7af927f9c1
Adopt a more space-efficient internal representation for strings. Co-authored-by: Brent Christian <brent.christian@oracle.com> Co-authored-by: Vivek Deshpande <vivek.r.deshpande@intel.com> Co-authored-by: Charlie Hunt <charlie.hunt@oracle.com> Co-authored-by: Vladimir Kozlov <vladimir.kozlov@oracle.com> Co-authored-by: Roger Riggs <roger.riggs@oracle.com> Co-authored-by: Xueming Shen <xueming.shen@oracle.com> Co-authored-by: Aleksey Shipilev <aleksey.shipilev@oracle.com> Co-authored-by: Sandhya Viswanathan <sandhya.viswanathan@intel.com> Reviewed-by: alanb, bdelsart, coleenp, iklam, jiangli, jrose, kevinw, naoto, pliden, roland, smarks, twisti
3179 lines
105 KiB
C++
3179 lines
105 KiB
C++
/*
|
|
* Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2014, Red Hat Inc. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/assembler.hpp"
|
|
#include "c1/c1_CodeStubs.hpp"
|
|
#include "c1/c1_Compilation.hpp"
|
|
#include "c1/c1_LIRAssembler.hpp"
|
|
#include "c1/c1_MacroAssembler.hpp"
|
|
#include "c1/c1_Runtime1.hpp"
|
|
#include "c1/c1_ValueStack.hpp"
|
|
#include "ci/ciArrayKlass.hpp"
|
|
#include "ci/ciInstance.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/cardTableModRefBS.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "nativeInst_aarch64.hpp"
|
|
#include "oops/objArrayKlass.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "vmreg_aarch64.inline.hpp"
|
|
|
|
|
|
|
|
#ifndef PRODUCT
|
|
#define COMMENT(x) do { __ block_comment(x); } while (0)
|
|
#else
|
|
#define COMMENT(x)
|
|
#endif
|
|
|
|
NEEDS_CLEANUP // remove this definitions ?
|
|
const Register IC_Klass = rscratch2; // where the IC klass is cached
|
|
const Register SYNC_header = r0; // synchronization header
|
|
const Register SHIFT_count = r0; // where count for shift operations must be
|
|
|
|
#define __ _masm->
|
|
|
|
|
|
static void select_different_registers(Register preserve,
|
|
Register extra,
|
|
Register &tmp1,
|
|
Register &tmp2) {
|
|
if (tmp1 == preserve) {
|
|
assert_different_registers(tmp1, tmp2, extra);
|
|
tmp1 = extra;
|
|
} else if (tmp2 == preserve) {
|
|
assert_different_registers(tmp1, tmp2, extra);
|
|
tmp2 = extra;
|
|
}
|
|
assert_different_registers(preserve, tmp1, tmp2);
|
|
}
|
|
|
|
|
|
|
|
static void select_different_registers(Register preserve,
|
|
Register extra,
|
|
Register &tmp1,
|
|
Register &tmp2,
|
|
Register &tmp3) {
|
|
if (tmp1 == preserve) {
|
|
assert_different_registers(tmp1, tmp2, tmp3, extra);
|
|
tmp1 = extra;
|
|
} else if (tmp2 == preserve) {
|
|
assert_different_registers(tmp1, tmp2, tmp3, extra);
|
|
tmp2 = extra;
|
|
} else if (tmp3 == preserve) {
|
|
assert_different_registers(tmp1, tmp2, tmp3, extra);
|
|
tmp3 = extra;
|
|
}
|
|
assert_different_registers(preserve, tmp1, tmp2, tmp3);
|
|
}
|
|
|
|
|
|
bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
|
|
|
|
|
|
LIR_Opr LIR_Assembler::receiverOpr() {
|
|
return FrameMap::receiver_opr;
|
|
}
|
|
|
|
LIR_Opr LIR_Assembler::osrBufferPointer() {
|
|
return FrameMap::as_pointer_opr(receiverOpr()->as_register());
|
|
}
|
|
|
|
//--------------fpu register translations-----------------------
|
|
|
|
|
|
address LIR_Assembler::float_constant(float f) {
|
|
address const_addr = __ float_constant(f);
|
|
if (const_addr == NULL) {
|
|
bailout("const section overflow");
|
|
return __ code()->consts()->start();
|
|
} else {
|
|
return const_addr;
|
|
}
|
|
}
|
|
|
|
|
|
address LIR_Assembler::double_constant(double d) {
|
|
address const_addr = __ double_constant(d);
|
|
if (const_addr == NULL) {
|
|
bailout("const section overflow");
|
|
return __ code()->consts()->start();
|
|
} else {
|
|
return const_addr;
|
|
}
|
|
}
|
|
|
|
address LIR_Assembler::int_constant(jlong n) {
|
|
address const_addr = __ long_constant(n);
|
|
if (const_addr == NULL) {
|
|
bailout("const section overflow");
|
|
return __ code()->consts()->start();
|
|
} else {
|
|
return const_addr;
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::set_24bit_FPU() { Unimplemented(); }
|
|
|
|
void LIR_Assembler::reset_FPU() { Unimplemented(); }
|
|
|
|
void LIR_Assembler::fpop() { Unimplemented(); }
|
|
|
|
void LIR_Assembler::fxch(int i) { Unimplemented(); }
|
|
|
|
void LIR_Assembler::fld(int i) { Unimplemented(); }
|
|
|
|
void LIR_Assembler::ffree(int i) { Unimplemented(); }
|
|
|
|
void LIR_Assembler::breakpoint() { Unimplemented(); }
|
|
|
|
void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
|
|
|
|
void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
|
|
|
|
bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
|
|
//-------------------------------------------
|
|
|
|
static Register as_reg(LIR_Opr op) {
|
|
return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
|
|
}
|
|
|
|
static jlong as_long(LIR_Opr data) {
|
|
jlong result;
|
|
switch (data->type()) {
|
|
case T_INT:
|
|
result = (data->as_jint());
|
|
break;
|
|
case T_LONG:
|
|
result = (data->as_jlong());
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
|
|
Register base = addr->base()->as_pointer_register();
|
|
LIR_Opr opr = addr->index();
|
|
if (opr->is_cpu_register()) {
|
|
Register index;
|
|
if (opr->is_single_cpu())
|
|
index = opr->as_register();
|
|
else
|
|
index = opr->as_register_lo();
|
|
assert(addr->disp() == 0, "must be");
|
|
switch(opr->type()) {
|
|
case T_INT:
|
|
return Address(base, index, Address::sxtw(addr->scale()));
|
|
case T_LONG:
|
|
return Address(base, index, Address::lsl(addr->scale()));
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
} else {
|
|
intptr_t addr_offset = intptr_t(addr->disp());
|
|
if (Address::offset_ok_for_immed(addr_offset, addr->scale()))
|
|
return Address(base, addr_offset, Address::lsl(addr->scale()));
|
|
else {
|
|
__ mov(tmp, addr_offset);
|
|
return Address(base, tmp, Address::lsl(addr->scale()));
|
|
}
|
|
}
|
|
return Address();
|
|
}
|
|
|
|
Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
|
|
ShouldNotReachHere();
|
|
return Address();
|
|
}
|
|
|
|
Address LIR_Assembler::as_Address(LIR_Address* addr) {
|
|
return as_Address(addr, rscratch1);
|
|
}
|
|
|
|
Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
|
|
return as_Address(addr, rscratch1); // Ouch
|
|
// FIXME: This needs to be much more clever. See x86.
|
|
}
|
|
|
|
|
|
void LIR_Assembler::osr_entry() {
|
|
offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
|
|
BlockBegin* osr_entry = compilation()->hir()->osr_entry();
|
|
ValueStack* entry_state = osr_entry->state();
|
|
int number_of_locks = entry_state->locks_size();
|
|
|
|
// we jump here if osr happens with the interpreter
|
|
// state set up to continue at the beginning of the
|
|
// loop that triggered osr - in particular, we have
|
|
// the following registers setup:
|
|
//
|
|
// r2: osr buffer
|
|
//
|
|
|
|
// build frame
|
|
ciMethod* m = compilation()->method();
|
|
__ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
|
|
|
|
// OSR buffer is
|
|
//
|
|
// locals[nlocals-1..0]
|
|
// monitors[0..number_of_locks]
|
|
//
|
|
// locals is a direct copy of the interpreter frame so in the osr buffer
|
|
// so first slot in the local array is the last local from the interpreter
|
|
// and last slot is local[0] (receiver) from the interpreter
|
|
//
|
|
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
|
|
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
|
|
// in the interpreter frame (the method lock if a sync method)
|
|
|
|
// Initialize monitors in the compiled activation.
|
|
// r2: pointer to osr buffer
|
|
//
|
|
// All other registers are dead at this point and the locals will be
|
|
// copied into place by code emitted in the IR.
|
|
|
|
Register OSR_buf = osrBufferPointer()->as_pointer_register();
|
|
{ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
|
|
int monitor_offset = BytesPerWord * method()->max_locals() +
|
|
(2 * BytesPerWord) * (number_of_locks - 1);
|
|
// SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
|
|
// the OSR buffer using 2 word entries: first the lock and then
|
|
// the oop.
|
|
for (int i = 0; i < number_of_locks; i++) {
|
|
int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
|
|
#ifdef ASSERT
|
|
// verify the interpreter's monitor has a non-null object
|
|
{
|
|
Label L;
|
|
__ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
|
|
__ cbnz(rscratch1, L);
|
|
__ stop("locked object is NULL");
|
|
__ bind(L);
|
|
}
|
|
#endif
|
|
__ ldr(r19, Address(OSR_buf, slot_offset + 0));
|
|
__ str(r19, frame_map()->address_for_monitor_lock(i));
|
|
__ ldr(r19, Address(OSR_buf, slot_offset + 1*BytesPerWord));
|
|
__ str(r19, frame_map()->address_for_monitor_object(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// inline cache check; done before the frame is built.
|
|
int LIR_Assembler::check_icache() {
|
|
Register receiver = FrameMap::receiver_opr->as_register();
|
|
Register ic_klass = IC_Klass;
|
|
int start_offset = __ offset();
|
|
__ inline_cache_check(receiver, ic_klass);
|
|
|
|
// if icache check fails, then jump to runtime routine
|
|
// Note: RECEIVER must still contain the receiver!
|
|
Label dont;
|
|
__ br(Assembler::EQ, dont);
|
|
__ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
|
|
|
|
// We align the verified entry point unless the method body
|
|
// (including its inline cache check) will fit in a single 64-byte
|
|
// icache line.
|
|
if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) {
|
|
// force alignment after the cache check.
|
|
__ align(CodeEntryAlignment);
|
|
}
|
|
|
|
__ bind(dont);
|
|
return start_offset;
|
|
}
|
|
|
|
|
|
void LIR_Assembler::jobject2reg(jobject o, Register reg) {
|
|
if (o == NULL) {
|
|
__ mov(reg, zr);
|
|
} else {
|
|
__ movoop(reg, o, /*immediate*/true);
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
|
|
address target = NULL;
|
|
relocInfo::relocType reloc_type = relocInfo::none;
|
|
|
|
switch (patching_id(info)) {
|
|
case PatchingStub::access_field_id:
|
|
target = Runtime1::entry_for(Runtime1::access_field_patching_id);
|
|
reloc_type = relocInfo::section_word_type;
|
|
break;
|
|
case PatchingStub::load_klass_id:
|
|
target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
|
|
reloc_type = relocInfo::metadata_type;
|
|
break;
|
|
case PatchingStub::load_mirror_id:
|
|
target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
|
|
reloc_type = relocInfo::oop_type;
|
|
break;
|
|
case PatchingStub::load_appendix_id:
|
|
target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
|
|
reloc_type = relocInfo::oop_type;
|
|
break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
__ far_call(RuntimeAddress(target));
|
|
add_call_info_here(info);
|
|
}
|
|
|
|
void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
|
|
deoptimize_trap(info);
|
|
}
|
|
|
|
|
|
// This specifies the rsp decrement needed to build the frame
|
|
int LIR_Assembler::initial_frame_size_in_bytes() const {
|
|
// if rounding, must let FrameMap know!
|
|
|
|
// The frame_map records size in slots (32bit word)
|
|
|
|
// subtract two words to account for return address and link
|
|
return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
|
|
}
|
|
|
|
|
|
int LIR_Assembler::emit_exception_handler() {
|
|
// if the last instruction is a call (typically to do a throw which
|
|
// is coming at the end after block reordering) the return address
|
|
// must still point into the code area in order to avoid assertion
|
|
// failures when searching for the corresponding bci => add a nop
|
|
// (was bug 5/14/1999 - gri)
|
|
__ nop();
|
|
|
|
// generate code for exception handler
|
|
address handler_base = __ start_a_stub(exception_handler_size);
|
|
if (handler_base == NULL) {
|
|
// not enough space left for the handler
|
|
bailout("exception handler overflow");
|
|
return -1;
|
|
}
|
|
|
|
int offset = code_offset();
|
|
|
|
// the exception oop and pc are in r0, and r3
|
|
// no other registers need to be preserved, so invalidate them
|
|
__ invalidate_registers(false, true, true, false, true, true);
|
|
|
|
// check that there is really an exception
|
|
__ verify_not_null_oop(r0);
|
|
|
|
// search an exception handler (r0: exception oop, r3: throwing pc)
|
|
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id))); __ should_not_reach_here();
|
|
guarantee(code_offset() - offset <= exception_handler_size, "overflow");
|
|
__ end_a_stub();
|
|
|
|
return offset;
|
|
}
|
|
|
|
|
|
// Emit the code to remove the frame from the stack in the exception
|
|
// unwind path.
|
|
int LIR_Assembler::emit_unwind_handler() {
|
|
#ifndef PRODUCT
|
|
if (CommentedAssembly) {
|
|
_masm->block_comment("Unwind handler");
|
|
}
|
|
#endif
|
|
|
|
int offset = code_offset();
|
|
|
|
// Fetch the exception from TLS and clear out exception related thread state
|
|
__ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
|
|
__ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
|
|
__ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
|
|
|
|
__ bind(_unwind_handler_entry);
|
|
__ verify_not_null_oop(r0);
|
|
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
|
|
__ mov(r19, r0); // Preserve the exception
|
|
}
|
|
|
|
// Preform needed unlocking
|
|
MonitorExitStub* stub = NULL;
|
|
if (method()->is_synchronized()) {
|
|
monitor_address(0, FrameMap::r0_opr);
|
|
stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
|
|
__ unlock_object(r5, r4, r0, *stub->entry());
|
|
__ bind(*stub->continuation());
|
|
}
|
|
|
|
if (compilation()->env()->dtrace_method_probes()) {
|
|
__ call_Unimplemented();
|
|
#if 0
|
|
__ movptr(Address(rsp, 0), rax);
|
|
__ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
|
|
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
|
|
#endif
|
|
}
|
|
|
|
if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
|
|
__ mov(r0, r19); // Restore the exception
|
|
}
|
|
|
|
// remove the activation and dispatch to the unwind handler
|
|
__ block_comment("remove_frame and dispatch to the unwind handler");
|
|
__ remove_frame(initial_frame_size_in_bytes());
|
|
__ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
|
|
|
|
// Emit the slow path assembly
|
|
if (stub != NULL) {
|
|
stub->emit_code(this);
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
|
|
int LIR_Assembler::emit_deopt_handler() {
|
|
// if the last instruction is a call (typically to do a throw which
|
|
// is coming at the end after block reordering) the return address
|
|
// must still point into the code area in order to avoid assertion
|
|
// failures when searching for the corresponding bci => add a nop
|
|
// (was bug 5/14/1999 - gri)
|
|
__ nop();
|
|
|
|
// generate code for exception handler
|
|
address handler_base = __ start_a_stub(deopt_handler_size);
|
|
if (handler_base == NULL) {
|
|
// not enough space left for the handler
|
|
bailout("deopt handler overflow");
|
|
return -1;
|
|
}
|
|
|
|
int offset = code_offset();
|
|
|
|
__ adr(lr, pc());
|
|
__ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
|
|
guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
|
|
__ end_a_stub();
|
|
|
|
return offset;
|
|
}
|
|
|
|
void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
|
|
_masm->code_section()->relocate(adr, relocInfo::poll_type);
|
|
int pc_offset = code_offset();
|
|
flush_debug_info(pc_offset);
|
|
info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
|
|
if (info->exception_handlers() != NULL) {
|
|
compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
|
|
}
|
|
}
|
|
|
|
// Rather than take a segfault when the polling page is protected,
|
|
// explicitly check for a safepoint in progress and if there is one,
|
|
// fake a call to the handler as if a segfault had been caught.
|
|
void LIR_Assembler::poll_for_safepoint(relocInfo::relocType rtype, CodeEmitInfo* info) {
|
|
__ mov(rscratch1, SafepointSynchronize::address_of_state());
|
|
__ ldrb(rscratch1, Address(rscratch1));
|
|
Label nope, poll;
|
|
__ cbz(rscratch1, nope);
|
|
__ block_comment("safepoint");
|
|
__ enter();
|
|
__ push(0x3, sp); // r0 & r1
|
|
__ push(0x3ffffffc, sp); // integer registers except lr & sp & r0 & r1
|
|
__ adr(r0, poll);
|
|
__ str(r0, Address(rthread, JavaThread::saved_exception_pc_offset()));
|
|
__ mov(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::get_poll_stub));
|
|
__ blrt(rscratch1, 1, 0, 1);
|
|
__ maybe_isb();
|
|
__ pop(0x3ffffffc, sp); // integer registers except lr & sp & r0 & r1
|
|
__ mov(rscratch1, r0);
|
|
__ pop(0x3, sp); // r0 & r1
|
|
__ leave();
|
|
__ br(rscratch1);
|
|
address polling_page(os::get_polling_page());
|
|
assert(os::is_poll_address(polling_page), "should be");
|
|
unsigned long off;
|
|
__ adrp(rscratch1, Address(polling_page, rtype), off);
|
|
__ bind(poll);
|
|
if (info)
|
|
add_debug_info_for_branch(info); // This isn't just debug info:
|
|
// it's the oop map
|
|
else
|
|
__ code_section()->relocate(pc(), rtype);
|
|
__ ldrw(zr, Address(rscratch1, off));
|
|
__ bind(nope);
|
|
}
|
|
|
|
void LIR_Assembler::return_op(LIR_Opr result) {
|
|
assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
|
|
// Pop the stack before the safepoint code
|
|
__ remove_frame(initial_frame_size_in_bytes());
|
|
address polling_page(os::get_polling_page());
|
|
__ read_polling_page(rscratch1, polling_page, relocInfo::poll_return_type);
|
|
__ ret(lr);
|
|
}
|
|
|
|
int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
|
|
address polling_page(os::get_polling_page());
|
|
guarantee(info != NULL, "Shouldn't be NULL");
|
|
assert(os::is_poll_address(polling_page), "should be");
|
|
unsigned long off;
|
|
__ adrp(rscratch1, Address(polling_page, relocInfo::poll_type), off);
|
|
assert(off == 0, "must be");
|
|
add_debug_info_for_branch(info); // This isn't just debug info:
|
|
// it's the oop map
|
|
__ read_polling_page(rscratch1, relocInfo::poll_type);
|
|
return __ offset();
|
|
}
|
|
|
|
|
|
void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
|
|
if (from_reg == r31_sp)
|
|
from_reg = sp;
|
|
if (to_reg == r31_sp)
|
|
to_reg = sp;
|
|
__ mov(to_reg, from_reg);
|
|
}
|
|
|
|
void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
|
|
|
|
|
|
void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
|
|
assert(src->is_constant(), "should not call otherwise");
|
|
assert(dest->is_register(), "should not call otherwise");
|
|
LIR_Const* c = src->as_constant_ptr();
|
|
|
|
switch (c->type()) {
|
|
case T_INT: {
|
|
assert(patch_code == lir_patch_none, "no patching handled here");
|
|
__ movw(dest->as_register(), c->as_jint());
|
|
break;
|
|
}
|
|
|
|
case T_ADDRESS: {
|
|
assert(patch_code == lir_patch_none, "no patching handled here");
|
|
__ mov(dest->as_register(), c->as_jint());
|
|
break;
|
|
}
|
|
|
|
case T_LONG: {
|
|
assert(patch_code == lir_patch_none, "no patching handled here");
|
|
__ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
|
|
break;
|
|
}
|
|
|
|
case T_OBJECT: {
|
|
if (patch_code == lir_patch_none) {
|
|
jobject2reg(c->as_jobject(), dest->as_register());
|
|
} else {
|
|
jobject2reg_with_patching(dest->as_register(), info);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case T_METADATA: {
|
|
if (patch_code != lir_patch_none) {
|
|
klass2reg_with_patching(dest->as_register(), info);
|
|
} else {
|
|
__ mov_metadata(dest->as_register(), c->as_metadata());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case T_FLOAT: {
|
|
if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
|
|
__ fmovs(dest->as_float_reg(), (c->as_jfloat()));
|
|
} else {
|
|
__ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
|
|
__ ldrs(dest->as_float_reg(), Address(rscratch1));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case T_DOUBLE: {
|
|
if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
|
|
__ fmovd(dest->as_double_reg(), (c->as_jdouble()));
|
|
} else {
|
|
__ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
|
|
__ ldrd(dest->as_double_reg(), Address(rscratch1));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
|
|
LIR_Const* c = src->as_constant_ptr();
|
|
switch (c->type()) {
|
|
case T_OBJECT:
|
|
{
|
|
if (! c->as_jobject())
|
|
__ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
|
|
else {
|
|
const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
|
|
reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
|
|
}
|
|
}
|
|
break;
|
|
case T_ADDRESS:
|
|
{
|
|
const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
|
|
reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
|
|
}
|
|
case T_INT:
|
|
case T_FLOAT:
|
|
{
|
|
Register reg = zr;
|
|
if (c->as_jint_bits() == 0)
|
|
__ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
|
|
else {
|
|
__ movw(rscratch1, c->as_jint_bits());
|
|
__ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
|
|
}
|
|
}
|
|
break;
|
|
case T_LONG:
|
|
case T_DOUBLE:
|
|
{
|
|
Register reg = zr;
|
|
if (c->as_jlong_bits() == 0)
|
|
__ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
|
|
lo_word_offset_in_bytes));
|
|
else {
|
|
__ mov(rscratch1, (intptr_t)c->as_jlong_bits());
|
|
__ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
|
|
lo_word_offset_in_bytes));
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
|
|
assert(src->is_constant(), "should not call otherwise");
|
|
LIR_Const* c = src->as_constant_ptr();
|
|
LIR_Address* to_addr = dest->as_address_ptr();
|
|
|
|
void (Assembler::* insn)(Register Rt, const Address &adr);
|
|
|
|
switch (type) {
|
|
case T_ADDRESS:
|
|
assert(c->as_jint() == 0, "should be");
|
|
insn = &Assembler::str;
|
|
break;
|
|
case T_LONG:
|
|
assert(c->as_jlong() == 0, "should be");
|
|
insn = &Assembler::str;
|
|
break;
|
|
case T_INT:
|
|
assert(c->as_jint() == 0, "should be");
|
|
insn = &Assembler::strw;
|
|
break;
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
assert(c->as_jobject() == 0, "should be");
|
|
if (UseCompressedOops && !wide) {
|
|
insn = &Assembler::strw;
|
|
} else {
|
|
insn = &Assembler::str;
|
|
}
|
|
break;
|
|
case T_CHAR:
|
|
case T_SHORT:
|
|
assert(c->as_jint() == 0, "should be");
|
|
insn = &Assembler::strh;
|
|
break;
|
|
case T_BOOLEAN:
|
|
case T_BYTE:
|
|
assert(c->as_jint() == 0, "should be");
|
|
insn = &Assembler::strb;
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
if (info) add_debug_info_for_null_check_here(info);
|
|
(_masm->*insn)(zr, as_Address(to_addr, rscratch1));
|
|
}
|
|
|
|
void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
|
|
assert(src->is_register(), "should not call otherwise");
|
|
assert(dest->is_register(), "should not call otherwise");
|
|
|
|
// move between cpu-registers
|
|
if (dest->is_single_cpu()) {
|
|
if (src->type() == T_LONG) {
|
|
// Can do LONG -> OBJECT
|
|
move_regs(src->as_register_lo(), dest->as_register());
|
|
return;
|
|
}
|
|
assert(src->is_single_cpu(), "must match");
|
|
if (src->type() == T_OBJECT) {
|
|
__ verify_oop(src->as_register());
|
|
}
|
|
move_regs(src->as_register(), dest->as_register());
|
|
|
|
} else if (dest->is_double_cpu()) {
|
|
if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
|
|
// Surprising to me but we can see move of a long to t_object
|
|
__ verify_oop(src->as_register());
|
|
move_regs(src->as_register(), dest->as_register_lo());
|
|
return;
|
|
}
|
|
assert(src->is_double_cpu(), "must match");
|
|
Register f_lo = src->as_register_lo();
|
|
Register f_hi = src->as_register_hi();
|
|
Register t_lo = dest->as_register_lo();
|
|
Register t_hi = dest->as_register_hi();
|
|
assert(f_hi == f_lo, "must be same");
|
|
assert(t_hi == t_lo, "must be same");
|
|
move_regs(f_lo, t_lo);
|
|
|
|
} else if (dest->is_single_fpu()) {
|
|
__ fmovs(dest->as_float_reg(), src->as_float_reg());
|
|
|
|
} else if (dest->is_double_fpu()) {
|
|
__ fmovd(dest->as_double_reg(), src->as_double_reg());
|
|
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
|
|
if (src->is_single_cpu()) {
|
|
if (type == T_ARRAY || type == T_OBJECT) {
|
|
__ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
|
|
__ verify_oop(src->as_register());
|
|
} else if (type == T_METADATA || type == T_DOUBLE) {
|
|
__ str(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
|
|
} else {
|
|
__ strw(src->as_register(), frame_map()->address_for_slot(dest->single_stack_ix()));
|
|
}
|
|
|
|
} else if (src->is_double_cpu()) {
|
|
Address dest_addr_LO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
|
|
__ str(src->as_register_lo(), dest_addr_LO);
|
|
|
|
} else if (src->is_single_fpu()) {
|
|
Address dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
|
|
__ strs(src->as_float_reg(), dest_addr);
|
|
|
|
} else if (src->is_double_fpu()) {
|
|
Address dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
|
|
__ strd(src->as_double_reg(), dest_addr);
|
|
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
|
|
LIR_Address* to_addr = dest->as_address_ptr();
|
|
PatchingStub* patch = NULL;
|
|
Register compressed_src = rscratch1;
|
|
|
|
if (patch_code != lir_patch_none) {
|
|
deoptimize_trap(info);
|
|
return;
|
|
}
|
|
|
|
if (type == T_ARRAY || type == T_OBJECT) {
|
|
__ verify_oop(src->as_register());
|
|
|
|
if (UseCompressedOops && !wide) {
|
|
__ encode_heap_oop(compressed_src, src->as_register());
|
|
} else {
|
|
compressed_src = src->as_register();
|
|
}
|
|
}
|
|
|
|
int null_check_here = code_offset();
|
|
switch (type) {
|
|
case T_FLOAT: {
|
|
__ strs(src->as_float_reg(), as_Address(to_addr));
|
|
break;
|
|
}
|
|
|
|
case T_DOUBLE: {
|
|
__ strd(src->as_double_reg(), as_Address(to_addr));
|
|
break;
|
|
}
|
|
|
|
case T_ARRAY: // fall through
|
|
case T_OBJECT: // fall through
|
|
if (UseCompressedOops && !wide) {
|
|
__ strw(compressed_src, as_Address(to_addr, rscratch2));
|
|
} else {
|
|
__ str(compressed_src, as_Address(to_addr));
|
|
}
|
|
break;
|
|
case T_METADATA:
|
|
// We get here to store a method pointer to the stack to pass to
|
|
// a dtrace runtime call. This can't work on 64 bit with
|
|
// compressed klass ptrs: T_METADATA can be a compressed klass
|
|
// ptr or a 64 bit method pointer.
|
|
ShouldNotReachHere();
|
|
__ str(src->as_register(), as_Address(to_addr));
|
|
break;
|
|
case T_ADDRESS:
|
|
__ str(src->as_register(), as_Address(to_addr));
|
|
break;
|
|
case T_INT:
|
|
__ strw(src->as_register(), as_Address(to_addr));
|
|
break;
|
|
|
|
case T_LONG: {
|
|
__ str(src->as_register_lo(), as_Address_lo(to_addr));
|
|
break;
|
|
}
|
|
|
|
case T_BYTE: // fall through
|
|
case T_BOOLEAN: {
|
|
__ strb(src->as_register(), as_Address(to_addr));
|
|
break;
|
|
}
|
|
|
|
case T_CHAR: // fall through
|
|
case T_SHORT:
|
|
__ strh(src->as_register(), as_Address(to_addr));
|
|
break;
|
|
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
if (info != NULL) {
|
|
add_debug_info_for_null_check(null_check_here, info);
|
|
}
|
|
}
|
|
|
|
|
|
void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
|
|
assert(src->is_stack(), "should not call otherwise");
|
|
assert(dest->is_register(), "should not call otherwise");
|
|
|
|
if (dest->is_single_cpu()) {
|
|
if (type == T_ARRAY || type == T_OBJECT) {
|
|
__ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
|
|
__ verify_oop(dest->as_register());
|
|
} else if (type == T_METADATA) {
|
|
__ ldr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
|
|
} else {
|
|
__ ldrw(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
|
|
}
|
|
|
|
} else if (dest->is_double_cpu()) {
|
|
Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
|
|
__ ldr(dest->as_register_lo(), src_addr_LO);
|
|
|
|
} else if (dest->is_single_fpu()) {
|
|
Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
|
|
__ ldrs(dest->as_float_reg(), src_addr);
|
|
|
|
} else if (dest->is_double_fpu()) {
|
|
Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
|
|
__ ldrd(dest->as_double_reg(), src_addr);
|
|
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
|
|
void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
|
|
address target = NULL;
|
|
relocInfo::relocType reloc_type = relocInfo::none;
|
|
|
|
switch (patching_id(info)) {
|
|
case PatchingStub::access_field_id:
|
|
target = Runtime1::entry_for(Runtime1::access_field_patching_id);
|
|
reloc_type = relocInfo::section_word_type;
|
|
break;
|
|
case PatchingStub::load_klass_id:
|
|
target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
|
|
reloc_type = relocInfo::metadata_type;
|
|
break;
|
|
case PatchingStub::load_mirror_id:
|
|
target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
|
|
reloc_type = relocInfo::oop_type;
|
|
break;
|
|
case PatchingStub::load_appendix_id:
|
|
target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
|
|
reloc_type = relocInfo::oop_type;
|
|
break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
__ far_call(RuntimeAddress(target));
|
|
add_call_info_here(info);
|
|
}
|
|
|
|
void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
|
|
|
|
LIR_Opr temp;
|
|
if (type == T_LONG || type == T_DOUBLE)
|
|
temp = FrameMap::rscratch1_long_opr;
|
|
else
|
|
temp = FrameMap::rscratch1_opr;
|
|
|
|
stack2reg(src, temp, src->type());
|
|
reg2stack(temp, dest, dest->type(), false);
|
|
}
|
|
|
|
|
|
void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
|
|
LIR_Address* addr = src->as_address_ptr();
|
|
LIR_Address* from_addr = src->as_address_ptr();
|
|
|
|
if (addr->base()->type() == T_OBJECT) {
|
|
__ verify_oop(addr->base()->as_pointer_register());
|
|
}
|
|
|
|
if (patch_code != lir_patch_none) {
|
|
deoptimize_trap(info);
|
|
return;
|
|
}
|
|
|
|
if (info != NULL) {
|
|
add_debug_info_for_null_check_here(info);
|
|
}
|
|
int null_check_here = code_offset();
|
|
switch (type) {
|
|
case T_FLOAT: {
|
|
__ ldrs(dest->as_float_reg(), as_Address(from_addr));
|
|
break;
|
|
}
|
|
|
|
case T_DOUBLE: {
|
|
__ ldrd(dest->as_double_reg(), as_Address(from_addr));
|
|
break;
|
|
}
|
|
|
|
case T_ARRAY: // fall through
|
|
case T_OBJECT: // fall through
|
|
if (UseCompressedOops && !wide) {
|
|
__ ldrw(dest->as_register(), as_Address(from_addr));
|
|
} else {
|
|
__ ldr(dest->as_register(), as_Address(from_addr));
|
|
}
|
|
break;
|
|
case T_METADATA:
|
|
// We get here to store a method pointer to the stack to pass to
|
|
// a dtrace runtime call. This can't work on 64 bit with
|
|
// compressed klass ptrs: T_METADATA can be a compressed klass
|
|
// ptr or a 64 bit method pointer.
|
|
ShouldNotReachHere();
|
|
__ ldr(dest->as_register(), as_Address(from_addr));
|
|
break;
|
|
case T_ADDRESS:
|
|
// FIXME: OMG this is a horrible kludge. Any offset from an
|
|
// address that matches klass_offset_in_bytes() will be loaded
|
|
// as a word, not a long.
|
|
if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
|
|
__ ldrw(dest->as_register(), as_Address(from_addr));
|
|
} else {
|
|
__ ldr(dest->as_register(), as_Address(from_addr));
|
|
}
|
|
break;
|
|
case T_INT:
|
|
__ ldrw(dest->as_register(), as_Address(from_addr));
|
|
break;
|
|
|
|
case T_LONG: {
|
|
__ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
|
|
break;
|
|
}
|
|
|
|
case T_BYTE:
|
|
__ ldrsb(dest->as_register(), as_Address(from_addr));
|
|
break;
|
|
case T_BOOLEAN: {
|
|
__ ldrb(dest->as_register(), as_Address(from_addr));
|
|
break;
|
|
}
|
|
|
|
case T_CHAR:
|
|
__ ldrh(dest->as_register(), as_Address(from_addr));
|
|
break;
|
|
case T_SHORT:
|
|
__ ldrsh(dest->as_register(), as_Address(from_addr));
|
|
break;
|
|
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
if (type == T_ARRAY || type == T_OBJECT) {
|
|
if (UseCompressedOops && !wide) {
|
|
__ decode_heap_oop(dest->as_register());
|
|
}
|
|
__ verify_oop(dest->as_register());
|
|
} else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
|
|
if (UseCompressedClassPointers) {
|
|
__ decode_klass_not_null(dest->as_register());
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
int LIR_Assembler::array_element_size(BasicType type) const {
|
|
int elem_size = type2aelembytes(type);
|
|
return exact_log2(elem_size);
|
|
}
|
|
|
|
void LIR_Assembler::emit_op3(LIR_Op3* op) {
|
|
Register Rdividend = op->in_opr1()->as_register();
|
|
Register Rdivisor = op->in_opr2()->as_register();
|
|
Register Rscratch = op->in_opr3()->as_register();
|
|
Register Rresult = op->result_opr()->as_register();
|
|
int divisor = -1;
|
|
|
|
/*
|
|
TODO: For some reason, using the Rscratch that gets passed in is
|
|
not possible because the register allocator does not see the tmp reg
|
|
as used, and assignes it the same register as Rdividend. We use rscratch1
|
|
instead.
|
|
|
|
assert(Rdividend != Rscratch, "");
|
|
assert(Rdivisor != Rscratch, "");
|
|
*/
|
|
|
|
if (Rdivisor == noreg && is_power_of_2(divisor)) {
|
|
// convert division by a power of two into some shifts and logical operations
|
|
}
|
|
|
|
if (op->code() == lir_irem) {
|
|
__ corrected_idivl(Rresult, Rdividend, Rdivisor, true, rscratch1);
|
|
} else if (op->code() == lir_idiv) {
|
|
__ corrected_idivl(Rresult, Rdividend, Rdivisor, false, rscratch1);
|
|
} else
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
|
|
#ifdef ASSERT
|
|
assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
|
|
if (op->block() != NULL) _branch_target_blocks.append(op->block());
|
|
if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
|
|
#endif
|
|
|
|
if (op->cond() == lir_cond_always) {
|
|
if (op->info() != NULL) add_debug_info_for_branch(op->info());
|
|
__ b(*(op->label()));
|
|
} else {
|
|
Assembler::Condition acond;
|
|
if (op->code() == lir_cond_float_branch) {
|
|
bool is_unordered = (op->ublock() == op->block());
|
|
// Assembler::EQ does not permit unordered branches, so we add
|
|
// another branch here. Likewise, Assembler::NE does not permit
|
|
// ordered branches.
|
|
if (is_unordered && op->cond() == lir_cond_equal
|
|
|| !is_unordered && op->cond() == lir_cond_notEqual)
|
|
__ br(Assembler::VS, *(op->ublock()->label()));
|
|
switch(op->cond()) {
|
|
case lir_cond_equal: acond = Assembler::EQ; break;
|
|
case lir_cond_notEqual: acond = Assembler::NE; break;
|
|
case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
|
|
case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
|
|
case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
|
|
case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
} else {
|
|
switch (op->cond()) {
|
|
case lir_cond_equal: acond = Assembler::EQ; break;
|
|
case lir_cond_notEqual: acond = Assembler::NE; break;
|
|
case lir_cond_less: acond = Assembler::LT; break;
|
|
case lir_cond_lessEqual: acond = Assembler::LE; break;
|
|
case lir_cond_greaterEqual: acond = Assembler::GE; break;
|
|
case lir_cond_greater: acond = Assembler::GT; break;
|
|
case lir_cond_belowEqual: acond = Assembler::LS; break;
|
|
case lir_cond_aboveEqual: acond = Assembler::HS; break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
__ br(acond,*(op->label()));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
|
|
LIR_Opr src = op->in_opr();
|
|
LIR_Opr dest = op->result_opr();
|
|
|
|
switch (op->bytecode()) {
|
|
case Bytecodes::_i2f:
|
|
{
|
|
__ scvtfws(dest->as_float_reg(), src->as_register());
|
|
break;
|
|
}
|
|
case Bytecodes::_i2d:
|
|
{
|
|
__ scvtfwd(dest->as_double_reg(), src->as_register());
|
|
break;
|
|
}
|
|
case Bytecodes::_l2d:
|
|
{
|
|
__ scvtfd(dest->as_double_reg(), src->as_register_lo());
|
|
break;
|
|
}
|
|
case Bytecodes::_l2f:
|
|
{
|
|
__ scvtfs(dest->as_float_reg(), src->as_register_lo());
|
|
break;
|
|
}
|
|
case Bytecodes::_f2d:
|
|
{
|
|
__ fcvts(dest->as_double_reg(), src->as_float_reg());
|
|
break;
|
|
}
|
|
case Bytecodes::_d2f:
|
|
{
|
|
__ fcvtd(dest->as_float_reg(), src->as_double_reg());
|
|
break;
|
|
}
|
|
case Bytecodes::_i2c:
|
|
{
|
|
__ ubfx(dest->as_register(), src->as_register(), 0, 16);
|
|
break;
|
|
}
|
|
case Bytecodes::_i2l:
|
|
{
|
|
__ sxtw(dest->as_register_lo(), src->as_register());
|
|
break;
|
|
}
|
|
case Bytecodes::_i2s:
|
|
{
|
|
__ sxth(dest->as_register(), src->as_register());
|
|
break;
|
|
}
|
|
case Bytecodes::_i2b:
|
|
{
|
|
__ sxtb(dest->as_register(), src->as_register());
|
|
break;
|
|
}
|
|
case Bytecodes::_l2i:
|
|
{
|
|
_masm->block_comment("FIXME: This could be a no-op");
|
|
__ uxtw(dest->as_register(), src->as_register_lo());
|
|
break;
|
|
}
|
|
case Bytecodes::_d2l:
|
|
{
|
|
__ fcvtzd(dest->as_register_lo(), src->as_double_reg());
|
|
break;
|
|
}
|
|
case Bytecodes::_f2i:
|
|
{
|
|
__ fcvtzsw(dest->as_register(), src->as_float_reg());
|
|
break;
|
|
}
|
|
case Bytecodes::_f2l:
|
|
{
|
|
__ fcvtzs(dest->as_register_lo(), src->as_float_reg());
|
|
break;
|
|
}
|
|
case Bytecodes::_d2i:
|
|
{
|
|
__ fcvtzdw(dest->as_register(), src->as_double_reg());
|
|
break;
|
|
}
|
|
default: ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
|
|
if (op->init_check()) {
|
|
__ ldrb(rscratch1, Address(op->klass()->as_register(),
|
|
InstanceKlass::init_state_offset()));
|
|
__ cmpw(rscratch1, InstanceKlass::fully_initialized);
|
|
add_debug_info_for_null_check_here(op->stub()->info());
|
|
__ br(Assembler::NE, *op->stub()->entry());
|
|
}
|
|
__ allocate_object(op->obj()->as_register(),
|
|
op->tmp1()->as_register(),
|
|
op->tmp2()->as_register(),
|
|
op->header_size(),
|
|
op->object_size(),
|
|
op->klass()->as_register(),
|
|
*op->stub()->entry());
|
|
__ bind(*op->stub()->continuation());
|
|
}
|
|
|
|
void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
|
|
Register len = op->len()->as_register();
|
|
__ uxtw(len, len);
|
|
|
|
if (UseSlowPath ||
|
|
(!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
|
|
(!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
|
|
__ b(*op->stub()->entry());
|
|
} else {
|
|
Register tmp1 = op->tmp1()->as_register();
|
|
Register tmp2 = op->tmp2()->as_register();
|
|
Register tmp3 = op->tmp3()->as_register();
|
|
if (len == tmp1) {
|
|
tmp1 = tmp3;
|
|
} else if (len == tmp2) {
|
|
tmp2 = tmp3;
|
|
} else if (len == tmp3) {
|
|
// everything is ok
|
|
} else {
|
|
__ mov(tmp3, len);
|
|
}
|
|
__ allocate_array(op->obj()->as_register(),
|
|
len,
|
|
tmp1,
|
|
tmp2,
|
|
arrayOopDesc::header_size(op->type()),
|
|
array_element_size(op->type()),
|
|
op->klass()->as_register(),
|
|
*op->stub()->entry());
|
|
}
|
|
__ bind(*op->stub()->continuation());
|
|
}
|
|
|
|
void LIR_Assembler::type_profile_helper(Register mdo,
|
|
ciMethodData *md, ciProfileData *data,
|
|
Register recv, Label* update_done) {
|
|
for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
|
|
Label next_test;
|
|
// See if the receiver is receiver[n].
|
|
__ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
|
|
__ ldr(rscratch1, Address(rscratch2));
|
|
__ cmp(recv, rscratch1);
|
|
__ br(Assembler::NE, next_test);
|
|
Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
|
|
__ addptr(data_addr, DataLayout::counter_increment);
|
|
__ b(*update_done);
|
|
__ bind(next_test);
|
|
}
|
|
|
|
// Didn't find receiver; find next empty slot and fill it in
|
|
for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
|
|
Label next_test;
|
|
__ lea(rscratch2,
|
|
Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
|
|
Address recv_addr(rscratch2);
|
|
__ ldr(rscratch1, recv_addr);
|
|
__ cbnz(rscratch1, next_test);
|
|
__ str(recv, recv_addr);
|
|
__ mov(rscratch1, DataLayout::counter_increment);
|
|
__ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
|
|
__ str(rscratch1, Address(rscratch2));
|
|
__ b(*update_done);
|
|
__ bind(next_test);
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
|
|
// we always need a stub for the failure case.
|
|
CodeStub* stub = op->stub();
|
|
Register obj = op->object()->as_register();
|
|
Register k_RInfo = op->tmp1()->as_register();
|
|
Register klass_RInfo = op->tmp2()->as_register();
|
|
Register dst = op->result_opr()->as_register();
|
|
ciKlass* k = op->klass();
|
|
Register Rtmp1 = noreg;
|
|
|
|
// check if it needs to be profiled
|
|
ciMethodData* md;
|
|
ciProfileData* data;
|
|
|
|
if (op->should_profile()) {
|
|
ciMethod* method = op->profiled_method();
|
|
assert(method != NULL, "Should have method");
|
|
int bci = op->profiled_bci();
|
|
md = method->method_data_or_null();
|
|
assert(md != NULL, "Sanity");
|
|
data = md->bci_to_data(bci);
|
|
assert(data != NULL, "need data for type check");
|
|
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
|
|
}
|
|
Label profile_cast_success, profile_cast_failure;
|
|
Label *success_target = op->should_profile() ? &profile_cast_success : success;
|
|
Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
|
|
|
|
if (obj == k_RInfo) {
|
|
k_RInfo = dst;
|
|
} else if (obj == klass_RInfo) {
|
|
klass_RInfo = dst;
|
|
}
|
|
if (k->is_loaded() && !UseCompressedClassPointers) {
|
|
select_different_registers(obj, dst, k_RInfo, klass_RInfo);
|
|
} else {
|
|
Rtmp1 = op->tmp3()->as_register();
|
|
select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
|
|
}
|
|
|
|
assert_different_registers(obj, k_RInfo, klass_RInfo);
|
|
|
|
if (op->should_profile()) {
|
|
Label not_null;
|
|
__ cbnz(obj, not_null);
|
|
// Object is null; update MDO and exit
|
|
Register mdo = klass_RInfo;
|
|
__ mov_metadata(mdo, md->constant_encoding());
|
|
Address data_addr
|
|
= __ form_address(rscratch2, mdo,
|
|
md->byte_offset_of_slot(data, DataLayout::DataLayout::header_offset()),
|
|
LogBytesPerWord);
|
|
int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
|
|
__ ldr(rscratch1, data_addr);
|
|
__ orr(rscratch1, rscratch1, header_bits);
|
|
__ str(rscratch1, data_addr);
|
|
__ b(*obj_is_null);
|
|
__ bind(not_null);
|
|
} else {
|
|
__ cbz(obj, *obj_is_null);
|
|
}
|
|
|
|
if (!k->is_loaded()) {
|
|
klass2reg_with_patching(k_RInfo, op->info_for_patch());
|
|
} else {
|
|
__ mov_metadata(k_RInfo, k->constant_encoding());
|
|
}
|
|
__ verify_oop(obj);
|
|
|
|
if (op->fast_check()) {
|
|
// get object class
|
|
// not a safepoint as obj null check happens earlier
|
|
__ load_klass(rscratch1, obj);
|
|
__ cmp( rscratch1, k_RInfo);
|
|
|
|
__ br(Assembler::NE, *failure_target);
|
|
// successful cast, fall through to profile or jump
|
|
} else {
|
|
// get object class
|
|
// not a safepoint as obj null check happens earlier
|
|
__ load_klass(klass_RInfo, obj);
|
|
if (k->is_loaded()) {
|
|
// See if we get an immediate positive hit
|
|
__ ldr(rscratch1, Address(klass_RInfo, long(k->super_check_offset())));
|
|
__ cmp(k_RInfo, rscratch1);
|
|
if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
|
|
__ br(Assembler::NE, *failure_target);
|
|
// successful cast, fall through to profile or jump
|
|
} else {
|
|
// See if we get an immediate positive hit
|
|
__ br(Assembler::EQ, *success_target);
|
|
// check for self
|
|
__ cmp(klass_RInfo, k_RInfo);
|
|
__ br(Assembler::EQ, *success_target);
|
|
|
|
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
|
|
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
|
|
__ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
|
|
// result is a boolean
|
|
__ cbzw(klass_RInfo, *failure_target);
|
|
// successful cast, fall through to profile or jump
|
|
}
|
|
} else {
|
|
// perform the fast part of the checking logic
|
|
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
|
|
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
|
|
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
|
|
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
|
|
__ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
|
|
// result is a boolean
|
|
__ cbz(k_RInfo, *failure_target);
|
|
// successful cast, fall through to profile or jump
|
|
}
|
|
}
|
|
if (op->should_profile()) {
|
|
Register mdo = klass_RInfo, recv = k_RInfo;
|
|
__ bind(profile_cast_success);
|
|
__ mov_metadata(mdo, md->constant_encoding());
|
|
__ load_klass(recv, obj);
|
|
Label update_done;
|
|
type_profile_helper(mdo, md, data, recv, success);
|
|
__ b(*success);
|
|
|
|
__ bind(profile_cast_failure);
|
|
__ mov_metadata(mdo, md->constant_encoding());
|
|
Address counter_addr
|
|
= __ form_address(rscratch2, mdo,
|
|
md->byte_offset_of_slot(data, CounterData::count_offset()),
|
|
LogBytesPerWord);
|
|
__ ldr(rscratch1, counter_addr);
|
|
__ sub(rscratch1, rscratch1, DataLayout::counter_increment);
|
|
__ str(rscratch1, counter_addr);
|
|
__ b(*failure);
|
|
}
|
|
__ b(*success);
|
|
}
|
|
|
|
|
|
void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
|
|
LIR_Code code = op->code();
|
|
if (code == lir_store_check) {
|
|
Register value = op->object()->as_register();
|
|
Register array = op->array()->as_register();
|
|
Register k_RInfo = op->tmp1()->as_register();
|
|
Register klass_RInfo = op->tmp2()->as_register();
|
|
Register Rtmp1 = op->tmp3()->as_register();
|
|
|
|
CodeStub* stub = op->stub();
|
|
|
|
// check if it needs to be profiled
|
|
ciMethodData* md;
|
|
ciProfileData* data;
|
|
|
|
if (op->should_profile()) {
|
|
ciMethod* method = op->profiled_method();
|
|
assert(method != NULL, "Should have method");
|
|
int bci = op->profiled_bci();
|
|
md = method->method_data_or_null();
|
|
assert(md != NULL, "Sanity");
|
|
data = md->bci_to_data(bci);
|
|
assert(data != NULL, "need data for type check");
|
|
assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
|
|
}
|
|
Label profile_cast_success, profile_cast_failure, done;
|
|
Label *success_target = op->should_profile() ? &profile_cast_success : &done;
|
|
Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
|
|
|
|
if (op->should_profile()) {
|
|
Label not_null;
|
|
__ cbnz(value, not_null);
|
|
// Object is null; update MDO and exit
|
|
Register mdo = klass_RInfo;
|
|
__ mov_metadata(mdo, md->constant_encoding());
|
|
Address data_addr
|
|
= __ form_address(rscratch2, mdo,
|
|
md->byte_offset_of_slot(data, DataLayout::header_offset()),
|
|
LogBytesPerInt);
|
|
int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
|
|
__ ldrw(rscratch1, data_addr);
|
|
__ orrw(rscratch1, rscratch1, header_bits);
|
|
__ strw(rscratch1, data_addr);
|
|
__ b(done);
|
|
__ bind(not_null);
|
|
} else {
|
|
__ cbz(value, done);
|
|
}
|
|
|
|
add_debug_info_for_null_check_here(op->info_for_exception());
|
|
__ load_klass(k_RInfo, array);
|
|
__ load_klass(klass_RInfo, value);
|
|
|
|
// get instance klass (it's already uncompressed)
|
|
__ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
|
|
// perform the fast part of the checking logic
|
|
__ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
|
|
// call out-of-line instance of __ check_klass_subtype_slow_path(...):
|
|
__ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
|
|
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
|
|
__ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
|
|
// result is a boolean
|
|
__ cbzw(k_RInfo, *failure_target);
|
|
// fall through to the success case
|
|
|
|
if (op->should_profile()) {
|
|
Register mdo = klass_RInfo, recv = k_RInfo;
|
|
__ bind(profile_cast_success);
|
|
__ mov_metadata(mdo, md->constant_encoding());
|
|
__ load_klass(recv, value);
|
|
Label update_done;
|
|
type_profile_helper(mdo, md, data, recv, &done);
|
|
__ b(done);
|
|
|
|
__ bind(profile_cast_failure);
|
|
__ mov_metadata(mdo, md->constant_encoding());
|
|
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
|
|
__ lea(rscratch2, counter_addr);
|
|
__ ldr(rscratch1, Address(rscratch2));
|
|
__ sub(rscratch1, rscratch1, DataLayout::counter_increment);
|
|
__ str(rscratch1, Address(rscratch2));
|
|
__ b(*stub->entry());
|
|
}
|
|
|
|
__ bind(done);
|
|
} else if (code == lir_checkcast) {
|
|
Register obj = op->object()->as_register();
|
|
Register dst = op->result_opr()->as_register();
|
|
Label success;
|
|
emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
|
|
__ bind(success);
|
|
if (dst != obj) {
|
|
__ mov(dst, obj);
|
|
}
|
|
} else if (code == lir_instanceof) {
|
|
Register obj = op->object()->as_register();
|
|
Register dst = op->result_opr()->as_register();
|
|
Label success, failure, done;
|
|
emit_typecheck_helper(op, &success, &failure, &failure);
|
|
__ bind(failure);
|
|
__ mov(dst, zr);
|
|
__ b(done);
|
|
__ bind(success);
|
|
__ mov(dst, 1);
|
|
__ bind(done);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
|
|
Label retry_load, nope;
|
|
// flush and load exclusive from the memory location
|
|
// and fail if it is not what we expect
|
|
__ bind(retry_load);
|
|
__ ldaxrw(rscratch1, addr);
|
|
__ cmpw(rscratch1, cmpval);
|
|
__ cset(rscratch1, Assembler::NE);
|
|
__ br(Assembler::NE, nope);
|
|
// if we store+flush with no intervening write rscratch1 wil be zero
|
|
__ stlxrw(rscratch1, newval, addr);
|
|
// retry so we only ever return after a load fails to compare
|
|
// ensures we don't return a stale value after a failed write.
|
|
__ cbnzw(rscratch1, retry_load);
|
|
__ bind(nope);
|
|
__ membar(__ AnyAny);
|
|
}
|
|
|
|
void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
|
|
Label retry_load, nope;
|
|
// flush and load exclusive from the memory location
|
|
// and fail if it is not what we expect
|
|
__ bind(retry_load);
|
|
__ ldaxr(rscratch1, addr);
|
|
__ cmp(rscratch1, cmpval);
|
|
__ cset(rscratch1, Assembler::NE);
|
|
__ br(Assembler::NE, nope);
|
|
// if we store+flush with no intervening write rscratch1 wil be zero
|
|
__ stlxr(rscratch1, newval, addr);
|
|
// retry so we only ever return after a load fails to compare
|
|
// ensures we don't return a stale value after a failed write.
|
|
__ cbnz(rscratch1, retry_load);
|
|
__ bind(nope);
|
|
__ membar(__ AnyAny);
|
|
}
|
|
|
|
|
|
void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
|
|
assert(VM_Version::supports_cx8(), "wrong machine");
|
|
Register addr = as_reg(op->addr());
|
|
Register newval = as_reg(op->new_value());
|
|
Register cmpval = as_reg(op->cmp_value());
|
|
Label succeed, fail, around;
|
|
|
|
if (op->code() == lir_cas_obj) {
|
|
if (UseCompressedOops) {
|
|
Register t1 = op->tmp1()->as_register();
|
|
assert(op->tmp1()->is_valid(), "must be");
|
|
__ encode_heap_oop(t1, cmpval);
|
|
cmpval = t1;
|
|
__ encode_heap_oop(rscratch2, newval);
|
|
newval = rscratch2;
|
|
casw(addr, newval, cmpval);
|
|
} else {
|
|
casl(addr, newval, cmpval);
|
|
}
|
|
} else if (op->code() == lir_cas_int) {
|
|
casw(addr, newval, cmpval);
|
|
} else {
|
|
casl(addr, newval, cmpval);
|
|
}
|
|
}
|
|
|
|
|
|
void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
|
|
|
|
Assembler::Condition acond, ncond;
|
|
switch (condition) {
|
|
case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break;
|
|
case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break;
|
|
case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break;
|
|
case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break;
|
|
case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
|
|
case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break;
|
|
case lir_cond_belowEqual: Unimplemented(); break;
|
|
case lir_cond_aboveEqual: Unimplemented(); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
assert(result->is_single_cpu() || result->is_double_cpu(),
|
|
"expect single register for result");
|
|
if (opr1->is_constant() && opr2->is_constant()
|
|
&& opr1->type() == T_INT && opr2->type() == T_INT) {
|
|
jint val1 = opr1->as_jint();
|
|
jint val2 = opr2->as_jint();
|
|
if (val1 == 0 && val2 == 1) {
|
|
__ cset(result->as_register(), ncond);
|
|
return;
|
|
} else if (val1 == 1 && val2 == 0) {
|
|
__ cset(result->as_register(), acond);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (opr1->is_constant() && opr2->is_constant()
|
|
&& opr1->type() == T_LONG && opr2->type() == T_LONG) {
|
|
jlong val1 = opr1->as_jlong();
|
|
jlong val2 = opr2->as_jlong();
|
|
if (val1 == 0 && val2 == 1) {
|
|
__ cset(result->as_register_lo(), ncond);
|
|
return;
|
|
} else if (val1 == 1 && val2 == 0) {
|
|
__ cset(result->as_register_lo(), acond);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (opr1->is_stack()) {
|
|
stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
|
|
opr1 = FrameMap::rscratch1_opr;
|
|
} else if (opr1->is_constant()) {
|
|
LIR_Opr tmp
|
|
= opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
|
|
const2reg(opr1, tmp, lir_patch_none, NULL);
|
|
opr1 = tmp;
|
|
}
|
|
|
|
if (opr2->is_stack()) {
|
|
stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
|
|
opr2 = FrameMap::rscratch2_opr;
|
|
} else if (opr2->is_constant()) {
|
|
LIR_Opr tmp
|
|
= opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
|
|
const2reg(opr2, tmp, lir_patch_none, NULL);
|
|
opr2 = tmp;
|
|
}
|
|
|
|
if (result->type() == T_LONG)
|
|
__ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
|
|
else
|
|
__ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
|
|
}
|
|
|
|
void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
|
|
assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
|
|
|
|
if (left->is_single_cpu()) {
|
|
Register lreg = left->as_register();
|
|
Register dreg = as_reg(dest);
|
|
|
|
if (right->is_single_cpu()) {
|
|
// cpu register - cpu register
|
|
|
|
assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
|
|
"should be");
|
|
Register rreg = right->as_register();
|
|
switch (code) {
|
|
case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
|
|
case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
|
|
case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
|
|
} else if (right->is_double_cpu()) {
|
|
Register rreg = right->as_register_lo();
|
|
// single_cpu + double_cpu: can happen with obj+long
|
|
assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
|
|
switch (code) {
|
|
case lir_add: __ add(dreg, lreg, rreg); break;
|
|
case lir_sub: __ sub(dreg, lreg, rreg); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
} else if (right->is_constant()) {
|
|
// cpu register - constant
|
|
jlong c;
|
|
|
|
// FIXME. This is fugly: we really need to factor all this logic.
|
|
switch(right->type()) {
|
|
case T_LONG:
|
|
c = right->as_constant_ptr()->as_jlong();
|
|
break;
|
|
case T_INT:
|
|
case T_ADDRESS:
|
|
c = right->as_constant_ptr()->as_jint();
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
|
|
assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
|
|
if (c == 0 && dreg == lreg) {
|
|
COMMENT("effective nop elided");
|
|
return;
|
|
}
|
|
switch(left->type()) {
|
|
case T_INT:
|
|
switch (code) {
|
|
case lir_add: __ addw(dreg, lreg, c); break;
|
|
case lir_sub: __ subw(dreg, lreg, c); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
break;
|
|
case T_OBJECT:
|
|
case T_ADDRESS:
|
|
switch (code) {
|
|
case lir_add: __ add(dreg, lreg, c); break;
|
|
case lir_sub: __ sub(dreg, lreg, c); break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
break;
|
|
ShouldNotReachHere();
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
} else if (left->is_double_cpu()) {
|
|
Register lreg_lo = left->as_register_lo();
|
|
|
|
if (right->is_double_cpu()) {
|
|
// cpu register - cpu register
|
|
Register rreg_lo = right->as_register_lo();
|
|
switch (code) {
|
|
case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
|
|
case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
|
|
case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
|
|
case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
|
|
case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
} else if (right->is_constant()) {
|
|
jlong c = right->as_constant_ptr()->as_jlong_bits();
|
|
Register dreg = as_reg(dest);
|
|
assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
|
|
if (c == 0 && dreg == lreg_lo) {
|
|
COMMENT("effective nop elided");
|
|
return;
|
|
}
|
|
switch (code) {
|
|
case lir_add: __ add(dreg, lreg_lo, c); break;
|
|
case lir_sub: __ sub(dreg, lreg_lo, c); break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
} else if (left->is_single_fpu()) {
|
|
assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
|
|
switch (code) {
|
|
case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
|
|
case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
|
|
case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
|
|
case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
} else if (left->is_double_fpu()) {
|
|
if (right->is_double_fpu()) {
|
|
// cpu register - cpu register
|
|
switch (code) {
|
|
case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
|
|
case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
|
|
case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
|
|
case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
} else {
|
|
if (right->is_constant()) {
|
|
ShouldNotReachHere();
|
|
}
|
|
ShouldNotReachHere();
|
|
}
|
|
} else if (left->is_single_stack() || left->is_address()) {
|
|
assert(left == dest, "left and dest must be equal");
|
|
ShouldNotReachHere();
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
|
|
|
|
|
|
void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
|
|
switch(code) {
|
|
case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
|
|
case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
|
|
|
|
assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
|
|
Register Rleft = left->is_single_cpu() ? left->as_register() :
|
|
left->as_register_lo();
|
|
if (dst->is_single_cpu()) {
|
|
Register Rdst = dst->as_register();
|
|
if (right->is_constant()) {
|
|
switch (code) {
|
|
case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
|
|
case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break;
|
|
case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
} else {
|
|
Register Rright = right->is_single_cpu() ? right->as_register() :
|
|
right->as_register_lo();
|
|
switch (code) {
|
|
case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
|
|
case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break;
|
|
case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
}
|
|
} else {
|
|
Register Rdst = dst->as_register_lo();
|
|
if (right->is_constant()) {
|
|
switch (code) {
|
|
case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
|
|
case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break;
|
|
case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
} else {
|
|
Register Rright = right->is_single_cpu() ? right->as_register() :
|
|
right->as_register_lo();
|
|
switch (code) {
|
|
case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
|
|
case lir_logic_or: __ orr (Rdst, Rleft, Rright); break;
|
|
case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
|
|
default: ShouldNotReachHere(); break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { Unimplemented(); }
|
|
|
|
|
|
void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
|
|
if (opr1->is_constant() && opr2->is_single_cpu()) {
|
|
// tableswitch
|
|
Register reg = as_reg(opr2);
|
|
struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
|
|
__ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
|
|
} else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
|
|
Register reg1 = as_reg(opr1);
|
|
if (opr2->is_single_cpu()) {
|
|
// cpu register - cpu register
|
|
Register reg2 = opr2->as_register();
|
|
if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
|
|
__ cmp(reg1, reg2);
|
|
} else {
|
|
assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
|
|
__ cmpw(reg1, reg2);
|
|
}
|
|
return;
|
|
}
|
|
if (opr2->is_double_cpu()) {
|
|
// cpu register - cpu register
|
|
Register reg2 = opr2->as_register_lo();
|
|
__ cmp(reg1, reg2);
|
|
return;
|
|
}
|
|
|
|
if (opr2->is_constant()) {
|
|
jlong imm;
|
|
switch(opr2->type()) {
|
|
case T_LONG:
|
|
imm = opr2->as_constant_ptr()->as_jlong();
|
|
break;
|
|
case T_INT:
|
|
case T_ADDRESS:
|
|
imm = opr2->as_constant_ptr()->as_jint();
|
|
break;
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
imm = jlong(opr2->as_constant_ptr()->as_jobject());
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
|
|
if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
|
|
if (type2aelembytes(opr1->type()) <= 4)
|
|
__ cmpw(reg1, imm);
|
|
else
|
|
__ cmp(reg1, imm);
|
|
return;
|
|
} else {
|
|
__ mov(rscratch1, imm);
|
|
if (type2aelembytes(opr1->type()) <= 4)
|
|
__ cmpw(reg1, rscratch1);
|
|
else
|
|
__ cmp(reg1, rscratch1);
|
|
return;
|
|
}
|
|
} else
|
|
ShouldNotReachHere();
|
|
} else if (opr1->is_single_fpu()) {
|
|
FloatRegister reg1 = opr1->as_float_reg();
|
|
assert(opr2->is_single_fpu(), "expect single float register");
|
|
FloatRegister reg2 = opr2->as_float_reg();
|
|
__ fcmps(reg1, reg2);
|
|
} else if (opr1->is_double_fpu()) {
|
|
FloatRegister reg1 = opr1->as_double_reg();
|
|
assert(opr2->is_double_fpu(), "expect double float register");
|
|
FloatRegister reg2 = opr2->as_double_reg();
|
|
__ fcmpd(reg1, reg2);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
|
|
if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
|
|
bool is_unordered_less = (code == lir_ucmp_fd2i);
|
|
if (left->is_single_fpu()) {
|
|
__ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
|
|
} else if (left->is_double_fpu()) {
|
|
__ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
} else if (code == lir_cmp_l2i) {
|
|
Label done;
|
|
__ cmp(left->as_register_lo(), right->as_register_lo());
|
|
__ mov(dst->as_register(), (u_int64_t)-1L);
|
|
__ br(Assembler::LT, done);
|
|
__ csinc(dst->as_register(), zr, zr, Assembler::EQ);
|
|
__ bind(done);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
|
|
void LIR_Assembler::align_call(LIR_Code code) { }
|
|
|
|
|
|
void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
|
|
address call = __ trampoline_call(Address(op->addr(), rtype));
|
|
if (call == NULL) {
|
|
bailout("trampoline stub overflow");
|
|
return;
|
|
}
|
|
add_call_info(code_offset(), op->info());
|
|
}
|
|
|
|
|
|
void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
|
|
address call = __ ic_call(op->addr());
|
|
if (call == NULL) {
|
|
bailout("trampoline stub overflow");
|
|
return;
|
|
}
|
|
add_call_info(code_offset(), op->info());
|
|
}
|
|
|
|
|
|
/* Currently, vtable-dispatch is only enabled for sparc platforms */
|
|
void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
|
|
void LIR_Assembler::emit_static_call_stub() {
|
|
address call_pc = __ pc();
|
|
address stub = __ start_a_stub(call_stub_size);
|
|
if (stub == NULL) {
|
|
bailout("static call stub overflow");
|
|
return;
|
|
}
|
|
|
|
int start = __ offset();
|
|
|
|
__ relocate(static_stub_Relocation::spec(call_pc));
|
|
__ mov_metadata(rmethod, (Metadata*)NULL);
|
|
__ movptr(rscratch1, 0);
|
|
__ br(rscratch1);
|
|
|
|
assert(__ offset() - start <= call_stub_size, "stub too big");
|
|
__ end_a_stub();
|
|
}
|
|
|
|
|
|
void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
|
|
assert(exceptionOop->as_register() == r0, "must match");
|
|
assert(exceptionPC->as_register() == r3, "must match");
|
|
|
|
// exception object is not added to oop map by LinearScan
|
|
// (LinearScan assumes that no oops are in fixed registers)
|
|
info->add_register_oop(exceptionOop);
|
|
Runtime1::StubID unwind_id;
|
|
|
|
// get current pc information
|
|
// pc is only needed if the method has an exception handler, the unwind code does not need it.
|
|
int pc_for_athrow_offset = __ offset();
|
|
InternalAddress pc_for_athrow(__ pc());
|
|
__ adr(exceptionPC->as_register(), pc_for_athrow);
|
|
add_call_info(pc_for_athrow_offset, info); // for exception handler
|
|
|
|
__ verify_not_null_oop(r0);
|
|
// search an exception handler (r0: exception oop, r3: throwing pc)
|
|
if (compilation()->has_fpu_code()) {
|
|
unwind_id = Runtime1::handle_exception_id;
|
|
} else {
|
|
unwind_id = Runtime1::handle_exception_nofpu_id;
|
|
}
|
|
__ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
|
|
|
|
// FIXME: enough room for two byte trap ????
|
|
__ nop();
|
|
}
|
|
|
|
|
|
void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
|
|
assert(exceptionOop->as_register() == r0, "must match");
|
|
|
|
__ b(_unwind_handler_entry);
|
|
}
|
|
|
|
|
|
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
|
|
Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
|
|
Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
|
|
|
|
switch (left->type()) {
|
|
case T_INT: {
|
|
switch (code) {
|
|
case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break;
|
|
case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break;
|
|
case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
break;
|
|
case T_LONG:
|
|
case T_ADDRESS:
|
|
case T_OBJECT:
|
|
switch (code) {
|
|
case lir_shl: __ lslv (dreg, lreg, count->as_register()); break;
|
|
case lir_shr: __ asrv (dreg, lreg, count->as_register()); break;
|
|
case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
|
|
Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
|
|
Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
|
|
|
|
switch (left->type()) {
|
|
case T_INT: {
|
|
switch (code) {
|
|
case lir_shl: __ lslw (dreg, lreg, count); break;
|
|
case lir_shr: __ asrw (dreg, lreg, count); break;
|
|
case lir_ushr: __ lsrw (dreg, lreg, count); break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
break;
|
|
case T_LONG:
|
|
case T_ADDRESS:
|
|
case T_OBJECT:
|
|
switch (code) {
|
|
case lir_shl: __ lsl (dreg, lreg, count); break;
|
|
case lir_shr: __ asr (dreg, lreg, count); break;
|
|
case lir_ushr: __ lsr (dreg, lreg, count); break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
|
|
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
|
|
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
|
|
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
|
|
__ str (r, Address(sp, offset_from_rsp_in_bytes));
|
|
}
|
|
|
|
|
|
void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
|
|
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
|
|
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
|
|
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
|
|
__ mov (rscratch1, c);
|
|
__ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
|
|
}
|
|
|
|
|
|
void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
|
|
ShouldNotReachHere();
|
|
assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
|
|
int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
|
|
assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
|
|
__ lea(rscratch1, __ constant_oop_address(o));
|
|
__ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
|
|
}
|
|
|
|
|
|
// This code replaces a call to arraycopy; no exception may
|
|
// be thrown in this code, they must be thrown in the System.arraycopy
|
|
// activation frame; we could save some checks if this would not be the case
|
|
void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
|
|
ciArrayKlass* default_type = op->expected_type();
|
|
Register src = op->src()->as_register();
|
|
Register dst = op->dst()->as_register();
|
|
Register src_pos = op->src_pos()->as_register();
|
|
Register dst_pos = op->dst_pos()->as_register();
|
|
Register length = op->length()->as_register();
|
|
Register tmp = op->tmp()->as_register();
|
|
|
|
CodeStub* stub = op->stub();
|
|
int flags = op->flags();
|
|
BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
|
|
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
|
|
|
|
// if we don't know anything, just go through the generic arraycopy
|
|
if (default_type == NULL // || basic_type == T_OBJECT
|
|
) {
|
|
Label done;
|
|
assert(src == r1 && src_pos == r2, "mismatch in calling convention");
|
|
|
|
// Save the arguments in case the generic arraycopy fails and we
|
|
// have to fall back to the JNI stub
|
|
__ stp(dst, dst_pos, Address(sp, 0*BytesPerWord));
|
|
__ stp(length, src_pos, Address(sp, 2*BytesPerWord));
|
|
__ str(src, Address(sp, 4*BytesPerWord));
|
|
|
|
address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
|
|
address copyfunc_addr = StubRoutines::generic_arraycopy();
|
|
|
|
// The arguments are in java calling convention so we shift them
|
|
// to C convention
|
|
assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
|
|
__ mov(c_rarg0, j_rarg0);
|
|
assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
|
|
__ mov(c_rarg1, j_rarg1);
|
|
assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
|
|
__ mov(c_rarg2, j_rarg2);
|
|
assert_different_registers(c_rarg3, j_rarg4);
|
|
__ mov(c_rarg3, j_rarg3);
|
|
__ mov(c_rarg4, j_rarg4);
|
|
if (copyfunc_addr == NULL) { // Use C version if stub was not generated
|
|
__ mov(rscratch1, RuntimeAddress(C_entry));
|
|
__ blrt(rscratch1, 5, 0, 1);
|
|
} else {
|
|
#ifndef PRODUCT
|
|
if (PrintC1Statistics) {
|
|
__ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
|
|
}
|
|
#endif
|
|
__ far_call(RuntimeAddress(copyfunc_addr));
|
|
}
|
|
|
|
__ cbz(r0, *stub->continuation());
|
|
|
|
// Reload values from the stack so they are where the stub
|
|
// expects them.
|
|
__ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord));
|
|
__ ldp(length, src_pos, Address(sp, 2*BytesPerWord));
|
|
__ ldr(src, Address(sp, 4*BytesPerWord));
|
|
|
|
if (copyfunc_addr != NULL) {
|
|
// r0 is -1^K where K == partial copied count
|
|
__ eonw(rscratch1, r0, 0);
|
|
// adjust length down and src/end pos up by partial copied count
|
|
__ subw(length, length, rscratch1);
|
|
__ addw(src_pos, src_pos, rscratch1);
|
|
__ addw(dst_pos, dst_pos, rscratch1);
|
|
}
|
|
__ b(*stub->entry());
|
|
|
|
__ bind(*stub->continuation());
|
|
return;
|
|
}
|
|
|
|
assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
|
|
|
|
int elem_size = type2aelembytes(basic_type);
|
|
int shift_amount;
|
|
int scale = exact_log2(elem_size);
|
|
|
|
Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
|
|
Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
|
|
Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
|
|
Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
|
|
|
|
// test for NULL
|
|
if (flags & LIR_OpArrayCopy::src_null_check) {
|
|
__ cbz(src, *stub->entry());
|
|
}
|
|
if (flags & LIR_OpArrayCopy::dst_null_check) {
|
|
__ cbz(dst, *stub->entry());
|
|
}
|
|
|
|
// check if negative
|
|
if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
|
|
__ cmpw(src_pos, 0);
|
|
__ br(Assembler::LT, *stub->entry());
|
|
}
|
|
if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
|
|
__ cmpw(dst_pos, 0);
|
|
__ br(Assembler::LT, *stub->entry());
|
|
}
|
|
|
|
if (flags & LIR_OpArrayCopy::length_positive_check) {
|
|
__ cmpw(length, 0);
|
|
__ br(Assembler::LT, *stub->entry());
|
|
}
|
|
|
|
if (flags & LIR_OpArrayCopy::src_range_check) {
|
|
__ addw(tmp, src_pos, length);
|
|
__ ldrw(rscratch1, src_length_addr);
|
|
__ cmpw(tmp, rscratch1);
|
|
__ br(Assembler::HI, *stub->entry());
|
|
}
|
|
if (flags & LIR_OpArrayCopy::dst_range_check) {
|
|
__ addw(tmp, dst_pos, length);
|
|
__ ldrw(rscratch1, dst_length_addr);
|
|
__ cmpw(tmp, rscratch1);
|
|
__ br(Assembler::HI, *stub->entry());
|
|
}
|
|
|
|
// FIXME: The logic in LIRGenerator::arraycopy_helper clears
|
|
// length_positive_check if the source of our length operand is an
|
|
// arraylength. However, that arraylength might be zero, and the
|
|
// stub that we're about to call contains an assertion that count !=
|
|
// 0 . So we make this check purely in order not to trigger an
|
|
// assertion failure.
|
|
__ cbzw(length, *stub->continuation());
|
|
|
|
if (flags & LIR_OpArrayCopy::type_check) {
|
|
// We don't know the array types are compatible
|
|
if (basic_type != T_OBJECT) {
|
|
// Simple test for basic type arrays
|
|
if (UseCompressedClassPointers) {
|
|
__ ldrw(tmp, src_klass_addr);
|
|
__ ldrw(rscratch1, dst_klass_addr);
|
|
__ cmpw(tmp, rscratch1);
|
|
} else {
|
|
__ ldr(tmp, src_klass_addr);
|
|
__ ldr(rscratch1, dst_klass_addr);
|
|
__ cmp(tmp, rscratch1);
|
|
}
|
|
__ br(Assembler::NE, *stub->entry());
|
|
} else {
|
|
// For object arrays, if src is a sub class of dst then we can
|
|
// safely do the copy.
|
|
Label cont, slow;
|
|
|
|
#define PUSH(r1, r2) \
|
|
stp(r1, r2, __ pre(sp, -2 * wordSize));
|
|
|
|
#define POP(r1, r2) \
|
|
ldp(r1, r2, __ post(sp, 2 * wordSize));
|
|
|
|
__ PUSH(src, dst);
|
|
|
|
__ load_klass(src, src);
|
|
__ load_klass(dst, dst);
|
|
|
|
__ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
|
|
|
|
__ PUSH(src, dst);
|
|
__ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
|
|
__ POP(src, dst);
|
|
|
|
__ cbnz(src, cont);
|
|
|
|
__ bind(slow);
|
|
__ POP(src, dst);
|
|
|
|
address copyfunc_addr = StubRoutines::checkcast_arraycopy();
|
|
if (copyfunc_addr != NULL) { // use stub if available
|
|
// src is not a sub class of dst so we have to do a
|
|
// per-element check.
|
|
|
|
int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
|
|
if ((flags & mask) != mask) {
|
|
// Check that at least both of them object arrays.
|
|
assert(flags & mask, "one of the two should be known to be an object array");
|
|
|
|
if (!(flags & LIR_OpArrayCopy::src_objarray)) {
|
|
__ load_klass(tmp, src);
|
|
} else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
|
|
__ load_klass(tmp, dst);
|
|
}
|
|
int lh_offset = in_bytes(Klass::layout_helper_offset());
|
|
Address klass_lh_addr(tmp, lh_offset);
|
|
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
|
|
__ ldrw(rscratch1, klass_lh_addr);
|
|
__ mov(rscratch2, objArray_lh);
|
|
__ eorw(rscratch1, rscratch1, rscratch2);
|
|
__ cbnzw(rscratch1, *stub->entry());
|
|
}
|
|
|
|
// Spill because stubs can use any register they like and it's
|
|
// easier to restore just those that we care about.
|
|
__ stp(dst, dst_pos, Address(sp, 0*BytesPerWord));
|
|
__ stp(length, src_pos, Address(sp, 2*BytesPerWord));
|
|
__ str(src, Address(sp, 4*BytesPerWord));
|
|
|
|
__ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
|
|
__ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
|
|
assert_different_registers(c_rarg0, dst, dst_pos, length);
|
|
__ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
|
|
__ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
|
|
assert_different_registers(c_rarg1, dst, length);
|
|
__ uxtw(c_rarg2, length);
|
|
assert_different_registers(c_rarg2, dst);
|
|
|
|
__ load_klass(c_rarg4, dst);
|
|
__ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
|
|
__ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
|
|
__ far_call(RuntimeAddress(copyfunc_addr));
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintC1Statistics) {
|
|
Label failed;
|
|
__ cbnz(r0, failed);
|
|
__ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
|
|
__ bind(failed);
|
|
}
|
|
#endif
|
|
|
|
__ cbz(r0, *stub->continuation());
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintC1Statistics) {
|
|
__ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
|
|
}
|
|
#endif
|
|
assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
|
|
|
|
// Restore previously spilled arguments
|
|
__ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord));
|
|
__ ldp(length, src_pos, Address(sp, 2*BytesPerWord));
|
|
__ ldr(src, Address(sp, 4*BytesPerWord));
|
|
|
|
// return value is -1^K where K is partial copied count
|
|
__ eonw(rscratch1, r0, zr);
|
|
// adjust length down and src/end pos up by partial copied count
|
|
__ subw(length, length, rscratch1);
|
|
__ addw(src_pos, src_pos, rscratch1);
|
|
__ addw(dst_pos, dst_pos, rscratch1);
|
|
}
|
|
|
|
__ b(*stub->entry());
|
|
|
|
__ bind(cont);
|
|
__ POP(src, dst);
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
|
|
// Sanity check the known type with the incoming class. For the
|
|
// primitive case the types must match exactly with src.klass and
|
|
// dst.klass each exactly matching the default type. For the
|
|
// object array case, if no type check is needed then either the
|
|
// dst type is exactly the expected type and the src type is a
|
|
// subtype which we can't check or src is the same array as dst
|
|
// but not necessarily exactly of type default_type.
|
|
Label known_ok, halt;
|
|
__ mov_metadata(tmp, default_type->constant_encoding());
|
|
if (UseCompressedClassPointers) {
|
|
__ encode_klass_not_null(tmp);
|
|
}
|
|
|
|
if (basic_type != T_OBJECT) {
|
|
|
|
if (UseCompressedClassPointers) {
|
|
__ ldrw(rscratch1, dst_klass_addr);
|
|
__ cmpw(tmp, rscratch1);
|
|
} else {
|
|
__ ldr(rscratch1, dst_klass_addr);
|
|
__ cmp(tmp, rscratch1);
|
|
}
|
|
__ br(Assembler::NE, halt);
|
|
if (UseCompressedClassPointers) {
|
|
__ ldrw(rscratch1, src_klass_addr);
|
|
__ cmpw(tmp, rscratch1);
|
|
} else {
|
|
__ ldr(rscratch1, src_klass_addr);
|
|
__ cmp(tmp, rscratch1);
|
|
}
|
|
__ br(Assembler::EQ, known_ok);
|
|
} else {
|
|
if (UseCompressedClassPointers) {
|
|
__ ldrw(rscratch1, dst_klass_addr);
|
|
__ cmpw(tmp, rscratch1);
|
|
} else {
|
|
__ ldr(rscratch1, dst_klass_addr);
|
|
__ cmp(tmp, rscratch1);
|
|
}
|
|
__ br(Assembler::EQ, known_ok);
|
|
__ cmp(src, dst);
|
|
__ br(Assembler::EQ, known_ok);
|
|
}
|
|
__ bind(halt);
|
|
__ stop("incorrect type information in arraycopy");
|
|
__ bind(known_ok);
|
|
}
|
|
#endif
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintC1Statistics) {
|
|
__ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
|
|
}
|
|
#endif
|
|
|
|
__ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
|
|
__ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
|
|
assert_different_registers(c_rarg0, dst, dst_pos, length);
|
|
__ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
|
|
__ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
|
|
assert_different_registers(c_rarg1, dst, length);
|
|
__ uxtw(c_rarg2, length);
|
|
assert_different_registers(c_rarg2, dst);
|
|
|
|
bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
|
|
bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
|
|
const char *name;
|
|
address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
|
|
|
|
CodeBlob *cb = CodeCache::find_blob(entry);
|
|
if (cb) {
|
|
__ far_call(RuntimeAddress(entry));
|
|
} else {
|
|
__ call_VM_leaf(entry, 3);
|
|
}
|
|
|
|
__ bind(*stub->continuation());
|
|
}
|
|
|
|
|
|
|
|
|
|
void LIR_Assembler::emit_lock(LIR_OpLock* op) {
|
|
Register obj = op->obj_opr()->as_register(); // may not be an oop
|
|
Register hdr = op->hdr_opr()->as_register();
|
|
Register lock = op->lock_opr()->as_register();
|
|
if (!UseFastLocking) {
|
|
__ b(*op->stub()->entry());
|
|
} else if (op->code() == lir_lock) {
|
|
Register scratch = noreg;
|
|
if (UseBiasedLocking) {
|
|
scratch = op->scratch_opr()->as_register();
|
|
}
|
|
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
|
|
// add debug info for NullPointerException only if one is possible
|
|
int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
|
|
if (op->info() != NULL) {
|
|
add_debug_info_for_null_check(null_check_offset, op->info());
|
|
}
|
|
// done
|
|
} else if (op->code() == lir_unlock) {
|
|
assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
|
|
__ unlock_object(hdr, obj, lock, *op->stub()->entry());
|
|
} else {
|
|
Unimplemented();
|
|
}
|
|
__ bind(*op->stub()->continuation());
|
|
}
|
|
|
|
|
|
void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
|
|
ciMethod* method = op->profiled_method();
|
|
int bci = op->profiled_bci();
|
|
ciMethod* callee = op->profiled_callee();
|
|
|
|
// Update counter for all call types
|
|
ciMethodData* md = method->method_data_or_null();
|
|
assert(md != NULL, "Sanity");
|
|
ciProfileData* data = md->bci_to_data(bci);
|
|
assert(data->is_CounterData(), "need CounterData for calls");
|
|
assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
|
|
Register mdo = op->mdo()->as_register();
|
|
__ mov_metadata(mdo, md->constant_encoding());
|
|
Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
|
|
Bytecodes::Code bc = method->java_code_at_bci(bci);
|
|
const bool callee_is_static = callee->is_loaded() && callee->is_static();
|
|
// Perform additional virtual call profiling for invokevirtual and
|
|
// invokeinterface bytecodes
|
|
if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
|
|
!callee_is_static && // required for optimized MH invokes
|
|
C1ProfileVirtualCalls) {
|
|
assert(op->recv()->is_single_cpu(), "recv must be allocated");
|
|
Register recv = op->recv()->as_register();
|
|
assert_different_registers(mdo, recv);
|
|
assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
|
|
ciKlass* known_klass = op->known_holder();
|
|
if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
|
|
// We know the type that will be seen at this call site; we can
|
|
// statically update the MethodData* rather than needing to do
|
|
// dynamic tests on the receiver type
|
|
|
|
// NOTE: we should probably put a lock around this search to
|
|
// avoid collisions by concurrent compilations
|
|
ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
|
|
uint i;
|
|
for (i = 0; i < VirtualCallData::row_limit(); i++) {
|
|
ciKlass* receiver = vc_data->receiver(i);
|
|
if (known_klass->equals(receiver)) {
|
|
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
|
|
__ addptr(data_addr, DataLayout::counter_increment);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Receiver type not found in profile data; select an empty slot
|
|
|
|
// Note that this is less efficient than it should be because it
|
|
// always does a write to the receiver part of the
|
|
// VirtualCallData rather than just the first time
|
|
for (i = 0; i < VirtualCallData::row_limit(); i++) {
|
|
ciKlass* receiver = vc_data->receiver(i);
|
|
if (receiver == NULL) {
|
|
Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
|
|
__ mov_metadata(rscratch1, known_klass->constant_encoding());
|
|
__ lea(rscratch2, recv_addr);
|
|
__ str(rscratch1, Address(rscratch2));
|
|
Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
|
|
__ addptr(data_addr, DataLayout::counter_increment);
|
|
return;
|
|
}
|
|
}
|
|
} else {
|
|
__ load_klass(recv, recv);
|
|
Label update_done;
|
|
type_profile_helper(mdo, md, data, recv, &update_done);
|
|
// Receiver did not match any saved receiver and there is no empty row for it.
|
|
// Increment total counter to indicate polymorphic case.
|
|
__ addptr(counter_addr, DataLayout::counter_increment);
|
|
|
|
__ bind(update_done);
|
|
}
|
|
} else {
|
|
// Static call
|
|
__ addptr(counter_addr, DataLayout::counter_increment);
|
|
}
|
|
}
|
|
|
|
|
|
void LIR_Assembler::emit_delay(LIR_OpDelay*) {
|
|
Unimplemented();
|
|
}
|
|
|
|
|
|
void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
|
|
__ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
|
|
}
|
|
|
|
void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
|
|
assert(op->crc()->is_single_cpu(), "crc must be register");
|
|
assert(op->val()->is_single_cpu(), "byte value must be register");
|
|
assert(op->result_opr()->is_single_cpu(), "result must be register");
|
|
Register crc = op->crc()->as_register();
|
|
Register val = op->val()->as_register();
|
|
Register res = op->result_opr()->as_register();
|
|
|
|
assert_different_registers(val, crc, res);
|
|
unsigned long offset;
|
|
__ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
|
|
if (offset) __ add(res, res, offset);
|
|
|
|
__ ornw(crc, zr, crc); // ~crc
|
|
__ update_byte_crc32(crc, val, res);
|
|
__ ornw(res, zr, crc); // ~crc
|
|
}
|
|
|
|
void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
|
|
COMMENT("emit_profile_type {");
|
|
Register obj = op->obj()->as_register();
|
|
Register tmp = op->tmp()->as_pointer_register();
|
|
Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
|
|
ciKlass* exact_klass = op->exact_klass();
|
|
intptr_t current_klass = op->current_klass();
|
|
bool not_null = op->not_null();
|
|
bool no_conflict = op->no_conflict();
|
|
|
|
Label update, next, none;
|
|
|
|
bool do_null = !not_null;
|
|
bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
|
|
bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
|
|
|
|
assert(do_null || do_update, "why are we here?");
|
|
assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
|
|
assert(mdo_addr.base() != rscratch1, "wrong register");
|
|
|
|
__ verify_oop(obj);
|
|
|
|
if (tmp != obj) {
|
|
__ mov(tmp, obj);
|
|
}
|
|
if (do_null) {
|
|
__ cbnz(tmp, update);
|
|
if (!TypeEntries::was_null_seen(current_klass)) {
|
|
__ ldr(rscratch2, mdo_addr);
|
|
__ orr(rscratch2, rscratch2, TypeEntries::null_seen);
|
|
__ str(rscratch2, mdo_addr);
|
|
}
|
|
if (do_update) {
|
|
#ifndef ASSERT
|
|
__ b(next);
|
|
}
|
|
#else
|
|
__ b(next);
|
|
}
|
|
} else {
|
|
__ cbnz(tmp, update);
|
|
__ stop("unexpected null obj");
|
|
#endif
|
|
}
|
|
|
|
__ bind(update);
|
|
|
|
if (do_update) {
|
|
#ifdef ASSERT
|
|
if (exact_klass != NULL) {
|
|
Label ok;
|
|
__ load_klass(tmp, tmp);
|
|
__ mov_metadata(rscratch1, exact_klass->constant_encoding());
|
|
__ eor(rscratch1, tmp, rscratch1);
|
|
__ cbz(rscratch1, ok);
|
|
__ stop("exact klass and actual klass differ");
|
|
__ bind(ok);
|
|
}
|
|
#endif
|
|
if (!no_conflict) {
|
|
if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
|
|
if (exact_klass != NULL) {
|
|
__ mov_metadata(tmp, exact_klass->constant_encoding());
|
|
} else {
|
|
__ load_klass(tmp, tmp);
|
|
}
|
|
|
|
__ ldr(rscratch2, mdo_addr);
|
|
__ eor(tmp, tmp, rscratch2);
|
|
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
|
|
// klass seen before, nothing to do. The unknown bit may have been
|
|
// set already but no need to check.
|
|
__ cbz(rscratch1, next);
|
|
|
|
__ andr(rscratch1, tmp, TypeEntries::type_unknown);
|
|
__ cbnz(rscratch1, next); // already unknown. Nothing to do anymore.
|
|
|
|
if (TypeEntries::is_type_none(current_klass)) {
|
|
__ cbz(rscratch2, none);
|
|
__ cmp(rscratch2, TypeEntries::null_seen);
|
|
__ br(Assembler::EQ, none);
|
|
// There is a chance that the checks above (re-reading profiling
|
|
// data from memory) fail if another thread has just set the
|
|
// profiling to this obj's klass
|
|
__ dmb(Assembler::ISHLD);
|
|
__ ldr(rscratch2, mdo_addr);
|
|
__ eor(tmp, tmp, rscratch2);
|
|
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
|
|
__ cbz(rscratch1, next);
|
|
}
|
|
} else {
|
|
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
|
|
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
|
|
|
|
__ ldr(tmp, mdo_addr);
|
|
__ andr(rscratch1, tmp, TypeEntries::type_unknown);
|
|
__ cbnz(rscratch1, next); // already unknown. Nothing to do anymore.
|
|
}
|
|
|
|
// different than before. Cannot keep accurate profile.
|
|
__ ldr(rscratch2, mdo_addr);
|
|
__ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
|
|
__ str(rscratch2, mdo_addr);
|
|
|
|
if (TypeEntries::is_type_none(current_klass)) {
|
|
__ b(next);
|
|
|
|
__ bind(none);
|
|
// first time here. Set profile type.
|
|
__ str(tmp, mdo_addr);
|
|
}
|
|
} else {
|
|
// There's a single possible klass at this profile point
|
|
assert(exact_klass != NULL, "should be");
|
|
if (TypeEntries::is_type_none(current_klass)) {
|
|
__ mov_metadata(tmp, exact_klass->constant_encoding());
|
|
__ ldr(rscratch2, mdo_addr);
|
|
__ eor(tmp, tmp, rscratch2);
|
|
__ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
|
|
__ cbz(rscratch1, next);
|
|
#ifdef ASSERT
|
|
{
|
|
Label ok;
|
|
__ ldr(rscratch1, mdo_addr);
|
|
__ cbz(rscratch1, ok);
|
|
__ cmp(rscratch1, TypeEntries::null_seen);
|
|
__ br(Assembler::EQ, ok);
|
|
// may have been set by another thread
|
|
__ dmb(Assembler::ISHLD);
|
|
__ mov_metadata(rscratch1, exact_klass->constant_encoding());
|
|
__ ldr(rscratch2, mdo_addr);
|
|
__ eor(rscratch2, rscratch1, rscratch2);
|
|
__ andr(rscratch2, rscratch2, TypeEntries::type_mask);
|
|
__ cbz(rscratch2, ok);
|
|
|
|
__ stop("unexpected profiling mismatch");
|
|
__ bind(ok);
|
|
}
|
|
#endif
|
|
// first time here. Set profile type.
|
|
__ ldr(tmp, mdo_addr);
|
|
} else {
|
|
assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
|
|
ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
|
|
|
|
__ ldr(tmp, mdo_addr);
|
|
__ andr(rscratch1, tmp, TypeEntries::type_unknown);
|
|
__ cbnz(rscratch1, next); // already unknown. Nothing to do anymore.
|
|
|
|
__ orr(tmp, tmp, TypeEntries::type_unknown);
|
|
__ str(tmp, mdo_addr);
|
|
// FIXME: Write barrier needed here?
|
|
}
|
|
}
|
|
|
|
__ bind(next);
|
|
}
|
|
COMMENT("} emit_profile_type");
|
|
}
|
|
|
|
|
|
void LIR_Assembler::align_backward_branch_target() {
|
|
}
|
|
|
|
|
|
void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
|
|
if (left->is_single_cpu()) {
|
|
assert(dest->is_single_cpu(), "expect single result reg");
|
|
__ negw(dest->as_register(), left->as_register());
|
|
} else if (left->is_double_cpu()) {
|
|
assert(dest->is_double_cpu(), "expect double result reg");
|
|
__ neg(dest->as_register_lo(), left->as_register_lo());
|
|
} else if (left->is_single_fpu()) {
|
|
assert(dest->is_single_fpu(), "expect single float result reg");
|
|
__ fnegs(dest->as_float_reg(), left->as_float_reg());
|
|
} else {
|
|
assert(left->is_double_fpu(), "expect double float operand reg");
|
|
assert(dest->is_double_fpu(), "expect double float result reg");
|
|
__ fnegd(dest->as_double_reg(), left->as_double_reg());
|
|
}
|
|
}
|
|
|
|
|
|
void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
|
|
__ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
|
|
}
|
|
|
|
|
|
void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
|
|
assert(!tmp->is_valid(), "don't need temporary");
|
|
|
|
CodeBlob *cb = CodeCache::find_blob(dest);
|
|
if (cb) {
|
|
__ far_call(RuntimeAddress(dest));
|
|
} else {
|
|
__ mov(rscratch1, RuntimeAddress(dest));
|
|
int len = args->length();
|
|
int type = 0;
|
|
if (! result->is_illegal()) {
|
|
switch (result->type()) {
|
|
case T_VOID:
|
|
type = 0;
|
|
break;
|
|
case T_INT:
|
|
case T_LONG:
|
|
case T_OBJECT:
|
|
type = 1;
|
|
break;
|
|
case T_FLOAT:
|
|
type = 2;
|
|
break;
|
|
case T_DOUBLE:
|
|
type = 3;
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
break;
|
|
}
|
|
}
|
|
int num_gpargs = 0;
|
|
int num_fpargs = 0;
|
|
for (int i = 0; i < args->length(); i++) {
|
|
LIR_Opr arg = args->at(i);
|
|
if (arg->type() == T_FLOAT || arg->type() == T_DOUBLE) {
|
|
num_fpargs++;
|
|
} else {
|
|
num_gpargs++;
|
|
}
|
|
}
|
|
__ blrt(rscratch1, num_gpargs, num_fpargs, type);
|
|
}
|
|
|
|
if (info != NULL) {
|
|
add_call_info_here(info);
|
|
}
|
|
__ maybe_isb();
|
|
}
|
|
|
|
void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
|
|
if (dest->is_address() || src->is_address()) {
|
|
move_op(src, dest, type, lir_patch_none, info,
|
|
/*pop_fpu_stack*/false, /*unaligned*/false, /*wide*/false);
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// emit run-time assertion
|
|
void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
|
|
assert(op->code() == lir_assert, "must be");
|
|
|
|
if (op->in_opr1()->is_valid()) {
|
|
assert(op->in_opr2()->is_valid(), "both operands must be valid");
|
|
comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
|
|
} else {
|
|
assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
|
|
assert(op->condition() == lir_cond_always, "no other conditions allowed");
|
|
}
|
|
|
|
Label ok;
|
|
if (op->condition() != lir_cond_always) {
|
|
Assembler::Condition acond = Assembler::AL;
|
|
switch (op->condition()) {
|
|
case lir_cond_equal: acond = Assembler::EQ; break;
|
|
case lir_cond_notEqual: acond = Assembler::NE; break;
|
|
case lir_cond_less: acond = Assembler::LT; break;
|
|
case lir_cond_lessEqual: acond = Assembler::LE; break;
|
|
case lir_cond_greaterEqual: acond = Assembler::GE; break;
|
|
case lir_cond_greater: acond = Assembler::GT; break;
|
|
case lir_cond_belowEqual: acond = Assembler::LS; break;
|
|
case lir_cond_aboveEqual: acond = Assembler::HS; break;
|
|
default: ShouldNotReachHere();
|
|
}
|
|
__ br(acond, ok);
|
|
}
|
|
if (op->halt()) {
|
|
const char* str = __ code_string(op->msg());
|
|
__ stop(str);
|
|
} else {
|
|
breakpoint();
|
|
}
|
|
__ bind(ok);
|
|
}
|
|
#endif
|
|
|
|
#ifndef PRODUCT
|
|
#define COMMENT(x) do { __ block_comment(x); } while (0)
|
|
#else
|
|
#define COMMENT(x)
|
|
#endif
|
|
|
|
void LIR_Assembler::membar() {
|
|
COMMENT("membar");
|
|
__ membar(MacroAssembler::AnyAny);
|
|
}
|
|
|
|
void LIR_Assembler::membar_acquire() {
|
|
__ membar(Assembler::LoadLoad|Assembler::LoadStore);
|
|
}
|
|
|
|
void LIR_Assembler::membar_release() {
|
|
__ membar(Assembler::LoadStore|Assembler::StoreStore);
|
|
}
|
|
|
|
void LIR_Assembler::membar_loadload() {
|
|
__ membar(Assembler::LoadLoad);
|
|
}
|
|
|
|
void LIR_Assembler::membar_storestore() {
|
|
__ membar(MacroAssembler::StoreStore);
|
|
}
|
|
|
|
void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
|
|
|
|
void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
|
|
|
|
void LIR_Assembler::get_thread(LIR_Opr result_reg) {
|
|
__ mov(result_reg->as_register(), rthread);
|
|
}
|
|
|
|
|
|
void LIR_Assembler::peephole(LIR_List *lir) {
|
|
#if 0
|
|
if (tableswitch_count >= max_tableswitches)
|
|
return;
|
|
|
|
/*
|
|
This finite-state automaton recognizes sequences of compare-and-
|
|
branch instructions. We will turn them into a tableswitch. You
|
|
could argue that C1 really shouldn't be doing this sort of
|
|
optimization, but without it the code is really horrible.
|
|
*/
|
|
|
|
enum { start_s, cmp1_s, beq_s, cmp_s } state;
|
|
int first_key, last_key = -2147483648;
|
|
int next_key = 0;
|
|
int start_insn = -1;
|
|
int last_insn = -1;
|
|
Register reg = noreg;
|
|
LIR_Opr reg_opr;
|
|
state = start_s;
|
|
|
|
LIR_OpList* inst = lir->instructions_list();
|
|
for (int i = 0; i < inst->length(); i++) {
|
|
LIR_Op* op = inst->at(i);
|
|
switch (state) {
|
|
case start_s:
|
|
first_key = -1;
|
|
start_insn = i;
|
|
switch (op->code()) {
|
|
case lir_cmp:
|
|
LIR_Opr opr1 = op->as_Op2()->in_opr1();
|
|
LIR_Opr opr2 = op->as_Op2()->in_opr2();
|
|
if (opr1->is_cpu_register() && opr1->is_single_cpu()
|
|
&& opr2->is_constant()
|
|
&& opr2->type() == T_INT) {
|
|
reg_opr = opr1;
|
|
reg = opr1->as_register();
|
|
first_key = opr2->as_constant_ptr()->as_jint();
|
|
next_key = first_key + 1;
|
|
state = cmp_s;
|
|
goto next_state;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case cmp_s:
|
|
switch (op->code()) {
|
|
case lir_branch:
|
|
if (op->as_OpBranch()->cond() == lir_cond_equal) {
|
|
state = beq_s;
|
|
last_insn = i;
|
|
goto next_state;
|
|
}
|
|
}
|
|
state = start_s;
|
|
break;
|
|
case beq_s:
|
|
switch (op->code()) {
|
|
case lir_cmp: {
|
|
LIR_Opr opr1 = op->as_Op2()->in_opr1();
|
|
LIR_Opr opr2 = op->as_Op2()->in_opr2();
|
|
if (opr1->is_cpu_register() && opr1->is_single_cpu()
|
|
&& opr1->as_register() == reg
|
|
&& opr2->is_constant()
|
|
&& opr2->type() == T_INT
|
|
&& opr2->as_constant_ptr()->as_jint() == next_key) {
|
|
last_key = next_key;
|
|
next_key++;
|
|
state = cmp_s;
|
|
goto next_state;
|
|
}
|
|
}
|
|
}
|
|
last_key = next_key;
|
|
state = start_s;
|
|
break;
|
|
default:
|
|
assert(false, "impossible state");
|
|
}
|
|
if (state == start_s) {
|
|
if (first_key < last_key - 5L && reg != noreg) {
|
|
{
|
|
// printf("found run register %d starting at insn %d low value %d high value %d\n",
|
|
// reg->encoding(),
|
|
// start_insn, first_key, last_key);
|
|
// for (int i = 0; i < inst->length(); i++) {
|
|
// inst->at(i)->print();
|
|
// tty->print("\n");
|
|
// }
|
|
// tty->print("\n");
|
|
}
|
|
|
|
struct tableswitch *sw = &switches[tableswitch_count];
|
|
sw->_insn_index = start_insn, sw->_first_key = first_key,
|
|
sw->_last_key = last_key, sw->_reg = reg;
|
|
inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
|
|
{
|
|
// Insert the new table of branches
|
|
int offset = last_insn;
|
|
for (int n = first_key; n < last_key; n++) {
|
|
inst->insert_before
|
|
(last_insn + 1,
|
|
new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
|
|
inst->at(offset)->as_OpBranch()->label()));
|
|
offset -= 2, i++;
|
|
}
|
|
}
|
|
// Delete all the old compare-and-branch instructions
|
|
for (int n = first_key; n < last_key; n++) {
|
|
inst->remove_at(start_insn);
|
|
inst->remove_at(start_insn);
|
|
}
|
|
// Insert the tableswitch instruction
|
|
inst->insert_before(start_insn,
|
|
new LIR_Op2(lir_cmp, lir_cond_always,
|
|
LIR_OprFact::intConst(tableswitch_count),
|
|
reg_opr));
|
|
inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
|
|
tableswitch_count++;
|
|
}
|
|
reg = noreg;
|
|
last_key = -2147483648;
|
|
}
|
|
next_state:
|
|
;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
|
|
Address addr = as_Address(src->as_address_ptr(), noreg);
|
|
BasicType type = src->type();
|
|
bool is_oop = type == T_OBJECT || type == T_ARRAY;
|
|
|
|
void (MacroAssembler::* lda)(Register Rd, Register Ra);
|
|
void (MacroAssembler::* add)(Register Rd, Register Rn, RegisterOrConstant increment);
|
|
void (MacroAssembler::* stl)(Register Rs, Register Rt, Register Rn);
|
|
|
|
switch(type) {
|
|
case T_INT:
|
|
lda = &MacroAssembler::ldaxrw;
|
|
add = &MacroAssembler::addw;
|
|
stl = &MacroAssembler::stlxrw;
|
|
break;
|
|
case T_LONG:
|
|
lda = &MacroAssembler::ldaxr;
|
|
add = &MacroAssembler::add;
|
|
stl = &MacroAssembler::stlxr;
|
|
break;
|
|
case T_OBJECT:
|
|
case T_ARRAY:
|
|
if (UseCompressedOops) {
|
|
lda = &MacroAssembler::ldaxrw;
|
|
add = &MacroAssembler::addw;
|
|
stl = &MacroAssembler::stlxrw;
|
|
} else {
|
|
lda = &MacroAssembler::ldaxr;
|
|
add = &MacroAssembler::add;
|
|
stl = &MacroAssembler::stlxr;
|
|
}
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
switch (code) {
|
|
case lir_xadd:
|
|
{
|
|
RegisterOrConstant inc;
|
|
Register tmp = as_reg(tmp_op);
|
|
Register dst = as_reg(dest);
|
|
if (data->is_constant()) {
|
|
inc = RegisterOrConstant(as_long(data));
|
|
assert_different_registers(dst, addr.base(), tmp,
|
|
rscratch1, rscratch2);
|
|
} else {
|
|
inc = RegisterOrConstant(as_reg(data));
|
|
assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
|
|
rscratch1, rscratch2);
|
|
}
|
|
Label again;
|
|
__ lea(tmp, addr);
|
|
__ bind(again);
|
|
(_masm->*lda)(dst, tmp);
|
|
(_masm->*add)(rscratch1, dst, inc);
|
|
(_masm->*stl)(rscratch2, rscratch1, tmp);
|
|
__ cbnzw(rscratch2, again);
|
|
break;
|
|
}
|
|
case lir_xchg:
|
|
{
|
|
Register tmp = tmp_op->as_register();
|
|
Register obj = as_reg(data);
|
|
Register dst = as_reg(dest);
|
|
if (is_oop && UseCompressedOops) {
|
|
__ encode_heap_oop(obj);
|
|
}
|
|
assert_different_registers(obj, addr.base(), tmp, rscratch2, dst);
|
|
Label again;
|
|
__ lea(tmp, addr);
|
|
__ bind(again);
|
|
(_masm->*lda)(dst, tmp);
|
|
(_masm->*stl)(rscratch2, obj, tmp);
|
|
__ cbnzw(rscratch2, again);
|
|
if (is_oop && UseCompressedOops) {
|
|
__ decode_heap_oop(dst);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
__ membar(__ AnyAny);
|
|
}
|
|
|
|
#undef __
|