(Register dst, Register src, int lBitPos, int rBitPos,
|
|
int nRotate, bool src32bit, bool dst32bit, bool oneBits) {
|
|
assert(!(dst32bit && lBitPos < 32), "selection interval out of range for int destination");
|
|
bool sll4rll = (nRotate >= 0) && (nRotate <= (63-rBitPos)); // Substitute SLL(G) for RLL(G).
|
|
bool srl4rll = (nRotate < 0) && (-nRotate <= lBitPos); // Substitute SRL(G) for RLL(G).
|
|
// Pre-determine which parts of dst will be zero after shift/rotate.
|
|
bool llZero = sll4rll && (nRotate >= 16);
|
|
bool lhZero = (sll4rll && (nRotate >= 32)) || (srl4rll && (nRotate <= -48));
|
|
bool lfZero = llZero && lhZero;
|
|
bool hlZero = (sll4rll && (nRotate >= 48)) || (srl4rll && (nRotate <= -32));
|
|
bool hhZero = (srl4rll && (nRotate <= -16));
|
|
bool hfZero = hlZero && hhZero;
|
|
|
|
// rotate then mask src operand.
|
|
// if oneBits == true, all bits outside selected range are 1s.
|
|
// if oneBits == false, all bits outside selected range are 0s.
|
|
if (src32bit) { // There might be garbage in the upper 32 bits which will get masked away.
|
|
if (dst32bit) {
|
|
z_rll(dst, src, nRotate); // Copy and rotate, upper half of reg remains undisturbed.
|
|
} else {
|
|
if (sll4rll) { z_sllg(dst, src, nRotate); }
|
|
else if (srl4rll) { z_srlg(dst, src, -nRotate); }
|
|
else { z_rllg(dst, src, nRotate); }
|
|
}
|
|
} else {
|
|
if (sll4rll) { z_sllg(dst, src, nRotate); }
|
|
else if (srl4rll) { z_srlg(dst, src, -nRotate); }
|
|
else { z_rllg(dst, src, nRotate); }
|
|
}
|
|
|
|
unsigned long range_mask = create_mask(lBitPos, rBitPos);
|
|
unsigned int range_mask_h = (unsigned int)(range_mask >> 32);
|
|
unsigned int range_mask_l = (unsigned int)range_mask;
|
|
unsigned short range_mask_hh = (unsigned short)(range_mask >> 48);
|
|
unsigned short range_mask_hl = (unsigned short)(range_mask >> 32);
|
|
unsigned short range_mask_lh = (unsigned short)(range_mask >> 16);
|
|
unsigned short range_mask_ll = (unsigned short)range_mask;
|
|
// Works for z9 and newer H/W.
|
|
if (oneBits) {
|
|
if ((~range_mask_l) != 0) { z_oilf(dst, ~range_mask_l); } // All bits outside range become 1s.
|
|
if (((~range_mask_h) != 0) && !dst32bit) { z_oihf(dst, ~range_mask_h); }
|
|
} else {
|
|
// All bits outside range become 0s
|
|
if (((~range_mask_l) != 0) && !lfZero) {
|
|
z_nilf(dst, range_mask_l);
|
|
}
|
|
if (((~range_mask_h) != 0) && !dst32bit && !hfZero) {
|
|
z_nihf(dst, range_mask_h);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Rotate src, then insert selected range from rotated src into dst.
|
|
// Clear dst before, if requested.
|
|
void MacroAssembler::rotate_then_insert(Register dst, Register src, int lBitPos, int rBitPos,
|
|
int nRotate, bool clear_dst) {
|
|
// This version does not depend on src being zero-extended int2long.
|
|
nRotate &= 0x003f; // For risbg, pretend it's an unsigned value.
|
|
z_risbg(dst, src, lBitPos, rBitPos, nRotate, clear_dst); // Rotate, then insert selected, clear the rest.
|
|
}
|
|
|
|
// Rotate src, then and selected range from rotated src into dst.
|
|
// Set condition code only if so requested. Otherwise it is unpredictable.
|
|
// See performance note in macroAssembler_s390.hpp for important information.
|
|
void MacroAssembler::rotate_then_and(Register dst, Register src, int lBitPos, int rBitPos,
|
|
int nRotate, bool test_only) {
|
|
guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
|
|
// This version does not depend on src being zero-extended int2long.
|
|
nRotate &= 0x003f; // For risbg, pretend it's an unsigned value.
|
|
z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
|
|
}
|
|
|
|
// Rotate src, then or selected range from rotated src into dst.
|
|
// Set condition code only if so requested. Otherwise it is unpredictable.
|
|
// See performance note in macroAssembler_s390.hpp for important information.
|
|
void MacroAssembler::rotate_then_or(Register dst, Register src, int lBitPos, int rBitPos,
|
|
int nRotate, bool test_only) {
|
|
guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
|
|
// This version does not depend on src being zero-extended int2long.
|
|
nRotate &= 0x003f; // For risbg, pretend it's an unsigned value.
|
|
z_rosbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
|
|
}
|
|
|
|
// Rotate src, then xor selected range from rotated src into dst.
|
|
// Set condition code only if so requested. Otherwise it is unpredictable.
|
|
// See performance note in macroAssembler_s390.hpp for important information.
|
|
void MacroAssembler::rotate_then_xor(Register dst, Register src, int lBitPos, int rBitPos,
|
|
int nRotate, bool test_only) {
|
|
guarantee(!test_only, "Emitter not fit for test_only instruction variant.");
|
|
// This version does not depend on src being zero-extended int2long.
|
|
nRotate &= 0x003f; // For risbg, pretend it's an unsigned value.
|
|
z_rxsbg(dst, src, lBitPos, rBitPos, nRotate, test_only); // Rotate, then xor selected.
|
|
}
|
|
|
|
void MacroAssembler::add64(Register r1, RegisterOrConstant inc) {
|
|
if (inc.is_register()) {
|
|
z_agr(r1, inc.as_register());
|
|
} else { // constant
|
|
intptr_t imm = inc.as_constant();
|
|
add2reg(r1, imm);
|
|
}
|
|
}
|
|
// Helper function to multiply the 64bit contents of a register by a 16bit constant.
|
|
// The optimization tries to avoid the mghi instruction, since it uses the FPU for
|
|
// calculation and is thus rather slow.
|
|
//
|
|
// There is no handling for special cases, e.g. cval==0 or cval==1.
|
|
//
|
|
// Returns len of generated code block.
|
|
unsigned int MacroAssembler::mul_reg64_const16(Register rval, Register work, int cval) {
|
|
int block_start = offset();
|
|
|
|
bool sign_flip = cval < 0;
|
|
cval = sign_flip ? -cval : cval;
|
|
|
|
BLOCK_COMMENT("Reg64*Con16 {");
|
|
|
|
int bit1 = cval & -cval;
|
|
if (bit1 == cval) {
|
|
z_sllg(rval, rval, exact_log2(bit1));
|
|
if (sign_flip) { z_lcgr(rval, rval); }
|
|
} else {
|
|
int bit2 = (cval-bit1) & -(cval-bit1);
|
|
if ((bit1+bit2) == cval) {
|
|
z_sllg(work, rval, exact_log2(bit1));
|
|
z_sllg(rval, rval, exact_log2(bit2));
|
|
z_agr(rval, work);
|
|
if (sign_flip) { z_lcgr(rval, rval); }
|
|
} else {
|
|
if (sign_flip) { z_mghi(rval, -cval); }
|
|
else { z_mghi(rval, cval); }
|
|
}
|
|
}
|
|
BLOCK_COMMENT("} Reg64*Con16");
|
|
|
|
int block_end = offset();
|
|
return block_end - block_start;
|
|
}
|
|
|
|
// Generic operation r1 := r2 + imm.
|
|
//
|
|
// Should produce the best code for each supported CPU version.
|
|
// r2 == noreg yields r1 := r1 + imm
|
|
// imm == 0 emits either no instruction or r1 := r2 !
|
|
// NOTES: 1) Don't use this function where fixed sized
|
|
// instruction sequences are required!!!
|
|
// 2) Don't use this function if condition code
|
|
// setting is required!
|
|
// 3) Despite being declared as int64_t, the parameter imm
|
|
// must be a simm_32 value (= signed 32-bit integer).
|
|
void MacroAssembler::add2reg(Register r1, int64_t imm, Register r2) {
|
|
assert(Immediate::is_simm32(imm), "probably an implicit conversion went wrong");
|
|
|
|
if (r2 == noreg) { r2 = r1; }
|
|
|
|
// Handle special case imm == 0.
|
|
if (imm == 0) {
|
|
lgr_if_needed(r1, r2);
|
|
// Nothing else to do.
|
|
return;
|
|
}
|
|
|
|
if (!PreferLAoverADD || (r2 == Z_R0)) {
|
|
bool distinctOpnds = VM_Version::has_DistinctOpnds();
|
|
|
|
// Can we encode imm in 16 bits signed?
|
|
if (Immediate::is_simm16(imm)) {
|
|
if (r1 == r2) {
|
|
z_aghi(r1, imm);
|
|
return;
|
|
}
|
|
if (distinctOpnds) {
|
|
z_aghik(r1, r2, imm);
|
|
return;
|
|
}
|
|
z_lgr(r1, r2);
|
|
z_aghi(r1, imm);
|
|
return;
|
|
}
|
|
} else {
|
|
// Can we encode imm in 12 bits unsigned?
|
|
if (Displacement::is_shortDisp(imm)) {
|
|
z_la(r1, imm, r2);
|
|
return;
|
|
}
|
|
// Can we encode imm in 20 bits signed?
|
|
if (Displacement::is_validDisp(imm)) {
|
|
// Always use LAY instruction, so we don't need the tmp register.
|
|
z_lay(r1, imm, r2);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
// Can handle it (all possible values) with long immediates.
|
|
lgr_if_needed(r1, r2);
|
|
z_agfi(r1, imm);
|
|
}
|
|
|
|
// Generic operation r := b + x + d
|
|
//
|
|
// Addition of several operands with address generation semantics - sort of:
|
|
// - no restriction on the registers. Any register will do for any operand.
|
|
// - x == noreg: operand will be disregarded.
|
|
// - b == noreg: will use (contents of) result reg as operand (r := r + d).
|
|
// - x == Z_R0: just disregard
|
|
// - b == Z_R0: use as operand. This is not address generation semantics!!!
|
|
//
|
|
// The same restrictions as on add2reg() are valid!!!
|
|
void MacroAssembler::add2reg_with_index(Register r, int64_t d, Register x, Register b) {
|
|
assert(Immediate::is_simm32(d), "probably an implicit conversion went wrong");
|
|
|
|
if (x == noreg) { x = Z_R0; }
|
|
if (b == noreg) { b = r; }
|
|
|
|
// Handle special case x == R0.
|
|
if (x == Z_R0) {
|
|
// Can simply add the immediate value to the base register.
|
|
add2reg(r, d, b);
|
|
return;
|
|
}
|
|
|
|
if (!PreferLAoverADD || (b == Z_R0)) {
|
|
bool distinctOpnds = VM_Version::has_DistinctOpnds();
|
|
// Handle special case d == 0.
|
|
if (d == 0) {
|
|
if (b == x) { z_sllg(r, b, 1); return; }
|
|
if (r == x) { z_agr(r, b); return; }
|
|
if (r == b) { z_agr(r, x); return; }
|
|
if (distinctOpnds) { z_agrk(r, x, b); return; }
|
|
z_lgr(r, b);
|
|
z_agr(r, x);
|
|
} else {
|
|
if (x == b) { z_sllg(r, x, 1); }
|
|
else if (r == x) { z_agr(r, b); }
|
|
else if (r == b) { z_agr(r, x); }
|
|
else if (distinctOpnds) { z_agrk(r, x, b); }
|
|
else {
|
|
z_lgr(r, b);
|
|
z_agr(r, x);
|
|
}
|
|
add2reg(r, d);
|
|
}
|
|
} else {
|
|
// Can we encode imm in 12 bits unsigned?
|
|
if (Displacement::is_shortDisp(d)) {
|
|
z_la(r, d, x, b);
|
|
return;
|
|
}
|
|
// Can we encode imm in 20 bits signed?
|
|
if (Displacement::is_validDisp(d)) {
|
|
z_lay(r, d, x, b);
|
|
return;
|
|
}
|
|
z_la(r, 0, x, b);
|
|
add2reg(r, d);
|
|
}
|
|
}
|
|
|
|
// Generic emitter (32bit) for direct memory increment.
|
|
// For optimal code, do not specify Z_R0 as temp register.
|
|
void MacroAssembler::add2mem_32(const Address &a, int64_t imm, Register tmp) {
|
|
if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
|
|
z_asi(a, imm);
|
|
} else {
|
|
z_lgf(tmp, a);
|
|
add2reg(tmp, imm);
|
|
z_st(tmp, a);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::add2mem_64(const Address &a, int64_t imm, Register tmp) {
|
|
if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(imm)) {
|
|
z_agsi(a, imm);
|
|
} else {
|
|
z_lg(tmp, a);
|
|
add2reg(tmp, imm);
|
|
z_stg(tmp, a);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
|
|
switch (size_in_bytes) {
|
|
case 8: z_lg(dst, src); break;
|
|
case 4: is_signed ? z_lgf(dst, src) : z_llgf(dst, src); break;
|
|
case 2: is_signed ? z_lgh(dst, src) : z_llgh(dst, src); break;
|
|
case 1: is_signed ? z_lgb(dst, src) : z_llgc(dst, src); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
|
|
switch (size_in_bytes) {
|
|
case 8: z_stg(src, dst); break;
|
|
case 4: z_st(src, dst); break;
|
|
case 2: z_sth(src, dst); break;
|
|
case 1: z_stc(src, dst); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// Split a si20 offset (20bit, signed) into an ui12 offset (12bit, unsigned) and
|
|
// a high-order summand in register tmp.
|
|
//
|
|
// return value: < 0: No split required, si20 actually has property uimm12.
|
|
// >= 0: Split performed. Use return value as uimm12 displacement and
|
|
// tmp as index register.
|
|
int MacroAssembler::split_largeoffset(int64_t si20_offset, Register tmp, bool fixed_codelen, bool accumulate) {
|
|
assert(Immediate::is_simm20(si20_offset), "sanity");
|
|
int lg_off = (int)si20_offset & 0x0fff; // Punch out low-order 12 bits, always positive.
|
|
int ll_off = (int)si20_offset & ~0x0fff; // Force low-order 12 bits to zero.
|
|
assert((Displacement::is_shortDisp(si20_offset) && (ll_off == 0)) ||
|
|
!Displacement::is_shortDisp(si20_offset), "unexpected offset values");
|
|
assert((lg_off+ll_off) == si20_offset, "offset splitup error");
|
|
|
|
Register work = accumulate? Z_R0 : tmp;
|
|
|
|
if (fixed_codelen) { // Len of code = 10 = 4 + 6.
|
|
z_lghi(work, ll_off>>12); // Implicit sign extension.
|
|
z_slag(work, work, 12);
|
|
} else { // Len of code = 0..10.
|
|
if (ll_off == 0) { return -1; }
|
|
// ll_off has 8 significant bits (at most) plus sign.
|
|
if ((ll_off & 0x0000f000) == 0) { // Non-zero bits only in upper halfbyte.
|
|
z_llilh(work, ll_off >> 16);
|
|
if (ll_off < 0) { // Sign-extension required.
|
|
z_lgfr(work, work);
|
|
}
|
|
} else {
|
|
if ((ll_off & 0x000f0000) == 0) { // Non-zero bits only in lower halfbyte.
|
|
z_llill(work, ll_off);
|
|
} else { // Non-zero bits in both halfbytes.
|
|
z_lghi(work, ll_off>>12); // Implicit sign extension.
|
|
z_slag(work, work, 12);
|
|
}
|
|
}
|
|
}
|
|
if (accumulate) { z_algr(tmp, work); } // len of code += 4
|
|
return lg_off;
|
|
}
|
|
|
|
void MacroAssembler::load_float_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
|
|
if (Displacement::is_validDisp(si20)) {
|
|
z_ley(t, si20, a);
|
|
} else {
|
|
// Fixed_codelen = true is a simple way to ensure that the size of load_float_largeoffset
|
|
// does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
|
|
// pool loads).
|
|
bool accumulate = true;
|
|
bool fixed_codelen = true;
|
|
Register work;
|
|
|
|
if (fixed_codelen) {
|
|
z_lgr(tmp, a); // Lgr_if_needed not applicable due to fixed_codelen.
|
|
} else {
|
|
accumulate = (a == tmp);
|
|
}
|
|
work = tmp;
|
|
|
|
int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
|
|
if (disp12 < 0) {
|
|
z_le(t, si20, work);
|
|
} else {
|
|
if (accumulate) {
|
|
z_le(t, disp12, work);
|
|
} else {
|
|
z_le(t, disp12, work, a);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::load_double_largeoffset(FloatRegister t, int64_t si20, Register a, Register tmp) {
|
|
if (Displacement::is_validDisp(si20)) {
|
|
z_ldy(t, si20, a);
|
|
} else {
|
|
// Fixed_codelen = true is a simple way to ensure that the size of load_double_largeoffset
|
|
// does not depend on si20 (scratch buffer emit size == code buffer emit size for constant
|
|
// pool loads).
|
|
bool accumulate = true;
|
|
bool fixed_codelen = true;
|
|
Register work;
|
|
|
|
if (fixed_codelen) {
|
|
z_lgr(tmp, a); // Lgr_if_needed not applicable due to fixed_codelen.
|
|
} else {
|
|
accumulate = (a == tmp);
|
|
}
|
|
work = tmp;
|
|
|
|
int disp12 = split_largeoffset(si20, work, fixed_codelen, accumulate);
|
|
if (disp12 < 0) {
|
|
z_ld(t, si20, work);
|
|
} else {
|
|
if (accumulate) {
|
|
z_ld(t, disp12, work);
|
|
} else {
|
|
z_ld(t, disp12, work, a);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// PCrelative TOC access.
|
|
// Returns distance (in bytes) from current position to start of consts section.
|
|
// Returns 0 (zero) if no consts section exists or if it has size zero.
|
|
long MacroAssembler::toc_distance() {
|
|
CodeSection* cs = code()->consts();
|
|
return (long)((cs != NULL) ? cs->start()-pc() : 0);
|
|
}
|
|
|
|
// Implementation on x86/sparc assumes that constant and instruction section are
|
|
// adjacent, but this doesn't hold. Two special situations may occur, that we must
|
|
// be able to handle:
|
|
// 1. const section may be located apart from the inst section.
|
|
// 2. const section may be empty
|
|
// In both cases, we use the const section's start address to compute the "TOC",
|
|
// this seems to occur only temporarily; in the final step we always seem to end up
|
|
// with the pc-relatice variant.
|
|
//
|
|
// PC-relative offset could be +/-2**32 -> use long for disp
|
|
// Furthermore: makes no sense to have special code for
|
|
// adjacent const and inst sections.
|
|
void MacroAssembler::load_toc(Register Rtoc) {
|
|
// Simply use distance from start of const section (should be patched in the end).
|
|
long disp = toc_distance();
|
|
|
|
RelocationHolder rspec = internal_word_Relocation::spec(pc() + disp);
|
|
relocate(rspec);
|
|
z_larl(Rtoc, RelAddr::pcrel_off32(disp)); // Offset is in halfwords.
|
|
}
|
|
|
|
// PCrelative TOC access.
|
|
// Load from anywhere pcrelative (with relocation of load instr)
|
|
void MacroAssembler::load_long_pcrelative(Register Rdst, address dataLocation) {
|
|
address pc = this->pc();
|
|
ptrdiff_t total_distance = dataLocation - pc;
|
|
RelocationHolder rspec = internal_word_Relocation::spec(dataLocation);
|
|
|
|
assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
|
|
assert(total_distance != 0, "sanity");
|
|
|
|
// Some extra safety net.
|
|
if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
|
|
guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
|
|
}
|
|
|
|
(this)->relocate(rspec, relocInfo::pcrel_addr_format);
|
|
z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
|
|
}
|
|
|
|
|
|
// PCrelative TOC access.
|
|
// Load from anywhere pcrelative (with relocation of load instr)
|
|
// loaded addr has to be relocated when added to constant pool.
|
|
void MacroAssembler::load_addr_pcrelative(Register Rdst, address addrLocation) {
|
|
address pc = this->pc();
|
|
ptrdiff_t total_distance = addrLocation - pc;
|
|
RelocationHolder rspec = internal_word_Relocation::spec(addrLocation);
|
|
|
|
assert((total_distance & 0x01L) == 0, "halfword alignment is mandatory");
|
|
|
|
// Some extra safety net.
|
|
if (!RelAddr::is_in_range_of_RelAddr32(total_distance)) {
|
|
guarantee(RelAddr::is_in_range_of_RelAddr32(total_distance), "load_long_pcrelative can't handle distance " INTPTR_FORMAT, total_distance);
|
|
}
|
|
|
|
(this)->relocate(rspec, relocInfo::pcrel_addr_format);
|
|
z_lgrl(Rdst, RelAddr::pcrel_off32(total_distance));
|
|
}
|
|
|
|
// Generic operation: load a value from memory and test.
|
|
// CondCode indicates the sign (<0, ==0, >0) of the loaded value.
|
|
void MacroAssembler::load_and_test_byte(Register dst, const Address &a) {
|
|
z_lb(dst, a);
|
|
z_ltr(dst, dst);
|
|
}
|
|
|
|
void MacroAssembler::load_and_test_short(Register dst, const Address &a) {
|
|
int64_t disp = a.disp20();
|
|
if (Displacement::is_shortDisp(disp)) {
|
|
z_lh(dst, a);
|
|
} else if (Displacement::is_longDisp(disp)) {
|
|
z_lhy(dst, a);
|
|
} else {
|
|
guarantee(false, "displacement out of range");
|
|
}
|
|
z_ltr(dst, dst);
|
|
}
|
|
|
|
void MacroAssembler::load_and_test_int(Register dst, const Address &a) {
|
|
z_lt(dst, a);
|
|
}
|
|
|
|
void MacroAssembler::load_and_test_int2long(Register dst, const Address &a) {
|
|
z_ltgf(dst, a);
|
|
}
|
|
|
|
void MacroAssembler::load_and_test_long(Register dst, const Address &a) {
|
|
z_ltg(dst, a);
|
|
}
|
|
|
|
// Test a bit in memory.
|
|
void MacroAssembler::testbit(const Address &a, unsigned int bit) {
|
|
assert(a.index() == noreg, "no index reg allowed in testbit");
|
|
if (bit <= 7) {
|
|
z_tm(a.disp() + 3, a.base(), 1 << bit);
|
|
} else if (bit <= 15) {
|
|
z_tm(a.disp() + 2, a.base(), 1 << (bit - 8));
|
|
} else if (bit <= 23) {
|
|
z_tm(a.disp() + 1, a.base(), 1 << (bit - 16));
|
|
} else if (bit <= 31) {
|
|
z_tm(a.disp() + 0, a.base(), 1 << (bit - 24));
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// Test a bit in a register. Result is reflected in CC.
|
|
void MacroAssembler::testbit(Register r, unsigned int bitPos) {
|
|
if (bitPos < 16) {
|
|
z_tmll(r, 1U<<bitPos);
|
|
} else if (bitPos < 32) {
|
|
z_tmlh(r, 1U<<(bitPos-16));
|
|
} else if (bitPos < 48) {
|
|
z_tmhl(r, 1U<<(bitPos-32));
|
|
} else if (bitPos < 64) {
|
|
z_tmhh(r, 1U<<(bitPos-48));
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::prefetch_read(Address a) {
|
|
z_pfd(1, a.disp20(), a.indexOrR0(), a.base());
|
|
}
|
|
void MacroAssembler::prefetch_update(Address a) {
|
|
z_pfd(2, a.disp20(), a.indexOrR0(), a.base());
|
|
}
|
|
|
|
// Clear a register, i.e. load const zero into reg.
|
|
// Return len (in bytes) of generated instruction(s).
|
|
// whole_reg: Clear 64 bits if true, 32 bits otherwise.
|
|
// set_cc: Use instruction that sets the condition code, if true.
|
|
int MacroAssembler::clear_reg(Register r, bool whole_reg, bool set_cc) {
|
|
unsigned int start_off = offset();
|
|
if (whole_reg) {
|
|
set_cc ? z_xgr(r, r) : z_laz(r, 0, Z_R0);
|
|
} else { // Only 32bit register.
|
|
set_cc ? z_xr(r, r) : z_lhi(r, 0);
|
|
}
|
|
return offset() - start_off;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
int MacroAssembler::preset_reg(Register r, unsigned long pattern, int pattern_len) {
|
|
switch (pattern_len) {
|
|
case 1:
|
|
pattern = (pattern & 0x000000ff) | ((pattern & 0x000000ff)<<8);
|
|
case 2:
|
|
pattern = (pattern & 0x0000ffff) | ((pattern & 0x0000ffff)<<16);
|
|
case 4:
|
|
pattern = (pattern & 0xffffffffL) | ((pattern & 0xffffffffL)<<32);
|
|
case 8:
|
|
return load_const_optimized_rtn_len(r, pattern, true);
|
|
break;
|
|
default:
|
|
guarantee(false, "preset_reg: bad len");
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// addr: Address descriptor of memory to clear index register will not be used !
|
|
// size: Number of bytes to clear.
|
|
// !!! DO NOT USE THEM FOR ATOMIC MEMORY CLEARING !!!
|
|
// !!! Use store_const() instead !!!
|
|
void MacroAssembler::clear_mem(const Address& addr, unsigned size) {
|
|
guarantee(size <= 256, "MacroAssembler::clear_mem: size too large");
|
|
|
|
if (size == 1) {
|
|
z_mvi(addr, 0);
|
|
return;
|
|
}
|
|
|
|
switch (size) {
|
|
case 2: z_mvhhi(addr, 0);
|
|
return;
|
|
case 4: z_mvhi(addr, 0);
|
|
return;
|
|
case 8: z_mvghi(addr, 0);
|
|
return;
|
|
default: ; // Fallthru to xc.
|
|
}
|
|
|
|
z_xc(addr, size, addr);
|
|
}
|
|
|
|
void MacroAssembler::align(int modulus) {
|
|
while (offset() % modulus != 0) z_nop();
|
|
}
|
|
|
|
// Special version for non-relocateable code if required alignment
|
|
// is larger than CodeEntryAlignment.
|
|
void MacroAssembler::align_address(int modulus) {
|
|
while ((uintptr_t)pc() % modulus != 0) z_nop();
|
|
}
|
|
|
|
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
|
|
Register temp_reg,
|
|
int64_t extra_slot_offset) {
|
|
// On Z, we can have index and disp in an Address. So don't call argument_offset,
|
|
// which issues an unnecessary add instruction.
|
|
int stackElementSize = Interpreter::stackElementSize;
|
|
int64_t offset = extra_slot_offset * stackElementSize;
|
|
const Register argbase = Z_esp;
|
|
if (arg_slot.is_constant()) {
|
|
offset += arg_slot.as_constant() * stackElementSize;
|
|
return Address(argbase, offset);
|
|
}
|
|
// else
|
|
assert(temp_reg != noreg, "must specify");
|
|
assert(temp_reg != Z_ARG1, "base and index are conflicting");
|
|
z_sllg(temp_reg, arg_slot.as_register(), exact_log2(stackElementSize)); // tempreg = arg_slot << 3
|
|
return Address(argbase, temp_reg, offset);
|
|
}
|
|
|
|
|
|
//===================================================================
|
|
//=== START C O N S T A N T S I N C O D E S T R E A M ===
|
|
//===================================================================
|
|
//=== P A T CH A B L E C O N S T A N T S ===
|
|
//===================================================================
|
|
|
|
|
|
//---------------------------------------------------
|
|
// Load (patchable) constant into register
|
|
//---------------------------------------------------
|
|
|
|
|
|
// Load absolute address (and try to optimize).
|
|
// Note: This method is usable only for position-fixed code,
|
|
// referring to a position-fixed target location.
|
|
// If not so, relocations and patching must be used.
|
|
void MacroAssembler::load_absolute_address(Register d, address addr) {
|
|
assert(addr != NULL, "should not happen");
|
|
BLOCK_COMMENT("load_absolute_address:");
|
|
if (addr == NULL) {
|
|
z_larl(d, pc()); // Dummy emit for size calc.
|
|
return;
|
|
}
|
|
|
|
if (RelAddr::is_in_range_of_RelAddr32(addr, pc())) {
|
|
z_larl(d, addr);
|
|
return;
|
|
}
|
|
|
|
load_const_optimized(d, (long)addr);
|
|
}
|
|
|
|
// Load a 64bit constant.
|
|
// Patchable code sequence, but not atomically patchable.
|
|
// Make sure to keep code size constant -> no value-dependent optimizations.
|
|
// Do not kill condition code.
|
|
void MacroAssembler::load_const(Register t, long x) {
|
|
Assembler::z_iihf(t, (int)(x >> 32));
|
|
Assembler::z_iilf(t, (int)(x & 0xffffffff));
|
|
}
|
|
|
|
// Load a 32bit constant into a 64bit register, sign-extend or zero-extend.
|
|
// Patchable code sequence, but not atomically patchable.
|
|
// Make sure to keep code size constant -> no value-dependent optimizations.
|
|
// Do not kill condition code.
|
|
void MacroAssembler::load_const_32to64(Register t, int64_t x, bool sign_extend) {
|
|
if (sign_extend) { Assembler::z_lgfi(t, x); }
|
|
else { Assembler::z_llilf(t, x); }
|
|
}
|
|
|
|
// Load narrow oop constant, no decompression.
|
|
void MacroAssembler::load_narrow_oop(Register t, narrowOop a) {
|
|
assert(UseCompressedOops, "must be on to call this method");
|
|
load_const_32to64(t, a, false /*sign_extend*/);
|
|
}
|
|
|
|
// Load narrow klass constant, compression required.
|
|
void MacroAssembler::load_narrow_klass(Register t, Klass* k) {
|
|
assert(UseCompressedClassPointers, "must be on to call this method");
|
|
narrowKlass encoded_k = Klass::encode_klass(k);
|
|
load_const_32to64(t, encoded_k, false /*sign_extend*/);
|
|
}
|
|
|
|
//------------------------------------------------------
|
|
// Compare (patchable) constant with register.
|
|
//------------------------------------------------------
|
|
|
|
// Compare narrow oop in reg with narrow oop constant, no decompression.
|
|
void MacroAssembler::compare_immediate_narrow_oop(Register oop1, narrowOop oop2) {
|
|
assert(UseCompressedOops, "must be on to call this method");
|
|
|
|
Assembler::z_clfi(oop1, oop2);
|
|
}
|
|
|
|
// Compare narrow oop in reg with narrow oop constant, no decompression.
|
|
void MacroAssembler::compare_immediate_narrow_klass(Register klass1, Klass* klass2) {
|
|
assert(UseCompressedClassPointers, "must be on to call this method");
|
|
narrowKlass encoded_k = Klass::encode_klass(klass2);
|
|
|
|
Assembler::z_clfi(klass1, encoded_k);
|
|
}
|
|
|
|
//----------------------------------------------------------
|
|
// Check which kind of load_constant we have here.
|
|
//----------------------------------------------------------
|
|
|
|
// Detection of CPU version dependent load_const sequence.
|
|
// The detection is valid only for code sequences generated by load_const,
|
|
// not load_const_optimized.
|
|
bool MacroAssembler::is_load_const(address a) {
|
|
unsigned long inst1, inst2;
|
|
unsigned int len1, len2;
|
|
|
|
len1 = get_instruction(a, &inst1);
|
|
len2 = get_instruction(a + len1, &inst2);
|
|
|
|
return is_z_iihf(inst1) && is_z_iilf(inst2);
|
|
}
|
|
|
|
// Detection of CPU version dependent load_const_32to64 sequence.
|
|
// Mostly used for narrow oops and narrow Klass pointers.
|
|
// The detection is valid only for code sequences generated by load_const_32to64.
|
|
bool MacroAssembler::is_load_const_32to64(address pos) {
|
|
unsigned long inst1, inst2;
|
|
unsigned int len1;
|
|
|
|
len1 = get_instruction(pos, &inst1);
|
|
return is_z_llilf(inst1);
|
|
}
|
|
|
|
// Detection of compare_immediate_narrow sequence.
|
|
// The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
|
|
bool MacroAssembler::is_compare_immediate32(address pos) {
|
|
return is_equal(pos, CLFI_ZOPC, RIL_MASK);
|
|
}
|
|
|
|
// Detection of compare_immediate_narrow sequence.
|
|
// The detection is valid only for code sequences generated by compare_immediate_narrow_oop.
|
|
bool MacroAssembler::is_compare_immediate_narrow_oop(address pos) {
|
|
return is_compare_immediate32(pos);
|
|
}
|
|
|
|
// Detection of compare_immediate_narrow sequence.
|
|
// The detection is valid only for code sequences generated by compare_immediate_narrow_klass.
|
|
bool MacroAssembler::is_compare_immediate_narrow_klass(address pos) {
|
|
return is_compare_immediate32(pos);
|
|
}
|
|
|
|
//-----------------------------------
|
|
// patch the load_constant
|
|
//-----------------------------------
|
|
|
|
// CPU-version dependend patching of load_const.
|
|
void MacroAssembler::patch_const(address a, long x) {
|
|
assert(is_load_const(a), "not a load of a constant");
|
|
set_imm32((address)a, (int) ((x >> 32) & 0xffffffff));
|
|
set_imm32((address)(a + 6), (int)(x & 0xffffffff));
|
|
}
|
|
|
|
// Patching the value of CPU version dependent load_const_32to64 sequence.
|
|
// The passed ptr MUST be in compressed format!
|
|
int MacroAssembler::patch_load_const_32to64(address pos, int64_t np) {
|
|
assert(is_load_const_32to64(pos), "not a load of a narrow ptr (oop or klass)");
|
|
|
|
set_imm32(pos, np);
|
|
return 6;
|
|
}
|
|
|
|
// Patching the value of CPU version dependent compare_immediate_narrow sequence.
|
|
// The passed ptr MUST be in compressed format!
|
|
int MacroAssembler::patch_compare_immediate_32(address pos, int64_t np) {
|
|
assert(is_compare_immediate32(pos), "not a compressed ptr compare");
|
|
|
|
set_imm32(pos, np);
|
|
return 6;
|
|
}
|
|
|
|
// Patching the immediate value of CPU version dependent load_narrow_oop sequence.
|
|
// The passed ptr must NOT be in compressed format!
|
|
int MacroAssembler::patch_load_narrow_oop(address pos, oop o) {
|
|
assert(UseCompressedOops, "Can only patch compressed oops");
|
|
|
|
narrowOop no = CompressedOops::encode(o);
|
|
return patch_load_const_32to64(pos, no);
|
|
}
|
|
|
|
// Patching the immediate value of CPU version dependent load_narrow_klass sequence.
|
|
// The passed ptr must NOT be in compressed format!
|
|
int MacroAssembler::patch_load_narrow_klass(address pos, Klass* k) {
|
|
assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
|
|
|
|
narrowKlass nk = Klass::encode_klass(k);
|
|
return patch_load_const_32to64(pos, nk);
|
|
}
|
|
|
|
// Patching the immediate value of CPU version dependent compare_immediate_narrow_oop sequence.
|
|
// The passed ptr must NOT be in compressed format!
|
|
int MacroAssembler::patch_compare_immediate_narrow_oop(address pos, oop o) {
|
|
assert(UseCompressedOops, "Can only patch compressed oops");
|
|
|
|
narrowOop no = CompressedOops::encode(o);
|
|
return patch_compare_immediate_32(pos, no);
|
|
}
|
|
|
|
// Patching the immediate value of CPU version dependent compare_immediate_narrow_klass sequence.
|
|
// The passed ptr must NOT be in compressed format!
|
|
int MacroAssembler::patch_compare_immediate_narrow_klass(address pos, Klass* k) {
|
|
assert(UseCompressedClassPointers, "Can only patch compressed klass pointers");
|
|
|
|
narrowKlass nk = Klass::encode_klass(k);
|
|
return patch_compare_immediate_32(pos, nk);
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// Extract the constant from a load_constant instruction stream.
|
|
//------------------------------------------------------------------------
|
|
|
|
// Get constant from a load_const sequence.
|
|
long MacroAssembler::get_const(address a) {
|
|
assert(is_load_const(a), "not a load of a constant");
|
|
unsigned long x;
|
|
x = (((unsigned long) (get_imm32(a,0) & 0xffffffff)) << 32);
|
|
x |= (((unsigned long) (get_imm32(a,1) & 0xffffffff)));
|
|
return (long) x;
|
|
}
|
|
|
|
//--------------------------------------
|
|
// Store a constant in memory.
|
|
//--------------------------------------
|
|
|
|
// General emitter to move a constant to memory.
|
|
// The store is atomic.
|
|
// o Address must be given in RS format (no index register)
|
|
// o Displacement should be 12bit unsigned for efficiency. 20bit signed also supported.
|
|
// o Constant can be 1, 2, 4, or 8 bytes, signed or unsigned.
|
|
// o Memory slot can be 1, 2, 4, or 8 bytes, signed or unsigned.
|
|
// o Memory slot must be at least as wide as constant, will assert otherwise.
|
|
// o Signed constants will sign-extend, unsigned constants will zero-extend to slot width.
|
|
int MacroAssembler::store_const(const Address &dest, long imm,
|
|
unsigned int lm, unsigned int lc,
|
|
Register scratch) {
|
|
int64_t disp = dest.disp();
|
|
Register base = dest.base();
|
|
assert(!dest.has_index(), "not supported");
|
|
assert((lm==1)||(lm==2)||(lm==4)||(lm==8), "memory length not supported");
|
|
assert((lc==1)||(lc==2)||(lc==4)||(lc==8), "constant length not supported");
|
|
assert(lm>=lc, "memory slot too small");
|
|
assert(lc==8 || Immediate::is_simm(imm, lc*8), "const out of range");
|
|
assert(Displacement::is_validDisp(disp), "displacement out of range");
|
|
|
|
bool is_shortDisp = Displacement::is_shortDisp(disp);
|
|
int store_offset = -1;
|
|
|
|
// For target len == 1 it's easy.
|
|
if (lm == 1) {
|
|
store_offset = offset();
|
|
if (is_shortDisp) {
|
|
z_mvi(disp, base, imm);
|
|
return store_offset;
|
|
} else {
|
|
z_mviy(disp, base, imm);
|
|
return store_offset;
|
|
}
|
|
}
|
|
|
|
// All the "good stuff" takes an unsigned displacement.
|
|
if (is_shortDisp) {
|
|
// NOTE: Cannot use clear_mem for imm==0, because it is not atomic.
|
|
|
|
store_offset = offset();
|
|
switch (lm) {
|
|
case 2: // Lc == 1 handled correctly here, even for unsigned. Instruction does no widening.
|
|
z_mvhhi(disp, base, imm);
|
|
return store_offset;
|
|
case 4:
|
|
if (Immediate::is_simm16(imm)) {
|
|
z_mvhi(disp, base, imm);
|
|
return store_offset;
|
|
}
|
|
break;
|
|
case 8:
|
|
if (Immediate::is_simm16(imm)) {
|
|
z_mvghi(disp, base, imm);
|
|
return store_offset;
|
|
}
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Can't optimize, so load value and store it.
|
|
guarantee(scratch != noreg, " need a scratch register here !");
|
|
if (imm != 0) {
|
|
load_const_optimized(scratch, imm); // Preserves CC anyway.
|
|
} else {
|
|
// Leave CC alone!!
|
|
(void) clear_reg(scratch, true, false); // Indicate unused result.
|
|
}
|
|
|
|
store_offset = offset();
|
|
if (is_shortDisp) {
|
|
switch (lm) {
|
|
case 2:
|
|
z_sth(scratch, disp, Z_R0, base);
|
|
return store_offset;
|
|
case 4:
|
|
z_st(scratch, disp, Z_R0, base);
|
|
return store_offset;
|
|
case 8:
|
|
z_stg(scratch, disp, Z_R0, base);
|
|
return store_offset;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
} else {
|
|
switch (lm) {
|
|
case 2:
|
|
z_sthy(scratch, disp, Z_R0, base);
|
|
return store_offset;
|
|
case 4:
|
|
z_sty(scratch, disp, Z_R0, base);
|
|
return store_offset;
|
|
case 8:
|
|
z_stg(scratch, disp, Z_R0, base);
|
|
return store_offset;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
}
|
|
return -1; // should not reach here
|
|
}
|
|
|
|
//===================================================================
|
|
//=== N O T P A T CH A B L E C O N S T A N T S ===
|
|
//===================================================================
|
|
|
|
// Load constant x into register t with a fast instrcution sequence
|
|
// depending on the bits in x. Preserves CC under all circumstances.
|
|
int MacroAssembler::load_const_optimized_rtn_len(Register t, long x, bool emit) {
|
|
if (x == 0) {
|
|
int len;
|
|
if (emit) {
|
|
len = clear_reg(t, true, false);
|
|
} else {
|
|
len = 4;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
if (Immediate::is_simm16(x)) {
|
|
if (emit) { z_lghi(t, x); }
|
|
return 4;
|
|
}
|
|
|
|
// 64 bit value: | part1 | part2 | part3 | part4 |
|
|
// At least one part is not zero!
|
|
int part1 = ((x >> 32) & 0xffff0000) >> 16;
|
|
int part2 = (x >> 32) & 0x0000ffff;
|
|
int part3 = (x & 0xffff0000) >> 16;
|
|
int part4 = (x & 0x0000ffff);
|
|
|
|
// Lower word only (unsigned).
|
|
if ((part1 == 0) && (part2 == 0)) {
|
|
if (part3 == 0) {
|
|
if (emit) z_llill(t, part4);
|
|
return 4;
|
|
}
|
|
if (part4 == 0) {
|
|
if (emit) z_llilh(t, part3);
|
|
return 4;
|
|
}
|
|
if (emit) z_llilf(t, (int)(x & 0xffffffff));
|
|
return 6;
|
|
}
|
|
|
|
// Upper word only.
|
|
if ((part3 == 0) && (part4 == 0)) {
|
|
if (part1 == 0) {
|
|
if (emit) z_llihl(t, part2);
|
|
return 4;
|
|
}
|
|
if (part2 == 0) {
|
|
if (emit) z_llihh(t, part1);
|
|
return 4;
|
|
}
|
|
if (emit) z_llihf(t, (int)(x >> 32));
|
|
return 6;
|
|
}
|
|
|
|
// Lower word only (signed).
|
|
if ((part1 == 0x0000ffff) && (part2 == 0x0000ffff) && ((part3 & 0x00008000) != 0)) {
|
|
if (emit) z_lgfi(t, (int)(x & 0xffffffff));
|
|
return 6;
|
|
}
|
|
|
|
int len = 0;
|
|
|
|
if ((part1 == 0) || (part2 == 0)) {
|
|
if (part1 == 0) {
|
|
if (emit) z_llihl(t, part2);
|
|
len += 4;
|
|
} else {
|
|
if (emit) z_llihh(t, part1);
|
|
len += 4;
|
|
}
|
|
} else {
|
|
if (emit) z_llihf(t, (int)(x >> 32));
|
|
len += 6;
|
|
}
|
|
|
|
if ((part3 == 0) || (part4 == 0)) {
|
|
if (part3 == 0) {
|
|
if (emit) z_iill(t, part4);
|
|
len += 4;
|
|
} else {
|
|
if (emit) z_iilh(t, part3);
|
|
len += 4;
|
|
}
|
|
} else {
|
|
if (emit) z_iilf(t, (int)(x & 0xffffffff));
|
|
len += 6;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
//=====================================================================
|
|
//=== H I G H E R L E V E L B R A N C H E M I T T E R S ===
|
|
//=====================================================================
|
|
|
|
// Note: In the worst case, one of the scratch registers is destroyed!!!
|
|
void MacroAssembler::compare32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
|
|
// Right operand is constant.
|
|
if (x2.is_constant()) {
|
|
jlong value = x2.as_constant();
|
|
compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/true);
|
|
return;
|
|
}
|
|
|
|
// Right operand is in register.
|
|
compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/true);
|
|
}
|
|
|
|
// Note: In the worst case, one of the scratch registers is destroyed!!!
|
|
void MacroAssembler::compareU32_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
|
|
// Right operand is constant.
|
|
if (x2.is_constant()) {
|
|
jlong value = x2.as_constant();
|
|
compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/false, /*has_sign=*/false);
|
|
return;
|
|
}
|
|
|
|
// Right operand is in register.
|
|
compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/false, /*has_sign=*/false);
|
|
}
|
|
|
|
// Note: In the worst case, one of the scratch registers is destroyed!!!
|
|
void MacroAssembler::compare64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
|
|
// Right operand is constant.
|
|
if (x2.is_constant()) {
|
|
jlong value = x2.as_constant();
|
|
compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/true);
|
|
return;
|
|
}
|
|
|
|
// Right operand is in register.
|
|
compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/true);
|
|
}
|
|
|
|
void MacroAssembler::compareU64_and_branch(Register r1, RegisterOrConstant x2, branch_condition cond, Label& lbl) {
|
|
// Right operand is constant.
|
|
if (x2.is_constant()) {
|
|
jlong value = x2.as_constant();
|
|
compare_and_branch_optimized(r1, value, cond, lbl, /*len64=*/true, /*has_sign=*/false);
|
|
return;
|
|
}
|
|
|
|
// Right operand is in register.
|
|
compare_and_branch_optimized(r1, x2.as_register(), cond, lbl, /*len64=*/true, /*has_sign=*/false);
|
|
}
|
|
|
|
// Generate an optimal branch to the branch target.
|
|
// Optimal means that a relative branch (brc or brcl) is used if the
|
|
// branch distance is short enough. Loading the target address into a
|
|
// register and branching via reg is used as fallback only.
|
|
//
|
|
// Used registers:
|
|
// Z_R1 - work reg. Holds branch target address.
|
|
// Used in fallback case only.
|
|
//
|
|
// This version of branch_optimized is good for cases where the target address is known
|
|
// and constant, i.e. is never changed (no relocation, no patching).
|
|
void MacroAssembler::branch_optimized(Assembler::branch_condition cond, address branch_addr) {
|
|
address branch_origin = pc();
|
|
|
|
if (RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
|
|
z_brc(cond, branch_addr);
|
|
} else if (RelAddr::is_in_range_of_RelAddr32(branch_addr, branch_origin)) {
|
|
z_brcl(cond, branch_addr);
|
|
} else {
|
|
load_const_optimized(Z_R1, branch_addr); // CC must not get killed by load_const_optimized.
|
|
z_bcr(cond, Z_R1);
|
|
}
|
|
}
|
|
|
|
// This version of branch_optimized is good for cases where the target address
|
|
// is potentially not yet known at the time the code is emitted.
|
|
//
|
|
// One very common case is a branch to an unbound label which is handled here.
|
|
// The caller might know (or hope) that the branch distance is short enough
|
|
// to be encoded in a 16bit relative address. In this case he will pass a
|
|
// NearLabel branch_target.
|
|
// Care must be taken with unbound labels. Each call to target(label) creates
|
|
// an entry in the patch queue for that label to patch all references of the label
|
|
// once it gets bound. Those recorded patch locations must be patchable. Otherwise,
|
|
// an assertion fires at patch time.
|
|
void MacroAssembler::branch_optimized(Assembler::branch_condition cond, Label& branch_target) {
|
|
if (branch_target.is_bound()) {
|
|
address branch_addr = target(branch_target);
|
|
branch_optimized(cond, branch_addr);
|
|
} else if (branch_target.is_near()) {
|
|
z_brc(cond, branch_target); // Caller assures that the target will be in range for z_brc.
|
|
} else {
|
|
z_brcl(cond, branch_target); // Let's hope target is in range. Otherwise, we will abort at patch time.
|
|
}
|
|
}
|
|
|
|
// Generate an optimal compare and branch to the branch target.
|
|
// Optimal means that a relative branch (clgrj, brc or brcl) is used if the
|
|
// branch distance is short enough. Loading the target address into a
|
|
// register and branching via reg is used as fallback only.
|
|
//
|
|
// Input:
|
|
// r1 - left compare operand
|
|
// r2 - right compare operand
|
|
void MacroAssembler::compare_and_branch_optimized(Register r1,
|
|
Register r2,
|
|
Assembler::branch_condition cond,
|
|
address branch_addr,
|
|
bool len64,
|
|
bool has_sign) {
|
|
unsigned int casenum = (len64?2:0)+(has_sign?0:1);
|
|
|
|
address branch_origin = pc();
|
|
if (VM_Version::has_CompareBranch() && RelAddr::is_in_range_of_RelAddr16(branch_addr, branch_origin)) {
|
|
switch (casenum) {
|
|
case 0: z_crj( r1, r2, cond, branch_addr); break;
|
|
case 1: z_clrj (r1, r2, cond, branch_addr); break;
|
|
case 2: z_cgrj(r1, r2, cond, branch_addr); break;
|
|
case 3: z_clgrj(r1, r2, cond, branch_addr); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
} else {
|
|
switch (casenum) {
|
|
case 0: z_cr( r1, r2); break;
|
|
case 1: z_clr(r1, r2); break;
|
|
case 2: z_cgr(r1, r2); break;
|
|
case 3: z_clgr(r1, r2); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
branch_optimized(cond, branch_addr);
|
|
}
|
|
}
|
|
|
|
// Generate an optimal compare and branch to the branch target.
|
|
// Optimal means that a relative branch (clgij, brc or brcl) is used if the
|
|
// branch distance is short enough. Loading the target address into a
|
|
// register and branching via reg is used as fallback only.
|
|
//
|
|
// Input:
|
|
// r1 - left compare operand (in register)
|
|
// x2 - right compare operand (immediate)
|
|
void MacroAssembler::compare_and_branch_optimized(Register r1,
|
|
jlong x2,
|
|
Assembler::branch_condition cond,
|
|
Label& branch_target,
|
|
bool len64,
|
|
bool has_sign) {
|
|
address branch_origin = pc();
|
|
bool x2_imm8 = (has_sign && Immediate::is_simm8(x2)) || (!has_sign && Immediate::is_uimm8(x2));
|
|
bool is_RelAddr16 = branch_target.is_near() ||
|
|
(branch_target.is_bound() &&
|
|
RelAddr::is_in_range_of_RelAddr16(target(branch_target), branch_origin));
|
|
unsigned int casenum = (len64?2:0)+(has_sign?0:1);
|
|
|
|
if (VM_Version::has_CompareBranch() && is_RelAddr16 && x2_imm8) {
|
|
switch (casenum) {
|
|
case 0: z_cij( r1, x2, cond, branch_target); break;
|
|
case 1: z_clij(r1, x2, cond, branch_target); break;
|
|
case 2: z_cgij(r1, x2, cond, branch_target); break;
|
|
case 3: z_clgij(r1, x2, cond, branch_target); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (x2 == 0) {
|
|
switch (casenum) {
|
|
case 0: z_ltr(r1, r1); break;
|
|
case 1: z_ltr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
|
|
case 2: z_ltgr(r1, r1); break;
|
|
case 3: z_ltgr(r1, r1); break; // Caution: unsigned test only provides zero/notZero indication!
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
} else {
|
|
if ((has_sign && Immediate::is_simm16(x2)) || (!has_sign && Immediate::is_uimm(x2, 15))) {
|
|
switch (casenum) {
|
|
case 0: z_chi(r1, x2); break;
|
|
case 1: z_chi(r1, x2); break; // positive immediate < 2**15
|
|
case 2: z_cghi(r1, x2); break;
|
|
case 3: z_cghi(r1, x2); break; // positive immediate < 2**15
|
|
default: break;
|
|
}
|
|
} else if ( (has_sign && Immediate::is_simm32(x2)) || (!has_sign && Immediate::is_uimm32(x2)) ) {
|
|
switch (casenum) {
|
|
case 0: z_cfi( r1, x2); break;
|
|
case 1: z_clfi(r1, x2); break;
|
|
case 2: z_cgfi(r1, x2); break;
|
|
case 3: z_clgfi(r1, x2); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
} else {
|
|
// No instruction with immediate operand possible, so load into register.
|
|
Register scratch = (r1 != Z_R0) ? Z_R0 : Z_R1;
|
|
load_const_optimized(scratch, x2);
|
|
switch (casenum) {
|
|
case 0: z_cr( r1, scratch); break;
|
|
case 1: z_clr(r1, scratch); break;
|
|
case 2: z_cgr(r1, scratch); break;
|
|
case 3: z_clgr(r1, scratch); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
}
|
|
}
|
|
branch_optimized(cond, branch_target);
|
|
}
|
|
|
|
// Generate an optimal compare and branch to the branch target.
|
|
// Optimal means that a relative branch (clgrj, brc or brcl) is used if the
|
|
// branch distance is short enough. Loading the target address into a
|
|
// register and branching via reg is used as fallback only.
|
|
//
|
|
// Input:
|
|
// r1 - left compare operand
|
|
// r2 - right compare operand
|
|
void MacroAssembler::compare_and_branch_optimized(Register r1,
|
|
Register r2,
|
|
Assembler::branch_condition cond,
|
|
Label& branch_target,
|
|
bool len64,
|
|
bool has_sign) {
|
|
unsigned int casenum = (len64 ? 2 : 0) + (has_sign ? 0 : 1);
|
|
|
|
if (branch_target.is_bound()) {
|
|
address branch_addr = target(branch_target);
|
|
compare_and_branch_optimized(r1, r2, cond, branch_addr, len64, has_sign);
|
|
} else {
|
|
if (VM_Version::has_CompareBranch() && branch_target.is_near()) {
|
|
switch (casenum) {
|
|
case 0: z_crj( r1, r2, cond, branch_target); break;
|
|
case 1: z_clrj( r1, r2, cond, branch_target); break;
|
|
case 2: z_cgrj( r1, r2, cond, branch_target); break;
|
|
case 3: z_clgrj(r1, r2, cond, branch_target); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
} else {
|
|
switch (casenum) {
|
|
case 0: z_cr( r1, r2); break;
|
|
case 1: z_clr(r1, r2); break;
|
|
case 2: z_cgr(r1, r2); break;
|
|
case 3: z_clgr(r1, r2); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
branch_optimized(cond, branch_target);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===========================================================================
|
|
//=== END H I G H E R L E V E L B R A N C H E M I T T E R S ===
|
|
//===========================================================================
|
|
|
|
AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
|
|
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
int index = oop_recorder()->allocate_metadata_index(obj);
|
|
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
return AddressLiteral((address)obj, rspec);
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
|
|
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
int index = oop_recorder()->find_index(obj);
|
|
RelocationHolder rspec = metadata_Relocation::spec(index);
|
|
return AddressLiteral((address)obj, rspec);
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
|
|
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
int oop_index = oop_recorder()->allocate_oop_index(obj);
|
|
return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
|
|
}
|
|
|
|
AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
|
|
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
|
|
int oop_index = oop_recorder()->find_index(obj);
|
|
return AddressLiteral(address(obj), oop_Relocation::spec(oop_index));
|
|
}
|
|
|
|
// NOTE: destroys r
|
|
void MacroAssembler::c2bool(Register r, Register t) {
|
|
z_lcr(t, r); // t = -r
|
|
z_or(r, t); // r = -r OR r
|
|
z_srl(r, 31); // Yields 0 if r was 0, 1 otherwise.
|
|
}
|
|
|
|
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
|
|
Register tmp,
|
|
int offset) {
|
|
intptr_t value = *delayed_value_addr;
|
|
if (value != 0) {
|
|
return RegisterOrConstant(value + offset);
|
|
}
|
|
|
|
BLOCK_COMMENT("delayed_value {");
|
|
// Load indirectly to solve generation ordering problem.
|
|
load_absolute_address(tmp, (address) delayed_value_addr); // tmp = a;
|
|
z_lg(tmp, 0, tmp); // tmp = *tmp;
|
|
|
|
#ifdef ASSERT
|
|
NearLabel L;
|
|
compare64_and_branch(tmp, (intptr_t)0L, Assembler::bcondNotEqual, L);
|
|
z_illtrap();
|
|
bind(L);
|
|
#endif
|
|
|
|
if (offset != 0) {
|
|
z_agfi(tmp, offset); // tmp = tmp + offset;
|
|
}
|
|
|
|
BLOCK_COMMENT("} delayed_value");
|
|
return RegisterOrConstant(tmp);
|
|
}
|
|
|
|
// Patch instruction `inst' at offset `inst_pos' to refer to `dest_pos'
|
|
// and return the resulting instruction.
|
|
// Dest_pos and inst_pos are 32 bit only. These parms can only designate
|
|
// relative positions.
|
|
// Use correct argument types. Do not pre-calculate distance.
|
|
unsigned long MacroAssembler::patched_branch(address dest_pos, unsigned long inst, address inst_pos) {
|
|
int c = 0;
|
|
unsigned long patched_inst = 0;
|
|
if (is_call_pcrelative_short(inst) ||
|
|
is_branch_pcrelative_short(inst) ||
|
|
is_branchoncount_pcrelative_short(inst) ||
|
|
is_branchonindex32_pcrelative_short(inst)) {
|
|
c = 1;
|
|
int m = fmask(15, 0); // simm16(-1, 16, 32);
|
|
int v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 32);
|
|
patched_inst = (inst & ~m) | v;
|
|
} else if (is_compareandbranch_pcrelative_short(inst)) {
|
|
c = 2;
|
|
long m = fmask(31, 16); // simm16(-1, 16, 48);
|
|
long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
|
|
patched_inst = (inst & ~m) | v;
|
|
} else if (is_branchonindex64_pcrelative_short(inst)) {
|
|
c = 3;
|
|
long m = fmask(31, 16); // simm16(-1, 16, 48);
|
|
long v = simm16(RelAddr::pcrel_off16(dest_pos, inst_pos), 16, 48);
|
|
patched_inst = (inst & ~m) | v;
|
|
} else if (is_call_pcrelative_long(inst) || is_branch_pcrelative_long(inst)) {
|
|
c = 4;
|
|
long m = fmask(31, 0); // simm32(-1, 16, 48);
|
|
long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
|
|
patched_inst = (inst & ~m) | v;
|
|
} else if (is_pcrelative_long(inst)) { // These are the non-branch pc-relative instructions.
|
|
c = 5;
|
|
long m = fmask(31, 0); // simm32(-1, 16, 48);
|
|
long v = simm32(RelAddr::pcrel_off32(dest_pos, inst_pos), 16, 48);
|
|
patched_inst = (inst & ~m) | v;
|
|
} else {
|
|
print_dbg_msg(tty, inst, "not a relative branch", 0);
|
|
dump_code_range(tty, inst_pos, 32, "not a pcrelative branch");
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
long new_off = get_pcrel_offset(patched_inst);
|
|
if (new_off != (dest_pos-inst_pos)) {
|
|
tty->print_cr("case %d: dest_pos = %p, inst_pos = %p, disp = %ld(%12.12lx)", c, dest_pos, inst_pos, new_off, new_off);
|
|
print_dbg_msg(tty, inst, "<- original instruction: branch patching error", 0);
|
|
print_dbg_msg(tty, patched_inst, "<- patched instruction: branch patching error", 0);
|
|
#ifdef LUCY_DBG
|
|
VM_Version::z_SIGSEGV();
|
|
#endif
|
|
ShouldNotReachHere();
|
|
}
|
|
return patched_inst;
|
|
}
|
|
|
|
// Only called when binding labels (share/vm/asm/assembler.cpp)
|
|
// Pass arguments as intended. Do not pre-calculate distance.
|
|
void MacroAssembler::pd_patch_instruction(address branch, address target) {
|
|
unsigned long stub_inst;
|
|
int inst_len = get_instruction(branch, &stub_inst);
|
|
|
|
set_instruction(branch, patched_branch(target, stub_inst, branch), inst_len);
|
|
}
|
|
|
|
|
|
// Extract relative address (aka offset).
|
|
// inv_simm16 works for 4-byte instructions only.
|
|
// compare and branch instructions are 6-byte and have a 16bit offset "in the middle".
|
|
long MacroAssembler::get_pcrel_offset(unsigned long inst) {
|
|
|
|
if (MacroAssembler::is_pcrelative_short(inst)) {
|
|
if (((inst&0xFFFFffff00000000UL) == 0) && ((inst&0x00000000FFFF0000UL) != 0)) {
|
|
return RelAddr::inv_pcrel_off16(inv_simm16(inst));
|
|
} else {
|
|
return RelAddr::inv_pcrel_off16(inv_simm16_48(inst));
|
|
}
|
|
}
|
|
|
|
if (MacroAssembler::is_pcrelative_long(inst)) {
|
|
return RelAddr::inv_pcrel_off32(inv_simm32(inst));
|
|
}
|
|
|
|
print_dbg_msg(tty, inst, "not a pcrelative instruction", 6);
|
|
#ifdef LUCY_DBG
|
|
VM_Version::z_SIGSEGV();
|
|
#else
|
|
ShouldNotReachHere();
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
long MacroAssembler::get_pcrel_offset(address pc) {
|
|
unsigned long inst;
|
|
unsigned int len = get_instruction(pc, &inst);
|
|
|
|
#ifdef ASSERT
|
|
long offset;
|
|
if (MacroAssembler::is_pcrelative_short(inst) || MacroAssembler::is_pcrelative_long(inst)) {
|
|
offset = get_pcrel_offset(inst);
|
|
} else {
|
|
offset = -1;
|
|
}
|
|
|
|
if (offset == -1) {
|
|
dump_code_range(tty, pc, 32, "not a pcrelative instruction");
|
|
#ifdef LUCY_DBG
|
|
VM_Version::z_SIGSEGV();
|
|
#else
|
|
ShouldNotReachHere();
|
|
#endif
|
|
}
|
|
return offset;
|
|
#else
|
|
return get_pcrel_offset(inst);
|
|
#endif // ASSERT
|
|
}
|
|
|
|
// Get target address from pc-relative instructions.
|
|
address MacroAssembler::get_target_addr_pcrel(address pc) {
|
|
assert(is_pcrelative_long(pc), "not a pcrelative instruction");
|
|
return pc + get_pcrel_offset(pc);
|
|
}
|
|
|
|
// Patch pc relative load address.
|
|
void MacroAssembler::patch_target_addr_pcrel(address pc, address con) {
|
|
unsigned long inst;
|
|
// Offset is +/- 2**32 -> use long.
|
|
ptrdiff_t distance = con - pc;
|
|
|
|
get_instruction(pc, &inst);
|
|
|
|
if (is_pcrelative_short(inst)) {
|
|
*(short *)(pc+2) = RelAddr::pcrel_off16(con, pc); // Instructions are at least 2-byte aligned, no test required.
|
|
|
|
// Some extra safety net.
|
|
if (!RelAddr::is_in_range_of_RelAddr16(distance)) {
|
|
print_dbg_msg(tty, inst, "distance out of range (16bit)", 4);
|
|
dump_code_range(tty, pc, 32, "distance out of range (16bit)");
|
|
guarantee(RelAddr::is_in_range_of_RelAddr16(distance), "too far away (more than +/- 2**16");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (is_pcrelative_long(inst)) {
|
|
*(int *)(pc+2) = RelAddr::pcrel_off32(con, pc);
|
|
|
|
// Some Extra safety net.
|
|
if (!RelAddr::is_in_range_of_RelAddr32(distance)) {
|
|
print_dbg_msg(tty, inst, "distance out of range (32bit)", 6);
|
|
dump_code_range(tty, pc, 32, "distance out of range (32bit)");
|
|
guarantee(RelAddr::is_in_range_of_RelAddr32(distance), "too far away (more than +/- 2**32");
|
|
}
|
|
return;
|
|
}
|
|
|
|
guarantee(false, "not a pcrelative instruction to patch!");
|
|
}
|
|
|
|
// "Current PC" here means the address just behind the basr instruction.
|
|
address MacroAssembler::get_PC(Register result) {
|
|
z_basr(result, Z_R0); // Don't branch, just save next instruction address in result.
|
|
return pc();
|
|
}
|
|
|
|
// Get current PC + offset.
|
|
// Offset given in bytes, must be even!
|
|
// "Current PC" here means the address of the larl instruction plus the given offset.
|
|
address MacroAssembler::get_PC(Register result, int64_t offset) {
|
|
address here = pc();
|
|
z_larl(result, offset/2); // Save target instruction address in result.
|
|
return here + offset;
|
|
}
|
|
|
|
void MacroAssembler::instr_size(Register size, Register pc) {
|
|
// Extract 2 most significant bits of current instruction.
|
|
z_llgc(size, Address(pc));
|
|
z_srl(size, 6);
|
|
// Compute (x+3)&6 which translates 0->2, 1->4, 2->4, 3->6.
|
|
z_ahi(size, 3);
|
|
z_nill(size, 6);
|
|
}
|
|
|
|
// Resize_frame with SP(new) = SP(old) - [offset].
|
|
void MacroAssembler::resize_frame_sub(Register offset, Register fp, bool load_fp)
|
|
{
|
|
assert_different_registers(offset, fp, Z_SP);
|
|
if (load_fp) { z_lg(fp, _z_abi(callers_sp), Z_SP); }
|
|
|
|
z_sgr(Z_SP, offset);
|
|
z_stg(fp, _z_abi(callers_sp), Z_SP);
|
|
}
|
|
|
|
// Resize_frame with SP(new) = [newSP] + offset.
|
|
// This emitter is useful if we already have calculated a pointer
|
|
// into the to-be-allocated stack space, e.g. with special alignment properties,
|
|
// but need some additional space, e.g. for spilling.
|
|
// newSP is the pre-calculated pointer. It must not be modified.
|
|
// fp holds, or is filled with, the frame pointer.
|
|
// offset is the additional increment which is added to addr to form the new SP.
|
|
// Note: specify a negative value to reserve more space!
|
|
// load_fp == true only indicates that fp is not pre-filled with the frame pointer.
|
|
// It does not guarantee that fp contains the frame pointer at the end.
|
|
void MacroAssembler::resize_frame_abs_with_offset(Register newSP, Register fp, int offset, bool load_fp) {
|
|
assert_different_registers(newSP, fp, Z_SP);
|
|
|
|
if (load_fp) {
|
|
z_lg(fp, _z_abi(callers_sp), Z_SP);
|
|
}
|
|
|
|
add2reg(Z_SP, offset, newSP);
|
|
z_stg(fp, _z_abi(callers_sp), Z_SP);
|
|
}
|
|
|
|
// Resize_frame with SP(new) = [newSP].
|
|
// load_fp == true only indicates that fp is not pre-filled with the frame pointer.
|
|
// It does not guarantee that fp contains the frame pointer at the end.
|
|
void MacroAssembler::resize_frame_absolute(Register newSP, Register fp, bool load_fp) {
|
|
assert_different_registers(newSP, fp, Z_SP);
|
|
|
|
if (load_fp) {
|
|
z_lg(fp, _z_abi(callers_sp), Z_SP); // need to use load/store.
|
|
}
|
|
|
|
z_lgr(Z_SP, newSP);
|
|
if (newSP != Z_R0) { // make sure we generate correct code, no matter what register newSP uses.
|
|
z_stg(fp, _z_abi(callers_sp), newSP);
|
|
} else {
|
|
z_stg(fp, _z_abi(callers_sp), Z_SP);
|
|
}
|
|
}
|
|
|
|
// Resize_frame with SP(new) = SP(old) + offset.
|
|
void MacroAssembler::resize_frame(RegisterOrConstant offset, Register fp, bool load_fp) {
|
|
assert_different_registers(fp, Z_SP);
|
|
|
|
if (load_fp) {
|
|
z_lg(fp, _z_abi(callers_sp), Z_SP);
|
|
}
|
|
add64(Z_SP, offset);
|
|
z_stg(fp, _z_abi(callers_sp), Z_SP);
|
|
}
|
|
|
|
void MacroAssembler::push_frame(Register bytes, Register old_sp, bool copy_sp, bool bytes_with_inverted_sign) {
|
|
#ifdef ASSERT
|
|
assert_different_registers(bytes, old_sp, Z_SP);
|
|
if (!copy_sp) {
|
|
z_cgr(old_sp, Z_SP);
|
|
asm_assert_eq("[old_sp]!=[Z_SP]", 0x211);
|
|
}
|
|
#endif
|
|
if (copy_sp) { z_lgr(old_sp, Z_SP); }
|
|
if (bytes_with_inverted_sign) {
|
|
z_agr(Z_SP, bytes);
|
|
} else {
|
|
z_sgr(Z_SP, bytes); // Z_sgfr sufficient, but probably not faster.
|
|
}
|
|
z_stg(old_sp, _z_abi(callers_sp), Z_SP);
|
|
}
|
|
|
|
unsigned int MacroAssembler::push_frame(unsigned int bytes, Register scratch) {
|
|
long offset = Assembler::align(bytes, frame::alignment_in_bytes);
|
|
assert(offset > 0, "should push a frame with positive size, size = %ld.", offset);
|
|
assert(Displacement::is_validDisp(-offset), "frame size out of range, size = %ld", offset);
|
|
|
|
// We must not write outside the current stack bounds (given by Z_SP).
|
|
// Thus, we have to first update Z_SP and then store the previous SP as stack linkage.
|
|
// We rely on Z_R0 by default to be available as scratch.
|
|
z_lgr(scratch, Z_SP);
|
|
add2reg(Z_SP, -offset);
|
|
z_stg(scratch, _z_abi(callers_sp), Z_SP);
|
|
#ifdef ASSERT
|
|
// Just make sure nobody uses the value in the default scratch register.
|
|
// When another register is used, the caller might rely on it containing the frame pointer.
|
|
if (scratch == Z_R0) {
|
|
z_iihf(scratch, 0xbaadbabe);
|
|
z_iilf(scratch, 0xdeadbeef);
|
|
}
|
|
#endif
|
|
return offset;
|
|
}
|
|
|
|
// Push a frame of size `bytes' plus abi160 on top.
|
|
unsigned int MacroAssembler::push_frame_abi160(unsigned int bytes) {
|
|
BLOCK_COMMENT("push_frame_abi160 {");
|
|
unsigned int res = push_frame(bytes + frame::z_abi_160_size);
|
|
BLOCK_COMMENT("} push_frame_abi160");
|
|
return res;
|
|
}
|
|
|
|
// Pop current C frame.
|
|
void MacroAssembler::pop_frame() {
|
|
BLOCK_COMMENT("pop_frame:");
|
|
Assembler::z_lg(Z_SP, _z_abi(callers_sp), Z_SP);
|
|
}
|
|
|
|
// Pop current C frame and restore return PC register (Z_R14).
|
|
void MacroAssembler::pop_frame_restore_retPC(int frame_size_in_bytes) {
|
|
BLOCK_COMMENT("pop_frame_restore_retPC:");
|
|
int retPC_offset = _z_abi16(return_pc) + frame_size_in_bytes;
|
|
// If possible, pop frame by add instead of load (a penny saved is a penny got :-).
|
|
if (Displacement::is_validDisp(retPC_offset)) {
|
|
z_lg(Z_R14, retPC_offset, Z_SP);
|
|
add2reg(Z_SP, frame_size_in_bytes);
|
|
} else {
|
|
add2reg(Z_SP, frame_size_in_bytes);
|
|
restore_return_pc();
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
|
|
if (allow_relocation) {
|
|
call_c(entry_point);
|
|
} else {
|
|
call_c_static(entry_point);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf_base(address entry_point) {
|
|
bool allow_relocation = true;
|
|
call_VM_leaf_base(entry_point, allow_relocation);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_base(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
bool allow_relocation,
|
|
bool check_exceptions) { // Defaults to true.
|
|
// Allow_relocation indicates, if true, that the generated code shall
|
|
// be fit for code relocation or referenced data relocation. In other
|
|
// words: all addresses must be considered variable. PC-relative addressing
|
|
// is not possible then.
|
|
// On the other hand, if (allow_relocation == false), addresses and offsets
|
|
// may be considered stable, enabling us to take advantage of some PC-relative
|
|
// addressing tweaks. These might improve performance and reduce code size.
|
|
|
|
// Determine last_java_sp register.
|
|
if (!last_java_sp->is_valid()) {
|
|
last_java_sp = Z_SP; // Load Z_SP as SP.
|
|
}
|
|
|
|
set_top_ijava_frame_at_SP_as_last_Java_frame(last_java_sp, Z_R1, allow_relocation);
|
|
|
|
// ARG1 must hold thread address.
|
|
z_lgr(Z_ARG1, Z_thread);
|
|
|
|
address return_pc = NULL;
|
|
if (allow_relocation) {
|
|
return_pc = call_c(entry_point);
|
|
} else {
|
|
return_pc = call_c_static(entry_point);
|
|
}
|
|
|
|
reset_last_Java_frame(allow_relocation);
|
|
|
|
// C++ interp handles this in the interpreter.
|
|
check_and_handle_popframe(Z_thread);
|
|
check_and_handle_earlyret(Z_thread);
|
|
|
|
// Check for pending exceptions.
|
|
if (check_exceptions) {
|
|
// Check for pending exceptions (java_thread is set upon return).
|
|
load_and_test_long(Z_R0_scratch, Address(Z_thread, Thread::pending_exception_offset()));
|
|
|
|
// This used to conditionally jump to forward_exception however it is
|
|
// possible if we relocate that the branch will not reach. So we must jump
|
|
// around so we can always reach.
|
|
|
|
Label ok;
|
|
z_bre(ok); // Bcondequal is the same as bcondZero.
|
|
call_stub(StubRoutines::forward_exception_entry());
|
|
bind(ok);
|
|
}
|
|
|
|
// Get oop result if there is one and reset the value in the thread.
|
|
if (oop_result->is_valid()) {
|
|
get_vm_result(oop_result);
|
|
}
|
|
|
|
_last_calls_return_pc = return_pc; // Wipe out other (error handling) calls.
|
|
}
|
|
|
|
void MacroAssembler::call_VM_base(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
bool check_exceptions) { // Defaults to true.
|
|
bool allow_relocation = true;
|
|
call_VM_base(oop_result, last_java_sp, entry_point, allow_relocation, check_exceptions);
|
|
}
|
|
|
|
// VM calls without explicit last_java_sp.
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
|
|
// Call takes possible detour via InterpreterMacroAssembler.
|
|
call_VM_base(oop_result, noreg, entry_point, true, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
|
|
// Z_ARG1 is reserved for the thread.
|
|
lgr_if_needed(Z_ARG2, arg_1);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
|
|
// Z_ARG1 is reserved for the thread.
|
|
lgr_if_needed(Z_ARG2, arg_1);
|
|
assert(arg_2 != Z_ARG2, "smashed argument");
|
|
lgr_if_needed(Z_ARG3, arg_2);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2,
|
|
Register arg_3, bool check_exceptions) {
|
|
// Z_ARG1 is reserved for the thread.
|
|
lgr_if_needed(Z_ARG2, arg_1);
|
|
assert(arg_2 != Z_ARG2, "smashed argument");
|
|
lgr_if_needed(Z_ARG3, arg_2);
|
|
assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
|
|
lgr_if_needed(Z_ARG4, arg_3);
|
|
call_VM(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
// VM static calls without explicit last_java_sp.
|
|
|
|
void MacroAssembler::call_VM_static(Register oop_result, address entry_point, bool check_exceptions) {
|
|
// Call takes possible detour via InterpreterMacroAssembler.
|
|
call_VM_base(oop_result, noreg, entry_point, false, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_static(Register oop_result, address entry_point, Register arg_1, Register arg_2,
|
|
Register arg_3, bool check_exceptions) {
|
|
// Z_ARG1 is reserved for the thread.
|
|
lgr_if_needed(Z_ARG2, arg_1);
|
|
assert(arg_2 != Z_ARG2, "smashed argument");
|
|
lgr_if_needed(Z_ARG3, arg_2);
|
|
assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
|
|
lgr_if_needed(Z_ARG4, arg_3);
|
|
call_VM_static(oop_result, entry_point, check_exceptions);
|
|
}
|
|
|
|
// VM calls with explicit last_java_sp.
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, bool check_exceptions) {
|
|
// Call takes possible detour via InterpreterMacroAssembler.
|
|
call_VM_base(oop_result, last_java_sp, entry_point, true, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
|
|
// Z_ARG1 is reserved for the thread.
|
|
lgr_if_needed(Z_ARG2, arg_1);
|
|
call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
|
|
Register arg_2, bool check_exceptions) {
|
|
// Z_ARG1 is reserved for the thread.
|
|
lgr_if_needed(Z_ARG2, arg_1);
|
|
assert(arg_2 != Z_ARG2, "smashed argument");
|
|
lgr_if_needed(Z_ARG3, arg_2);
|
|
call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
|
|
}
|
|
|
|
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1,
|
|
Register arg_2, Register arg_3, bool check_exceptions) {
|
|
// Z_ARG1 is reserved for the thread.
|
|
lgr_if_needed(Z_ARG2, arg_1);
|
|
assert(arg_2 != Z_ARG2, "smashed argument");
|
|
lgr_if_needed(Z_ARG3, arg_2);
|
|
assert(arg_3 != Z_ARG2 && arg_3 != Z_ARG3, "smashed argument");
|
|
lgr_if_needed(Z_ARG4, arg_3);
|
|
call_VM(oop_result, last_java_sp, entry_point, check_exceptions);
|
|
}
|
|
|
|
// VM leaf calls.
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point) {
|
|
// Call takes possible detour via InterpreterMacroAssembler.
|
|
call_VM_leaf_base(entry_point, true);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1) {
|
|
if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
|
|
if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
|
|
assert(arg_2 != Z_ARG1, "smashed argument");
|
|
if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
|
|
if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
|
|
assert(arg_2 != Z_ARG1, "smashed argument");
|
|
if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
|
|
assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
|
|
if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
|
|
call_VM_leaf(entry_point);
|
|
}
|
|
|
|
// Static VM leaf calls.
|
|
// Really static VM leaf calls are never patched.
|
|
|
|
void MacroAssembler::call_VM_leaf_static(address entry_point) {
|
|
// Call takes possible detour via InterpreterMacroAssembler.
|
|
call_VM_leaf_base(entry_point, false);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1) {
|
|
if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
|
|
call_VM_leaf_static(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2) {
|
|
if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
|
|
assert(arg_2 != Z_ARG1, "smashed argument");
|
|
if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
|
|
call_VM_leaf_static(entry_point);
|
|
}
|
|
|
|
void MacroAssembler::call_VM_leaf_static(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
|
|
if (arg_1 != noreg) lgr_if_needed(Z_ARG1, arg_1);
|
|
assert(arg_2 != Z_ARG1, "smashed argument");
|
|
if (arg_2 != noreg) lgr_if_needed(Z_ARG2, arg_2);
|
|
assert(arg_3 != Z_ARG1 && arg_3 != Z_ARG2, "smashed argument");
|
|
if (arg_3 != noreg) lgr_if_needed(Z_ARG3, arg_3);
|
|
call_VM_leaf_static(entry_point);
|
|
}
|
|
|
|
// Don't use detour via call_c(reg).
|
|
address MacroAssembler::call_c(address function_entry) {
|
|
load_const(Z_R1, function_entry);
|
|
return call(Z_R1);
|
|
}
|
|
|
|
// Variant for really static (non-relocatable) calls which are never patched.
|
|
address MacroAssembler::call_c_static(address function_entry) {
|
|
load_absolute_address(Z_R1, function_entry);
|
|
#if 0 // def ASSERT
|
|
// Verify that call site did not move.
|
|
load_const_optimized(Z_R0, function_entry);
|
|
z_cgr(Z_R1, Z_R0);
|
|
z_brc(bcondEqual, 3);
|
|
z_illtrap(0xba);
|
|
#endif
|
|
return call(Z_R1);
|
|
}
|
|
|
|
address MacroAssembler::call_c_opt(address function_entry) {
|
|
bool success = call_far_patchable(function_entry, -2 /* emit relocation + constant */);
|
|
_last_calls_return_pc = success ? pc() : NULL;
|
|
return _last_calls_return_pc;
|
|
}
|
|
|
|
// Identify a call_far_patchable instruction: LARL + LG + BASR
|
|
//
|
|
// nop ; optionally, if required for alignment
|
|
// lgrl rx,A(TOC entry) ; PC-relative access into constant pool
|
|
// basr Z_R14,rx ; end of this instruction must be aligned to a word boundary
|
|
//
|
|
// Code pattern will eventually get patched into variant2 (see below for detection code).
|
|
//
|
|
bool MacroAssembler::is_call_far_patchable_variant0_at(address instruction_addr) {
|
|
address iaddr = instruction_addr;
|
|
|
|
// Check for the actual load instruction.
|
|
if (!is_load_const_from_toc(iaddr)) { return false; }
|
|
iaddr += load_const_from_toc_size();
|
|
|
|
// Check for the call (BASR) instruction, finally.
|
|
assert(iaddr-instruction_addr+call_byregister_size() == call_far_patchable_size(), "size mismatch");
|
|
return is_call_byregister(iaddr);
|
|
}
|
|
|
|
// Identify a call_far_patchable instruction: BRASL
|
|
//
|
|
// Code pattern to suits atomic patching:
|
|
// nop ; Optionally, if required for alignment.
|
|
// nop ... ; Multiple filler nops to compensate for size difference (variant0 is longer).
|
|
// nop ; For code pattern detection: Prepend each BRASL with a nop.
|
|
// brasl Z_R14,<reladdr> ; End of code must be 4-byte aligned !
|
|
bool MacroAssembler::is_call_far_patchable_variant2_at(address instruction_addr) {
|
|
const address call_addr = (address)((intptr_t)instruction_addr + call_far_patchable_size() - call_far_pcrelative_size());
|
|
|
|
// Check for correct number of leading nops.
|
|
address iaddr;
|
|
for (iaddr = instruction_addr; iaddr < call_addr; iaddr += nop_size()) {
|
|
if (!is_z_nop(iaddr)) { return false; }
|
|
}
|
|
assert(iaddr == call_addr, "sanity");
|
|
|
|
// --> Check for call instruction.
|
|
if (is_call_far_pcrelative(call_addr)) {
|
|
assert(call_addr-instruction_addr+call_far_pcrelative_size() == call_far_patchable_size(), "size mismatch");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Emit a NOT mt-safely patchable 64 bit absolute call.
|
|
// If toc_offset == -2, then the destination of the call (= target) is emitted
|
|
// to the constant pool and a runtime_call relocation is added
|
|
// to the code buffer.
|
|
// If toc_offset != -2, target must already be in the constant pool at
|
|
// _ctableStart+toc_offset (a caller can retrieve toc_offset
|
|
// from the runtime_call relocation).
|
|
// Special handling of emitting to scratch buffer when there is no constant pool.
|
|
// Slightly changed code pattern. We emit an additional nop if we would
|
|
// not end emitting at a word aligned address. This is to ensure
|
|
// an atomically patchable displacement in brasl instructions.
|
|
//
|
|
// A call_far_patchable comes in different flavors:
|
|
// - LARL(CP) / LG(CP) / BR (address in constant pool, access via CP register)
|
|
// - LGRL(CP) / BR (address in constant pool, pc-relative accesss)
|
|
// - BRASL (relative address of call target coded in instruction)
|
|
// All flavors occupy the same amount of space. Length differences are compensated
|
|
// by leading nops, such that the instruction sequence always ends at the same
|
|
// byte offset. This is required to keep the return offset constant.
|
|
// Furthermore, the return address (the end of the instruction sequence) is forced
|
|
// to be on a 4-byte boundary. This is required for atomic patching, should we ever
|
|
// need to patch the call target of the BRASL flavor.
|
|
// RETURN value: false, if no constant pool entry could be allocated, true otherwise.
|
|
bool MacroAssembler::call_far_patchable(address target, int64_t tocOffset) {
|
|
// Get current pc and ensure word alignment for end of instr sequence.
|
|
const address start_pc = pc();
|
|
const intptr_t start_off = offset();
|
|
assert(!call_far_patchable_requires_alignment_nop(start_pc), "call_far_patchable requires aligned address");
|
|
const ptrdiff_t dist = (ptrdiff_t)(target - (start_pc + 2)); // Prepend each BRASL with a nop.
|
|
const bool emit_target_to_pool = (tocOffset == -2) && !code_section()->scratch_emit();
|
|
const bool emit_relative_call = !emit_target_to_pool &&
|
|
RelAddr::is_in_range_of_RelAddr32(dist) &&
|
|
ReoptimizeCallSequences &&
|
|
!code_section()->scratch_emit();
|
|
|
|
if (emit_relative_call) {
|
|
// Add padding to get the same size as below.
|
|
const unsigned int padding = call_far_patchable_size() - call_far_pcrelative_size();
|
|
unsigned int current_padding;
|
|
for (current_padding = 0; current_padding < padding; current_padding += nop_size()) { z_nop(); }
|
|
assert(current_padding == padding, "sanity");
|
|
|
|
// relative call: len = 2(nop) + 6 (brasl)
|
|
// CodeBlob resize cannot occur in this case because
|
|
// this call is emitted into pre-existing space.
|
|
z_nop(); // Prepend each BRASL with a nop.
|
|
z_brasl(Z_R14, target);
|
|
} else {
|
|
// absolute call: Get address from TOC.
|
|
// len = (load TOC){6|0} + (load from TOC){6} + (basr){2} = {14|8}
|
|
if (emit_target_to_pool) {
|
|
// When emitting the call for the first time, we do not need to use
|
|
// the pc-relative version. It will be patched anyway, when the code
|
|
// buffer is copied.
|
|
// Relocation is not needed when !ReoptimizeCallSequences.
|
|
relocInfo::relocType rt = ReoptimizeCallSequences ? relocInfo::runtime_call_w_cp_type : relocInfo::none;
|
|
AddressLiteral dest(target, rt);
|
|
// Store_oop_in_toc() adds dest to the constant table. As side effect, this kills
|
|
// inst_mark(). Reset if possible.
|
|
bool reset_mark = (inst_mark() == pc());
|
|
tocOffset = store_oop_in_toc(dest);
|
|
if (reset_mark) { set_inst_mark(); }
|
|
if (tocOffset == -1) {
|
|
return false; // Couldn't create constant pool entry.
|
|
}
|
|
}
|
|
assert(offset() == start_off, "emit no code before this point!");
|
|
|
|
address tocPos = pc() + tocOffset;
|
|
if (emit_target_to_pool) {
|
|
tocPos = code()->consts()->start() + tocOffset;
|
|
}
|
|
load_long_pcrelative(Z_R14, tocPos);
|
|
z_basr(Z_R14, Z_R14);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Assert that we can identify the emitted call.
|
|
assert(is_call_far_patchable_at(addr_at(start_off)), "can't identify emitted call");
|
|
assert(offset() == start_off+call_far_patchable_size(), "wrong size");
|
|
|
|
if (emit_target_to_pool) {
|
|
assert(get_dest_of_call_far_patchable_at(addr_at(start_off), code()->consts()->start()) == target,
|
|
"wrong encoding of dest address");
|
|
}
|
|
#endif
|
|
return true; // success
|
|
}
|
|
|
|
// Identify a call_far_patchable instruction.
|
|
// For more detailed information see header comment of call_far_patchable.
|
|
bool MacroAssembler::is_call_far_patchable_at(address instruction_addr) {
|
|
return is_call_far_patchable_variant2_at(instruction_addr) || // short version: BRASL
|
|
is_call_far_patchable_variant0_at(instruction_addr); // long version LARL + LG + BASR
|
|
}
|
|
|
|
// Does the call_far_patchable instruction use a pc-relative encoding
|
|
// of the call destination?
|
|
bool MacroAssembler::is_call_far_patchable_pcrelative_at(address instruction_addr) {
|
|
// Variant 2 is pc-relative.
|
|
return is_call_far_patchable_variant2_at(instruction_addr);
|
|
}
|
|
|
|
bool MacroAssembler::is_call_far_pcrelative(address instruction_addr) {
|
|
// Prepend each BRASL with a nop.
|
|
return is_z_nop(instruction_addr) && is_z_brasl(instruction_addr + nop_size()); // Match at position after one nop required.
|
|
}
|
|
|
|
// Set destination address of a call_far_patchable instruction.
|
|
void MacroAssembler::set_dest_of_call_far_patchable_at(address instruction_addr, address dest, int64_t tocOffset) {
|
|
ResourceMark rm;
|
|
|
|
// Now that CP entry is verified, patch call to a pc-relative call (if circumstances permit).
|
|
int code_size = MacroAssembler::call_far_patchable_size();
|
|
CodeBuffer buf(instruction_addr, code_size);
|
|
MacroAssembler masm(&buf);
|
|
masm.call_far_patchable(dest, tocOffset);
|
|
ICache::invalidate_range(instruction_addr, code_size); // Empty on z.
|
|
}
|
|
|
|
// Get dest address of a call_far_patchable instruction.
|
|
address MacroAssembler::get_dest_of_call_far_patchable_at(address instruction_addr, address ctable) {
|
|
// Dynamic TOC: absolute address in constant pool.
|
|
// Check variant2 first, it is more frequent.
|
|
|
|
// Relative address encoded in call instruction.
|
|
if (is_call_far_patchable_variant2_at(instruction_addr)) {
|
|
return MacroAssembler::get_target_addr_pcrel(instruction_addr + nop_size()); // Prepend each BRASL with a nop.
|
|
|
|
// Absolute address in constant pool.
|
|
} else if (is_call_far_patchable_variant0_at(instruction_addr)) {
|
|
address iaddr = instruction_addr;
|
|
|
|
long tocOffset = get_load_const_from_toc_offset(iaddr);
|
|
address tocLoc = iaddr + tocOffset;
|
|
return *(address *)(tocLoc);
|
|
} else {
|
|
fprintf(stderr, "MacroAssembler::get_dest_of_call_far_patchable_at has a problem at %p:\n", instruction_addr);
|
|
fprintf(stderr, "not a call_far_patchable: %16.16lx %16.16lx, len = %d\n",
|
|
*(unsigned long*)instruction_addr,
|
|
*(unsigned long*)(instruction_addr+8),
|
|
call_far_patchable_size());
|
|
Disassembler::decode(instruction_addr, instruction_addr+call_far_patchable_size());
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::align_call_far_patchable(address pc) {
|
|
if (call_far_patchable_requires_alignment_nop(pc)) { z_nop(); }
|
|
}
|
|
|
|
void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
|
|
}
|
|
|
|
void MacroAssembler::check_and_handle_popframe(Register java_thread) {
|
|
}
|
|
|
|
// Read from the polling page.
|
|
// Use TM or TMY instruction, depending on read offset.
|
|
// offset = 0: Use TM, safepoint polling.
|
|
// offset < 0: Use TMY, profiling safepoint polling.
|
|
void MacroAssembler::load_from_polling_page(Register polling_page_address, int64_t offset) {
|
|
if (Immediate::is_uimm12(offset)) {
|
|
z_tm(offset, polling_page_address, mask_safepoint);
|
|
} else {
|
|
z_tmy(offset, polling_page_address, mask_profiling);
|
|
}
|
|
}
|
|
|
|
// Check whether z_instruction is a read access to the polling page
|
|
// which was emitted by load_from_polling_page(..).
|
|
bool MacroAssembler::is_load_from_polling_page(address instr_loc) {
|
|
unsigned long z_instruction;
|
|
unsigned int ilen = get_instruction(instr_loc, &z_instruction);
|
|
|
|
if (ilen == 2) { return false; } // It's none of the allowed instructions.
|
|
|
|
if (ilen == 4) {
|
|
if (!is_z_tm(z_instruction)) { return false; } // It's len=4, but not a z_tm. fail.
|
|
|
|
int ms = inv_mask(z_instruction,8,32); // mask
|
|
int ra = inv_reg(z_instruction,16,32); // base register
|
|
int ds = inv_uimm12(z_instruction); // displacement
|
|
|
|
if (!(ds == 0 && ra != 0 && ms == mask_safepoint)) {
|
|
return false; // It's not a z_tm(0, ra, mask_safepoint). Fail.
|
|
}
|
|
|
|
} else { /* if (ilen == 6) */
|
|
|
|
assert(!is_z_lg(z_instruction), "old form (LG) polling page access. Please fix and use TM(Y).");
|
|
|
|
if (!is_z_tmy(z_instruction)) { return false; } // It's len=6, but not a z_tmy. fail.
|
|
|
|
int ms = inv_mask(z_instruction,8,48); // mask
|
|
int ra = inv_reg(z_instruction,16,48); // base register
|
|
int ds = inv_simm20(z_instruction); // displacement
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Extract poll address from instruction and ucontext.
|
|
address MacroAssembler::get_poll_address(address instr_loc, void* ucontext) {
|
|
assert(ucontext != NULL, "must have ucontext");
|
|
ucontext_t* uc = (ucontext_t*) ucontext;
|
|
unsigned long z_instruction;
|
|
unsigned int ilen = get_instruction(instr_loc, &z_instruction);
|
|
|
|
if (ilen == 4 && is_z_tm(z_instruction)) {
|
|
int ra = inv_reg(z_instruction, 16, 32); // base register
|
|
int ds = inv_uimm12(z_instruction); // displacement
|
|
address addr = (address)uc->uc_mcontext.gregs[ra];
|
|
return addr + ds;
|
|
} else if (ilen == 6 && is_z_tmy(z_instruction)) {
|
|
int ra = inv_reg(z_instruction, 16, 48); // base register
|
|
int ds = inv_simm20(z_instruction); // displacement
|
|
address addr = (address)uc->uc_mcontext.gregs[ra];
|
|
return addr + ds;
|
|
}
|
|
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
// Extract poll register from instruction.
|
|
uint MacroAssembler::get_poll_register(address instr_loc) {
|
|
unsigned long z_instruction;
|
|
unsigned int ilen = get_instruction(instr_loc, &z_instruction);
|
|
|
|
if (ilen == 4 && is_z_tm(z_instruction)) {
|
|
return (uint)inv_reg(z_instruction, 16, 32); // base register
|
|
} else if (ilen == 6 && is_z_tmy(z_instruction)) {
|
|
return (uint)inv_reg(z_instruction, 16, 48); // base register
|
|
}
|
|
|
|
ShouldNotReachHere();
|
|
return 0;
|
|
}
|
|
|
|
bool MacroAssembler::is_memory_serialization(int instruction, JavaThread* thread, void* ucontext) {
|
|
ShouldNotCallThis();
|
|
return false;
|
|
}
|
|
|
|
// Write serialization page so VM thread can do a pseudo remote membar
|
|
// We use the current thread pointer to calculate a thread specific
|
|
// offset to write to within the page. This minimizes bus traffic
|
|
// due to cache line collision.
|
|
void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
|
|
assert_different_registers(tmp1, tmp2);
|
|
z_sllg(tmp2, thread, os::get_serialize_page_shift_count());
|
|
load_const_optimized(tmp1, (long) os::get_memory_serialize_page());
|
|
|
|
int mask = os::get_serialize_page_mask();
|
|
if (Immediate::is_uimm16(mask)) {
|
|
z_nill(tmp2, mask);
|
|
z_llghr(tmp2, tmp2);
|
|
} else {
|
|
z_nilf(tmp2, mask);
|
|
z_llgfr(tmp2, tmp2);
|
|
}
|
|
|
|
z_release();
|
|
z_st(Z_R0, 0, tmp2, tmp1);
|
|
}
|
|
|
|
void MacroAssembler::safepoint_poll(Label& slow_path, Register temp_reg) {
|
|
if (SafepointMechanism::uses_thread_local_poll()) {
|
|
const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
|
|
// Armed page has poll_bit set.
|
|
z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
|
|
z_brnaz(slow_path);
|
|
} else {
|
|
load_const_optimized(temp_reg, SafepointSynchronize::address_of_state());
|
|
z_cli(/*SafepointSynchronize::sz_state()*/4-1, temp_reg, SafepointSynchronize::_not_synchronized);
|
|
z_brne(slow_path);
|
|
}
|
|
}
|
|
|
|
// Don't rely on register locking, always use Z_R1 as scratch register instead.
|
|
void MacroAssembler::bang_stack_with_offset(int offset) {
|
|
// Stack grows down, caller passes positive offset.
|
|
assert(offset > 0, "must bang with positive offset");
|
|
if (Displacement::is_validDisp(-offset)) {
|
|
z_tmy(-offset, Z_SP, mask_stackbang);
|
|
} else {
|
|
add2reg(Z_R1, -offset, Z_SP); // Do not destroy Z_SP!!!
|
|
z_tm(0, Z_R1, mask_stackbang); // Just banging.
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::reserved_stack_check(Register return_pc) {
|
|
// Test if reserved zone needs to be enabled.
|
|
Label no_reserved_zone_enabling;
|
|
assert(return_pc == Z_R14, "Return pc must be in R14 before z_br() to StackOverflow stub.");
|
|
BLOCK_COMMENT("reserved_stack_check {");
|
|
|
|
z_clg(Z_SP, Address(Z_thread, JavaThread::reserved_stack_activation_offset()));
|
|
z_brl(no_reserved_zone_enabling);
|
|
|
|
// Enable reserved zone again, throw stack overflow exception.
|
|
save_return_pc();
|
|
push_frame_abi160(0);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
|
|
pop_frame();
|
|
restore_return_pc();
|
|
|
|
load_const_optimized(Z_R1, StubRoutines::throw_delayed_StackOverflowError_entry());
|
|
// Don't use call() or z_basr(), they will invalidate Z_R14 which contains the return pc.
|
|
z_br(Z_R1);
|
|
|
|
should_not_reach_here();
|
|
|
|
bind(no_reserved_zone_enabling);
|
|
BLOCK_COMMENT("} reserved_stack_check");
|
|
}
|
|
|
|
// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
|
|
void MacroAssembler::tlab_allocate(Register obj,
|
|
Register var_size_in_bytes,
|
|
int con_size_in_bytes,
|
|
Register t1,
|
|
Label& slow_case) {
|
|
assert_different_registers(obj, var_size_in_bytes, t1);
|
|
Register end = t1;
|
|
Register thread = Z_thread;
|
|
|
|
z_lg(obj, Address(thread, JavaThread::tlab_top_offset()));
|
|
if (var_size_in_bytes == noreg) {
|
|
z_lay(end, Address(obj, con_size_in_bytes));
|
|
} else {
|
|
z_lay(end, Address(obj, var_size_in_bytes));
|
|
}
|
|
z_cg(end, Address(thread, JavaThread::tlab_end_offset()));
|
|
branch_optimized(bcondHigh, slow_case);
|
|
|
|
// Update the tlab top pointer.
|
|
z_stg(end, Address(thread, JavaThread::tlab_top_offset()));
|
|
|
|
// Recover var_size_in_bytes if necessary.
|
|
if (var_size_in_bytes == end) {
|
|
z_sgr(var_size_in_bytes, obj);
|
|
}
|
|
}
|
|
|
|
// Emitter for interface method lookup.
|
|
// input: recv_klass, intf_klass, itable_index
|
|
// output: method_result
|
|
// kills: itable_index, temp1_reg, Z_R0, Z_R1
|
|
// TODO: Temp2_reg is unused. we may use this emitter also in the itable stubs.
|
|
// If the register is still not needed then, remove it.
|
|
void MacroAssembler::lookup_interface_method(Register recv_klass,
|
|
Register intf_klass,
|
|
RegisterOrConstant itable_index,
|
|
Register method_result,
|
|
Register temp1_reg,
|
|
Label& no_such_interface,
|
|
bool return_method) {
|
|
|
|
const Register vtable_len = temp1_reg; // Used to compute itable_entry_addr.
|
|
const Register itable_entry_addr = Z_R1_scratch;
|
|
const Register itable_interface = Z_R0_scratch;
|
|
|
|
BLOCK_COMMENT("lookup_interface_method {");
|
|
|
|
// Load start of itable entries into itable_entry_addr.
|
|
z_llgf(vtable_len, Address(recv_klass, Klass::vtable_length_offset()));
|
|
z_sllg(vtable_len, vtable_len, exact_log2(vtableEntry::size_in_bytes()));
|
|
|
|
// Loop over all itable entries until desired interfaceOop(Rinterface) found.
|
|
const int vtable_base_offset = in_bytes(Klass::vtable_start_offset());
|
|
|
|
add2reg_with_index(itable_entry_addr,
|
|
vtable_base_offset + itableOffsetEntry::interface_offset_in_bytes(),
|
|
recv_klass, vtable_len);
|
|
|
|
const int itable_offset_search_inc = itableOffsetEntry::size() * wordSize;
|
|
Label search;
|
|
|
|
bind(search);
|
|
|
|
// Handle IncompatibleClassChangeError.
|
|
// If the entry is NULL then we've reached the end of the table
|
|
// without finding the expected interface, so throw an exception.
|
|
load_and_test_long(itable_interface, Address(itable_entry_addr));
|
|
z_bre(no_such_interface);
|
|
|
|
add2reg(itable_entry_addr, itable_offset_search_inc);
|
|
z_cgr(itable_interface, intf_klass);
|
|
z_brne(search);
|
|
|
|
// Entry found and itable_entry_addr points to it, get offset of vtable for interface.
|
|
if (return_method) {
|
|
const int vtable_offset_offset = (itableOffsetEntry::offset_offset_in_bytes() -
|
|
itableOffsetEntry::interface_offset_in_bytes()) -
|
|
itable_offset_search_inc;
|
|
|
|
// Compute itableMethodEntry and get method and entry point
|
|
// we use addressing with index and displacement, since the formula
|
|
// for computing the entry's offset has a fixed and a dynamic part,
|
|
// the latter depending on the matched interface entry and on the case,
|
|
// that the itable index has been passed as a register, not a constant value.
|
|
int method_offset = itableMethodEntry::method_offset_in_bytes();
|
|
// Fixed part (displacement), common operand.
|
|
Register itable_offset = method_result; // Dynamic part (index register).
|
|
|
|
if (itable_index.is_register()) {
|
|
// Compute the method's offset in that register, for the formula, see the
|
|
// else-clause below.
|
|
z_sllg(itable_offset, itable_index.as_register(), exact_log2(itableMethodEntry::size() * wordSize));
|
|
z_agf(itable_offset, vtable_offset_offset, itable_entry_addr);
|
|
} else {
|
|
// Displacement increases.
|
|
method_offset += itableMethodEntry::size() * wordSize * itable_index.as_constant();
|
|
|
|
// Load index from itable.
|
|
z_llgf(itable_offset, vtable_offset_offset, itable_entry_addr);
|
|
}
|
|
|
|
// Finally load the method's oop.
|
|
z_lg(method_result, method_offset, itable_offset, recv_klass);
|
|
}
|
|
BLOCK_COMMENT("} lookup_interface_method");
|
|
}
|
|
|
|
// Lookup for virtual method invocation.
|
|
void MacroAssembler::lookup_virtual_method(Register recv_klass,
|
|
RegisterOrConstant vtable_index,
|
|
Register method_result) {
|
|
assert_different_registers(recv_klass, vtable_index.register_or_noreg());
|
|
assert(vtableEntry::size() * wordSize == wordSize,
|
|
"else adjust the scaling in the code below");
|
|
|
|
BLOCK_COMMENT("lookup_virtual_method {");
|
|
|
|
const int base = in_bytes(Klass::vtable_start_offset());
|
|
|
|
if (vtable_index.is_constant()) {
|
|
// Load with base + disp.
|
|
Address vtable_entry_addr(recv_klass,
|
|
vtable_index.as_constant() * wordSize +
|
|
base +
|
|
vtableEntry::method_offset_in_bytes());
|
|
|
|
z_lg(method_result, vtable_entry_addr);
|
|
} else {
|
|
// Shift index properly and load with base + index + disp.
|
|
Register vindex = vtable_index.as_register();
|
|
Address vtable_entry_addr(recv_klass, vindex,
|
|
base + vtableEntry::method_offset_in_bytes());
|
|
|
|
z_sllg(vindex, vindex, exact_log2(wordSize));
|
|
z_lg(method_result, vtable_entry_addr);
|
|
}
|
|
BLOCK_COMMENT("} lookup_virtual_method");
|
|
}
|
|
|
|
// Factor out code to call ic_miss_handler.
|
|
// Generate code to call the inline cache miss handler.
|
|
//
|
|
// In most cases, this code will be generated out-of-line.
|
|
// The method parameters are intended to provide some variability.
|
|
// ICM - Label which has to be bound to the start of useful code (past any traps).
|
|
// trapMarker - Marking byte for the generated illtrap instructions (if any).
|
|
// Any value except 0x00 is supported.
|
|
// = 0x00 - do not generate illtrap instructions.
|
|
// use nops to fill ununsed space.
|
|
// requiredSize - required size of the generated code. If the actually
|
|
// generated code is smaller, use padding instructions to fill up.
|
|
// = 0 - no size requirement, no padding.
|
|
// scratch - scratch register to hold branch target address.
|
|
//
|
|
// The method returns the code offset of the bound label.
|
|
unsigned int MacroAssembler::call_ic_miss_handler(Label& ICM, int trapMarker, int requiredSize, Register scratch) {
|
|
intptr_t startOffset = offset();
|
|
|
|
// Prevent entry at content_begin().
|
|
if (trapMarker != 0) {
|
|
z_illtrap(trapMarker);
|
|
}
|
|
|
|
// Load address of inline cache miss code into scratch register
|
|
// and branch to cache miss handler.
|
|
BLOCK_COMMENT("IC miss handler {");
|
|
BIND(ICM);
|
|
unsigned int labelOffset = offset();
|
|
AddressLiteral icmiss(SharedRuntime::get_ic_miss_stub());
|
|
|
|
load_const_optimized(scratch, icmiss);
|
|
z_br(scratch);
|
|
|
|
// Fill unused space.
|
|
if (requiredSize > 0) {
|
|
while ((offset() - startOffset) < requiredSize) {
|
|
if (trapMarker == 0) {
|
|
z_nop();
|
|
} else {
|
|
z_illtrap(trapMarker);
|
|
}
|
|
}
|
|
}
|
|
BLOCK_COMMENT("} IC miss handler");
|
|
return labelOffset;
|
|
}
|
|
|
|
void MacroAssembler::nmethod_UEP(Label& ic_miss) {
|
|
Register ic_reg = as_Register(Matcher::inline_cache_reg_encode());
|
|
int klass_offset = oopDesc::klass_offset_in_bytes();
|
|
if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
|
|
if (VM_Version::has_CompareBranch()) {
|
|
z_cgij(Z_ARG1, 0, Assembler::bcondEqual, ic_miss);
|
|
} else {
|
|
z_ltgr(Z_ARG1, Z_ARG1);
|
|
z_bre(ic_miss);
|
|
}
|
|
}
|
|
// Compare cached class against klass from receiver.
|
|
compare_klass_ptr(ic_reg, klass_offset, Z_ARG1, false);
|
|
z_brne(ic_miss);
|
|
}
|
|
|
|
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp1_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
Label* L_slow_path,
|
|
RegisterOrConstant super_check_offset) {
|
|
|
|
const int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
const int sco_offset = in_bytes(Klass::super_check_offset_offset());
|
|
|
|
bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
|
|
bool need_slow_path = (must_load_sco ||
|
|
super_check_offset.constant_or_zero() == sc_offset);
|
|
|
|
// Input registers must not overlap.
|
|
assert_different_registers(sub_klass, super_klass, temp1_reg);
|
|
if (super_check_offset.is_register()) {
|
|
assert_different_registers(sub_klass, super_klass,
|
|
super_check_offset.as_register());
|
|
} else if (must_load_sco) {
|
|
assert(temp1_reg != noreg, "supply either a temp or a register offset");
|
|
}
|
|
|
|
const Register Rsuper_check_offset = temp1_reg;
|
|
|
|
NearLabel L_fallthrough;
|
|
int label_nulls = 0;
|
|
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
|
|
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
|
|
if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
|
|
assert(label_nulls <= 1 ||
|
|
(L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
|
|
"at most one NULL in the batch, usually");
|
|
|
|
BLOCK_COMMENT("check_klass_subtype_fast_path {");
|
|
// If the pointers are equal, we are done (e.g., String[] elements).
|
|
// This self-check enables sharing of secondary supertype arrays among
|
|
// non-primary types such as array-of-interface. Otherwise, each such
|
|
// type would need its own customized SSA.
|
|
// We move this check to the front of the fast path because many
|
|
// type checks are in fact trivially successful in this manner,
|
|
// so we get a nicely predicted branch right at the start of the check.
|
|
compare64_and_branch(sub_klass, super_klass, bcondEqual, *L_success);
|
|
|
|
// Check the supertype display, which is uint.
|
|
if (must_load_sco) {
|
|
z_llgf(Rsuper_check_offset, sco_offset, super_klass);
|
|
super_check_offset = RegisterOrConstant(Rsuper_check_offset);
|
|
}
|
|
Address super_check_addr(sub_klass, super_check_offset, 0);
|
|
z_cg(super_klass, super_check_addr); // compare w/ displayed supertype
|
|
|
|
// This check has worked decisively for primary supers.
|
|
// Secondary supers are sought in the super_cache ('super_cache_addr').
|
|
// (Secondary supers are interfaces and very deeply nested subtypes.)
|
|
// This works in the same check above because of a tricky aliasing
|
|
// between the super_cache and the primary super display elements.
|
|
// (The 'super_check_addr' can address either, as the case requires.)
|
|
// Note that the cache is updated below if it does not help us find
|
|
// what we need immediately.
|
|
// So if it was a primary super, we can just fail immediately.
|
|
// Otherwise, it's the slow path for us (no success at this point).
|
|
|
|
// Hacked jmp, which may only be used just before L_fallthrough.
|
|
#define final_jmp(label) \
|
|
if (&(label) == &L_fallthrough) { /*do nothing*/ } \
|
|
else { branch_optimized(Assembler::bcondAlways, label); } /*omit semicolon*/
|
|
|
|
if (super_check_offset.is_register()) {
|
|
branch_optimized(Assembler::bcondEqual, *L_success);
|
|
z_cfi(super_check_offset.as_register(), sc_offset);
|
|
if (L_failure == &L_fallthrough) {
|
|
branch_optimized(Assembler::bcondEqual, *L_slow_path);
|
|
} else {
|
|
branch_optimized(Assembler::bcondNotEqual, *L_failure);
|
|
final_jmp(*L_slow_path);
|
|
}
|
|
} else if (super_check_offset.as_constant() == sc_offset) {
|
|
// Need a slow path; fast failure is impossible.
|
|
if (L_slow_path == &L_fallthrough) {
|
|
branch_optimized(Assembler::bcondEqual, *L_success);
|
|
} else {
|
|
branch_optimized(Assembler::bcondNotEqual, *L_slow_path);
|
|
final_jmp(*L_success);
|
|
}
|
|
} else {
|
|
// No slow path; it's a fast decision.
|
|
if (L_failure == &L_fallthrough) {
|
|
branch_optimized(Assembler::bcondEqual, *L_success);
|
|
} else {
|
|
branch_optimized(Assembler::bcondNotEqual, *L_failure);
|
|
final_jmp(*L_success);
|
|
}
|
|
}
|
|
|
|
bind(L_fallthrough);
|
|
#undef local_brc
|
|
#undef final_jmp
|
|
BLOCK_COMMENT("} check_klass_subtype_fast_path");
|
|
// fallthru (to slow path)
|
|
}
|
|
|
|
void MacroAssembler::check_klass_subtype_slow_path(Register Rsubklass,
|
|
Register Rsuperklass,
|
|
Register Rarray_ptr, // tmp
|
|
Register Rlength, // tmp
|
|
Label* L_success,
|
|
Label* L_failure) {
|
|
// Input registers must not overlap.
|
|
// Also check for R1 which is explicitely used here.
|
|
assert_different_registers(Z_R1, Rsubklass, Rsuperklass, Rarray_ptr, Rlength);
|
|
NearLabel L_fallthrough, L_loop;
|
|
int label_nulls = 0;
|
|
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
|
|
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
|
|
assert(label_nulls <= 1, "at most one NULL in the batch");
|
|
|
|
const int ss_offset = in_bytes(Klass::secondary_supers_offset());
|
|
const int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
|
|
|
|
const int length_offset = Array<Klass*>::length_offset_in_bytes();
|
|
const int base_offset = Array<Klass*>::base_offset_in_bytes();
|
|
|
|
// Hacked jmp, which may only be used just before L_fallthrough.
|
|
#define final_jmp(label) \
|
|
if (&(label) == &L_fallthrough) { /*do nothing*/ } \
|
|
else branch_optimized(Assembler::bcondAlways, label) /*omit semicolon*/
|
|
|
|
NearLabel loop_iterate, loop_count, match;
|
|
|
|
BLOCK_COMMENT("check_klass_subtype_slow_path {");
|
|
z_lg(Rarray_ptr, ss_offset, Rsubklass);
|
|
|
|
load_and_test_int(Rlength, Address(Rarray_ptr, length_offset));
|
|
branch_optimized(Assembler::bcondZero, *L_failure);
|
|
|
|
// Oops in table are NO MORE compressed.
|
|
z_cg(Rsuperklass, base_offset, Rarray_ptr); // Check array element for match.
|
|
z_bre(match); // Shortcut for array length = 1.
|
|
|
|
// No match yet, so we must walk the array's elements.
|
|
z_lngfr(Rlength, Rlength);
|
|
z_sllg(Rlength, Rlength, LogBytesPerWord); // -#bytes of cache array
|
|
z_llill(Z_R1, BytesPerWord); // Set increment/end index.
|
|
add2reg(Rlength, 2 * BytesPerWord); // start index = -(n-2)*BytesPerWord
|
|
z_slgr(Rarray_ptr, Rlength); // start addr: += (n-2)*BytesPerWord
|
|
z_bru(loop_count);
|
|
|
|
BIND(loop_iterate);
|
|
z_cg(Rsuperklass, base_offset, Rlength, Rarray_ptr); // Check array element for match.
|
|
z_bre(match);
|
|
BIND(loop_count);
|
|
z_brxlg(Rlength, Z_R1, loop_iterate);
|
|
|
|
// Rsuperklass not found among secondary super classes -> failure.
|
|
branch_optimized(Assembler::bcondAlways, *L_failure);
|
|
|
|
// Got a hit. Return success (zero result). Set cache.
|
|
// Cache load doesn't happen here. For speed it is directly emitted by the compiler.
|
|
|
|
BIND(match);
|
|
|
|
z_stg(Rsuperklass, sc_offset, Rsubklass); // Save result to cache.
|
|
|
|
final_jmp(*L_success);
|
|
|
|
// Exit to the surrounding code.
|
|
BIND(L_fallthrough);
|
|
#undef local_brc
|
|
#undef final_jmp
|
|
BLOCK_COMMENT("} check_klass_subtype_slow_path");
|
|
}
|
|
|
|
// Emitter for combining fast and slow path.
|
|
void MacroAssembler::check_klass_subtype(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp1_reg,
|
|
Register temp2_reg,
|
|
Label& L_success) {
|
|
NearLabel failure;
|
|
BLOCK_COMMENT(err_msg("check_klass_subtype(%s subclass of %s) {", sub_klass->name(), super_klass->name()));
|
|
check_klass_subtype_fast_path(sub_klass, super_klass, temp1_reg,
|
|
&L_success, &failure, NULL);
|
|
check_klass_subtype_slow_path(sub_klass, super_klass,
|
|
temp1_reg, temp2_reg, &L_success, NULL);
|
|
BIND(failure);
|
|
BLOCK_COMMENT("} check_klass_subtype");
|
|
}
|
|
|
|
// Increment a counter at counter_address when the eq condition code is
|
|
// set. Kills registers tmp1_reg and tmp2_reg and preserves the condition code.
|
|
void MacroAssembler::increment_counter_eq(address counter_address, Register tmp1_reg, Register tmp2_reg) {
|
|
Label l;
|
|
z_brne(l);
|
|
load_const(tmp1_reg, counter_address);
|
|
add2mem_32(Address(tmp1_reg), 1, tmp2_reg);
|
|
z_cr(tmp1_reg, tmp1_reg); // Set cc to eq.
|
|
bind(l);
|
|
}
|
|
|
|
// Semantics are dependent on the slow_case label:
|
|
// If the slow_case label is not NULL, failure to biased-lock the object
|
|
// transfers control to the location of the slow_case label. If the
|
|
// object could be biased-locked, control is transferred to the done label.
|
|
// The condition code is unpredictable.
|
|
//
|
|
// If the slow_case label is NULL, failure to biased-lock the object results
|
|
// in a transfer of control to the done label with a condition code of not_equal.
|
|
// If the biased-lock could be successfully obtained, control is transfered to
|
|
// the done label with a condition code of equal.
|
|
// It is mandatory to react on the condition code At the done label.
|
|
//
|
|
void MacroAssembler::biased_locking_enter(Register obj_reg,
|
|
Register mark_reg,
|
|
Register temp_reg,
|
|
Register temp2_reg, // May be Z_RO!
|
|
Label &done,
|
|
Label *slow_case) {
|
|
assert(UseBiasedLocking, "why call this otherwise?");
|
|
assert_different_registers(obj_reg, mark_reg, temp_reg, temp2_reg);
|
|
|
|
Label cas_label; // Try, if implemented, CAS locking. Fall thru to slow path otherwise.
|
|
|
|
BLOCK_COMMENT("biased_locking_enter {");
|
|
|
|
// Biased locking
|
|
// See whether the lock is currently biased toward our thread and
|
|
// whether the epoch is still valid.
|
|
// Note that the runtime guarantees sufficient alignment of JavaThread
|
|
// pointers to allow age to be placed into low bits.
|
|
assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits,
|
|
"biased locking makes assumptions about bit layout");
|
|
z_lr(temp_reg, mark_reg);
|
|
z_nilf(temp_reg, markOopDesc::biased_lock_mask_in_place);
|
|
z_chi(temp_reg, markOopDesc::biased_lock_pattern);
|
|
z_brne(cas_label); // Try cas if object is not biased, i.e. cannot be biased locked.
|
|
|
|
load_prototype_header(temp_reg, obj_reg);
|
|
load_const_optimized(temp2_reg, ~((int) markOopDesc::age_mask_in_place));
|
|
|
|
z_ogr(temp_reg, Z_thread);
|
|
z_xgr(temp_reg, mark_reg);
|
|
z_ngr(temp_reg, temp2_reg);
|
|
if (PrintBiasedLockingStatistics) {
|
|
increment_counter_eq((address) BiasedLocking::biased_lock_entry_count_addr(), mark_reg, temp2_reg);
|
|
// Restore mark_reg.
|
|
z_lg(mark_reg, oopDesc::mark_offset_in_bytes(), obj_reg);
|
|
}
|
|
branch_optimized(Assembler::bcondEqual, done); // Biased lock obtained, return success.
|
|
|
|
Label try_revoke_bias;
|
|
Label try_rebias;
|
|
Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
|
|
|
|
//----------------------------------------------------------------------------
|
|
// At this point we know that the header has the bias pattern and
|
|
// that we are not the bias owner in the current epoch. We need to
|
|
// figure out more details about the state of the header in order to
|
|
// know what operations can be legally performed on the object's
|
|
// header.
|
|
|
|
// If the low three bits in the xor result aren't clear, that means
|
|
// the prototype header is no longer biased and we have to revoke
|
|
// the bias on this object.
|
|
z_tmll(temp_reg, markOopDesc::biased_lock_mask_in_place);
|
|
z_brnaz(try_revoke_bias);
|
|
|
|
// Biasing is still enabled for this data type. See whether the
|
|
// epoch of the current bias is still valid, meaning that the epoch
|
|
// bits of the mark word are equal to the epoch bits of the
|
|
// prototype header. (Note that the prototype header's epoch bits
|
|
// only change at a safepoint.) If not, attempt to rebias the object
|
|
// toward the current thread. Note that we must be absolutely sure
|
|
// that the current epoch is invalid in order to do this because
|
|
// otherwise the manipulations it performs on the mark word are
|
|
// illegal.
|
|
z_tmll(temp_reg, markOopDesc::epoch_mask_in_place);
|
|
z_brnaz(try_rebias);
|
|
|
|
//----------------------------------------------------------------------------
|
|
// The epoch of the current bias is still valid but we know nothing
|
|
// about the owner; it might be set or it might be clear. Try to
|
|
// acquire the bias of the object using an atomic operation. If this
|
|
// fails we will go in to the runtime to revoke the object's bias.
|
|
// Note that we first construct the presumed unbiased header so we
|
|
// don't accidentally blow away another thread's valid bias.
|
|
z_nilf(mark_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place |
|
|
markOopDesc::epoch_mask_in_place);
|
|
z_lgr(temp_reg, Z_thread);
|
|
z_llgfr(mark_reg, mark_reg);
|
|
z_ogr(temp_reg, mark_reg);
|
|
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
|
|
z_csg(mark_reg, temp_reg, 0, obj_reg);
|
|
|
|
// If the biasing toward our thread failed, this means that
|
|
// another thread succeeded in biasing it toward itself and we
|
|
// need to revoke that bias. The revocation will occur in the
|
|
// interpreter runtime in the slow case.
|
|
|
|
if (PrintBiasedLockingStatistics) {
|
|
increment_counter_eq((address) BiasedLocking::anonymously_biased_lock_entry_count_addr(),
|
|
temp_reg, temp2_reg);
|
|
}
|
|
if (slow_case != NULL) {
|
|
branch_optimized(Assembler::bcondNotEqual, *slow_case); // Biased lock not obtained, need to go the long way.
|
|
}
|
|
branch_optimized(Assembler::bcondAlways, done); // Biased lock status given in condition code.
|
|
|
|
//----------------------------------------------------------------------------
|
|
bind(try_rebias);
|
|
// At this point we know the epoch has expired, meaning that the
|
|
// current "bias owner", if any, is actually invalid. Under these
|
|
// circumstances _only_, we are allowed to use the current header's
|
|
// value as the comparison value when doing the cas to acquire the
|
|
// bias in the current epoch. In other words, we allow transfer of
|
|
// the bias from one thread to another directly in this situation.
|
|
|
|
z_nilf(mark_reg, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
|
|
load_prototype_header(temp_reg, obj_reg);
|
|
z_llgfr(mark_reg, mark_reg);
|
|
|
|
z_ogr(temp_reg, Z_thread);
|
|
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
|
|
z_csg(mark_reg, temp_reg, 0, obj_reg);
|
|
|
|
// If the biasing toward our thread failed, this means that
|
|
// another thread succeeded in biasing it toward itself and we
|
|
// need to revoke that bias. The revocation will occur in the
|
|
// interpreter runtime in the slow case.
|
|
|
|
if (PrintBiasedLockingStatistics) {
|
|
increment_counter_eq((address) BiasedLocking::rebiased_lock_entry_count_addr(), temp_reg, temp2_reg);
|
|
}
|
|
if (slow_case != NULL) {
|
|
branch_optimized(Assembler::bcondNotEqual, *slow_case); // Biased lock not obtained, need to go the long way.
|
|
}
|
|
z_bru(done); // Biased lock status given in condition code.
|
|
|
|
//----------------------------------------------------------------------------
|
|
bind(try_revoke_bias);
|
|
// The prototype mark in the klass doesn't have the bias bit set any
|
|
// more, indicating that objects of this data type are not supposed
|
|
// to be biased any more. We are going to try to reset the mark of
|
|
// this object to the prototype value and fall through to the
|
|
// CAS-based locking scheme. Note that if our CAS fails, it means
|
|
// that another thread raced us for the privilege of revoking the
|
|
// bias of this particular object, so it's okay to continue in the
|
|
// normal locking code.
|
|
load_prototype_header(temp_reg, obj_reg);
|
|
|
|
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
|
|
|
|
z_csg(mark_reg, temp_reg, 0, obj_reg);
|
|
|
|
// Fall through to the normal CAS-based lock, because no matter what
|
|
// the result of the above CAS, some thread must have succeeded in
|
|
// removing the bias bit from the object's header.
|
|
if (PrintBiasedLockingStatistics) {
|
|
// z_cgr(mark_reg, temp2_reg);
|
|
increment_counter_eq((address) BiasedLocking::revoked_lock_entry_count_addr(), temp_reg, temp2_reg);
|
|
}
|
|
|
|
bind(cas_label);
|
|
BLOCK_COMMENT("} biased_locking_enter");
|
|
}
|
|
|
|
void MacroAssembler::biased_locking_exit(Register mark_addr, Register temp_reg, Label& done) {
|
|
// Check for biased locking unlock case, which is a no-op
|
|
// Note: we do not have to check the thread ID for two reasons.
|
|
// First, the interpreter checks for IllegalMonitorStateException at
|
|
// a higher level. Second, if the bias was revoked while we held the
|
|
// lock, the object could not be rebiased toward another thread, so
|
|
// the bias bit would be clear.
|
|
BLOCK_COMMENT("biased_locking_exit {");
|
|
|
|
z_lg(temp_reg, 0, mark_addr);
|
|
z_nilf(temp_reg, markOopDesc::biased_lock_mask_in_place);
|
|
|
|
z_chi(temp_reg, markOopDesc::biased_lock_pattern);
|
|
z_bre(done);
|
|
BLOCK_COMMENT("} biased_locking_exit");
|
|
}
|
|
|
|
void MacroAssembler::compiler_fast_lock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
|
|
Register displacedHeader = temp1;
|
|
Register currentHeader = temp1;
|
|
Register temp = temp2;
|
|
NearLabel done, object_has_monitor;
|
|
|
|
BLOCK_COMMENT("compiler_fast_lock_object {");
|
|
|
|
// Load markOop from oop into mark.
|
|
z_lg(displacedHeader, 0, oop);
|
|
|
|
if (try_bias) {
|
|
biased_locking_enter(oop, displacedHeader, temp, Z_R0, done);
|
|
}
|
|
|
|
// Handle existing monitor.
|
|
if ((EmitSync & 0x01) == 0) {
|
|
// The object has an existing monitor iff (mark & monitor_value) != 0.
|
|
guarantee(Immediate::is_uimm16(markOopDesc::monitor_value), "must be half-word");
|
|
z_lr(temp, displacedHeader);
|
|
z_nill(temp, markOopDesc::monitor_value);
|
|
z_brne(object_has_monitor);
|
|
}
|
|
|
|
// Set mark to markOop | markOopDesc::unlocked_value.
|
|
z_oill(displacedHeader, markOopDesc::unlocked_value);
|
|
|
|
// Load Compare Value application register.
|
|
|
|
// Initialize the box (must happen before we update the object mark).
|
|
z_stg(displacedHeader, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
// Memory Fence (in cmpxchgd)
|
|
// Compare object markOop with mark and if equal exchange scratch1 with object markOop.
|
|
|
|
// If the compare-and-swap succeeded, then we found an unlocked object and we
|
|
// have now locked it.
|
|
z_csg(displacedHeader, box, 0, oop);
|
|
assert(currentHeader==displacedHeader, "must be same register"); // Identified two registers from z/Architecture.
|
|
z_bre(done);
|
|
|
|
// We did not see an unlocked object so try the fast recursive case.
|
|
|
|
z_sgr(currentHeader, Z_SP);
|
|
load_const_optimized(temp, (~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place));
|
|
|
|
z_ngr(currentHeader, temp);
|
|
// z_brne(done);
|
|
// z_release();
|
|
z_stg(currentHeader/*==0 or not 0*/, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
|
|
z_bru(done);
|
|
|
|
if ((EmitSync & 0x01) == 0) {
|
|
Register zero = temp;
|
|
Register monitor_tagged = displacedHeader; // Tagged with markOopDesc::monitor_value.
|
|
bind(object_has_monitor);
|
|
// The object's monitor m is unlocked iff m->owner == NULL,
|
|
// otherwise m->owner may contain a thread or a stack address.
|
|
//
|
|
// Try to CAS m->owner from NULL to current thread.
|
|
z_lghi(zero, 0);
|
|
// If m->owner is null, then csg succeeds and sets m->owner=THREAD and CR=EQ.
|
|
z_csg(zero, Z_thread, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), monitor_tagged);
|
|
// Store a non-null value into the box.
|
|
z_stg(box, BasicLock::displaced_header_offset_in_bytes(), box);
|
|
#ifdef ASSERT
|
|
z_brne(done);
|
|
// We've acquired the monitor, check some invariants.
|
|
// Invariant 1: _recursions should be 0.
|
|
asm_assert_mem8_is_zero(OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions), monitor_tagged,
|
|
"monitor->_recursions should be 0", -1);
|
|
z_ltgr(zero, zero); // Set CR=EQ.
|
|
#endif
|
|
}
|
|
bind(done);
|
|
|
|
BLOCK_COMMENT("} compiler_fast_lock_object");
|
|
// If locking was successful, CR should indicate 'EQ'.
|
|
// The compiler or the native wrapper generates a branch to the runtime call
|
|
// _complete_monitor_locking_Java.
|
|
}
|
|
|
|
void MacroAssembler::compiler_fast_unlock_object(Register oop, Register box, Register temp1, Register temp2, bool try_bias) {
|
|
Register displacedHeader = temp1;
|
|
Register currentHeader = temp2;
|
|
Register temp = temp1;
|
|
Register monitor = temp2;
|
|
|
|
Label done, object_has_monitor;
|
|
|
|
BLOCK_COMMENT("compiler_fast_unlock_object {");
|
|
|
|
if (try_bias) {
|
|
biased_locking_exit(oop, currentHeader, done);
|
|
}
|
|
|
|
// Find the lock address and load the displaced header from the stack.
|
|
// if the displaced header is zero, we have a recursive unlock.
|
|
load_and_test_long(displacedHeader, Address(box, BasicLock::displaced_header_offset_in_bytes()));
|
|
z_bre(done);
|
|
|
|
// Handle existing monitor.
|
|
if ((EmitSync & 0x02) == 0) {
|
|
// The object has an existing monitor iff (mark & monitor_value) != 0.
|
|
z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop);
|
|
guarantee(Immediate::is_uimm16(markOopDesc::monitor_value), "must be half-word");
|
|
z_nill(currentHeader, markOopDesc::monitor_value);
|
|
z_brne(object_has_monitor);
|
|
}
|
|
|
|
// Check if it is still a light weight lock, this is true if we see
|
|
// the stack address of the basicLock in the markOop of the object
|
|
// copy box to currentHeader such that csg does not kill it.
|
|
z_lgr(currentHeader, box);
|
|
z_csg(currentHeader, displacedHeader, 0, oop);
|
|
z_bru(done); // Csg sets CR as desired.
|
|
|
|
// Handle existing monitor.
|
|
if ((EmitSync & 0x02) == 0) {
|
|
bind(object_has_monitor);
|
|
z_lg(currentHeader, oopDesc::mark_offset_in_bytes(), oop); // CurrentHeader is tagged with monitor_value set.
|
|
load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
|
|
z_brne(done);
|
|
load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
|
|
z_brne(done);
|
|
load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
|
|
z_brne(done);
|
|
load_and_test_long(temp, Address(currentHeader, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
|
|
z_brne(done);
|
|
z_release();
|
|
z_stg(temp/*=0*/, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), currentHeader);
|
|
}
|
|
|
|
bind(done);
|
|
|
|
BLOCK_COMMENT("} compiler_fast_unlock_object");
|
|
// flag == EQ indicates success
|
|
// flag == NE indicates failure
|
|
}
|
|
|
|
void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
|
|
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
|
|
bs->resolve_jobject(this, value, tmp1, tmp2);
|
|
}
|
|
|
|
// Last_Java_sp must comply to the rules in frame_s390.hpp.
|
|
void MacroAssembler::set_last_Java_frame(Register last_Java_sp, Register last_Java_pc, bool allow_relocation) {
|
|
BLOCK_COMMENT("set_last_Java_frame {");
|
|
|
|
// Always set last_Java_pc and flags first because once last_Java_sp
|
|
// is visible has_last_Java_frame is true and users will look at the
|
|
// rest of the fields. (Note: flags should always be zero before we
|
|
// get here so doesn't need to be set.)
|
|
|
|
// Verify that last_Java_pc was zeroed on return to Java.
|
|
if (allow_relocation) {
|
|
asm_assert_mem8_is_zero(in_bytes(JavaThread::last_Java_pc_offset()),
|
|
Z_thread,
|
|
"last_Java_pc not zeroed before leaving Java",
|
|
0x200);
|
|
} else {
|
|
asm_assert_mem8_is_zero_static(in_bytes(JavaThread::last_Java_pc_offset()),
|
|
Z_thread,
|
|
"last_Java_pc not zeroed before leaving Java",
|
|
0x200);
|
|
}
|
|
|
|
// When returning from calling out from Java mode the frame anchor's
|
|
// last_Java_pc will always be set to NULL. It is set here so that
|
|
// if we are doing a call to native (not VM) that we capture the
|
|
// known pc and don't have to rely on the native call having a
|
|
// standard frame linkage where we can find the pc.
|
|
if (last_Java_pc!=noreg) {
|
|
z_stg(last_Java_pc, Address(Z_thread, JavaThread::last_Java_pc_offset()));
|
|
}
|
|
|
|
// This membar release is not required on z/Architecture, since the sequence of stores
|
|
// in maintained. Nevertheless, we leave it in to document the required ordering.
|
|
// The implementation of z_release() should be empty.
|
|
// z_release();
|
|
|
|
z_stg(last_Java_sp, Address(Z_thread, JavaThread::last_Java_sp_offset()));
|
|
BLOCK_COMMENT("} set_last_Java_frame");
|
|
}
|
|
|
|
void MacroAssembler::reset_last_Java_frame(bool allow_relocation) {
|
|
BLOCK_COMMENT("reset_last_Java_frame {");
|
|
|
|
if (allow_relocation) {
|
|
asm_assert_mem8_isnot_zero(in_bytes(JavaThread::last_Java_sp_offset()),
|
|
Z_thread,
|
|
"SP was not set, still zero",
|
|
0x202);
|
|
} else {
|
|
asm_assert_mem8_isnot_zero_static(in_bytes(JavaThread::last_Java_sp_offset()),
|
|
Z_thread,
|
|
"SP was not set, still zero",
|
|
0x202);
|
|
}
|
|
|
|
// _last_Java_sp = 0
|
|
// Clearing storage must be atomic here, so don't use clear_mem()!
|
|
store_const(Address(Z_thread, JavaThread::last_Java_sp_offset()), 0);
|
|
|
|
// _last_Java_pc = 0
|
|
store_const(Address(Z_thread, JavaThread::last_Java_pc_offset()), 0);
|
|
|
|
BLOCK_COMMENT("} reset_last_Java_frame");
|
|
return;
|
|
}
|
|
|
|
void MacroAssembler::set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1, bool allow_relocation) {
|
|
assert_different_registers(sp, tmp1);
|
|
|
|
// We cannot trust that code generated by the C++ compiler saves R14
|
|
// to z_abi_160.return_pc, because sometimes it spills R14 using stmg at
|
|
// z_abi_160.gpr14 (e.g. InterpreterRuntime::_new()).
|
|
// Therefore we load the PC into tmp1 and let set_last_Java_frame() save
|
|
// it into the frame anchor.
|
|
get_PC(tmp1);
|
|
set_last_Java_frame(/*sp=*/sp, /*pc=*/tmp1, allow_relocation);
|
|
}
|
|
|
|
void MacroAssembler::set_thread_state(JavaThreadState new_state) {
|
|
z_release();
|
|
|
|
assert(Immediate::is_uimm16(_thread_max_state), "enum value out of range for instruction");
|
|
assert(sizeof(JavaThreadState) == sizeof(int), "enum value must have base type int");
|
|
store_const(Address(Z_thread, JavaThread::thread_state_offset()), new_state, Z_R0, false);
|
|
}
|
|
|
|
void MacroAssembler::get_vm_result(Register oop_result) {
|
|
verify_thread();
|
|
|
|
z_lg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
|
|
clear_mem(Address(Z_thread, JavaThread::vm_result_offset()), sizeof(void*));
|
|
|
|
verify_oop(oop_result);
|
|
}
|
|
|
|
void MacroAssembler::get_vm_result_2(Register result) {
|
|
verify_thread();
|
|
|
|
z_lg(result, Address(Z_thread, JavaThread::vm_result_2_offset()));
|
|
clear_mem(Address(Z_thread, JavaThread::vm_result_2_offset()), sizeof(void*));
|
|
}
|
|
|
|
// We require that C code which does not return a value in vm_result will
|
|
// leave it undisturbed.
|
|
void MacroAssembler::set_vm_result(Register oop_result) {
|
|
z_stg(oop_result, Address(Z_thread, JavaThread::vm_result_offset()));
|
|
}
|
|
|
|
// Explicit null checks (used for method handle code).
|
|
void MacroAssembler::null_check(Register reg, Register tmp, int64_t offset) {
|
|
if (!ImplicitNullChecks) {
|
|
NearLabel ok;
|
|
|
|
compare64_and_branch(reg, (intptr_t) 0, Assembler::bcondNotEqual, ok);
|
|
|
|
// We just put the address into reg if it was 0 (tmp==Z_R0 is allowed so we can't use it for the address).
|
|
address exception_entry = Interpreter::throw_NullPointerException_entry();
|
|
load_absolute_address(reg, exception_entry);
|
|
z_br(reg);
|
|
|
|
bind(ok);
|
|
} else {
|
|
if (needs_explicit_null_check((intptr_t)offset)) {
|
|
// Provoke OS NULL exception if reg = NULL by
|
|
// accessing M[reg] w/o changing any registers.
|
|
z_lg(tmp, 0, reg);
|
|
}
|
|
// else
|
|
// Nothing to do, (later) access of M[reg + offset]
|
|
// will provoke OS NULL exception if reg = NULL.
|
|
}
|
|
}
|
|
|
|
//-------------------------------------
|
|
// Compressed Klass Pointers
|
|
//-------------------------------------
|
|
|
|
// Klass oop manipulations if compressed.
|
|
void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
|
|
Register current = (src != noreg) ? src : dst; // Klass is in dst if no src provided. (dst == src) also possible.
|
|
address base = Universe::narrow_klass_base();
|
|
int shift = Universe::narrow_klass_shift();
|
|
assert(UseCompressedClassPointers, "only for compressed klass ptrs");
|
|
|
|
BLOCK_COMMENT("cKlass encoder {");
|
|
|
|
#ifdef ASSERT
|
|
Label ok;
|
|
z_tmll(current, KlassAlignmentInBytes-1); // Check alignment.
|
|
z_brc(Assembler::bcondAllZero, ok);
|
|
// The plain disassembler does not recognize illtrap. It instead displays
|
|
// a 32-bit value. Issueing two illtraps assures the disassembler finds
|
|
// the proper beginning of the next instruction.
|
|
z_illtrap(0xee);
|
|
z_illtrap(0xee);
|
|
bind(ok);
|
|
#endif
|
|
|
|
if (base != NULL) {
|
|
unsigned int base_h = ((unsigned long)base)>>32;
|
|
unsigned int base_l = (unsigned int)((unsigned long)base);
|
|
if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
|
|
lgr_if_needed(dst, current);
|
|
z_aih(dst, -((int)base_h)); // Base has no set bits in lower half.
|
|
} else if ((base_h == 0) && (base_l != 0)) {
|
|
lgr_if_needed(dst, current);
|
|
z_agfi(dst, -(int)base_l);
|
|
} else {
|
|
load_const(Z_R0, base);
|
|
lgr_if_needed(dst, current);
|
|
z_sgr(dst, Z_R0);
|
|
}
|
|
current = dst;
|
|
}
|
|
if (shift != 0) {
|
|
assert (LogKlassAlignmentInBytes == shift, "decode alg wrong");
|
|
z_srlg(dst, current, shift);
|
|
current = dst;
|
|
}
|
|
lgr_if_needed(dst, current); // Move may be required (if neither base nor shift != 0).
|
|
|
|
BLOCK_COMMENT("} cKlass encoder");
|
|
}
|
|
|
|
// This function calculates the size of the code generated by
|
|
// decode_klass_not_null(register dst, Register src)
|
|
// when (Universe::heap() != NULL). Hence, if the instructions
|
|
// it generates change, then this method needs to be updated.
|
|
int MacroAssembler::instr_size_for_decode_klass_not_null() {
|
|
address base = Universe::narrow_klass_base();
|
|
int shift_size = Universe::narrow_klass_shift() == 0 ? 0 : 6; /* sllg */
|
|
int addbase_size = 0;
|
|
assert(UseCompressedClassPointers, "only for compressed klass ptrs");
|
|
|
|
if (base != NULL) {
|
|
unsigned int base_h = ((unsigned long)base)>>32;
|
|
unsigned int base_l = (unsigned int)((unsigned long)base);
|
|
if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
|
|
addbase_size += 6; /* aih */
|
|
} else if ((base_h == 0) && (base_l != 0)) {
|
|
addbase_size += 6; /* algfi */
|
|
} else {
|
|
addbase_size += load_const_size();
|
|
addbase_size += 4; /* algr */
|
|
}
|
|
}
|
|
#ifdef ASSERT
|
|
addbase_size += 10;
|
|
addbase_size += 2; // Extra sigill.
|
|
#endif
|
|
return addbase_size + shift_size;
|
|
}
|
|
|
|
// !!! If the instructions that get generated here change
|
|
// then function instr_size_for_decode_klass_not_null()
|
|
// needs to get updated.
|
|
// This variant of decode_klass_not_null() must generate predictable code!
|
|
// The code must only depend on globally known parameters.
|
|
void MacroAssembler::decode_klass_not_null(Register dst) {
|
|
address base = Universe::narrow_klass_base();
|
|
int shift = Universe::narrow_klass_shift();
|
|
int beg_off = offset();
|
|
assert(UseCompressedClassPointers, "only for compressed klass ptrs");
|
|
|
|
BLOCK_COMMENT("cKlass decoder (const size) {");
|
|
|
|
if (shift != 0) { // Shift required?
|
|
z_sllg(dst, dst, shift);
|
|
}
|
|
if (base != NULL) {
|
|
unsigned int base_h = ((unsigned long)base)>>32;
|
|
unsigned int base_l = (unsigned int)((unsigned long)base);
|
|
if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
|
|
z_aih(dst, base_h); // Base has no set bits in lower half.
|
|
} else if ((base_h == 0) && (base_l != 0)) {
|
|
z_algfi(dst, base_l); // Base has no set bits in upper half.
|
|
} else {
|
|
load_const(Z_R0, base); // Base has set bits everywhere.
|
|
z_algr(dst, Z_R0);
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
Label ok;
|
|
z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
|
|
z_brc(Assembler::bcondAllZero, ok);
|
|
// The plain disassembler does not recognize illtrap. It instead displays
|
|
// a 32-bit value. Issueing two illtraps assures the disassembler finds
|
|
// the proper beginning of the next instruction.
|
|
z_illtrap(0xd1);
|
|
z_illtrap(0xd1);
|
|
bind(ok);
|
|
#endif
|
|
assert(offset() == beg_off + instr_size_for_decode_klass_not_null(), "Code gen mismatch.");
|
|
|
|
BLOCK_COMMENT("} cKlass decoder (const size)");
|
|
}
|
|
|
|
// This variant of decode_klass_not_null() is for cases where
|
|
// 1) the size of the generated instructions may vary
|
|
// 2) the result is (potentially) stored in a register different from the source.
|
|
void MacroAssembler::decode_klass_not_null(Register dst, Register src) {
|
|
address base = Universe::narrow_klass_base();
|
|
int shift = Universe::narrow_klass_shift();
|
|
assert(UseCompressedClassPointers, "only for compressed klass ptrs");
|
|
|
|
BLOCK_COMMENT("cKlass decoder {");
|
|
|
|
if (src == noreg) src = dst;
|
|
|
|
if (shift != 0) { // Shift or at least move required?
|
|
z_sllg(dst, src, shift);
|
|
} else {
|
|
lgr_if_needed(dst, src);
|
|
}
|
|
|
|
if (base != NULL) {
|
|
unsigned int base_h = ((unsigned long)base)>>32;
|
|
unsigned int base_l = (unsigned int)((unsigned long)base);
|
|
if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
|
|
z_aih(dst, base_h); // Base has not set bits in lower half.
|
|
} else if ((base_h == 0) && (base_l != 0)) {
|
|
z_algfi(dst, base_l); // Base has no set bits in upper half.
|
|
} else {
|
|
load_const_optimized(Z_R0, base); // Base has set bits everywhere.
|
|
z_algr(dst, Z_R0);
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
Label ok;
|
|
z_tmll(dst, KlassAlignmentInBytes-1); // Check alignment.
|
|
z_brc(Assembler::bcondAllZero, ok);
|
|
// The plain disassembler does not recognize illtrap. It instead displays
|
|
// a 32-bit value. Issueing two illtraps assures the disassembler finds
|
|
// the proper beginning of the next instruction.
|
|
z_illtrap(0xd2);
|
|
z_illtrap(0xd2);
|
|
bind(ok);
|
|
#endif
|
|
BLOCK_COMMENT("} cKlass decoder");
|
|
}
|
|
|
|
void MacroAssembler::load_klass(Register klass, Address mem) {
|
|
if (UseCompressedClassPointers) {
|
|
z_llgf(klass, mem);
|
|
// Attention: no null check here!
|
|
decode_klass_not_null(klass);
|
|
} else {
|
|
z_lg(klass, mem);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::load_klass(Register klass, Register src_oop) {
|
|
if (UseCompressedClassPointers) {
|
|
z_llgf(klass, oopDesc::klass_offset_in_bytes(), src_oop);
|
|
// Attention: no null check here!
|
|
decode_klass_not_null(klass);
|
|
} else {
|
|
z_lg(klass, oopDesc::klass_offset_in_bytes(), src_oop);
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::load_prototype_header(Register Rheader, Register Rsrc_oop) {
|
|
assert_different_registers(Rheader, Rsrc_oop);
|
|
load_klass(Rheader, Rsrc_oop);
|
|
z_lg(Rheader, Address(Rheader, Klass::prototype_header_offset()));
|
|
}
|
|
|
|
void MacroAssembler::store_klass(Register klass, Register dst_oop, Register ck) {
|
|
if (UseCompressedClassPointers) {
|
|
assert_different_registers(dst_oop, klass, Z_R0);
|
|
if (ck == noreg) ck = klass;
|
|
encode_klass_not_null(ck, klass);
|
|
z_st(ck, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
|
|
} else {
|
|
z_stg(klass, Address(dst_oop, oopDesc::klass_offset_in_bytes()));
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::store_klass_gap(Register s, Register d) {
|
|
if (UseCompressedClassPointers) {
|
|
assert(s != d, "not enough registers");
|
|
// Support s = noreg.
|
|
if (s != noreg) {
|
|
z_st(s, Address(d, oopDesc::klass_gap_offset_in_bytes()));
|
|
} else {
|
|
z_mvhi(Address(d, oopDesc::klass_gap_offset_in_bytes()), 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare klass ptr in memory against klass ptr in register.
|
|
//
|
|
// Rop1 - klass in register, always uncompressed.
|
|
// disp - Offset of klass in memory, compressed/uncompressed, depending on runtime flag.
|
|
// Rbase - Base address of cKlass in memory.
|
|
// maybeNULL - True if Rop1 possibly is a NULL.
|
|
void MacroAssembler::compare_klass_ptr(Register Rop1, int64_t disp, Register Rbase, bool maybeNULL) {
|
|
|
|
BLOCK_COMMENT("compare klass ptr {");
|
|
|
|
if (UseCompressedClassPointers) {
|
|
const int shift = Universe::narrow_klass_shift();
|
|
address base = Universe::narrow_klass_base();
|
|
|
|
assert((shift == 0) || (shift == LogKlassAlignmentInBytes), "cKlass encoder detected bad shift");
|
|
assert_different_registers(Rop1, Z_R0);
|
|
assert_different_registers(Rop1, Rbase, Z_R1);
|
|
|
|
// First encode register oop and then compare with cOop in memory.
|
|
// This sequence saves an unnecessary cOop load and decode.
|
|
if (base == NULL) {
|
|
if (shift == 0) {
|
|
z_cl(Rop1, disp, Rbase); // Unscaled
|
|
} else {
|
|
z_srlg(Z_R0, Rop1, shift); // ZeroBased
|
|
z_cl(Z_R0, disp, Rbase);
|
|
}
|
|
} else { // HeapBased
|
|
#ifdef ASSERT
|
|
bool used_R0 = true;
|
|
bool used_R1 = true;
|
|
#endif
|
|
Register current = Rop1;
|
|
Label done;
|
|
|
|
if (maybeNULL) { // NULL ptr must be preserved!
|
|
z_ltgr(Z_R0, current);
|
|
z_bre(done);
|
|
current = Z_R0;
|
|
}
|
|
|
|
unsigned int base_h = ((unsigned long)base)>>32;
|
|
unsigned int base_l = (unsigned int)((unsigned long)base);
|
|
if ((base_h != 0) && (base_l == 0) && VM_Version::has_HighWordInstr()) {
|
|
lgr_if_needed(Z_R0, current);
|
|
z_aih(Z_R0, -((int)base_h)); // Base has no set bits in lower half.
|
|
} else if ((base_h == 0) && (base_l != 0)) {
|
|
lgr_if_needed(Z_R0, current);
|
|
z_agfi(Z_R0, -(int)base_l);
|
|
} else {
|
|
int pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
|
|
add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1); // Subtract base by adding complement.
|
|
}
|
|
|
|
if (shift != 0) {
|
|
z_srlg(Z_R0, Z_R0, shift);
|
|
}
|
|
bind(done);
|
|
z_cl(Z_R0, disp, Rbase);
|
|
#ifdef ASSERT
|
|
if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
|
|
if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
|
|
#endif
|
|
}
|
|
} else {
|
|
z_clg(Rop1, disp, Z_R0, Rbase);
|
|
}
|
|
BLOCK_COMMENT("} compare klass ptr");
|
|
}
|
|
|
|
//---------------------------
|
|
// Compressed oops
|
|
//---------------------------
|
|
|
|
void MacroAssembler::encode_heap_oop(Register oop) {
|
|
oop_encoder(oop, oop, true /*maybe null*/);
|
|
}
|
|
|
|
void MacroAssembler::encode_heap_oop_not_null(Register oop) {
|
|
oop_encoder(oop, oop, false /*not null*/);
|
|
}
|
|
|
|
// Called with something derived from the oop base. e.g. oop_base>>3.
|
|
int MacroAssembler::get_oop_base_pow2_offset(uint64_t oop_base) {
|
|
unsigned int oop_base_ll = ((unsigned int)(oop_base >> 0)) & 0xffff;
|
|
unsigned int oop_base_lh = ((unsigned int)(oop_base >> 16)) & 0xffff;
|
|
unsigned int oop_base_hl = ((unsigned int)(oop_base >> 32)) & 0xffff;
|
|
unsigned int oop_base_hh = ((unsigned int)(oop_base >> 48)) & 0xffff;
|
|
unsigned int n_notzero_parts = (oop_base_ll == 0 ? 0:1)
|
|
+ (oop_base_lh == 0 ? 0:1)
|
|
+ (oop_base_hl == 0 ? 0:1)
|
|
+ (oop_base_hh == 0 ? 0:1);
|
|
|
|
assert(oop_base != 0, "This is for HeapBased cOops only");
|
|
|
|
if (n_notzero_parts != 1) { // Check if oop_base is just a few pages shy of a power of 2.
|
|
uint64_t pow2_offset = 0x10000 - oop_base_ll;
|
|
if (pow2_offset < 0x8000) { // This might not be necessary.
|
|
uint64_t oop_base2 = oop_base + pow2_offset;
|
|
|
|
oop_base_ll = ((unsigned int)(oop_base2 >> 0)) & 0xffff;
|
|
oop_base_lh = ((unsigned int)(oop_base2 >> 16)) & 0xffff;
|
|
oop_base_hl = ((unsigned int)(oop_base2 >> 32)) & 0xffff;
|
|
oop_base_hh = ((unsigned int)(oop_base2 >> 48)) & 0xffff;
|
|
n_notzero_parts = (oop_base_ll == 0 ? 0:1) +
|
|
(oop_base_lh == 0 ? 0:1) +
|
|
(oop_base_hl == 0 ? 0:1) +
|
|
(oop_base_hh == 0 ? 0:1);
|
|
if (n_notzero_parts == 1) {
|
|
assert(-(int64_t)pow2_offset != (int64_t)-1, "We use -1 to signal uninitialized base register");
|
|
return -pow2_offset;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// If base address is offset from a straight power of two by just a few pages,
|
|
// return this offset to the caller for a possible later composite add.
|
|
// TODO/FIX: will only work correctly for 4k pages.
|
|
int MacroAssembler::get_oop_base(Register Rbase, uint64_t oop_base) {
|
|
int pow2_offset = get_oop_base_pow2_offset(oop_base);
|
|
|
|
load_const_optimized(Rbase, oop_base - pow2_offset); // Best job possible.
|
|
|
|
return pow2_offset;
|
|
}
|
|
|
|
int MacroAssembler::get_oop_base_complement(Register Rbase, uint64_t oop_base) {
|
|
int offset = get_oop_base(Rbase, oop_base);
|
|
z_lcgr(Rbase, Rbase);
|
|
return -offset;
|
|
}
|
|
|
|
// Compare compressed oop in memory against oop in register.
|
|
// Rop1 - Oop in register.
|
|
// disp - Offset of cOop in memory.
|
|
// Rbase - Base address of cOop in memory.
|
|
// maybeNULL - True if Rop1 possibly is a NULL.
|
|
// maybeNULLtarget - Branch target for Rop1 == NULL, if flow control shall NOT continue with compare instruction.
|
|
void MacroAssembler::compare_heap_oop(Register Rop1, Address mem, bool maybeNULL) {
|
|
Register Rbase = mem.baseOrR0();
|
|
Register Rindex = mem.indexOrR0();
|
|
int64_t disp = mem.disp();
|
|
|
|
const int shift = Universe::narrow_oop_shift();
|
|
address base = Universe::narrow_oop_base();
|
|
|
|
assert(UseCompressedOops, "must be on to call this method");
|
|
assert(Universe::heap() != NULL, "java heap must be initialized to call this method");
|
|
assert((shift == 0) || (shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
|
|
assert_different_registers(Rop1, Z_R0);
|
|
assert_different_registers(Rop1, Rbase, Z_R1);
|
|
assert_different_registers(Rop1, Rindex, Z_R1);
|
|
|
|
BLOCK_COMMENT("compare heap oop {");
|
|
|
|
// First encode register oop and then compare with cOop in memory.
|
|
// This sequence saves an unnecessary cOop load and decode.
|
|
if (base == NULL) {
|
|
if (shift == 0) {
|
|
z_cl(Rop1, disp, Rindex, Rbase); // Unscaled
|
|
} else {
|
|
z_srlg(Z_R0, Rop1, shift); // ZeroBased
|
|
z_cl(Z_R0, disp, Rindex, Rbase);
|
|
}
|
|
} else { // HeapBased
|
|
#ifdef ASSERT
|
|
bool used_R0 = true;
|
|
bool used_R1 = true;
|
|
#endif
|
|
Label done;
|
|
int pow2_offset = get_oop_base_complement(Z_R1, ((uint64_t)(intptr_t)base));
|
|
|
|
if (maybeNULL) { // NULL ptr must be preserved!
|
|
z_ltgr(Z_R0, Rop1);
|
|
z_bre(done);
|
|
}
|
|
|
|
add2reg_with_index(Z_R0, pow2_offset, Z_R1, Rop1);
|
|
z_srlg(Z_R0, Z_R0, shift);
|
|
|
|
bind(done);
|
|
z_cl(Z_R0, disp, Rindex, Rbase);
|
|
#ifdef ASSERT
|
|
if (used_R0) preset_reg(Z_R0, 0xb05bUL, 2);
|
|
if (used_R1) preset_reg(Z_R1, 0xb06bUL, 2);
|
|
#endif
|
|
}
|
|
BLOCK_COMMENT("} compare heap oop");
|
|
}
|
|
|
|
// Load heap oop and decompress, if necessary.
|
|
void MacroAssembler::load_heap_oop(Register dest, const Address &a) {
|
|
if (UseCompressedOops) {
|
|
z_llgf(dest, a.disp(), a.indexOrR0(), a.baseOrR0());
|
|
oop_decoder(dest, dest, true);
|
|
} else {
|
|
z_lg(dest, a.disp(), a.indexOrR0(), a.baseOrR0());
|
|
}
|
|
}
|
|
|
|
// Load heap oop and decompress, if necessary.
|
|
void MacroAssembler::load_heap_oop(Register dest, int64_t disp, Register base) {
|
|
if (UseCompressedOops) {
|
|
z_llgf(dest, disp, base);
|
|
oop_decoder(dest, dest, true);
|
|
} else {
|
|
z_lg(dest, disp, base);
|
|
}
|
|
}
|
|
|
|
// Load heap oop and decompress, if necessary.
|
|
void MacroAssembler::load_heap_oop_not_null(Register dest, int64_t disp, Register base) {
|
|
if (UseCompressedOops) {
|
|
z_llgf(dest, disp, base);
|
|
oop_decoder(dest, dest, false);
|
|
} else {
|
|
z_lg(dest, disp, base);
|
|
}
|
|
}
|
|
|
|
// Compress, if necessary, and store oop to heap.
|
|
void MacroAssembler::store_heap_oop(Register Roop, RegisterOrConstant offset, Register base) {
|
|
Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
|
|
if (UseCompressedOops) {
|
|
assert_different_registers(Roop, offset.register_or_noreg(), base);
|
|
encode_heap_oop(Roop);
|
|
z_st(Roop, offset.constant_or_zero(), Ridx, base);
|
|
} else {
|
|
z_stg(Roop, offset.constant_or_zero(), Ridx, base);
|
|
}
|
|
}
|
|
|
|
// Compress, if necessary, and store oop to heap. Oop is guaranteed to be not NULL.
|
|
void MacroAssembler::store_heap_oop_not_null(Register Roop, RegisterOrConstant offset, Register base) {
|
|
Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
|
|
if (UseCompressedOops) {
|
|
assert_different_registers(Roop, offset.register_or_noreg(), base);
|
|
encode_heap_oop_not_null(Roop);
|
|
z_st(Roop, offset.constant_or_zero(), Ridx, base);
|
|
} else {
|
|
z_stg(Roop, offset.constant_or_zero(), Ridx, base);
|
|
}
|
|
}
|
|
|
|
// Store NULL oop to heap.
|
|
void MacroAssembler::store_heap_oop_null(Register zero, RegisterOrConstant offset, Register base) {
|
|
Register Ridx = offset.is_register() ? offset.register_or_noreg() : Z_R0;
|
|
if (UseCompressedOops) {
|
|
z_st(zero, offset.constant_or_zero(), Ridx, base);
|
|
} else {
|
|
z_stg(zero, offset.constant_or_zero(), Ridx, base);
|
|
}
|
|
}
|
|
|
|
//-------------------------------------------------
|
|
// Encode compressed oop. Generally usable encoder.
|
|
//-------------------------------------------------
|
|
// Rsrc - contains regular oop on entry. It remains unchanged.
|
|
// Rdst - contains compressed oop on exit.
|
|
// Rdst and Rsrc may indicate same register, in which case Rsrc does not remain unchanged.
|
|
//
|
|
// Rdst must not indicate scratch register Z_R1 (Z_R1_scratch) for functionality.
|
|
// Rdst should not indicate scratch register Z_R0 (Z_R0_scratch) for performance.
|
|
//
|
|
// only32bitValid is set, if later code only uses the lower 32 bits. In this
|
|
// case we must not fix the upper 32 bits.
|
|
void MacroAssembler::oop_encoder(Register Rdst, Register Rsrc, bool maybeNULL,
|
|
Register Rbase, int pow2_offset, bool only32bitValid) {
|
|
|
|
const address oop_base = Universe::narrow_oop_base();
|
|
const int oop_shift = Universe::narrow_oop_shift();
|
|
const bool disjoint = Universe::narrow_oop_base_disjoint();
|
|
|
|
assert(UseCompressedOops, "must be on to call this method");
|
|
assert(Universe::heap() != NULL, "java heap must be initialized to call this encoder");
|
|
assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes), "cOop encoder detected bad shift");
|
|
|
|
if (disjoint || (oop_base == NULL)) {
|
|
BLOCK_COMMENT("cOop encoder zeroBase {");
|
|
if (oop_shift == 0) {
|
|
if (oop_base != NULL && !only32bitValid) {
|
|
z_llgfr(Rdst, Rsrc); // Clear upper bits in case the register will be decoded again.
|
|
} else {
|
|
lgr_if_needed(Rdst, Rsrc);
|
|
}
|
|
} else {
|
|
z_srlg(Rdst, Rsrc, oop_shift);
|
|
if (oop_base != NULL && !only32bitValid) {
|
|
z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
|
|
}
|
|
}
|
|
BLOCK_COMMENT("} cOop encoder zeroBase");
|
|
return;
|
|
}
|
|
|
|
bool used_R0 = false;
|
|
bool used_R1 = false;
|
|
|
|
BLOCK_COMMENT("cOop encoder general {");
|
|
assert_different_registers(Rdst, Z_R1);
|
|
assert_different_registers(Rsrc, Rbase);
|
|
if (maybeNULL) {
|
|
Label done;
|
|
// We reorder shifting and subtracting, so that we can compare
|
|
// and shift in parallel:
|
|
//
|
|
// cycle 0: potential LoadN, base = <const>
|
|
// cycle 1: base = !base dst = src >> 3, cmp cr = (src != 0)
|
|
// cycle 2: if (cr) br, dst = dst + base + offset
|
|
|
|
// Get oop_base components.
|
|
if (pow2_offset == -1) {
|
|
if (Rdst == Rbase) {
|
|
if (Rdst == Z_R1 || Rsrc == Z_R1) {
|
|
Rbase = Z_R0;
|
|
used_R0 = true;
|
|
} else {
|
|
Rdst = Z_R1;
|
|
used_R1 = true;
|
|
}
|
|
}
|
|
if (Rbase == Z_R1) {
|
|
used_R1 = true;
|
|
}
|
|
pow2_offset = get_oop_base_complement(Rbase, ((uint64_t)(intptr_t)oop_base) >> oop_shift);
|
|
}
|
|
assert_different_registers(Rdst, Rbase);
|
|
|
|
// Check for NULL oop (must be left alone) and shift.
|
|
if (oop_shift != 0) { // Shift out alignment bits
|
|
if (((intptr_t)oop_base&0xc000000000000000L) == 0L) { // We are sure: no single address will have the leftmost bit set.
|
|
z_srag(Rdst, Rsrc, oop_shift); // Arithmetic shift sets the condition code.
|
|
} else {
|
|
z_srlg(Rdst, Rsrc, oop_shift);
|
|
z_ltgr(Rsrc, Rsrc); // This is the recommended way of testing for zero.
|
|
// This probably is faster, as it does not write a register. No!
|
|
// z_cghi(Rsrc, 0);
|
|
}
|
|
} else {
|
|
z_ltgr(Rdst, Rsrc); // Move NULL to result register.
|
|
}
|
|
z_bre(done);
|
|
|
|
// Subtract oop_base components.
|
|
if ((Rdst == Z_R0) || (Rbase == Z_R0)) {
|
|
z_algr(Rdst, Rbase);
|
|
if (pow2_offset != 0) { add2reg(Rdst, pow2_offset); }
|
|
} else {
|
|
add2reg_with_index(Rdst, pow2_offset, Rbase, Rdst);
|
|
}
|
|
if (!only32bitValid) {
|
|
z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
|
|
}
|
|
bind(done);
|
|
|
|
} else { // not null
|
|
// Get oop_base components.
|
|
if (pow2_offset == -1) {
|
|
pow2_offset = get_oop_base_complement(Rbase, (uint64_t)(intptr_t)oop_base);
|
|
}
|
|
|
|
// Subtract oop_base components and shift.
|
|
if (Rdst == Z_R0 || Rsrc == Z_R0 || Rbase == Z_R0) {
|
|
// Don't use lay instruction.
|
|
if (Rdst == Rsrc) {
|
|
z_algr(Rdst, Rbase);
|
|
} else {
|
|
lgr_if_needed(Rdst, Rbase);
|
|
z_algr(Rdst, Rsrc);
|
|
}
|
|
if (pow2_offset != 0) add2reg(Rdst, pow2_offset);
|
|
} else {
|
|
add2reg_with_index(Rdst, pow2_offset, Rbase, Rsrc);
|
|
}
|
|
if (oop_shift != 0) { // Shift out alignment bits.
|
|
z_srlg(Rdst, Rdst, oop_shift);
|
|
}
|
|
if (!only32bitValid) {
|
|
z_llgfr(Rdst, Rdst); // Clear upper bits in case the register will be decoded again.
|
|
}
|
|
}
|
|
#ifdef ASSERT
|
|
if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb01bUL, 2); }
|
|
if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb02bUL, 2); }
|
|
#endif
|
|
BLOCK_COMMENT("} cOop encoder general");
|
|
}
|
|
|
|
//-------------------------------------------------
|
|
// decode compressed oop. Generally usable decoder.
|
|
//-------------------------------------------------
|
|
// Rsrc - contains compressed oop on entry.
|
|
// Rdst - contains regular oop on exit.
|
|
// Rdst and Rsrc may indicate same register.
|
|
// Rdst must not be the same register as Rbase, if Rbase was preloaded (before call).
|
|
// Rdst can be the same register as Rbase. Then, either Z_R0 or Z_R1 must be available as scratch.
|
|
// Rbase - register to use for the base
|
|
// pow2_offset - offset of base to nice value. If -1, base must be loaded.
|
|
// For performance, it is good to
|
|
// - avoid Z_R0 for any of the argument registers.
|
|
// - keep Rdst and Rsrc distinct from Rbase. Rdst == Rsrc is ok for performance.
|
|
// - avoid Z_R1 for Rdst if Rdst == Rbase.
|
|
void MacroAssembler::oop_decoder(Register Rdst, Register Rsrc, bool maybeNULL, Register Rbase, int pow2_offset) {
|
|
|
|
const address oop_base = Universe::narrow_oop_base();
|
|
const int oop_shift = Universe::narrow_oop_shift();
|
|
const bool disjoint = Universe::narrow_oop_base_disjoint();
|
|
|
|
assert(UseCompressedOops, "must be on to call this method");
|
|
assert(Universe::heap() != NULL, "java heap must be initialized to call this decoder");
|
|
assert((oop_shift == 0) || (oop_shift == LogMinObjAlignmentInBytes),
|
|
"cOop encoder detected bad shift");
|
|
|
|
// cOops are always loaded zero-extended from memory. No explicit zero-extension necessary.
|
|
|
|
if (oop_base != NULL) {
|
|
unsigned int oop_base_hl = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xffff;
|
|
unsigned int oop_base_hh = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 48)) & 0xffff;
|
|
unsigned int oop_base_hf = ((unsigned int)((uint64_t)(intptr_t)oop_base >> 32)) & 0xFFFFffff;
|
|
if (disjoint && (oop_base_hl == 0 || oop_base_hh == 0)) {
|
|
BLOCK_COMMENT("cOop decoder disjointBase {");
|
|
// We do not need to load the base. Instead, we can install the upper bits
|
|
// with an OR instead of an ADD.
|
|
Label done;
|
|
|
|
// Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
|
|
if (maybeNULL) { // NULL ptr must be preserved!
|
|
z_slag(Rdst, Rsrc, oop_shift); // Arithmetic shift sets the condition code.
|
|
z_bre(done);
|
|
} else {
|
|
z_sllg(Rdst, Rsrc, oop_shift); // Logical shift leaves condition code alone.
|
|
}
|
|
if ((oop_base_hl != 0) && (oop_base_hh != 0)) {
|
|
z_oihf(Rdst, oop_base_hf);
|
|
} else if (oop_base_hl != 0) {
|
|
z_oihl(Rdst, oop_base_hl);
|
|
} else {
|
|
assert(oop_base_hh != 0, "not heapbased mode");
|
|
z_oihh(Rdst, oop_base_hh);
|
|
}
|
|
bind(done);
|
|
BLOCK_COMMENT("} cOop decoder disjointBase");
|
|
} else {
|
|
BLOCK_COMMENT("cOop decoder general {");
|
|
// There are three decode steps:
|
|
// scale oop offset (shift left)
|
|
// get base (in reg) and pow2_offset (constant)
|
|
// add base, pow2_offset, and oop offset
|
|
// The following register overlap situations may exist:
|
|
// Rdst == Rsrc, Rbase any other
|
|
// not a problem. Scaling in-place leaves Rbase undisturbed.
|
|
// Loading Rbase does not impact the scaled offset.
|
|
// Rdst == Rbase, Rsrc any other
|
|
// scaling would destroy a possibly preloaded Rbase. Loading Rbase
|
|
// would destroy the scaled offset.
|
|
// Remedy: use Rdst_tmp if Rbase has been preloaded.
|
|
// use Rbase_tmp if base has to be loaded.
|
|
// Rsrc == Rbase, Rdst any other
|
|
// Only possible without preloaded Rbase.
|
|
// Loading Rbase does not destroy compressed oop because it was scaled into Rdst before.
|
|
// Rsrc == Rbase, Rdst == Rbase
|
|
// Only possible without preloaded Rbase.
|
|
// Loading Rbase would destroy compressed oop. Scaling in-place is ok.
|
|
// Remedy: use Rbase_tmp.
|
|
//
|
|
Label done;
|
|
Register Rdst_tmp = Rdst;
|
|
Register Rbase_tmp = Rbase;
|
|
bool used_R0 = false;
|
|
bool used_R1 = false;
|
|
bool base_preloaded = pow2_offset >= 0;
|
|
guarantee(!(base_preloaded && (Rsrc == Rbase)), "Register clash, check caller");
|
|
assert(oop_shift != 0, "room for optimization");
|
|
|
|
// Check if we need to use scratch registers.
|
|
if (Rdst == Rbase) {
|
|
assert(!(((Rdst == Z_R0) && (Rsrc == Z_R1)) || ((Rdst == Z_R1) && (Rsrc == Z_R0))), "need a scratch reg");
|
|
if (Rdst != Rsrc) {
|
|
if (base_preloaded) { Rdst_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
|
|
else { Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1; }
|
|
} else {
|
|
Rbase_tmp = (Rdst == Z_R1) ? Z_R0 : Z_R1;
|
|
}
|
|
}
|
|
if (base_preloaded) lgr_if_needed(Rbase_tmp, Rbase);
|
|
|
|
// Scale oop and check for NULL.
|
|
// Rsrc contains a narrow oop. Thus we are sure the leftmost <oop_shift> bits will never be set.
|
|
if (maybeNULL) { // NULL ptr must be preserved!
|
|
z_slag(Rdst_tmp, Rsrc, oop_shift); // Arithmetic shift sets the condition code.
|
|
z_bre(done);
|
|
} else {
|
|
z_sllg(Rdst_tmp, Rsrc, oop_shift); // Logical shift leaves condition code alone.
|
|
}
|
|
|
|
// Get oop_base components.
|
|
if (!base_preloaded) {
|
|
pow2_offset = get_oop_base(Rbase_tmp, (uint64_t)(intptr_t)oop_base);
|
|
}
|
|
|
|
// Add up all components.
|
|
if ((Rbase_tmp == Z_R0) || (Rdst_tmp == Z_R0)) {
|
|
z_algr(Rdst_tmp, Rbase_tmp);
|
|
if (pow2_offset != 0) { add2reg(Rdst_tmp, pow2_offset); }
|
|
} else {
|
|
add2reg_with_index(Rdst_tmp, pow2_offset, Rbase_tmp, Rdst_tmp);
|
|
}
|
|
|
|
bind(done);
|
|
lgr_if_needed(Rdst, Rdst_tmp);
|
|
#ifdef ASSERT
|
|
if (used_R0 && Rdst != Z_R0 && Rsrc != Z_R0) { preset_reg(Z_R0, 0xb03bUL, 2); }
|
|
if (used_R1 && Rdst != Z_R1 && Rsrc != Z_R1) { preset_reg(Z_R1, 0xb04bUL, 2); }
|
|
#endif
|
|
BLOCK_COMMENT("} cOop decoder general");
|
|
}
|
|
} else {
|
|
BLOCK_COMMENT("cOop decoder zeroBase {");
|
|
if (oop_shift == 0) {
|
|
lgr_if_needed(Rdst, Rsrc);
|
|
} else {
|
|
z_sllg(Rdst, Rsrc, oop_shift);
|
|
}
|
|
BLOCK_COMMENT("} cOop decoder zeroBase");
|
|
}
|
|
}
|
|
|
|
// ((OopHandle)result).resolve();
|
|
void MacroAssembler::resolve_oop_handle(Register result) {
|
|
// OopHandle::resolve is an indirection.
|
|
z_lg(result, 0, result);
|
|
}
|
|
|
|
void MacroAssembler::load_mirror(Register mirror, Register method) {
|
|
mem2reg_opt(mirror, Address(method, Method::const_offset()));
|
|
mem2reg_opt(mirror, Address(mirror, ConstMethod::constants_offset()));
|
|
mem2reg_opt(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
|
|
mem2reg_opt(mirror, Address(mirror, Klass::java_mirror_offset()));
|
|
resolve_oop_handle(mirror);
|
|
}
|
|
|
|
//---------------------------------------------------------------
|
|
//--- Operations on arrays.
|
|
//---------------------------------------------------------------
|
|
|
|
// Compiler ensures base is doubleword aligned and cnt is #doublewords.
|
|
// Emitter does not KILL cnt and base arguments, since they need to be copied to
|
|
// work registers anyway.
|
|
// Actually, only r0, r1, and r5 are killed.
|
|
unsigned int MacroAssembler::Clear_Array(Register cnt_arg, Register base_pointer_arg, Register src_addr, Register src_len) {
|
|
// Src_addr is evenReg.
|
|
// Src_len is odd_Reg.
|
|
|
|
int block_start = offset();
|
|
Register tmp_reg = src_len; // Holds target instr addr for EX.
|
|
Register dst_len = Z_R1; // Holds dst len for MVCLE.
|
|
Register dst_addr = Z_R0; // Holds dst addr for MVCLE.
|
|
|
|
Label doXC, doMVCLE, done;
|
|
|
|
BLOCK_COMMENT("Clear_Array {");
|
|
|
|
// Check for zero len and convert to long.
|
|
z_ltgfr(src_len, cnt_arg); // Remember casted value for doSTG case.
|
|
z_bre(done); // Nothing to do if len == 0.
|
|
|
|
// Prefetch data to be cleared.
|
|
if (VM_Version::has_Prefetch()) {
|
|
z_pfd(0x02, 0, Z_R0, base_pointer_arg);
|
|
z_pfd(0x02, 256, Z_R0, base_pointer_arg);
|
|
}
|
|
|
|
z_sllg(dst_len, src_len, 3); // #bytes to clear.
|
|
z_cghi(src_len, 32); // Check for len <= 256 bytes (<=32 DW).
|
|
z_brnh(doXC); // If so, use executed XC to clear.
|
|
|
|
// MVCLE: initialize long arrays (general case).
|
|
bind(doMVCLE);
|
|
z_lgr(dst_addr, base_pointer_arg);
|
|
clear_reg(src_len, true, false); // Src len of MVCLE is zero.
|
|
|
|
MacroAssembler::move_long_ext(dst_addr, src_addr, 0);
|
|
z_bru(done);
|
|
|
|
// XC: initialize short arrays.
|
|
Label XC_template; // Instr template, never exec directly!
|
|
bind(XC_template);
|
|
z_xc(0,0,base_pointer_arg,0,base_pointer_arg);
|
|
|
|
bind(doXC);
|
|
add2reg(dst_len, -1); // Get #bytes-1 for EXECUTE.
|
|
if (VM_Version::has_ExecuteExtensions()) {
|
|
z_exrl(dst_len, XC_template); // Execute XC with var. len.
|
|
} else {
|
|
z_larl(tmp_reg, XC_template);
|
|
z_ex(dst_len,0,Z_R0,tmp_reg); // Execute XC with var. len.
|
|
}
|
|
// z_bru(done); // fallthru
|
|
|
|
bind(done);
|
|
|
|
BLOCK_COMMENT("} Clear_Array");
|
|
|
|
int block_end = offset();
|
|
return block_end - block_start;
|
|
}
|
|
|
|
// Compiler ensures base is doubleword aligned and cnt is count of doublewords.
|
|
// Emitter does not KILL any arguments nor work registers.
|
|
// Emitter generates up to 16 XC instructions, depending on the array length.
|
|
unsigned int MacroAssembler::Clear_Array_Const(long cnt, Register base) {
|
|
int block_start = offset();
|
|
int off;
|
|
int lineSize_Bytes = AllocatePrefetchStepSize;
|
|
int lineSize_DW = AllocatePrefetchStepSize>>LogBytesPerWord;
|
|
bool doPrefetch = VM_Version::has_Prefetch();
|
|
int XC_maxlen = 256;
|
|
int numXCInstr = cnt > 0 ? (cnt*BytesPerWord-1)/XC_maxlen+1 : 0;
|
|
|
|
BLOCK_COMMENT("Clear_Array_Const {");
|
|
assert(cnt*BytesPerWord <= 4096, "ClearArrayConst can handle 4k only");
|
|
|
|
// Do less prefetching for very short arrays.
|
|
if (numXCInstr > 0) {
|
|
// Prefetch only some cache lines, then begin clearing.
|
|
if (doPrefetch) {
|
|
if (cnt*BytesPerWord <= lineSize_Bytes/4) { // If less than 1/4 of a cache line to clear,
|
|
z_pfd(0x02, 0, Z_R0, base); // prefetch just the first cache line.
|
|
} else {
|
|
assert(XC_maxlen == lineSize_Bytes, "ClearArrayConst needs 256B cache lines");
|
|
for (off = 0; (off < AllocatePrefetchLines) && (off <= numXCInstr); off ++) {
|
|
z_pfd(0x02, off*lineSize_Bytes, Z_R0, base);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (off=0; off<(numXCInstr-1); off++) {
|
|
z_xc(off*XC_maxlen, XC_maxlen-1, base, off*XC_maxlen, base);
|
|
|
|
// Prefetch some cache lines in advance.
|
|
if (doPrefetch && (off <= numXCInstr-AllocatePrefetchLines)) {
|
|
z_pfd(0x02, (off+AllocatePrefetchLines)*lineSize_Bytes, Z_R0, base);
|
|
}
|
|
}
|
|
if (off*XC_maxlen < cnt*BytesPerWord) {
|
|
z_xc(off*XC_maxlen, (cnt*BytesPerWord-off*XC_maxlen)-1, base, off*XC_maxlen, base);
|
|
}
|
|
}
|
|
BLOCK_COMMENT("} Clear_Array_Const");
|
|
|
|
int block_end = offset();
|
|
return block_end - block_start;
|
|
}
|
|
|
|
// Compiler ensures base is doubleword aligned and cnt is #doublewords.
|
|
// Emitter does not KILL cnt and base arguments, since they need to be copied to
|
|
// work registers anyway.
|
|
// Actually, only r0, r1, r4, and r5 (which are work registers) are killed.
|
|
//
|
|
// For very large arrays, exploit MVCLE H/W support.
|
|
// MVCLE instruction automatically exploits H/W-optimized page mover.
|
|
// - Bytes up to next page boundary are cleared with a series of XC to self.
|
|
// - All full pages are cleared with the page mover H/W assist.
|
|
// - Remaining bytes are again cleared by a series of XC to self.
|
|
//
|
|
unsigned int MacroAssembler::Clear_Array_Const_Big(long cnt, Register base_pointer_arg, Register src_addr, Register src_len) {
|
|
// Src_addr is evenReg.
|
|
// Src_len is odd_Reg.
|
|
|
|
int block_start = offset();
|
|
Register dst_len = Z_R1; // Holds dst len for MVCLE.
|
|
Register dst_addr = Z_R0; // Holds dst addr for MVCLE.
|
|
|
|
BLOCK_COMMENT("Clear_Array_Const_Big {");
|
|
|
|
// Get len to clear.
|
|
load_const_optimized(dst_len, (long)cnt*8L); // in Bytes = #DW*8
|
|
|
|
// Prepare other args to MVCLE.
|
|
z_lgr(dst_addr, base_pointer_arg);
|
|
// Indicate unused result.
|
|
(void) clear_reg(src_len, true, false); // Src len of MVCLE is zero.
|
|
|
|
// Clear.
|
|
MacroAssembler::move_long_ext(dst_addr, src_addr, 0);
|
|
BLOCK_COMMENT("} Clear_Array_Const_Big");
|
|
|
|
int block_end = offset();
|
|
return block_end - block_start;
|
|
}
|
|
|
|
// Allocator.
|
|
unsigned int MacroAssembler::CopyRawMemory_AlignedDisjoint(Register src_reg, Register dst_reg,
|
|
Register cnt_reg,
|
|
Register tmp1_reg, Register tmp2_reg) {
|
|
// Tmp1 is oddReg.
|
|
// Tmp2 is evenReg.
|
|
|
|
int block_start = offset();
|
|
Label doMVC, doMVCLE, done, MVC_template;
|
|
|
|
BLOCK_COMMENT("CopyRawMemory_AlignedDisjoint {");
|
|
|
|
// Check for zero len and convert to long.
|
|
z_ltgfr(cnt_reg, cnt_reg); // Remember casted value for doSTG case.
|
|
z_bre(done); // Nothing to do if len == 0.
|
|
|
|
z_sllg(Z_R1, cnt_reg, 3); // Dst len in bytes. calc early to have the result ready.
|
|
|
|
z_cghi(cnt_reg, 32); // Check for len <= 256 bytes (<=32 DW).
|
|
z_brnh(doMVC); // If so, use executed MVC to clear.
|
|
|
|
bind(doMVCLE); // A lot of data (more than 256 bytes).
|
|
// Prep dest reg pair.
|
|
z_lgr(Z_R0, dst_reg); // dst addr
|
|
// Dst len already in Z_R1.
|
|
// Prep src reg pair.
|
|
z_lgr(tmp2_reg, src_reg); // src addr
|
|
z_lgr(tmp1_reg, Z_R1); // Src len same as dst len.
|
|
|
|
// Do the copy.
|
|
move_long_ext(Z_R0, tmp2_reg, 0xb0); // Bypass cache.
|
|
z_bru(done); // All done.
|
|
|
|
bind(MVC_template); // Just some data (not more than 256 bytes).
|
|
z_mvc(0, 0, dst_reg, 0, src_reg);
|
|
|
|
bind(doMVC);
|
|
|
|
if (VM_Version::has_ExecuteExtensions()) {
|
|
add2reg(Z_R1, -1);
|
|
} else {
|
|
add2reg(tmp1_reg, -1, Z_R1);
|
|
z_larl(Z_R1, MVC_template);
|
|
}
|
|
|
|
if (VM_Version::has_Prefetch()) {
|
|
z_pfd(1, 0,Z_R0,src_reg);
|
|
z_pfd(2, 0,Z_R0,dst_reg);
|
|
// z_pfd(1,256,Z_R0,src_reg); // Assume very short copy.
|
|
// z_pfd(2,256,Z_R0,dst_reg);
|
|
}
|
|
|
|
if (VM_Version::has_ExecuteExtensions()) {
|
|
z_exrl(Z_R1, MVC_template);
|
|
} else {
|
|
z_ex(tmp1_reg, 0, Z_R0, Z_R1);
|
|
}
|
|
|
|
bind(done);
|
|
|
|
BLOCK_COMMENT("} CopyRawMemory_AlignedDisjoint");
|
|
|
|
int block_end = offset();
|
|
return block_end - block_start;
|
|
}
|
|
|
|
//------------------------------------------------------
|
|
// Special String Intrinsics. Implementation
|
|
//------------------------------------------------------
|
|
|
|
// Intrinsics for CompactStrings
|
|
|
|
// Compress char[] to byte[].
|
|
// Restores: src, dst
|
|
// Uses: cnt
|
|
// Kills: tmp, Z_R0, Z_R1.
|
|
// Early clobber: result.
|
|
// Note:
|
|
// cnt is signed int. Do not rely on high word!
|
|
// counts # characters, not bytes.
|
|
// The result is the number of characters copied before the first incompatible character was found.
|
|
// If precise is true, the processing stops exactly at this point. Otherwise, the result may be off
|
|
// by a few bytes. The result always indicates the number of copied characters.
|
|
// When used as a character index, the returned value points to the first incompatible character.
|
|
//
|
|
// Note: Does not behave exactly like package private StringUTF16 compress java implementation in case of failure:
|
|
// - Different number of characters may have been written to dead array (if precise is false).
|
|
// - Returns a number <cnt instead of 0. (Result gets compared with cnt.)
|
|
unsigned int MacroAssembler::string_compress(Register result, Register src, Register dst, Register cnt,
|
|
Register tmp, bool precise) {
|
|
assert_different_registers(Z_R0, Z_R1, result, src, dst, cnt, tmp);
|
|
|
|
if (precise) {
|
|
BLOCK_COMMENT("encode_iso_array {");
|
|
} else {
|
|
BLOCK_COMMENT("string_compress {");
|
|
}
|
|
int block_start = offset();
|
|
|
|
Register Rsrc = src;
|
|
Register Rdst = dst;
|
|
Register Rix = tmp;
|
|
Register Rcnt = cnt;
|
|
Register Rmask = result; // holds incompatibility check mask until result value is stored.
|
|
Label ScalarShortcut, AllDone;
|
|
|
|
z_iilf(Rmask, 0xFF00FF00);
|
|
z_iihf(Rmask, 0xFF00FF00);
|
|
|
|
#if 0 // Sacrifice shortcuts for code compactness
|
|
{
|
|
//---< shortcuts for short strings (very frequent) >---
|
|
// Strings with 4 and 8 characters were fond to occur very frequently.
|
|
// Therefore, we handle them right away with minimal overhead.
|
|
Label skipShortcut, skip4Shortcut, skip8Shortcut;
|
|
Register Rout = Z_R0;
|
|
z_chi(Rcnt, 4);
|
|
z_brne(skip4Shortcut); // 4 characters are very frequent
|
|
z_lg(Z_R0, 0, Rsrc); // Treat exactly 4 characters specially.
|
|
if (VM_Version::has_DistinctOpnds()) {
|
|
Rout = Z_R0;
|
|
z_ngrk(Rix, Z_R0, Rmask);
|
|
} else {
|
|
Rout = Rix;
|
|
z_lgr(Rix, Z_R0);
|
|
z_ngr(Z_R0, Rmask);
|
|
}
|
|
z_brnz(skipShortcut);
|
|
z_stcmh(Rout, 5, 0, Rdst);
|
|
z_stcm(Rout, 5, 2, Rdst);
|
|
z_lgfr(result, Rcnt);
|
|
z_bru(AllDone);
|
|
bind(skip4Shortcut);
|
|
|
|
z_chi(Rcnt, 8);
|
|
z_brne(skip8Shortcut); // There's more to do...
|
|
z_lmg(Z_R0, Z_R1, 0, Rsrc); // Treat exactly 8 characters specially.
|
|
if (VM_Version::has_DistinctOpnds()) {
|
|
Rout = Z_R0;
|
|
z_ogrk(Rix, Z_R0, Z_R1);
|
|
z_ngr(Rix, Rmask);
|
|
} else {
|
|
Rout = Rix;
|
|
z_lgr(Rix, Z_R0);
|
|
z_ogr(Z_R0, Z_R1);
|
|
z_ngr(Z_R0, Rmask);
|
|
}
|
|
z_brnz(skipShortcut);
|
|
z_stcmh(Rout, 5, 0, Rdst);
|
|
z_stcm(Rout, 5, 2, Rdst);
|
|
z_stcmh(Z_R1, 5, 4, Rdst);
|
|
z_stcm(Z_R1, 5, 6, Rdst);
|
|
z_lgfr(result, Rcnt);
|
|
z_bru(AllDone);
|
|
|
|
bind(skip8Shortcut);
|
|
clear_reg(Z_R0, true, false); // #characters already processed (none). Precond for scalar loop.
|
|
z_brl(ScalarShortcut); // Just a few characters
|
|
|
|
bind(skipShortcut);
|
|
}
|
|
#endif
|
|
clear_reg(Z_R0); // make sure register is properly initialized.
|
|
|
|
if (VM_Version::has_VectorFacility()) {
|
|
const int min_vcnt = 32; // Minimum #characters required to use vector instructions.
|
|
// Otherwise just do nothing in vector mode.
|
|
// Must be multiple of 2*(vector register length in chars (8 HW = 128 bits)).
|
|
const int log_min_vcnt = exact_log2(min_vcnt);
|
|
Label VectorLoop, VectorDone, VectorBreak;
|
|
|
|
VectorRegister Vtmp1 = Z_V16;
|
|
VectorRegister Vtmp2 = Z_V17;
|
|
VectorRegister Vmask = Z_V18;
|
|
VectorRegister Vzero = Z_V19;
|
|
VectorRegister Vsrc_first = Z_V20;
|
|
VectorRegister Vsrc_last = Z_V23;
|
|
|
|
assert((Vsrc_last->encoding() - Vsrc_first->encoding() + 1) == min_vcnt/8, "logic error");
|
|
assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
|
|
z_srak(Rix, Rcnt, log_min_vcnt); // # vector loop iterations
|
|
z_brz(VectorDone); // not enough data for vector loop
|
|
|
|
z_vzero(Vzero); // all zeroes
|
|
z_vgmh(Vmask, 0, 7); // generate 0xff00 mask for all 2-byte elements
|
|
z_sllg(Z_R0, Rix, log_min_vcnt); // remember #chars that will be processed by vector loop
|
|
|
|
bind(VectorLoop);
|
|
z_vlm(Vsrc_first, Vsrc_last, 0, Rsrc);
|
|
add2reg(Rsrc, min_vcnt*2);
|
|
|
|
//---< check for incompatible character >---
|
|
z_vo(Vtmp1, Z_V20, Z_V21);
|
|
z_vo(Vtmp2, Z_V22, Z_V23);
|
|
z_vo(Vtmp1, Vtmp1, Vtmp2);
|
|
z_vn(Vtmp1, Vtmp1, Vmask);
|
|
z_vceqhs(Vtmp1, Vtmp1, Vzero); // high half of all chars must be zero for successful compress.
|
|
z_bvnt(VectorBreak); // break vector loop if not all vector elements compare eq -> incompatible character found.
|
|
// re-process data from current iteration in break handler.
|
|
|
|
//---< pack & store characters >---
|
|
z_vpkh(Vtmp1, Z_V20, Z_V21); // pack (src1, src2) -> tmp1
|
|
z_vpkh(Vtmp2, Z_V22, Z_V23); // pack (src3, src4) -> tmp2
|
|
z_vstm(Vtmp1, Vtmp2, 0, Rdst); // store packed string
|
|
add2reg(Rdst, min_vcnt);
|
|
|
|
z_brct(Rix, VectorLoop);
|
|
|
|
z_bru(VectorDone);
|
|
|
|
bind(VectorBreak);
|
|
add2reg(Rsrc, -min_vcnt*2); // Fix Rsrc. Rsrc was already updated, but Rdst and Rix are not.
|
|
z_sll(Rix, log_min_vcnt); // # chars processed so far in VectorLoop, excl. current iteration.
|
|
z_sr(Z_R0, Rix); // correct # chars processed in total.
|
|
|
|
bind(VectorDone);
|
|
}
|
|
|
|
{
|
|
const int min_cnt = 8; // Minimum #characters required to use unrolled loop.
|
|
// Otherwise just do nothing in unrolled loop.
|
|
// Must be multiple of 8.
|
|
const int log_min_cnt = exact_log2(min_cnt);
|
|
Label UnrolledLoop, UnrolledDone, UnrolledBreak;
|
|
|
|
if (VM_Version::has_DistinctOpnds()) {
|
|
z_srk(Rix, Rcnt, Z_R0); // remaining # chars to compress in unrolled loop
|
|
} else {
|
|
z_lr(Rix, Rcnt);
|
|
z_sr(Rix, Z_R0);
|
|
}
|
|
z_sra(Rix, log_min_cnt); // unrolled loop count
|
|
z_brz(UnrolledDone);
|
|
|
|
bind(UnrolledLoop);
|
|
z_lmg(Z_R0, Z_R1, 0, Rsrc);
|
|
if (precise) {
|
|
z_ogr(Z_R1, Z_R0); // check all 8 chars for incompatibility
|
|
z_ngr(Z_R1, Rmask);
|
|
z_brnz(UnrolledBreak);
|
|
|
|
z_lg(Z_R1, 8, Rsrc); // reload destroyed register
|
|
z_stcmh(Z_R0, 5, 0, Rdst);
|
|
z_stcm(Z_R0, 5, 2, Rdst);
|
|
} else {
|
|
z_stcmh(Z_R0, 5, 0, Rdst);
|
|
z_stcm(Z_R0, 5, 2, Rdst);
|
|
|
|
z_ogr(Z_R0, Z_R1);
|
|
z_ngr(Z_R0, Rmask);
|
|
z_brnz(UnrolledBreak);
|
|
}
|
|
z_stcmh(Z_R1, 5, 4, Rdst);
|
|
z_stcm(Z_R1, 5, 6, Rdst);
|
|
|
|
add2reg(Rsrc, min_cnt*2);
|
|
add2reg(Rdst, min_cnt);
|
|
z_brct(Rix, UnrolledLoop);
|
|
|
|
z_lgfr(Z_R0, Rcnt); // # chars processed in total after unrolled loop.
|
|
z_nilf(Z_R0, ~(min_cnt-1));
|
|
z_tmll(Rcnt, min_cnt-1);
|
|
z_brnaz(ScalarShortcut); // if all bits zero, there is nothing left to do for scalar loop.
|
|
// Rix == 0 in all cases.
|
|
z_sllg(Z_R1, Rcnt, 1); // # src bytes already processed. Only lower 32 bits are valid!
|
|
// Z_R1 contents must be treated as unsigned operand! For huge strings,
|
|
// (Rcnt >= 2**30), the value may spill into the sign bit by sllg.
|
|
z_lgfr(result, Rcnt); // all characters processed.
|
|
z_slgfr(Rdst, Rcnt); // restore ptr
|
|
z_slgfr(Rsrc, Z_R1); // restore ptr, double the element count for Rsrc restore
|
|
z_bru(AllDone);
|
|
|
|
bind(UnrolledBreak);
|
|
z_lgfr(Z_R0, Rcnt); // # chars processed in total after unrolled loop
|
|
z_nilf(Z_R0, ~(min_cnt-1));
|
|
z_sll(Rix, log_min_cnt); // # chars not yet processed in UnrolledLoop (due to break), broken iteration not included.
|
|
z_sr(Z_R0, Rix); // fix # chars processed OK so far.
|
|
if (!precise) {
|
|
z_lgfr(result, Z_R0);
|
|
z_sllg(Z_R1, Z_R0, 1); // # src bytes already processed. Only lower 32 bits are valid!
|
|
// Z_R1 contents must be treated as unsigned operand! For huge strings,
|
|
// (Rcnt >= 2**30), the value may spill into the sign bit by sllg.
|
|
z_aghi(result, min_cnt/2); // min_cnt/2 characters have already been written
|
|
// but ptrs were not updated yet.
|
|
z_slgfr(Rdst, Z_R0); // restore ptr
|
|
z_slgfr(Rsrc, Z_R1); // restore ptr, double the element count for Rsrc restore
|
|
z_bru(AllDone);
|
|
}
|
|
bind(UnrolledDone);
|
|
}
|
|
|
|
{
|
|
Label ScalarLoop, ScalarDone, ScalarBreak;
|
|
|
|
bind(ScalarShortcut);
|
|
z_ltgfr(result, Rcnt);
|
|
z_brz(AllDone);
|
|
|
|
#if 0 // Sacrifice shortcuts for code compactness
|
|
{
|
|
//---< Special treatment for very short strings (one or two characters) >---
|
|
// For these strings, we are sure that the above code was skipped.
|
|
// Thus, no registers were modified, register restore is not required.
|
|
Label ScalarDoit, Scalar2Char;
|
|
z_chi(Rcnt, 2);
|
|
z_brh(ScalarDoit);
|
|
z_llh(Z_R1, 0, Z_R0, Rsrc);
|
|
z_bre(Scalar2Char);
|
|
z_tmll(Z_R1, 0xff00);
|
|
z_lghi(result, 0); // cnt == 1, first char invalid, no chars successfully processed
|
|
z_brnaz(AllDone);
|
|
z_stc(Z_R1, 0, Z_R0, Rdst);
|
|
z_lghi(result, 1);
|
|
z_bru(AllDone);
|
|
|
|
bind(Scalar2Char);
|
|
z_llh(Z_R0, 2, Z_R0, Rsrc);
|
|
z_tmll(Z_R1, 0xff00);
|
|
z_lghi(result, 0); // cnt == 2, first char invalid, no chars successfully processed
|
|
z_brnaz(AllDone);
|
|
z_stc(Z_R1, 0, Z_R0, Rdst);
|
|
z_tmll(Z_R0, 0xff00);
|
|
z_lghi(result, 1); // cnt == 2, second char invalid, one char successfully processed
|
|
z_brnaz(AllDone);
|
|
z_stc(Z_R0, 1, Z_R0, Rdst);
|
|
z_lghi(result, 2);
|
|
z_bru(AllDone);
|
|
|
|
bind(ScalarDoit);
|
|
}
|
|
#endif
|
|
|
|
if (VM_Version::has_DistinctOpnds()) {
|
|
z_srk(Rix, Rcnt, Z_R0); // remaining # chars to compress in unrolled loop
|
|
} else {
|
|
z_lr(Rix, Rcnt);
|
|
z_sr(Rix, Z_R0);
|
|
}
|
|
z_lgfr(result, Rcnt); // # processed characters (if all runs ok).
|
|
z_brz(ScalarDone); // uses CC from Rix calculation
|
|
|
|
bind(ScalarLoop);
|
|
z_llh(Z_R1, 0, Z_R0, Rsrc);
|
|
z_tmll(Z_R1, 0xff00);
|
|
z_brnaz(ScalarBreak);
|
|
z_stc(Z_R1, 0, Z_R0, Rdst);
|
|
add2reg(Rsrc, 2);
|
|
add2reg(Rdst, 1);
|
|
z_brct(Rix, ScalarLoop);
|
|
|
|
z_bru(ScalarDone);
|
|
|
|
bind(ScalarBreak);
|
|
z_sr(result, Rix);
|
|
|
|
bind(ScalarDone);
|
|
z_sgfr(Rdst, result); // restore ptr
|
|
z_sgfr(Rsrc, result); // restore ptr, double the element count for Rsrc restore
|
|
z_sgfr(Rsrc, result);
|
|
}
|
|
bind(AllDone);
|
|
|
|
if (precise) {
|
|
BLOCK_COMMENT("} encode_iso_array");
|
|
} else {
|
|
BLOCK_COMMENT("} string_compress");
|
|
}
|
|
return offset() - block_start;
|
|
}
|
|
|
|
// Inflate byte[] to char[].
|
|
unsigned int MacroAssembler::string_inflate_trot(Register src, Register dst, Register cnt, Register tmp) {
|
|
int block_start = offset();
|
|
|
|
BLOCK_COMMENT("string_inflate {");
|
|
|
|
Register stop_char = Z_R0;
|
|
Register table = Z_R1;
|
|
Register src_addr = tmp;
|
|
|
|
assert_different_registers(Z_R0, Z_R1, tmp, src, dst, cnt);
|
|
assert(dst->encoding()%2 == 0, "must be even reg");
|
|
assert(cnt->encoding()%2 == 1, "must be odd reg");
|
|
assert(cnt->encoding() - dst->encoding() == 1, "must be even/odd pair");
|
|
|
|
StubRoutines::zarch::generate_load_trot_table_addr(this, table); // kills Z_R0 (if ASSERT)
|
|
clear_reg(stop_char); // Stop character. Not used here, but initialized to have a defined value.
|
|
lgr_if_needed(src_addr, src);
|
|
z_llgfr(cnt, cnt); // # src characters, must be a positive simm32.
|
|
|
|
translate_ot(dst, src_addr, /* mask = */ 0x0001);
|
|
|
|
BLOCK_COMMENT("} string_inflate");
|
|
|
|
return offset() - block_start;
|
|
}
|
|
|
|
// Inflate byte[] to char[].
|
|
// Restores: src, dst
|
|
// Uses: cnt
|
|
// Kills: tmp, Z_R0, Z_R1.
|
|
// Note:
|
|
// cnt is signed int. Do not rely on high word!
|
|
// counts # characters, not bytes.
|
|
unsigned int MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp) {
|
|
assert_different_registers(Z_R0, Z_R1, src, dst, cnt, tmp);
|
|
|
|
BLOCK_COMMENT("string_inflate {");
|
|
int block_start = offset();
|
|
|
|
Register Rcnt = cnt; // # characters (src: bytes, dst: char (2-byte)), remaining after current loop.
|
|
Register Rix = tmp; // loop index
|
|
Register Rsrc = src; // addr(src array)
|
|
Register Rdst = dst; // addr(dst array)
|
|
Label ScalarShortcut, AllDone;
|
|
|
|
#if 0 // Sacrifice shortcuts for code compactness
|
|
{
|
|
//---< shortcuts for short strings (very frequent) >---
|
|
Label skipShortcut, skip4Shortcut;
|
|
z_ltr(Rcnt, Rcnt); // absolutely nothing to do for strings of len == 0.
|
|
z_brz(AllDone);
|
|
clear_reg(Z_R0); // make sure registers are properly initialized.
|
|
clear_reg(Z_R1);
|
|
z_chi(Rcnt, 4);
|
|
z_brne(skip4Shortcut); // 4 characters are very frequent
|
|
z_icm(Z_R0, 5, 0, Rsrc); // Treat exactly 4 characters specially.
|
|
z_icm(Z_R1, 5, 2, Rsrc);
|
|
z_stm(Z_R0, Z_R1, 0, Rdst);
|
|
z_bru(AllDone);
|
|
bind(skip4Shortcut);
|
|
|
|
z_chi(Rcnt, 8);
|
|
z_brh(skipShortcut); // There's a lot to do...
|
|
z_lgfr(Z_R0, Rcnt); // remaining #characters (<= 8). Precond for scalar loop.
|
|
// This does not destroy the "register cleared" state of Z_R0.
|
|
z_brl(ScalarShortcut); // Just a few characters
|
|
z_icmh(Z_R0, 5, 0, Rsrc); // Treat exactly 8 characters specially.
|
|
z_icmh(Z_R1, 5, 4, Rsrc);
|
|
z_icm(Z_R0, 5, 2, Rsrc);
|
|
z_icm(Z_R1, 5, 6, Rsrc);
|
|
z_stmg(Z_R0, Z_R1, 0, Rdst);
|
|
z_bru(AllDone);
|
|
bind(skipShortcut);
|
|
}
|
|
#endif
|
|
clear_reg(Z_R0); // make sure register is properly initialized.
|
|
|
|
if (VM_Version::has_VectorFacility()) {
|
|
const int min_vcnt = 32; // Minimum #characters required to use vector instructions.
|
|
// Otherwise just do nothing in vector mode.
|
|
// Must be multiple of vector register length (16 bytes = 128 bits).
|
|
const int log_min_vcnt = exact_log2(min_vcnt);
|
|
Label VectorLoop, VectorDone;
|
|
|
|
assert(VM_Version::has_DistinctOpnds(), "Assumption when has_VectorFacility()");
|
|
z_srak(Rix, Rcnt, log_min_vcnt); // calculate # vector loop iterations
|
|
z_brz(VectorDone); // skip if none
|
|
|
|
z_sllg(Z_R0, Rix, log_min_vcnt); // remember #chars that will be processed by vector loop
|
|
|
|
bind(VectorLoop);
|
|
z_vlm(Z_V20, Z_V21, 0, Rsrc); // get next 32 characters (single-byte)
|
|
add2reg(Rsrc, min_vcnt);
|
|
|
|
z_vuplhb(Z_V22, Z_V20); // V2 <- (expand) V0(high)
|
|
z_vupllb(Z_V23, Z_V20); // V3 <- (expand) V0(low)
|
|
z_vuplhb(Z_V24, Z_V21); // V4 <- (expand) V1(high)
|
|
z_vupllb(Z_V25, Z_V21); // V5 <- (expand) V1(low)
|
|
z_vstm(Z_V22, Z_V25, 0, Rdst); // store next 32 bytes
|
|
add2reg(Rdst, min_vcnt*2);
|
|
|
|
z_brct(Rix, VectorLoop);
|
|
|
|
bind(VectorDone);
|
|
}
|
|
|
|
const int min_cnt = 8; // Minimum #characters required to use unrolled scalar loop.
|
|
// Otherwise just do nothing in unrolled scalar mode.
|
|
// Must be multiple of 8.
|
|
{
|
|
const int log_min_cnt = exact_log2(min_cnt);
|
|
Label UnrolledLoop, UnrolledDone;
|
|
|
|
|
|
if (VM_Version::has_DistinctOpnds()) {
|
|
z_srk(Rix, Rcnt, Z_R0); // remaining # chars to process in unrolled loop
|
|
} else {
|
|
z_lr(Rix, Rcnt);
|
|
z_sr(Rix, Z_R0);
|
|
}
|
|
z_sra(Rix, log_min_cnt); // unrolled loop count
|
|
z_brz(UnrolledDone);
|
|
|
|
clear_reg(Z_R0);
|
|
clear_reg(Z_R1);
|
|
|
|
bind(UnrolledLoop);
|
|
z_icmh(Z_R0, 5, 0, Rsrc);
|
|
z_icmh(Z_R1, 5, 4, Rsrc);
|
|
z_icm(Z_R0, 5, 2, Rsrc);
|
|
z_icm(Z_R1, 5, 6, Rsrc);
|
|
add2reg(Rsrc, min_cnt);
|
|
|
|
z_stmg(Z_R0, Z_R1, 0, Rdst);
|
|
|
|
add2reg(Rdst, min_cnt*2);
|
|
z_brct(Rix, UnrolledLoop);
|
|
|
|
bind(UnrolledDone);
|
|
z_lgfr(Z_R0, Rcnt); // # chars left over after unrolled loop.
|
|
z_nilf(Z_R0, min_cnt-1);
|
|
z_brnz(ScalarShortcut); // if zero, there is nothing left to do for scalar loop.
|
|
// Rix == 0 in all cases.
|
|
z_sgfr(Z_R0, Rcnt); // negative # characters the ptrs have been advanced previously.
|
|
z_agr(Rdst, Z_R0); // restore ptr, double the element count for Rdst restore.
|
|
z_agr(Rdst, Z_R0);
|
|
z_agr(Rsrc, Z_R0); // restore ptr.
|
|
z_bru(AllDone);
|
|
}
|
|
|
|
{
|
|
bind(ScalarShortcut);
|
|
// Z_R0 must contain remaining # characters as 64-bit signed int here.
|
|
// register contents is preserved over scalar processing (for register fixup).
|
|
|
|
#if 0 // Sacrifice shortcuts for code compactness
|
|
{
|
|
Label ScalarDefault;
|
|
z_chi(Rcnt, 2);
|
|
z_brh(ScalarDefault);
|
|
z_llc(Z_R0, 0, Z_R0, Rsrc); // 6 bytes
|
|
z_sth(Z_R0, 0, Z_R0, Rdst); // 4 bytes
|
|
z_brl(AllDone);
|
|
z_llc(Z_R0, 1, Z_R0, Rsrc); // 6 bytes
|
|
z_sth(Z_R0, 2, Z_R0, Rdst); // 4 bytes
|
|
z_bru(AllDone);
|
|
bind(ScalarDefault);
|
|
}
|
|
#endif
|
|
|
|
Label CodeTable;
|
|
// Some comments on Rix calculation:
|
|
// - Rcnt is small, therefore no bits shifted out of low word (sll(g) instructions).
|
|
// - high word of both Rix and Rcnt may contain garbage
|
|
// - the final lngfr takes care of that garbage, extending the sign to high word
|
|
z_sllg(Rix, Z_R0, 2); // calculate 10*Rix = (4*Rix + Rix)*2
|
|
z_ar(Rix, Z_R0);
|
|
z_larl(Z_R1, CodeTable);
|
|
z_sll(Rix, 1);
|
|
z_lngfr(Rix, Rix); // ix range: [0..7], after inversion & mult: [-(7*12)..(0*12)].
|
|
z_bc(Assembler::bcondAlways, 0, Rix, Z_R1);
|
|
|
|
z_llc(Z_R1, 6, Z_R0, Rsrc); // 6 bytes
|
|
z_sth(Z_R1, 12, Z_R0, Rdst); // 4 bytes
|
|
|
|
z_llc(Z_R1, 5, Z_R0, Rsrc);
|
|
z_sth(Z_R1, 10, Z_R0, Rdst);
|
|
|
|
z_llc(Z_R1, 4, Z_R0, Rsrc);
|
|
z_sth(Z_R1, 8, Z_R0, Rdst);
|
|
|
|
z_llc(Z_R1, 3, Z_R0, Rsrc);
|
|
z_sth(Z_R1, 6, Z_R0, Rdst);
|
|
|
|
z_llc(Z_R1, 2, Z_R0, Rsrc);
|
|
z_sth(Z_R1, 4, Z_R0, Rdst);
|
|
|
|
z_llc(Z_R1, 1, Z_R0, Rsrc);
|
|
z_sth(Z_R1, 2, Z_R0, Rdst);
|
|
|
|
z_llc(Z_R1, 0, Z_R0, Rsrc);
|
|
z_sth(Z_R1, 0, Z_R0, Rdst);
|
|
bind(CodeTable);
|
|
|
|
z_chi(Rcnt, 8); // no fixup for small strings. Rdst, Rsrc were not modified.
|
|
z_brl(AllDone);
|
|
|
|
z_sgfr(Z_R0, Rcnt); // # characters the ptrs have been advanced previously.
|
|
z_agr(Rdst, Z_R0); // restore ptr, double the element count for Rdst restore.
|
|
z_agr(Rdst, Z_R0);
|
|
z_agr(Rsrc, Z_R0); // restore ptr.
|
|
}
|
|
bind(AllDone);
|
|
|
|
BLOCK_COMMENT("} string_inflate");
|
|
return offset() - block_start;
|
|
}
|
|
|
|
// Inflate byte[] to char[], length known at compile time.
|
|
// Restores: src, dst
|
|
// Kills: tmp, Z_R0, Z_R1.
|
|
// Note:
|
|
// len is signed int. Counts # characters, not bytes.
|
|
unsigned int MacroAssembler::string_inflate_const(Register src, Register dst, Register tmp, int len) {
|
|
assert_different_registers(Z_R0, Z_R1, src, dst, tmp);
|
|
|
|
BLOCK_COMMENT("string_inflate_const {");
|
|
int block_start = offset();
|
|
|
|
Register Rix = tmp; // loop index
|
|
Register Rsrc = src; // addr(src array)
|
|
Register Rdst = dst; // addr(dst array)
|
|
Label ScalarShortcut, AllDone;
|
|
int nprocessed = 0;
|
|
int src_off = 0; // compensate for saved (optimized away) ptr advancement.
|
|
int dst_off = 0; // compensate for saved (optimized away) ptr advancement.
|
|
bool restore_inputs = false;
|
|
bool workreg_clear = false;
|
|
|
|
if ((len >= 32) && VM_Version::has_VectorFacility()) {
|
|
const int min_vcnt = 32; // Minimum #characters required to use vector instructions.
|
|
// Otherwise just do nothing in vector mode.
|
|
// Must be multiple of vector register length (16 bytes = 128 bits).
|
|
const int log_min_vcnt = exact_log2(min_vcnt);
|
|
const int iterations = (len - nprocessed) >> log_min_vcnt;
|
|
nprocessed += iterations << log_min_vcnt;
|
|
Label VectorLoop;
|
|
|
|
if (iterations == 1) {
|
|
z_vlm(Z_V20, Z_V21, 0+src_off, Rsrc); // get next 32 characters (single-byte)
|
|
z_vuplhb(Z_V22, Z_V20); // V2 <- (expand) V0(high)
|
|
z_vupllb(Z_V23, Z_V20); // V3 <- (expand) V0(low)
|
|
z_vuplhb(Z_V24, Z_V21); // V4 <- (expand) V1(high)
|
|
z_vupllb(Z_V25, Z_V21); // V5 <- (expand) V1(low)
|
|
z_vstm(Z_V22, Z_V25, 0+dst_off, Rdst); // store next 32 bytes
|
|
|
|
src_off += min_vcnt;
|
|
dst_off += min_vcnt*2;
|
|
} else {
|
|
restore_inputs = true;
|
|
|
|
z_lgfi(Rix, len>>log_min_vcnt);
|
|
bind(VectorLoop);
|
|
z_vlm(Z_V20, Z_V21, 0, Rsrc); // get next 32 characters (single-byte)
|
|
add2reg(Rsrc, min_vcnt);
|
|
|
|
z_vuplhb(Z_V22, Z_V20); // V2 <- (expand) V0(high)
|
|
z_vupllb(Z_V23, Z_V20); // V3 <- (expand) V0(low)
|
|
z_vuplhb(Z_V24, Z_V21); // V4 <- (expand) V1(high)
|
|
z_vupllb(Z_V25, Z_V21); // V5 <- (expand) V1(low)
|
|
z_vstm(Z_V22, Z_V25, 0, Rdst); // store next 32 bytes
|
|
add2reg(Rdst, min_vcnt*2);
|
|
|
|
z_brct(Rix, VectorLoop);
|
|
}
|
|
}
|
|
|
|
if (((len-nprocessed) >= 16) && VM_Version::has_VectorFacility()) {
|
|
const int min_vcnt = 16; // Minimum #characters required to use vector instructions.
|
|
// Otherwise just do nothing in vector mode.
|
|
// Must be multiple of vector register length (16 bytes = 128 bits).
|
|
const int log_min_vcnt = exact_log2(min_vcnt);
|
|
const int iterations = (len - nprocessed) >> log_min_vcnt;
|
|
nprocessed += iterations << log_min_vcnt;
|
|
assert(iterations == 1, "must be!");
|
|
|
|
z_vl(Z_V20, 0+src_off, Z_R0, Rsrc); // get next 16 characters (single-byte)
|
|
z_vuplhb(Z_V22, Z_V20); // V2 <- (expand) V0(high)
|
|
z_vupllb(Z_V23, Z_V20); // V3 <- (expand) V0(low)
|
|
z_vstm(Z_V22, Z_V23, 0+dst_off, Rdst); // store next 32 bytes
|
|
|
|
src_off += min_vcnt;
|
|
dst_off += min_vcnt*2;
|
|
}
|
|
|
|
if ((len-nprocessed) > 8) {
|
|
const int min_cnt = 8; // Minimum #characters required to use unrolled scalar loop.
|
|
// Otherwise just do nothing in unrolled scalar mode.
|
|
// Must be multiple of 8.
|
|
const int log_min_cnt = exact_log2(min_cnt);
|
|
const int iterations = (len - nprocessed) >> log_min_cnt;
|
|
nprocessed += iterations << log_min_cnt;
|
|
|
|
//---< avoid loop overhead/ptr increment for small # iterations >---
|
|
if (iterations <= 2) {
|
|
clear_reg(Z_R0);
|
|
clear_reg(Z_R1);
|
|
workreg_clear = true;
|
|
|
|
z_icmh(Z_R0, 5, 0+src_off, Rsrc);
|
|
z_icmh(Z_R1, 5, 4+src_off, Rsrc);
|
|
z_icm(Z_R0, 5, 2+src_off, Rsrc);
|
|
z_icm(Z_R1, 5, 6+src_off, Rsrc);
|
|
z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
|
|
|
|
src_off += min_cnt;
|
|
dst_off += min_cnt*2;
|
|
}
|
|
|
|
if (iterations == 2) {
|
|
z_icmh(Z_R0, 5, 0+src_off, Rsrc);
|
|
z_icmh(Z_R1, 5, 4+src_off, Rsrc);
|
|
z_icm(Z_R0, 5, 2+src_off, Rsrc);
|
|
z_icm(Z_R1, 5, 6+src_off, Rsrc);
|
|
z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
|
|
|
|
src_off += min_cnt;
|
|
dst_off += min_cnt*2;
|
|
}
|
|
|
|
if (iterations > 2) {
|
|
Label UnrolledLoop;
|
|
restore_inputs = true;
|
|
|
|
clear_reg(Z_R0);
|
|
clear_reg(Z_R1);
|
|
workreg_clear = true;
|
|
|
|
z_lgfi(Rix, iterations);
|
|
bind(UnrolledLoop);
|
|
z_icmh(Z_R0, 5, 0, Rsrc);
|
|
z_icmh(Z_R1, 5, 4, Rsrc);
|
|
z_icm(Z_R0, 5, 2, Rsrc);
|
|
z_icm(Z_R1, 5, 6, Rsrc);
|
|
add2reg(Rsrc, min_cnt);
|
|
|
|
z_stmg(Z_R0, Z_R1, 0, Rdst);
|
|
add2reg(Rdst, min_cnt*2);
|
|
|
|
z_brct(Rix, UnrolledLoop);
|
|
}
|
|
}
|
|
|
|
if ((len-nprocessed) > 0) {
|
|
switch (len-nprocessed) {
|
|
case 8:
|
|
if (!workreg_clear) {
|
|
clear_reg(Z_R0);
|
|
clear_reg(Z_R1);
|
|
}
|
|
z_icmh(Z_R0, 5, 0+src_off, Rsrc);
|
|
z_icmh(Z_R1, 5, 4+src_off, Rsrc);
|
|
z_icm(Z_R0, 5, 2+src_off, Rsrc);
|
|
z_icm(Z_R1, 5, 6+src_off, Rsrc);
|
|
z_stmg(Z_R0, Z_R1, 0+dst_off, Rdst);
|
|
break;
|
|
case 7:
|
|
if (!workreg_clear) {
|
|
clear_reg(Z_R0);
|
|
clear_reg(Z_R1);
|
|
}
|
|
clear_reg(Rix);
|
|
z_icm(Z_R0, 5, 0+src_off, Rsrc);
|
|
z_icm(Z_R1, 5, 2+src_off, Rsrc);
|
|
z_icm(Rix, 5, 4+src_off, Rsrc);
|
|
z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
|
|
z_llc(Z_R0, 6+src_off, Z_R0, Rsrc);
|
|
z_st(Rix, 8+dst_off, Z_R0, Rdst);
|
|
z_sth(Z_R0, 12+dst_off, Z_R0, Rdst);
|
|
break;
|
|
case 6:
|
|
if (!workreg_clear) {
|
|
clear_reg(Z_R0);
|
|
clear_reg(Z_R1);
|
|
}
|
|
clear_reg(Rix);
|
|
z_icm(Z_R0, 5, 0+src_off, Rsrc);
|
|
z_icm(Z_R1, 5, 2+src_off, Rsrc);
|
|
z_icm(Rix, 5, 4+src_off, Rsrc);
|
|
z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
|
|
z_st(Rix, 8+dst_off, Z_R0, Rdst);
|
|
break;
|
|
case 5:
|
|
if (!workreg_clear) {
|
|
clear_reg(Z_R0);
|
|
clear_reg(Z_R1);
|
|
}
|
|
z_icm(Z_R0, 5, 0+src_off, Rsrc);
|
|
z_icm(Z_R1, 5, 2+src_off, Rsrc);
|
|
z_llc(Rix, 4+src_off, Z_R0, Rsrc);
|
|
z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
|
|
z_sth(Rix, 8+dst_off, Z_R0, Rdst);
|
|
break;
|
|
case 4:
|
|
if (!workreg_clear) {
|
|
clear_reg(Z_R0);
|
|
clear_reg(Z_R1);
|
|
}
|
|
z_icm(Z_R0, 5, 0+src_off, Rsrc);
|
|
z_icm(Z_R1, 5, 2+src_off, Rsrc);
|
|
z_stm(Z_R0, Z_R1, 0+dst_off, Rdst);
|
|
break;
|
|
case 3:
|
|
if (!workreg_clear) {
|
|
clear_reg(Z_R0);
|
|
}
|
|
z_llc(Z_R1, 2+src_off, Z_R0, Rsrc);
|
|
z_icm(Z_R0, 5, 0+src_off, Rsrc);
|
|
z_sth(Z_R1, 4+dst_off, Z_R0, Rdst);
|
|
z_st(Z_R0, 0+dst_off, Rdst);
|
|
break;
|
|
case 2:
|
|
z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
|
|
z_llc(Z_R1, 1+src_off, Z_R0, Rsrc);
|
|
z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
|
|
z_sth(Z_R1, 2+dst_off, Z_R0, Rdst);
|
|
break;
|
|
case 1:
|
|
z_llc(Z_R0, 0+src_off, Z_R0, Rsrc);
|
|
z_sth(Z_R0, 0+dst_off, Z_R0, Rdst);
|
|
break;
|
|
default:
|
|
guarantee(false, "Impossible");
|
|
break;
|
|
}
|
|
src_off += len-nprocessed;
|
|
dst_off += (len-nprocessed)*2;
|
|
nprocessed = len;
|
|
}
|
|
|
|
//---< restore modified input registers >---
|
|
if ((nprocessed > 0) && restore_inputs) {
|
|
z_agfi(Rsrc, -(nprocessed-src_off));
|
|
if (nprocessed < 1000000000) { // avoid int overflow
|
|
z_agfi(Rdst, -(nprocessed*2-dst_off));
|
|
} else {
|
|
z_agfi(Rdst, -(nprocessed-dst_off));
|
|
z_agfi(Rdst, -nprocessed);
|
|
}
|
|
}
|
|
|
|
BLOCK_COMMENT("} string_inflate_const");
|
|
return offset() - block_start;
|
|
}
|
|
|
|
// Kills src.
|
|
unsigned int MacroAssembler::has_negatives(Register result, Register src, Register cnt,
|
|
Register odd_reg, Register even_reg, Register tmp) {
|
|
int block_start = offset();
|
|
Label Lloop1, Lloop2, Lslow, Lnotfound, Ldone;
|
|
const Register addr = src, mask = tmp;
|
|
|
|
BLOCK_COMMENT("has_negatives {");
|
|
|
|
z_llgfr(Z_R1, cnt); // Number of bytes to read. (Must be a positive simm32.)
|
|
z_llilf(mask, 0x80808080);
|
|
z_lhi(result, 1); // Assume true.
|
|
// Last possible addr for fast loop.
|
|
z_lay(odd_reg, -16, Z_R1, src);
|
|
z_chi(cnt, 16);
|
|
z_brl(Lslow);
|
|
|
|
// ind1: index, even_reg: index increment, odd_reg: index limit
|
|
z_iihf(mask, 0x80808080);
|
|
z_lghi(even_reg, 16);
|
|
|
|
bind(Lloop1); // 16 bytes per iteration.
|
|
z_lg(Z_R0, Address(addr));
|
|
z_lg(Z_R1, Address(addr, 8));
|
|
z_ogr(Z_R0, Z_R1);
|
|
z_ngr(Z_R0, mask);
|
|
z_brne(Ldone); // If found return 1.
|
|
z_brxlg(addr, even_reg, Lloop1);
|
|
|
|
bind(Lslow);
|
|
z_aghi(odd_reg, 16-1); // Last possible addr for slow loop.
|
|
z_lghi(even_reg, 1);
|
|
z_cgr(addr, odd_reg);
|
|
z_brh(Lnotfound);
|
|
|
|
bind(Lloop2); // 1 byte per iteration.
|
|
z_cli(Address(addr), 0x80);
|
|
z_brnl(Ldone); // If found return 1.
|
|
z_brxlg(addr, even_reg, Lloop2);
|
|
|
|
bind(Lnotfound);
|
|
z_lhi(result, 0);
|
|
|
|
bind(Ldone);
|
|
|
|
BLOCK_COMMENT("} has_negatives");
|
|
|
|
return offset() - block_start;
|
|
}
|
|
|
|
// kill: cnt1, cnt2, odd_reg, even_reg; early clobber: result
|
|
unsigned int MacroAssembler::string_compare(Register str1, Register str2,
|
|
Register cnt1, Register cnt2,
|
|
Register odd_reg, Register even_reg, Register result, int ae) {
|
|
int block_start = offset();
|
|
|
|
assert_different_registers(str1, cnt1, cnt2, odd_reg, even_reg, result);
|
|
assert_different_registers(str2, cnt1, cnt2, odd_reg, even_reg, result);
|
|
|
|
// If strings are equal up to min length, return the length difference.
|
|
const Register diff = result, // Pre-set result with length difference.
|
|
min = cnt1, // min number of bytes
|
|
tmp = cnt2;
|
|
|
|
// Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
|
|
// we interchange str1 and str2 in the UL case and negate the result.
|
|
// Like this, str1 is always latin1 encoded, except for the UU case.
|
|
// In addition, we need 0 (or sign which is 0) extend when using 64 bit register.
|
|
const bool used_as_LU = (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL);
|
|
|
|
BLOCK_COMMENT("string_compare {");
|
|
|
|
if (used_as_LU) {
|
|
z_srl(cnt2, 1);
|
|
}
|
|
|
|
// See if the lengths are different, and calculate min in cnt1.
|
|
// Save diff in case we need it for a tie-breaker.
|
|
|
|
// diff = cnt1 - cnt2
|
|
if (VM_Version::has_DistinctOpnds()) {
|
|
z_srk(diff, cnt1, cnt2);
|
|
} else {
|
|
z_lr(diff, cnt1);
|
|
z_sr(diff, cnt2);
|
|
}
|
|
if (str1 != str2) {
|
|
if (VM_Version::has_LoadStoreConditional()) {
|
|
z_locr(min, cnt2, Assembler::bcondHigh);
|
|
} else {
|
|
Label Lskip;
|
|
z_brl(Lskip); // min ok if cnt1 < cnt2
|
|
z_lr(min, cnt2); // min = cnt2
|
|
bind(Lskip);
|
|
}
|
|
}
|
|
|
|
if (ae == StrIntrinsicNode::UU) {
|
|
z_sra(diff, 1);
|
|
}
|
|
if (str1 != str2) {
|
|
Label Ldone;
|
|
if (used_as_LU) {
|
|
// Loop which searches the first difference character by character.
|
|
Label Lloop;
|
|
const Register ind1 = Z_R1,
|
|
ind2 = min;
|
|
int stride1 = 1, stride2 = 2; // See comment above.
|
|
|
|
// ind1: index, even_reg: index increment, odd_reg: index limit
|
|
z_llilf(ind1, (unsigned int)(-stride1));
|
|
z_lhi(even_reg, stride1);
|
|
add2reg(odd_reg, -stride1, min);
|
|
clear_reg(ind2); // kills min
|
|
|
|
bind(Lloop);
|
|
z_brxh(ind1, even_reg, Ldone);
|
|
z_llc(tmp, Address(str1, ind1));
|
|
z_llh(Z_R0, Address(str2, ind2));
|
|
z_ahi(ind2, stride2);
|
|
z_sr(tmp, Z_R0);
|
|
z_bre(Lloop);
|
|
|
|
z_lr(result, tmp);
|
|
|
|
} else {
|
|
// Use clcle in fast loop (only for same encoding).
|
|
z_lgr(Z_R0, str1);
|
|
z_lgr(even_reg, str2);
|
|
z_llgfr(Z_R1, min);
|
|
z_llgfr(odd_reg, min);
|
|
|
|
if (ae == StrIntrinsicNode::LL) {
|
|
compare_long_ext(Z_R0, even_reg, 0);
|
|
} else {
|
|
compare_long_uni(Z_R0, even_reg, 0);
|
|
}
|
|
z_bre(Ldone);
|
|
z_lgr(Z_R1, Z_R0);
|
|
if (ae == StrIntrinsicNode::LL) {
|
|
z_llc(Z_R0, Address(even_reg));
|
|
z_llc(result, Address(Z_R1));
|
|
} else {
|
|
z_llh(Z_R0, Address(even_reg));
|
|
z_llh(result, Address(Z_R1));
|
|
}
|
|
z_sr(result, Z_R0);
|
|
}
|
|
|
|
// Otherwise, return the difference between the first mismatched chars.
|
|
bind(Ldone);
|
|
}
|
|
|
|
if (ae == StrIntrinsicNode::UL) {
|
|
z_lcr(result, result); // Negate result (see note above).
|
|
}
|
|
|
|
BLOCK_COMMENT("} string_compare");
|
|
|
|
return offset() - block_start;
|
|
}
|
|
|
|
unsigned int MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2, Register limit,
|
|
Register odd_reg, Register even_reg, Register result, bool is_byte) {
|
|
int block_start = offset();
|
|
|
|
BLOCK_COMMENT("array_equals {");
|
|
|
|
assert_different_registers(ary1, limit, odd_reg, even_reg);
|
|
assert_different_registers(ary2, limit, odd_reg, even_reg);
|
|
|
|
Label Ldone, Ldone_true, Ldone_false, Lclcle, CLC_template;
|
|
int base_offset = 0;
|
|
|
|
if (ary1 != ary2) {
|
|
if (is_array_equ) {
|
|
base_offset = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
|
|
|
|
// Return true if the same array.
|
|
compareU64_and_branch(ary1, ary2, Assembler::bcondEqual, Ldone_true);
|
|
|
|
// Return false if one of them is NULL.
|
|
compareU64_and_branch(ary1, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
|
|
compareU64_and_branch(ary2, (intptr_t)0, Assembler::bcondEqual, Ldone_false);
|
|
|
|
// Load the lengths of arrays.
|
|
z_llgf(odd_reg, Address(ary1, arrayOopDesc::length_offset_in_bytes()));
|
|
|
|
// Return false if the two arrays are not equal length.
|
|
z_c(odd_reg, Address(ary2, arrayOopDesc::length_offset_in_bytes()));
|
|
z_brne(Ldone_false);
|
|
|
|
// string len in bytes (right operand)
|
|
if (!is_byte) {
|
|
z_chi(odd_reg, 128);
|
|
z_sll(odd_reg, 1); // preserves flags
|
|
z_brh(Lclcle);
|
|
} else {
|
|
compareU32_and_branch(odd_reg, (intptr_t)256, Assembler::bcondHigh, Lclcle);
|
|
}
|
|
} else {
|
|
z_llgfr(odd_reg, limit); // Need to zero-extend prior to using the value.
|
|
compareU32_and_branch(limit, (intptr_t)256, Assembler::bcondHigh, Lclcle);
|
|
}
|
|
|
|
|
|
// Use clc instruction for up to 256 bytes.
|
|
{
|
|
Register str1_reg = ary1,
|
|
str2_reg = ary2;
|
|
if (is_array_equ) {
|
|
str1_reg = Z_R1;
|
|
str2_reg = even_reg;
|
|
add2reg(str1_reg, base_offset, ary1); // string addr (left operand)
|
|
add2reg(str2_reg, base_offset, ary2); // string addr (right operand)
|
|
}
|
|
z_ahi(odd_reg, -1); // Clc uses decremented limit. Also compare result to 0.
|
|
z_brl(Ldone_true);
|
|
// Note: We could jump to the template if equal.
|
|
|
|
assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
|
|
z_exrl(odd_reg, CLC_template);
|
|
z_bre(Ldone_true);
|
|
// fall through
|
|
|
|
bind(Ldone_false);
|
|
clear_reg(result);
|
|
z_bru(Ldone);
|
|
|
|
bind(CLC_template);
|
|
z_clc(0, 0, str1_reg, 0, str2_reg);
|
|
}
|
|
|
|
// Use clcle instruction.
|
|
{
|
|
bind(Lclcle);
|
|
add2reg(even_reg, base_offset, ary2); // string addr (right operand)
|
|
add2reg(Z_R0, base_offset, ary1); // string addr (left operand)
|
|
|
|
z_lgr(Z_R1, odd_reg); // string len in bytes (left operand)
|
|
if (is_byte) {
|
|
compare_long_ext(Z_R0, even_reg, 0);
|
|
} else {
|
|
compare_long_uni(Z_R0, even_reg, 0);
|
|
}
|
|
z_lghi(result, 0); // Preserve flags.
|
|
z_brne(Ldone);
|
|
}
|
|
}
|
|
// fall through
|
|
|
|
bind(Ldone_true);
|
|
z_lghi(result, 1); // All characters are equal.
|
|
bind(Ldone);
|
|
|
|
BLOCK_COMMENT("} array_equals");
|
|
|
|
return offset() - block_start;
|
|
}
|
|
|
|
// kill: haycnt, needlecnt, odd_reg, even_reg; early clobber: result
|
|
unsigned int MacroAssembler::string_indexof(Register result, Register haystack, Register haycnt,
|
|
Register needle, Register needlecnt, int needlecntval,
|
|
Register odd_reg, Register even_reg, int ae) {
|
|
int block_start = offset();
|
|
|
|
// Ensure 0<needlecnt<=haycnt in ideal graph as prerequisite!
|
|
assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
|
|
const int h_csize = (ae == StrIntrinsicNode::LL) ? 1 : 2;
|
|
const int n_csize = (ae == StrIntrinsicNode::UU) ? 2 : 1;
|
|
Label L_needle1, L_Found, L_NotFound;
|
|
|
|
BLOCK_COMMENT("string_indexof {");
|
|
|
|
if (needle == haystack) {
|
|
z_lhi(result, 0);
|
|
} else {
|
|
|
|
// Load first character of needle (R0 used by search_string instructions).
|
|
if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); }
|
|
|
|
// Compute last haystack addr to use if no match gets found.
|
|
if (needlecnt != noreg) { // variable needlecnt
|
|
z_ahi(needlecnt, -1); // Remaining characters after first one.
|
|
z_sr(haycnt, needlecnt); // Compute index succeeding last element to compare.
|
|
if (n_csize == 2) { z_sll(needlecnt, 1); } // In bytes.
|
|
} else { // constant needlecnt
|
|
assert((needlecntval & 0x7fff) == needlecntval, "must be positive simm16 immediate");
|
|
// Compute index succeeding last element to compare.
|
|
if (needlecntval != 1) { z_ahi(haycnt, 1 - needlecntval); }
|
|
}
|
|
|
|
z_llgfr(haycnt, haycnt); // Clear high half.
|
|
z_lgr(result, haystack); // Final result will be computed from needle start pointer.
|
|
if (h_csize == 2) { z_sll(haycnt, 1); } // Scale to number of bytes.
|
|
z_agr(haycnt, haystack); // Point to address succeeding last element (haystack+scale*(haycnt-needlecnt+1)).
|
|
|
|
if (h_csize != n_csize) {
|
|
assert(ae == StrIntrinsicNode::UL, "Invalid encoding");
|
|
|
|
if (needlecnt != noreg || needlecntval != 1) {
|
|
if (needlecnt != noreg) {
|
|
compare32_and_branch(needlecnt, (intptr_t)0, Assembler::bcondEqual, L_needle1);
|
|
}
|
|
|
|
// Main Loop: UL version (now we have at least 2 characters).
|
|
Label L_OuterLoop, L_InnerLoop, L_Skip;
|
|
bind(L_OuterLoop); // Search for 1st 2 characters.
|
|
z_lgr(Z_R1, haycnt);
|
|
MacroAssembler::search_string_uni(Z_R1, result);
|
|
z_brc(Assembler::bcondNotFound, L_NotFound);
|
|
z_lgr(result, Z_R1);
|
|
|
|
z_lghi(Z_R1, n_csize);
|
|
z_lghi(even_reg, h_csize);
|
|
bind(L_InnerLoop);
|
|
z_llgc(odd_reg, Address(needle, Z_R1));
|
|
z_ch(odd_reg, Address(result, even_reg));
|
|
z_brne(L_Skip);
|
|
if (needlecnt != noreg) { z_cr(Z_R1, needlecnt); } else { z_chi(Z_R1, needlecntval - 1); }
|
|
z_brnl(L_Found);
|
|
z_aghi(Z_R1, n_csize);
|
|
z_aghi(even_reg, h_csize);
|
|
z_bru(L_InnerLoop);
|
|
|
|
bind(L_Skip);
|
|
z_aghi(result, h_csize); // This is the new address we want to use for comparing.
|
|
z_bru(L_OuterLoop);
|
|
}
|
|
|
|
} else {
|
|
const intptr_t needle_bytes = (n_csize == 2) ? ((needlecntval - 1) << 1) : (needlecntval - 1);
|
|
Label L_clcle;
|
|
|
|
if (needlecnt != noreg || (needlecntval != 1 && needle_bytes <= 256)) {
|
|
if (needlecnt != noreg) {
|
|
compare32_and_branch(needlecnt, 256, Assembler::bcondHigh, L_clcle);
|
|
z_ahi(needlecnt, -1); // remaining bytes -1 (for CLC)
|
|
z_brl(L_needle1);
|
|
}
|
|
|
|
// Main Loop: clc version (now we have at least 2 characters).
|
|
Label L_OuterLoop, CLC_template;
|
|
bind(L_OuterLoop); // Search for 1st 2 characters.
|
|
z_lgr(Z_R1, haycnt);
|
|
if (h_csize == 1) {
|
|
MacroAssembler::search_string(Z_R1, result);
|
|
} else {
|
|
MacroAssembler::search_string_uni(Z_R1, result);
|
|
}
|
|
z_brc(Assembler::bcondNotFound, L_NotFound);
|
|
z_lgr(result, Z_R1);
|
|
|
|
if (needlecnt != noreg) {
|
|
assert(VM_Version::has_ExecuteExtensions(), "unsupported hardware");
|
|
z_exrl(needlecnt, CLC_template);
|
|
} else {
|
|
z_clc(h_csize, needle_bytes -1, Z_R1, n_csize, needle);
|
|
}
|
|
z_bre(L_Found);
|
|
z_aghi(result, h_csize); // This is the new address we want to use for comparing.
|
|
z_bru(L_OuterLoop);
|
|
|
|
if (needlecnt != noreg) {
|
|
bind(CLC_template);
|
|
z_clc(h_csize, 0, Z_R1, n_csize, needle);
|
|
}
|
|
}
|
|
|
|
if (needlecnt != noreg || needle_bytes > 256) {
|
|
bind(L_clcle);
|
|
|
|
// Main Loop: clcle version (now we have at least 256 bytes).
|
|
Label L_OuterLoop, CLC_template;
|
|
bind(L_OuterLoop); // Search for 1st 2 characters.
|
|
z_lgr(Z_R1, haycnt);
|
|
if (h_csize == 1) {
|
|
MacroAssembler::search_string(Z_R1, result);
|
|
} else {
|
|
MacroAssembler::search_string_uni(Z_R1, result);
|
|
}
|
|
z_brc(Assembler::bcondNotFound, L_NotFound);
|
|
|
|
add2reg(Z_R0, n_csize, needle);
|
|
add2reg(even_reg, h_csize, Z_R1);
|
|
z_lgr(result, Z_R1);
|
|
if (needlecnt != noreg) {
|
|
z_llgfr(Z_R1, needlecnt); // needle len in bytes (left operand)
|
|
z_llgfr(odd_reg, needlecnt);
|
|
} else {
|
|
load_const_optimized(Z_R1, needle_bytes);
|
|
if (Immediate::is_simm16(needle_bytes)) { z_lghi(odd_reg, needle_bytes); } else { z_lgr(odd_reg, Z_R1); }
|
|
}
|
|
if (h_csize == 1) {
|
|
compare_long_ext(Z_R0, even_reg, 0);
|
|
} else {
|
|
compare_long_uni(Z_R0, even_reg, 0);
|
|
}
|
|
z_bre(L_Found);
|
|
|
|
if (n_csize == 2) { z_llgh(Z_R0, Address(needle)); } else { z_llgc(Z_R0, Address(needle)); } // Reload.
|
|
z_aghi(result, h_csize); // This is the new address we want to use for comparing.
|
|
z_bru(L_OuterLoop);
|
|
}
|
|
}
|
|
|
|
if (needlecnt != noreg || needlecntval == 1) {
|
|
bind(L_needle1);
|
|
|
|
// Single needle character version.
|
|
if (h_csize == 1) {
|
|
MacroAssembler::search_string(haycnt, result);
|
|
} else {
|
|
MacroAssembler::search_string_uni(haycnt, result);
|
|
}
|
|
z_lgr(result, haycnt);
|
|
z_brc(Assembler::bcondFound, L_Found);
|
|
}
|
|
|
|
bind(L_NotFound);
|
|
add2reg(result, -1, haystack); // Return -1.
|
|
|
|
bind(L_Found); // Return index (or -1 in fallthrough case).
|
|
z_sgr(result, haystack);
|
|
if (h_csize == 2) { z_srag(result, result, exact_log2(sizeof(jchar))); }
|
|
}
|
|
BLOCK_COMMENT("} string_indexof");
|
|
|
|
return offset() - block_start;
|
|
}
|
|
|
|
// early clobber: result
|
|
unsigned int MacroAssembler::string_indexof_char(Register result, Register haystack, Register haycnt,
|
|
Register needle, jchar needleChar, Register odd_reg, Register even_reg, bool is_byte) {
|
|
int block_start = offset();
|
|
|
|
BLOCK_COMMENT("string_indexof_char {");
|
|
|
|
if (needle == haystack) {
|
|
z_lhi(result, 0);
|
|
} else {
|
|
|
|
Label Ldone;
|
|
|
|
z_llgfr(odd_reg, haycnt); // Preset loop ctr/searchrange end.
|
|
if (needle == noreg) {
|
|
load_const_optimized(Z_R0, (unsigned long)needleChar);
|
|
} else {
|
|
if (is_byte) {
|
|
z_llgcr(Z_R0, needle); // First (and only) needle char.
|
|
} else {
|
|
z_llghr(Z_R0, needle); // First (and only) needle char.
|
|
}
|
|
}
|
|
|
|
if (!is_byte) {
|
|
z_agr(odd_reg, odd_reg); // Calc #bytes to be processed with SRSTU.
|
|
}
|
|
|
|
z_lgr(even_reg, haystack); // haystack addr
|
|
z_agr(odd_reg, haystack); // First char after range end.
|
|
z_lghi(result, -1);
|
|
|
|
if (is_byte) {
|
|
MacroAssembler::search_string(odd_reg, even_reg);
|
|
} else {
|
|
MacroAssembler::search_string_uni(odd_reg, even_reg);
|
|
}
|
|
z_brc(Assembler::bcondNotFound, Ldone);
|
|
if (is_byte) {
|
|
if (VM_Version::has_DistinctOpnds()) {
|
|
z_sgrk(result, odd_reg, haystack);
|
|
} else {
|
|
z_sgr(odd_reg, haystack);
|
|
z_lgr(result, odd_reg);
|
|
}
|
|
} else {
|
|
z_slgr(odd_reg, haystack);
|
|
z_srlg(result, odd_reg, exact_log2(sizeof(jchar)));
|
|
}
|
|
|
|
bind(Ldone);
|
|
}
|
|
BLOCK_COMMENT("} string_indexof_char");
|
|
|
|
return offset() - block_start;
|
|
}
|
|
|
|
|
|
//-------------------------------------------------
|
|
// Constants (scalar and oop) in constant pool
|
|
//-------------------------------------------------
|
|
|
|
// Add a non-relocated constant to the CP.
|
|
int MacroAssembler::store_const_in_toc(AddressLiteral& val) {
|
|
long value = val.value();
|
|
address tocPos = long_constant(value);
|
|
|
|
if (tocPos != NULL) {
|
|
int tocOffset = (int)(tocPos - code()->consts()->start());
|
|
return tocOffset;
|
|
}
|
|
// Address_constant returned NULL, so no constant entry has been created.
|
|
// In that case, we return a "fatal" offset, just in case that subsequently
|
|
// generated access code is executed.
|
|
return -1;
|
|
}
|
|
|
|
// Returns the TOC offset where the address is stored.
|
|
// Add a relocated constant to the CP.
|
|
int MacroAssembler::store_oop_in_toc(AddressLiteral& oop) {
|
|
// Use RelocationHolder::none for the constant pool entry.
|
|
// Otherwise we will end up with a failing NativeCall::verify(x),
|
|
// where x is the address of the constant pool entry.
|
|
address tocPos = address_constant((address)oop.value(), RelocationHolder::none);
|
|
|
|
if (tocPos != NULL) {
|
|
int tocOffset = (int)(tocPos - code()->consts()->start());
|
|
RelocationHolder rsp = oop.rspec();
|
|
Relocation *rel = rsp.reloc();
|
|
|
|
// Store toc_offset in relocation, used by call_far_patchable.
|
|
if ((relocInfo::relocType)rel->type() == relocInfo::runtime_call_w_cp_type) {
|
|
((runtime_call_w_cp_Relocation *)(rel))->set_constant_pool_offset(tocOffset);
|
|
}
|
|
// Relocate at the load's pc.
|
|
relocate(rsp);
|
|
|
|
return tocOffset;
|
|
}
|
|
// Address_constant returned NULL, so no constant entry has been created
|
|
// in that case, we return a "fatal" offset, just in case that subsequently
|
|
// generated access code is executed.
|
|
return -1;
|
|
}
|
|
|
|
bool MacroAssembler::load_const_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
|
|
int tocOffset = store_const_in_toc(a);
|
|
if (tocOffset == -1) return false;
|
|
address tocPos = tocOffset + code()->consts()->start();
|
|
assert((address)code()->consts()->start() != NULL, "Please add CP address");
|
|
|
|
load_long_pcrelative(dst, tocPos);
|
|
return true;
|
|
}
|
|
|
|
bool MacroAssembler::load_oop_from_toc(Register dst, AddressLiteral& a, Register Rtoc) {
|
|
int tocOffset = store_oop_in_toc(a);
|
|
if (tocOffset == -1) return false;
|
|
address tocPos = tocOffset + code()->consts()->start();
|
|
assert((address)code()->consts()->start() != NULL, "Please add CP address");
|
|
|
|
load_addr_pcrelative(dst, tocPos);
|
|
return true;
|
|
}
|
|
|
|
// If the instruction sequence at the given pc is a load_const_from_toc
|
|
// sequence, return the value currently stored at the referenced position
|
|
// in the TOC.
|
|
intptr_t MacroAssembler::get_const_from_toc(address pc) {
|
|
|
|
assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
|
|
|
|
long offset = get_load_const_from_toc_offset(pc);
|
|
address dataLoc = NULL;
|
|
if (is_load_const_from_toc_pcrelative(pc)) {
|
|
dataLoc = pc + offset;
|
|
} else {
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(pc); // Else we get assertion if nmethod is zombie.
|
|
assert(cb && cb->is_nmethod(), "sanity");
|
|
nmethod* nm = (nmethod*)cb;
|
|
dataLoc = nm->ctable_begin() + offset;
|
|
}
|
|
return *(intptr_t *)dataLoc;
|
|
}
|
|
|
|
// If the instruction sequence at the given pc is a load_const_from_toc
|
|
// sequence, copy the passed-in new_data value into the referenced
|
|
// position in the TOC.
|
|
void MacroAssembler::set_const_in_toc(address pc, unsigned long new_data, CodeBlob *cb) {
|
|
assert(is_load_const_from_toc(pc), "must be load_const_from_pool");
|
|
|
|
long offset = MacroAssembler::get_load_const_from_toc_offset(pc);
|
|
address dataLoc = NULL;
|
|
if (is_load_const_from_toc_pcrelative(pc)) {
|
|
dataLoc = pc+offset;
|
|
} else {
|
|
nmethod* nm = CodeCache::find_nmethod(pc);
|
|
assert((cb == NULL) || (nm == (nmethod*)cb), "instruction address should be in CodeBlob");
|
|
dataLoc = nm->ctable_begin() + offset;
|
|
}
|
|
if (*(unsigned long *)dataLoc != new_data) { // Prevent cache invalidation: update only if necessary.
|
|
*(unsigned long *)dataLoc = new_data;
|
|
}
|
|
}
|
|
|
|
// Dynamic TOC. Getter must only be called if "a" is a load_const_from_toc
|
|
// site. Verify by calling is_load_const_from_toc() before!!
|
|
// Offset is +/- 2**32 -> use long.
|
|
long MacroAssembler::get_load_const_from_toc_offset(address a) {
|
|
assert(is_load_const_from_toc_pcrelative(a), "expected pc relative load");
|
|
// expected code sequence:
|
|
// z_lgrl(t, simm32); len = 6
|
|
unsigned long inst;
|
|
unsigned int len = get_instruction(a, &inst);
|
|
return get_pcrel_offset(inst);
|
|
}
|
|
|
|
//**********************************************************************************
|
|
// inspection of generated instruction sequences for a particular pattern
|
|
//**********************************************************************************
|
|
|
|
bool MacroAssembler::is_load_const_from_toc_pcrelative(address a) {
|
|
#ifdef ASSERT
|
|
unsigned long inst;
|
|
unsigned int len = get_instruction(a+2, &inst);
|
|
if ((len == 6) && is_load_pcrelative_long(a) && is_call_pcrelative_long(inst)) {
|
|
const int range = 128;
|
|
Assembler::dump_code_range(tty, a, range, "instr(a) == z_lgrl && instr(a+2) == z_brasl");
|
|
VM_Version::z_SIGSEGV();
|
|
}
|
|
#endif
|
|
// expected code sequence:
|
|
// z_lgrl(t, relAddr32); len = 6
|
|
//TODO: verify accessed data is in CP, if possible.
|
|
return is_load_pcrelative_long(a); // TODO: might be too general. Currently, only lgrl is used.
|
|
}
|
|
|
|
bool MacroAssembler::is_load_const_from_toc_call(address a) {
|
|
return is_load_const_from_toc(a) && is_call_byregister(a + load_const_from_toc_size());
|
|
}
|
|
|
|
bool MacroAssembler::is_load_const_call(address a) {
|
|
return is_load_const(a) && is_call_byregister(a + load_const_size());
|
|
}
|
|
|
|
//-------------------------------------------------
|
|
// Emitters for some really CICS instructions
|
|
//-------------------------------------------------
|
|
|
|
void MacroAssembler::move_long_ext(Register dst, Register src, unsigned int pad) {
|
|
assert(dst->encoding()%2==0, "must be an even/odd register pair");
|
|
assert(src->encoding()%2==0, "must be an even/odd register pair");
|
|
assert(pad<256, "must be a padding BYTE");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_mvcle(dst, src, pad);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::compare_long_ext(Register left, Register right, unsigned int pad) {
|
|
assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
|
|
assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
|
|
assert(pad<256, "must be a padding BYTE");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_clcle(left, right, pad, Z_R0);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::compare_long_uni(Register left, Register right, unsigned int pad) {
|
|
assert(left->encoding() % 2 == 0, "must be an even/odd register pair");
|
|
assert(right->encoding() % 2 == 0, "must be an even/odd register pair");
|
|
assert(pad<=0xfff, "must be a padding HALFWORD");
|
|
assert(VM_Version::has_ETF2(), "instruction must be available");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_clclu(left, right, pad, Z_R0);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::search_string(Register end, Register start) {
|
|
assert(end->encoding() != 0, "end address must not be in R0");
|
|
assert(start->encoding() != 0, "start address must not be in R0");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_srst(end, start);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::search_string_uni(Register end, Register start) {
|
|
assert(end->encoding() != 0, "end address must not be in R0");
|
|
assert(start->encoding() != 0, "start address must not be in R0");
|
|
assert(VM_Version::has_ETF3(), "instruction must be available");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_srstu(end, start);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::kmac(Register srcBuff) {
|
|
assert(srcBuff->encoding() != 0, "src buffer address can't be in Z_R0");
|
|
assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_kmac(Z_R0, srcBuff);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::kimd(Register srcBuff) {
|
|
assert(srcBuff->encoding() != 0, "src buffer address can't be in Z_R0");
|
|
assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_kimd(Z_R0, srcBuff);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::klmd(Register srcBuff) {
|
|
assert(srcBuff->encoding() != 0, "src buffer address can't be in Z_R0");
|
|
assert(srcBuff->encoding() % 2 == 0, "src buffer/len must be an even/odd register pair");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_klmd(Z_R0, srcBuff);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::km(Register dstBuff, Register srcBuff) {
|
|
// DstBuff and srcBuff are allowed to be the same register (encryption in-place).
|
|
// DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
|
|
assert(srcBuff->encoding() != 0, "src buffer address can't be in Z_R0");
|
|
assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
|
|
assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_km(dstBuff, srcBuff);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::kmc(Register dstBuff, Register srcBuff) {
|
|
// DstBuff and srcBuff are allowed to be the same register (encryption in-place).
|
|
// DstBuff and srcBuff storage must not overlap destructively, and neither must overlap the parameter block.
|
|
assert(srcBuff->encoding() != 0, "src buffer address can't be in Z_R0");
|
|
assert(dstBuff->encoding() % 2 == 0, "dst buffer addr must be an even register");
|
|
assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_kmc(dstBuff, srcBuff);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::cksm(Register crcBuff, Register srcBuff) {
|
|
assert(srcBuff->encoding() % 2 == 0, "src buffer addr/len must be an even/odd register pair");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_cksm(crcBuff, srcBuff);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::translate_oo(Register r1, Register r2, uint m3) {
|
|
assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
|
|
assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_troo(r1, r2, m3);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::translate_ot(Register r1, Register r2, uint m3) {
|
|
assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
|
|
assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_trot(r1, r2, m3);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::translate_to(Register r1, Register r2, uint m3) {
|
|
assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
|
|
assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_trto(r1, r2, m3);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
void MacroAssembler::translate_tt(Register r1, Register r2, uint m3) {
|
|
assert(r1->encoding() % 2 == 0, "dst addr/src len must be an even/odd register pair");
|
|
assert((m3 & 0b1110) == 0, "Unused mask bits must be zero");
|
|
|
|
Label retry;
|
|
bind(retry);
|
|
Assembler::z_trtt(r1, r2, m3);
|
|
Assembler::z_brc(Assembler::bcondOverflow /* CC==3 (iterate) */, retry);
|
|
}
|
|
|
|
|
|
void MacroAssembler::generate_type_profiling(const Register Rdata,
|
|
const Register Rreceiver_klass,
|
|
const Register Rwanted_receiver_klass,
|
|
const Register Rmatching_row,
|
|
bool is_virtual_call) {
|
|
const int row_size = in_bytes(ReceiverTypeData::receiver_offset(1)) -
|
|
in_bytes(ReceiverTypeData::receiver_offset(0));
|
|
const int num_rows = ReceiverTypeData::row_limit();
|
|
NearLabel found_free_row;
|
|
NearLabel do_increment;
|
|
NearLabel found_no_slot;
|
|
|
|
BLOCK_COMMENT("type profiling {");
|
|
|
|
// search for:
|
|
// a) The type given in Rwanted_receiver_klass.
|
|
// b) The *first* empty row.
|
|
|
|
// First search for a) only, just running over b) with no regard.
|
|
// This is possible because
|
|
// wanted_receiver_class == receiver_class && wanted_receiver_class == 0
|
|
// is never true (receiver_class can't be zero).
|
|
for (int row_num = 0; row_num < num_rows; row_num++) {
|
|
// Row_offset should be a well-behaved positive number. The generated code relies
|
|
// on that wrt constant code size. Add2reg can handle all row_offset values, but
|
|
// will have to vary generated code size.
|
|
int row_offset = in_bytes(ReceiverTypeData::receiver_offset(row_num));
|
|
assert(Displacement::is_shortDisp(row_offset), "Limitation of generated code");
|
|
|
|
// Is Rwanted_receiver_klass in this row?
|
|
if (VM_Version::has_CompareBranch()) {
|
|
z_lg(Rwanted_receiver_klass, row_offset, Z_R0, Rdata);
|
|
// Rmatching_row = Rdata + row_offset;
|
|
add2reg(Rmatching_row, row_offset, Rdata);
|
|
// if (*row_recv == (intptr_t) receiver_klass) goto fill_existing_slot;
|
|
compare64_and_branch(Rwanted_receiver_klass, Rreceiver_klass, Assembler::bcondEqual, do_increment);
|
|
} else {
|
|
add2reg(Rmatching_row, row_offset, Rdata);
|
|
z_cg(Rreceiver_klass, row_offset, Z_R0, Rdata);
|
|
z_bre(do_increment);
|
|
}
|
|
}
|
|
|
|
// Now that we did not find a match, let's search for b).
|
|
|
|
// We could save the first calculation of Rmatching_row if we woud search for a) in reverse order.
|
|
// We would then end up here with Rmatching_row containing the value for row_num == 0.
|
|
// We would not see much benefit, if any at all, because the CPU can schedule
|
|
// two instructions together with a branch anyway.
|
|
for (int row_num = 0; row_num < num_rows; row_num++) {
|
|
int row_offset = in_bytes(ReceiverTypeData::receiver_offset(row_num));
|
|
|
|
// Has this row a zero receiver_klass, i.e. is it empty?
|
|
if (VM_Version::has_CompareBranch()) {
|
|
z_lg(Rwanted_receiver_klass, row_offset, Z_R0, Rdata);
|
|
// Rmatching_row = Rdata + row_offset
|
|
add2reg(Rmatching_row, row_offset, Rdata);
|
|
// if (*row_recv == (intptr_t) 0) goto found_free_row
|
|
compare64_and_branch(Rwanted_receiver_klass, (intptr_t)0, Assembler::bcondEqual, found_free_row);
|
|
} else {
|
|
add2reg(Rmatching_row, row_offset, Rdata);
|
|
load_and_test_long(Rwanted_receiver_klass, Address(Rdata, row_offset));
|
|
z_bre(found_free_row); // zero -> Found a free row.
|
|
}
|
|
}
|
|
|
|
// No match, no empty row found.
|
|
// Increment total counter to indicate polymorphic case.
|
|
if (is_virtual_call) {
|
|
add2mem_64(Address(Rdata, CounterData::count_offset()), 1, Rmatching_row);
|
|
}
|
|
z_bru(found_no_slot);
|
|
|
|
// Here we found an empty row, but we have not found Rwanted_receiver_klass.
|
|
// Rmatching_row holds the address to the first empty row.
|
|
bind(found_free_row);
|
|
// Store receiver_klass into empty slot.
|
|
z_stg(Rreceiver_klass, 0, Z_R0, Rmatching_row);
|
|
|
|
// Increment the counter of Rmatching_row.
|
|
bind(do_increment);
|
|
ByteSize counter_offset = ReceiverTypeData::receiver_count_offset(0) - ReceiverTypeData::receiver_offset(0);
|
|
add2mem_64(Address(Rmatching_row, counter_offset), 1, Rdata);
|
|
|
|
bind(found_no_slot);
|
|
|
|
BLOCK_COMMENT("} type profiling");
|
|
}
|
|
|
|
//---------------------------------------
|
|
// Helpers for Intrinsic Emitters
|
|
//---------------------------------------
|
|
|
|
/**
|
|
* uint32_t crc;
|
|
* timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
|
|
*/
|
|
void MacroAssembler::fold_byte_crc32(Register crc, Register val, Register table, Register tmp) {
|
|
assert_different_registers(crc, table, tmp);
|
|
assert_different_registers(val, table);
|
|
if (crc == val) { // Must rotate first to use the unmodified value.
|
|
rotate_then_insert(tmp, val, 56-2, 63-2, 2, true); // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
|
|
z_srl(crc, 8); // Unsigned shift, clear leftmost 8 bits.
|
|
} else {
|
|
z_srl(crc, 8); // Unsigned shift, clear leftmost 8 bits.
|
|
rotate_then_insert(tmp, val, 56-2, 63-2, 2, true); // Insert byte 7 of val, shifted left by 2, into byte 6..7 of tmp, clear the rest.
|
|
}
|
|
z_x(crc, Address(table, tmp, 0));
|
|
}
|
|
|
|
/**
|
|
* uint32_t crc;
|
|
* timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
|
|
*/
|
|
void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
|
|
fold_byte_crc32(crc, crc, table, tmp);
|
|
}
|
|
|
|
/**
|
|
* Emits code to update CRC-32 with a byte value according to constants in table.
|
|
*
|
|
* @param [in,out]crc Register containing the crc.
|
|
* @param [in]val Register containing the byte to fold into the CRC.
|
|
* @param [in]table Register containing the table of crc constants.
|
|
*
|
|
* uint32_t crc;
|
|
* val = crc_table[(val ^ crc) & 0xFF];
|
|
* crc = val ^ (crc >> 8);
|
|
*/
|
|
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
|
|
z_xr(val, crc);
|
|
fold_byte_crc32(crc, val, table, val);
|
|
}
|
|
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*/
|
|
void MacroAssembler::update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, Register data) {
|
|
assert_different_registers(crc, buf, len, table, data);
|
|
|
|
Label L_mainLoop, L_done;
|
|
const int mainLoop_stepping = 1;
|
|
|
|
// Process all bytes in a single-byte loop.
|
|
z_ltr(len, len);
|
|
z_brnh(L_done);
|
|
|
|
bind(L_mainLoop);
|
|
z_llgc(data, Address(buf, (intptr_t)0));// Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
|
|
add2reg(buf, mainLoop_stepping); // Advance buffer position.
|
|
update_byte_crc32(crc, data, table);
|
|
z_brct(len, L_mainLoop); // Iterate.
|
|
|
|
bind(L_done);
|
|
}
|
|
|
|
/**
|
|
* Emits code to update CRC-32 with a 4-byte value according to constants in table.
|
|
* Implementation according to jdk/src/share/native/java/util/zip/zlib-1.2.8/crc32.c.
|
|
*
|
|
*/
|
|
void MacroAssembler::update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
|
|
Register t0, Register t1, Register t2, Register t3) {
|
|
// This is what we implement (the DOBIG4 part):
|
|
//
|
|
// #define DOBIG4 c ^= *++buf4; \
|
|
// c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
|
|
// crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
|
|
// #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
|
|
// Pre-calculate (constant) column offsets, use columns 4..7 for big-endian.
|
|
const int ix0 = 4*(4*CRC32_COLUMN_SIZE);
|
|
const int ix1 = 5*(4*CRC32_COLUMN_SIZE);
|
|
const int ix2 = 6*(4*CRC32_COLUMN_SIZE);
|
|
const int ix3 = 7*(4*CRC32_COLUMN_SIZE);
|
|
|
|
// XOR crc with next four bytes of buffer.
|
|
lgr_if_needed(t0, crc);
|
|
z_x(t0, Address(buf, bufDisp));
|
|
if (bufInc != 0) {
|
|
add2reg(buf, bufInc);
|
|
}
|
|
|
|
// Chop crc into 4 single-byte pieces, shifted left 2 bits, to form the table indices.
|
|
rotate_then_insert(t3, t0, 56-2, 63-2, 2, true); // ((c >> 0) & 0xff) << 2
|
|
rotate_then_insert(t2, t0, 56-2, 63-2, 2-8, true); // ((c >> 8) & 0xff) << 2
|
|
rotate_then_insert(t1, t0, 56-2, 63-2, 2-16, true); // ((c >> 16) & 0xff) << 2
|
|
rotate_then_insert(t0, t0, 56-2, 63-2, 2-24, true); // ((c >> 24) & 0xff) << 2
|
|
|
|
// XOR indexed table values to calculate updated crc.
|
|
z_ly(t2, Address(table, t2, (intptr_t)ix1));
|
|
z_ly(t0, Address(table, t0, (intptr_t)ix3));
|
|
z_xy(t2, Address(table, t3, (intptr_t)ix0));
|
|
z_xy(t0, Address(table, t1, (intptr_t)ix2));
|
|
z_xr(t0, t2); // Now t0 contains the updated CRC value.
|
|
lgr_if_needed(crc, t0);
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*
|
|
* uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
|
|
*/
|
|
void MacroAssembler::kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
bool invertCRC) {
|
|
assert_different_registers(crc, buf, len, table);
|
|
|
|
Label L_mainLoop, L_tail;
|
|
Register data = t0;
|
|
Register ctr = Z_R0;
|
|
const int mainLoop_stepping = 8;
|
|
const int tailLoop_stepping = 1;
|
|
const int log_stepping = exact_log2(mainLoop_stepping);
|
|
|
|
// Don't test for len <= 0 here. This pathological case should not occur anyway.
|
|
// Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
|
|
// The situation itself is detected and handled correctly by the conditional branches
|
|
// following aghi(len, -stepping) and aghi(len, +stepping).
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
|
|
#if 0
|
|
{
|
|
// Pre-mainLoop alignment did not show any positive effect on performance.
|
|
// We leave the code in for reference. Maybe the vector instructions in z13 depend on alignment.
|
|
|
|
z_cghi(len, mainLoop_stepping); // Alignment is useless for short data streams.
|
|
z_brnh(L_tail);
|
|
|
|
// Align buf to word (4-byte) boundary.
|
|
z_lcr(ctr, buf);
|
|
rotate_then_insert(ctr, ctr, 62, 63, 0, true); // TODO: should set cc
|
|
z_sgfr(len, ctr); // Remaining len after alignment.
|
|
|
|
update_byteLoop_crc32(crc, buf, ctr, table, data);
|
|
}
|
|
#endif
|
|
|
|
// Check for short (<mainLoop_stepping bytes) buffer.
|
|
z_srag(ctr, len, log_stepping);
|
|
z_brnh(L_tail);
|
|
|
|
z_lrvr(crc, crc); // Revert byte order because we are dealing with big-endian data.
|
|
rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
|
|
|
|
BIND(L_mainLoop);
|
|
update_1word_crc32(crc, buf, table, 0, 0, crc, t1, t2, t3);
|
|
update_1word_crc32(crc, buf, table, 4, mainLoop_stepping, crc, t1, t2, t3);
|
|
z_brct(ctr, L_mainLoop); // Iterate.
|
|
|
|
z_lrvr(crc, crc); // Revert byte order back to original.
|
|
|
|
// Process last few (<8) bytes of buffer.
|
|
BIND(L_tail);
|
|
update_byteLoop_crc32(crc, buf, len, table, data);
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*
|
|
* uses Z_R10..Z_R13 as work register. Must be saved/restored by caller!
|
|
*/
|
|
void MacroAssembler::kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
bool invertCRC) {
|
|
assert_different_registers(crc, buf, len, table);
|
|
|
|
Label L_mainLoop, L_tail;
|
|
Register data = t0;
|
|
Register ctr = Z_R0;
|
|
const int mainLoop_stepping = 4;
|
|
const int log_stepping = exact_log2(mainLoop_stepping);
|
|
|
|
// Don't test for len <= 0 here. This pathological case should not occur anyway.
|
|
// Optimizing for it by adding a test and a branch seems to be a waste of CPU cycles.
|
|
// The situation itself is detected and handled correctly by the conditional branches
|
|
// following aghi(len, -stepping) and aghi(len, +stepping).
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
|
|
// Check for short (<4 bytes) buffer.
|
|
z_srag(ctr, len, log_stepping);
|
|
z_brnh(L_tail);
|
|
|
|
z_lrvr(crc, crc); // Revert byte order because we are dealing with big-endian data.
|
|
rotate_then_insert(len, len, 64-log_stepping, 63, 0, true); // #bytes for tailLoop
|
|
|
|
BIND(L_mainLoop);
|
|
update_1word_crc32(crc, buf, table, 0, mainLoop_stepping, crc, t1, t2, t3);
|
|
z_brct(ctr, L_mainLoop); // Iterate.
|
|
|
|
z_lrvr(crc, crc); // Revert byte order back to original.
|
|
|
|
// Process last few (<8) bytes of buffer.
|
|
BIND(L_tail);
|
|
update_byteLoop_crc32(crc, buf, len, table, data);
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param crc register containing existing CRC (32-bit)
|
|
* @param buf register pointing to input byte buffer (byte*)
|
|
* @param len register containing number of bytes
|
|
* @param table register pointing to CRC table
|
|
*/
|
|
void MacroAssembler::kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
|
|
Register t0, Register t1, Register t2, Register t3,
|
|
bool invertCRC) {
|
|
assert_different_registers(crc, buf, len, table);
|
|
Register data = t0;
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
|
|
update_byteLoop_crc32(crc, buf, len, table, data);
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp,
|
|
bool invertCRC) {
|
|
assert_different_registers(crc, buf, len, table, tmp);
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
|
|
z_llgc(tmp, Address(buf, (intptr_t)0)); // Current byte of input buffer (zero extended). Avoids garbage in upper half of register.
|
|
update_byte_crc32(crc, tmp, table);
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
}
|
|
|
|
void MacroAssembler::kernel_crc32_singleByteReg(Register crc, Register val, Register table,
|
|
bool invertCRC) {
|
|
assert_different_registers(crc, val, table);
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
|
|
update_byte_crc32(crc, val, table);
|
|
|
|
if (invertCRC) {
|
|
not_(crc, noreg, false); // 1s complement of crc
|
|
}
|
|
}
|
|
|
|
//
|
|
// Code for BigInteger::multiplyToLen() intrinsic.
|
|
//
|
|
|
|
// dest_lo += src1 + src2
|
|
// dest_hi += carry1 + carry2
|
|
// Z_R7 is destroyed !
|
|
void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo,
|
|
Register src1, Register src2) {
|
|
clear_reg(Z_R7);
|
|
z_algr(dest_lo, src1);
|
|
z_alcgr(dest_hi, Z_R7);
|
|
z_algr(dest_lo, src2);
|
|
z_alcgr(dest_hi, Z_R7);
|
|
}
|
|
|
|
// Multiply 64 bit by 64 bit first loop.
|
|
void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart,
|
|
Register x_xstart,
|
|
Register y, Register y_idx,
|
|
Register z,
|
|
Register carry,
|
|
Register product,
|
|
Register idx, Register kdx) {
|
|
// jlong carry, x[], y[], z[];
|
|
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
|
|
// huge_128 product = y[idx] * x[xstart] + carry;
|
|
// z[kdx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
// z[xstart] = carry;
|
|
|
|
Label L_first_loop, L_first_loop_exit;
|
|
Label L_one_x, L_one_y, L_multiply;
|
|
|
|
z_aghi(xstart, -1);
|
|
z_brl(L_one_x); // Special case: length of x is 1.
|
|
|
|
// Load next two integers of x.
|
|
z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
|
|
mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
|
|
|
|
|
|
bind(L_first_loop);
|
|
|
|
z_aghi(idx, -1);
|
|
z_brl(L_first_loop_exit);
|
|
z_aghi(idx, -1);
|
|
z_brl(L_one_y);
|
|
|
|
// Load next two integers of y.
|
|
z_sllg(Z_R1_scratch, idx, LogBytesPerInt);
|
|
mem2reg_opt(y_idx, Address(y, Z_R1_scratch, 0));
|
|
|
|
|
|
bind(L_multiply);
|
|
|
|
Register multiplicand = product->successor();
|
|
Register product_low = multiplicand;
|
|
|
|
lgr_if_needed(multiplicand, x_xstart);
|
|
z_mlgr(product, y_idx); // multiplicand * y_idx -> product::multiplicand
|
|
clear_reg(Z_R7);
|
|
z_algr(product_low, carry); // Add carry to result.
|
|
z_alcgr(product, Z_R7); // Add carry of the last addition.
|
|
add2reg(kdx, -2);
|
|
|
|
// Store result.
|
|
z_sllg(Z_R7, kdx, LogBytesPerInt);
|
|
reg2mem_opt(product_low, Address(z, Z_R7, 0));
|
|
lgr_if_needed(carry, product);
|
|
z_bru(L_first_loop);
|
|
|
|
|
|
bind(L_one_y); // Load one 32 bit portion of y as (0,value).
|
|
|
|
clear_reg(y_idx);
|
|
mem2reg_opt(y_idx, Address(y, (intptr_t) 0), false);
|
|
z_bru(L_multiply);
|
|
|
|
|
|
bind(L_one_x); // Load one 32 bit portion of x as (0,value).
|
|
|
|
clear_reg(x_xstart);
|
|
mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
|
|
z_bru(L_first_loop);
|
|
|
|
bind(L_first_loop_exit);
|
|
}
|
|
|
|
// Multiply 64 bit by 64 bit and add 128 bit.
|
|
void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y,
|
|
Register z,
|
|
Register yz_idx, Register idx,
|
|
Register carry, Register product,
|
|
int offset) {
|
|
// huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
|
|
// z[kdx] = (jlong)product;
|
|
|
|
Register multiplicand = product->successor();
|
|
Register product_low = multiplicand;
|
|
|
|
z_sllg(Z_R7, idx, LogBytesPerInt);
|
|
mem2reg_opt(yz_idx, Address(y, Z_R7, offset));
|
|
|
|
lgr_if_needed(multiplicand, x_xstart);
|
|
z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
|
|
mem2reg_opt(yz_idx, Address(z, Z_R7, offset));
|
|
|
|
add2_with_carry(product, product_low, carry, yz_idx);
|
|
|
|
z_sllg(Z_R7, idx, LogBytesPerInt);
|
|
reg2mem_opt(product_low, Address(z, Z_R7, offset));
|
|
|
|
}
|
|
|
|
// Multiply 128 bit by 128 bit. Unrolled inner loop.
|
|
void MacroAssembler::multiply_128_x_128_loop(Register x_xstart,
|
|
Register y, Register z,
|
|
Register yz_idx, Register idx,
|
|
Register jdx,
|
|
Register carry, Register product,
|
|
Register carry2) {
|
|
// jlong carry, x[], y[], z[];
|
|
// int kdx = ystart+1;
|
|
// for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
|
|
// huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
|
|
// z[kdx+idx+1] = (jlong)product;
|
|
// jlong carry2 = (jlong)(product >>> 64);
|
|
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
|
|
// z[kdx+idx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
// idx += 2;
|
|
// if (idx > 0) {
|
|
// product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
|
|
// z[kdx+idx] = (jlong)product;
|
|
// carry = (jlong)(product >>> 64);
|
|
// }
|
|
|
|
Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
|
|
|
|
// scale the index
|
|
lgr_if_needed(jdx, idx);
|
|
and_imm(jdx, 0xfffffffffffffffcL);
|
|
rshift(jdx, 2);
|
|
|
|
|
|
bind(L_third_loop);
|
|
|
|
z_aghi(jdx, -1);
|
|
z_brl(L_third_loop_exit);
|
|
add2reg(idx, -4);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
|
|
lgr_if_needed(carry2, product);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
|
|
lgr_if_needed(carry, product);
|
|
z_bru(L_third_loop);
|
|
|
|
|
|
bind(L_third_loop_exit); // Handle any left-over operand parts.
|
|
|
|
and_imm(idx, 0x3);
|
|
z_brz(L_post_third_loop_done);
|
|
|
|
Label L_check_1;
|
|
|
|
z_aghi(idx, -2);
|
|
z_brl(L_check_1);
|
|
|
|
multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
|
|
lgr_if_needed(carry, product);
|
|
|
|
|
|
bind(L_check_1);
|
|
|
|
add2reg(idx, 0x2);
|
|
and_imm(idx, 0x1);
|
|
z_aghi(idx, -1);
|
|
z_brl(L_post_third_loop_done);
|
|
|
|
Register multiplicand = product->successor();
|
|
Register product_low = multiplicand;
|
|
|
|
z_sllg(Z_R7, idx, LogBytesPerInt);
|
|
clear_reg(yz_idx);
|
|
mem2reg_opt(yz_idx, Address(y, Z_R7, 0), false);
|
|
lgr_if_needed(multiplicand, x_xstart);
|
|
z_mlgr(product, yz_idx); // multiplicand * yz_idx -> product::multiplicand
|
|
clear_reg(yz_idx);
|
|
mem2reg_opt(yz_idx, Address(z, Z_R7, 0), false);
|
|
|
|
add2_with_carry(product, product_low, yz_idx, carry);
|
|
|
|
z_sllg(Z_R7, idx, LogBytesPerInt);
|
|
reg2mem_opt(product_low, Address(z, Z_R7, 0), false);
|
|
rshift(product_low, 32);
|
|
|
|
lshift(product, 32);
|
|
z_ogr(product_low, product);
|
|
lgr_if_needed(carry, product_low);
|
|
|
|
bind(L_post_third_loop_done);
|
|
}
|
|
|
|
void MacroAssembler::multiply_to_len(Register x, Register xlen,
|
|
Register y, Register ylen,
|
|
Register z,
|
|
Register tmp1, Register tmp2,
|
|
Register tmp3, Register tmp4,
|
|
Register tmp5) {
|
|
ShortBranchVerifier sbv(this);
|
|
|
|
assert_different_registers(x, xlen, y, ylen, z,
|
|
tmp1, tmp2, tmp3, tmp4, tmp5, Z_R1_scratch, Z_R7);
|
|
assert_different_registers(x, xlen, y, ylen, z,
|
|
tmp1, tmp2, tmp3, tmp4, tmp5, Z_R8);
|
|
|
|
z_stmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
|
|
|
|
// In openJdk, we store the argument as 32-bit value to slot.
|
|
Address zlen(Z_SP, _z_abi(remaining_cargs)); // Int in long on big endian.
|
|
|
|
const Register idx = tmp1;
|
|
const Register kdx = tmp2;
|
|
const Register xstart = tmp3;
|
|
|
|
const Register y_idx = tmp4;
|
|
const Register carry = tmp5;
|
|
const Register product = Z_R0_scratch;
|
|
const Register x_xstart = Z_R8;
|
|
|
|
// First Loop.
|
|
//
|
|
// final static long LONG_MASK = 0xffffffffL;
|
|
// int xstart = xlen - 1;
|
|
// int ystart = ylen - 1;
|
|
// long carry = 0;
|
|
// for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
|
|
// long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
|
|
// z[kdx] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// z[xstart] = (int)carry;
|
|
//
|
|
|
|
lgr_if_needed(idx, ylen); // idx = ylen
|
|
z_llgf(kdx, zlen); // C2 does not respect int to long conversion for stub calls, thus load zero-extended.
|
|
clear_reg(carry); // carry = 0
|
|
|
|
Label L_done;
|
|
|
|
lgr_if_needed(xstart, xlen);
|
|
z_aghi(xstart, -1);
|
|
z_brl(L_done);
|
|
|
|
multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
|
|
|
|
NearLabel L_second_loop;
|
|
compare64_and_branch(kdx, RegisterOrConstant((intptr_t) 0), bcondEqual, L_second_loop);
|
|
|
|
NearLabel L_carry;
|
|
z_aghi(kdx, -1);
|
|
z_brz(L_carry);
|
|
|
|
// Store lower 32 bits of carry.
|
|
z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
|
|
reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
|
|
rshift(carry, 32);
|
|
z_aghi(kdx, -1);
|
|
|
|
|
|
bind(L_carry);
|
|
|
|
// Store upper 32 bits of carry.
|
|
z_sllg(Z_R1_scratch, kdx, LogBytesPerInt);
|
|
reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
|
|
|
|
// Second and third (nested) loops.
|
|
//
|
|
// for (int i = xstart-1; i >= 0; i--) { // Second loop
|
|
// carry = 0;
|
|
// for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
|
|
// long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
|
|
// (z[k] & LONG_MASK) + carry;
|
|
// z[k] = (int)product;
|
|
// carry = product >>> 32;
|
|
// }
|
|
// z[i] = (int)carry;
|
|
// }
|
|
//
|
|
// i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
|
|
|
|
const Register jdx = tmp1;
|
|
|
|
bind(L_second_loop);
|
|
|
|
clear_reg(carry); // carry = 0;
|
|
lgr_if_needed(jdx, ylen); // j = ystart+1
|
|
|
|
z_aghi(xstart, -1); // i = xstart-1;
|
|
z_brl(L_done);
|
|
|
|
// Use free slots in the current stackframe instead of push/pop.
|
|
Address zsave(Z_SP, _z_abi(carg_1));
|
|
reg2mem_opt(z, zsave);
|
|
|
|
|
|
Label L_last_x;
|
|
|
|
z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
|
|
load_address(z, Address(z, Z_R1_scratch, 4)); // z = z + k - j
|
|
z_aghi(xstart, -1); // i = xstart-1;
|
|
z_brl(L_last_x);
|
|
|
|
z_sllg(Z_R1_scratch, xstart, LogBytesPerInt);
|
|
mem2reg_opt(x_xstart, Address(x, Z_R1_scratch, 0));
|
|
|
|
|
|
Label L_third_loop_prologue;
|
|
|
|
bind(L_third_loop_prologue);
|
|
|
|
Address xsave(Z_SP, _z_abi(carg_2));
|
|
Address xlensave(Z_SP, _z_abi(carg_3));
|
|
Address ylensave(Z_SP, _z_abi(carg_4));
|
|
|
|
reg2mem_opt(x, xsave);
|
|
reg2mem_opt(xstart, xlensave);
|
|
reg2mem_opt(ylen, ylensave);
|
|
|
|
|
|
multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
|
|
|
|
mem2reg_opt(z, zsave);
|
|
mem2reg_opt(x, xsave);
|
|
mem2reg_opt(xlen, xlensave); // This is the decrement of the loop counter!
|
|
mem2reg_opt(ylen, ylensave);
|
|
|
|
add2reg(tmp3, 1, xlen);
|
|
z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
|
|
reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
|
|
z_aghi(tmp3, -1);
|
|
z_brl(L_done);
|
|
|
|
rshift(carry, 32);
|
|
z_sllg(Z_R1_scratch, tmp3, LogBytesPerInt);
|
|
reg2mem_opt(carry, Address(z, Z_R1_scratch, 0), false);
|
|
z_bru(L_second_loop);
|
|
|
|
// Next infrequent code is moved outside loops.
|
|
bind(L_last_x);
|
|
|
|
clear_reg(x_xstart);
|
|
mem2reg_opt(x_xstart, Address(x, (intptr_t) 0), false);
|
|
z_bru(L_third_loop_prologue);
|
|
|
|
bind(L_done);
|
|
|
|
z_lmg(Z_R7, Z_R13, _z_abi(gpr7), Z_SP);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false).
|
|
void MacroAssembler::asm_assert(bool check_equal, const char *msg, int id) {
|
|
Label ok;
|
|
if (check_equal) {
|
|
z_bre(ok);
|
|
} else {
|
|
z_brne(ok);
|
|
}
|
|
stop(msg, id);
|
|
bind(ok);
|
|
}
|
|
|
|
// Assert if CC indicates "low".
|
|
void MacroAssembler::asm_assert_low(const char *msg, int id) {
|
|
Label ok;
|
|
z_brnl(ok);
|
|
stop(msg, id);
|
|
bind(ok);
|
|
}
|
|
|
|
// Assert if CC indicates "high".
|
|
void MacroAssembler::asm_assert_high(const char *msg, int id) {
|
|
Label ok;
|
|
z_brnh(ok);
|
|
stop(msg, id);
|
|
bind(ok);
|
|
}
|
|
|
|
// Assert if CC indicates "not equal" (check_equal==true) or "equal" (check_equal==false)
|
|
// generate non-relocatable code.
|
|
void MacroAssembler::asm_assert_static(bool check_equal, const char *msg, int id) {
|
|
Label ok;
|
|
if (check_equal) { z_bre(ok); }
|
|
else { z_brne(ok); }
|
|
stop_static(msg, id);
|
|
bind(ok);
|
|
}
|
|
|
|
void MacroAssembler::asm_assert_mems_zero(bool check_equal, bool allow_relocation, int size, int64_t mem_offset,
|
|
Register mem_base, const char* msg, int id) {
|
|
switch (size) {
|
|
case 4:
|
|
load_and_test_int(Z_R0, Address(mem_base, mem_offset));
|
|
break;
|
|
case 8:
|
|
load_and_test_long(Z_R0, Address(mem_base, mem_offset));
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
if (allow_relocation) { asm_assert(check_equal, msg, id); }
|
|
else { asm_assert_static(check_equal, msg, id); }
|
|
}
|
|
|
|
// Check the condition
|
|
// expected_size == FP - SP
|
|
// after transformation:
|
|
// expected_size - FP + SP == 0
|
|
// Destroys Register expected_size if no tmp register is passed.
|
|
void MacroAssembler::asm_assert_frame_size(Register expected_size, Register tmp, const char* msg, int id) {
|
|
if (tmp == noreg) {
|
|
tmp = expected_size;
|
|
} else {
|
|
if (tmp != expected_size) {
|
|
z_lgr(tmp, expected_size);
|
|
}
|
|
z_algr(tmp, Z_SP);
|
|
z_slg(tmp, 0, Z_R0, Z_SP);
|
|
asm_assert_eq(msg, id);
|
|
}
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
void MacroAssembler::verify_thread() {
|
|
if (VerifyThread) {
|
|
unimplemented("", 117);
|
|
}
|
|
}
|
|
|
|
// Plausibility check for oops.
|
|
void MacroAssembler::verify_oop(Register oop, const char* msg) {
|
|
if (!VerifyOops) return;
|
|
|
|
BLOCK_COMMENT("verify_oop {");
|
|
Register tmp = Z_R0;
|
|
unsigned int nbytes_save = 5*BytesPerWord;
|
|
address entry = StubRoutines::verify_oop_subroutine_entry_address();
|
|
|
|
save_return_pc();
|
|
push_frame_abi160(nbytes_save);
|
|
z_stmg(Z_R1, Z_R5, frame::z_abi_160_size, Z_SP);
|
|
|
|
z_lgr(Z_ARG2, oop);
|
|
load_const(Z_ARG1, (address) msg);
|
|
load_const(Z_R1, entry);
|
|
z_lg(Z_R1, 0, Z_R1);
|
|
call_c(Z_R1);
|
|
|
|
z_lmg(Z_R1, Z_R5, frame::z_abi_160_size, Z_SP);
|
|
pop_frame();
|
|
restore_return_pc();
|
|
|
|
BLOCK_COMMENT("} verify_oop ");
|
|
}
|
|
|
|
const char* MacroAssembler::stop_types[] = {
|
|
"stop",
|
|
"untested",
|
|
"unimplemented",
|
|
"shouldnotreachhere"
|
|
};
|
|
|
|
static void stop_on_request(const char* tp, const char* msg) {
|
|
tty->print("Z assembly code requires stop: (%s) %s\n", tp, msg);
|
|
guarantee(false, "Z assembly code requires stop: %s", msg);
|
|
}
|
|
|
|
void MacroAssembler::stop(int type, const char* msg, int id) {
|
|
BLOCK_COMMENT(err_msg("stop: %s {", msg));
|
|
|
|
// Setup arguments.
|
|
load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
|
|
load_const(Z_ARG2, (void*) msg);
|
|
get_PC(Z_R14); // Following code pushes a frame without entering a new function. Use current pc as return address.
|
|
save_return_pc(); // Saves return pc Z_R14.
|
|
push_frame_abi160(0);
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
|
|
// The plain disassembler does not recognize illtrap. It instead displays
|
|
// a 32-bit value. Issueing two illtraps assures the disassembler finds
|
|
// the proper beginning of the next instruction.
|
|
z_illtrap(); // Illegal instruction.
|
|
z_illtrap(); // Illegal instruction.
|
|
|
|
BLOCK_COMMENT(" } stop");
|
|
}
|
|
|
|
// Special version of stop() for code size reduction.
|
|
// Reuses the previously generated call sequence, if any.
|
|
// Generates the call sequence on its own, if necessary.
|
|
// Note: This code will work only in non-relocatable code!
|
|
// The relative address of the data elements (arg1, arg2) must not change.
|
|
// The reentry point must not move relative to it's users. This prerequisite
|
|
// should be given for "hand-written" code, if all chain calls are in the same code blob.
|
|
// Generated code must not undergo any transformation, e.g. ShortenBranches, to be safe.
|
|
address MacroAssembler::stop_chain(address reentry, int type, const char* msg, int id, bool allow_relocation) {
|
|
BLOCK_COMMENT(err_msg("stop_chain(%s,%s): %s {", reentry==NULL?"init":"cont", allow_relocation?"reloc ":"static", msg));
|
|
|
|
// Setup arguments.
|
|
if (allow_relocation) {
|
|
// Relocatable version (for comparison purposes). Remove after some time.
|
|
load_const(Z_ARG1, (void*) stop_types[type%stop_end]);
|
|
load_const(Z_ARG2, (void*) msg);
|
|
} else {
|
|
load_absolute_address(Z_ARG1, (address)stop_types[type%stop_end]);
|
|
load_absolute_address(Z_ARG2, (address)msg);
|
|
}
|
|
if ((reentry != NULL) && RelAddr::is_in_range_of_RelAddr16(reentry, pc())) {
|
|
BLOCK_COMMENT("branch to reentry point:");
|
|
z_brc(bcondAlways, reentry);
|
|
} else {
|
|
BLOCK_COMMENT("reentry point:");
|
|
reentry = pc(); // Re-entry point for subsequent stop calls.
|
|
save_return_pc(); // Saves return pc Z_R14.
|
|
push_frame_abi160(0);
|
|
if (allow_relocation) {
|
|
reentry = NULL; // Prevent reentry if code relocation is allowed.
|
|
call_VM_leaf(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
|
|
} else {
|
|
call_VM_leaf_static(CAST_FROM_FN_PTR(address, stop_on_request), Z_ARG1, Z_ARG2);
|
|
}
|
|
z_illtrap(); // Illegal instruction as emergency stop, should the above call return.
|
|
}
|
|
BLOCK_COMMENT(" } stop_chain");
|
|
|
|
return reentry;
|
|
}
|
|
|
|
// Special version of stop() for code size reduction.
|
|
// Assumes constant relative addresses for data and runtime call.
|
|
void MacroAssembler::stop_static(int type, const char* msg, int id) {
|
|
stop_chain(NULL, type, msg, id, false);
|
|
}
|
|
|
|
void MacroAssembler::stop_subroutine() {
|
|
unimplemented("stop_subroutine", 710);
|
|
}
|
|
|
|
// Prints msg to stdout from within generated code..
|
|
void MacroAssembler::warn(const char* msg) {
|
|
RegisterSaver::save_live_registers(this, RegisterSaver::all_registers, Z_R14);
|
|
load_absolute_address(Z_R1, (address) warning);
|
|
load_absolute_address(Z_ARG1, (address) msg);
|
|
(void) call(Z_R1);
|
|
RegisterSaver::restore_live_registers(this, RegisterSaver::all_registers);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
// Write pattern 0x0101010101010101 in region [low-before, high+after].
|
|
void MacroAssembler::zap_from_to(Register low, Register high, Register val, Register addr, int before, int after) {
|
|
if (!ZapEmptyStackFields) return;
|
|
BLOCK_COMMENT("zap memory region {");
|
|
load_const_optimized(val, 0x0101010101010101);
|
|
int size = before + after;
|
|
if (low == high && size < 5 && size > 0) {
|
|
int offset = -before*BytesPerWord;
|
|
for (int i = 0; i < size; ++i) {
|
|
z_stg(val, Address(low, offset));
|
|
offset +=(1*BytesPerWord);
|
|
}
|
|
} else {
|
|
add2reg(addr, -before*BytesPerWord, low);
|
|
if (after) {
|
|
#ifdef ASSERT
|
|
jlong check = after * BytesPerWord;
|
|
assert(Immediate::is_simm32(check) && Immediate::is_simm32(-check), "value not encodable !");
|
|
#endif
|
|
add2reg(high, after * BytesPerWord);
|
|
}
|
|
NearLabel loop;
|
|
bind(loop);
|
|
z_stg(val, Address(addr));
|
|
add2reg(addr, 8);
|
|
compare64_and_branch(addr, high, bcondNotHigh, loop);
|
|
if (after) {
|
|
add2reg(high, -after * BytesPerWord);
|
|
}
|
|
}
|
|
BLOCK_COMMENT("} zap memory region");
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value, Register _rscratch) {
|
|
_masm = masm;
|
|
_masm->load_absolute_address(_rscratch, (address)flag_addr);
|
|
_masm->load_and_test_int(_rscratch, Address(_rscratch));
|
|
if (value) {
|
|
_masm->z_brne(_label); // Skip if true, i.e. != 0.
|
|
} else {
|
|
_masm->z_bre(_label); // Skip if false, i.e. == 0.
|
|
}
|
|
}
|
|
|
|
SkipIfEqual::~SkipIfEqual() {
|
|
_masm->bind(_label);
|
|
}
|