jdk-24/hotspot/src/share/vm/opto/escape.cpp
Vladimir Kozlov 277c3322f6 6667612: (Escape Analysis) disable loop cloning if it has a scalar replaceable allocation
Cloning an allocation will not allow scalar replacement since memory operations could not be associated with one allocation.

Reviewed-by: rasbold
2008-03-06 10:53:33 -08:00

1376 lines
48 KiB
C++

/*
* Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_escape.cpp.incl"
uint PointsToNode::edge_target(uint e) const {
assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
return (_edges->at(e) >> EdgeShift);
}
PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
return (EdgeType) (_edges->at(e) & EdgeMask);
}
void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
uint v = (targIdx << EdgeShift) + ((uint) et);
if (_edges == NULL) {
Arena *a = Compile::current()->comp_arena();
_edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
}
_edges->append_if_missing(v);
}
void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
uint v = (targIdx << EdgeShift) + ((uint) et);
_edges->remove(v);
}
#ifndef PRODUCT
static char *node_type_names[] = {
"UnknownType",
"JavaObject",
"LocalVar",
"Field"
};
static char *esc_names[] = {
"UnknownEscape",
"NoEscape ",
"ArgEscape ",
"GlobalEscape "
};
static char *edge_type_suffix[] = {
"?", // UnknownEdge
"P", // PointsToEdge
"D", // DeferredEdge
"F" // FieldEdge
};
void PointsToNode::dump() const {
NodeType nt = node_type();
EscapeState es = escape_state();
tty->print("%s %s [[", node_type_names[(int) nt], esc_names[(int) es]);
for (uint i = 0; i < edge_count(); i++) {
tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
}
tty->print("]] ");
if (_node == NULL)
tty->print_cr("<null>");
else
_node->dump();
}
#endif
ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
_collecting = true;
this->_compile = C;
const PointsToNode &dummy = PointsToNode();
_nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), (int) INITIAL_NODE_COUNT, 0, dummy);
_phantom_object = C->top()->_idx;
PointsToNode *phn = ptnode_adr(_phantom_object);
phn->set_node_type(PointsToNode::JavaObject);
phn->set_escape_state(PointsToNode::GlobalEscape);
}
void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
PointsToNode *f = ptnode_adr(from_i);
PointsToNode *t = ptnode_adr(to_i);
assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
f->add_edge(to_i, PointsToNode::PointsToEdge);
}
void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
PointsToNode *f = ptnode_adr(from_i);
PointsToNode *t = ptnode_adr(to_i);
assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
// don't add a self-referential edge, this can occur during removal of
// deferred edges
if (from_i != to_i)
f->add_edge(to_i, PointsToNode::DeferredEdge);
}
int ConnectionGraph::type_to_offset(const Type *t) {
const TypePtr *t_ptr = t->isa_ptr();
assert(t_ptr != NULL, "must be a pointer type");
return t_ptr->offset();
}
void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
PointsToNode *f = ptnode_adr(from_i);
PointsToNode *t = ptnode_adr(to_i);
assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
t->set_offset(offset);
f->add_edge(to_i, PointsToNode::FieldEdge);
}
void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
PointsToNode *npt = ptnode_adr(ni);
PointsToNode::EscapeState old_es = npt->escape_state();
if (es > old_es)
npt->set_escape_state(es);
}
PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
uint idx = n->_idx;
PointsToNode::EscapeState es;
// If we are still collecting we don't know the answer yet
if (_collecting)
return PointsToNode::UnknownEscape;
// if the node was created after the escape computation, return
// UnknownEscape
if (idx >= (uint)_nodes->length())
return PointsToNode::UnknownEscape;
es = _nodes->at_grow(idx).escape_state();
// if we have already computed a value, return it
if (es != PointsToNode::UnknownEscape)
return es;
// compute max escape state of anything this node could point to
VectorSet ptset(Thread::current()->resource_area());
PointsTo(ptset, n, phase);
for( VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i ) {
uint pt = i.elem;
PointsToNode::EscapeState pes = _nodes->at(pt).escape_state();
if (pes > es)
es = pes;
}
// cache the computed escape state
assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
_nodes->adr_at(idx)->set_escape_state(es);
return es;
}
void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
VectorSet visited(Thread::current()->resource_area());
GrowableArray<uint> worklist;
n = skip_casts(n);
PointsToNode npt = _nodes->at_grow(n->_idx);
// If we have a JavaObject, return just that object
if (npt.node_type() == PointsToNode::JavaObject) {
ptset.set(n->_idx);
return;
}
// we may have a Phi which has not been processed
if (npt._node == NULL) {
assert(n->is_Phi(), "unprocessed node must be a Phi");
record_for_escape_analysis(n);
npt = _nodes->at(n->_idx);
}
worklist.push(n->_idx);
while(worklist.length() > 0) {
int ni = worklist.pop();
PointsToNode pn = _nodes->at_grow(ni);
if (!visited.test(ni)) {
visited.set(ni);
// ensure that all inputs of a Phi have been processed
if (_collecting && pn._node->is_Phi()) {
PhiNode *phi = pn._node->as_Phi();
process_phi_escape(phi, phase);
}
int edges_processed = 0;
for (uint e = 0; e < pn.edge_count(); e++) {
PointsToNode::EdgeType et = pn.edge_type(e);
if (et == PointsToNode::PointsToEdge) {
ptset.set(pn.edge_target(e));
edges_processed++;
} else if (et == PointsToNode::DeferredEdge) {
worklist.push(pn.edge_target(e));
edges_processed++;
}
}
if (edges_processed == 0) {
// no deferred or pointsto edges found. Assume the value was set outside
// this method. Add the phantom object to the pointsto set.
ptset.set(_phantom_object);
}
}
}
}
void ConnectionGraph::remove_deferred(uint ni) {
VectorSet visited(Thread::current()->resource_area());
uint i = 0;
PointsToNode *ptn = ptnode_adr(ni);
while(i < ptn->edge_count()) {
if (ptn->edge_type(i) != PointsToNode::DeferredEdge) {
i++;
} else {
uint t = ptn->edge_target(i);
PointsToNode *ptt = ptnode_adr(t);
ptn->remove_edge(t, PointsToNode::DeferredEdge);
if(!visited.test(t)) {
visited.set(t);
for (uint j = 0; j < ptt->edge_count(); j++) {
uint n1 = ptt->edge_target(j);
PointsToNode *pt1 = ptnode_adr(n1);
switch(ptt->edge_type(j)) {
case PointsToNode::PointsToEdge:
add_pointsto_edge(ni, n1);
break;
case PointsToNode::DeferredEdge:
add_deferred_edge(ni, n1);
break;
case PointsToNode::FieldEdge:
assert(false, "invalid connection graph");
break;
}
}
}
}
}
}
// Add an edge to node given by "to_i" from any field of adr_i whose offset
// matches "offset" A deferred edge is added if to_i is a LocalVar, and
// a pointsto edge is added if it is a JavaObject
void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
PointsToNode an = _nodes->at_grow(adr_i);
PointsToNode to = _nodes->at_grow(to_i);
bool deferred = (to.node_type() == PointsToNode::LocalVar);
for (uint fe = 0; fe < an.edge_count(); fe++) {
assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
int fi = an.edge_target(fe);
PointsToNode pf = _nodes->at_grow(fi);
int po = pf.offset();
if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
if (deferred)
add_deferred_edge(fi, to_i);
else
add_pointsto_edge(fi, to_i);
}
}
}
// Add a deferred edge from node given by "from_i" to any field of adr_i whose offset
// matches "offset"
void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
PointsToNode an = _nodes->at_grow(adr_i);
for (uint fe = 0; fe < an.edge_count(); fe++) {
assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
int fi = an.edge_target(fe);
PointsToNode pf = _nodes->at_grow(fi);
int po = pf.offset();
if (pf.edge_count() == 0) {
// we have not seen any stores to this field, assume it was set outside this method
add_pointsto_edge(fi, _phantom_object);
}
if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
add_deferred_edge(from_i, fi);
}
}
}
//
// Search memory chain of "mem" to find a MemNode whose address
// is the specified alias index. Returns the MemNode found or the
// first non-MemNode encountered.
//
Node *ConnectionGraph::find_mem(Node *mem, int alias_idx, PhaseGVN *igvn) {
if (mem == NULL)
return mem;
while (mem->is_Mem()) {
const Type *at = igvn->type(mem->in(MemNode::Address));
if (at != Type::TOP) {
assert (at->isa_ptr() != NULL, "pointer type required.");
int idx = _compile->get_alias_index(at->is_ptr());
if (idx == alias_idx)
break;
}
mem = mem->in(MemNode::Memory);
}
return mem;
}
//
// Adjust the type and inputs of an AddP which computes the
// address of a field of an instance
//
void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
assert(t != NULL, "expecting oopptr");
assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
uint inst_id = base_t->instance_id();
assert(!t->is_instance() || t->instance_id() == inst_id,
"old type must be non-instance or match new type");
const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
// ensure an alias index is allocated for the instance type
int alias_idx = _compile->get_alias_index(tinst);
igvn->set_type(addp, tinst);
// record the allocation in the node map
set_map(addp->_idx, get_map(base->_idx));
// if the Address input is not the appropriate instance type (due to intervening
// casts,) insert a cast
Node *adr = addp->in(AddPNode::Address);
const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
if (atype->instance_id() != inst_id) {
assert(!atype->is_instance(), "no conflicting instances");
const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
acast->set_req(0, adr->in(0));
igvn->set_type(acast, new_atype);
record_for_optimizer(acast);
Node *bcast = acast;
Node *abase = addp->in(AddPNode::Base);
if (abase != adr) {
bcast = new (_compile, 2) CastPPNode(abase, base_t);
bcast->set_req(0, abase->in(0));
igvn->set_type(bcast, base_t);
record_for_optimizer(bcast);
}
igvn->hash_delete(addp);
addp->set_req(AddPNode::Base, bcast);
addp->set_req(AddPNode::Address, acast);
igvn->hash_insert(addp);
record_for_optimizer(addp);
}
}
//
// Create a new version of orig_phi if necessary. Returns either the newly
// created phi or an existing phi. Sets create_new to indicate wheter a new
// phi was created. Cache the last newly created phi in the node map.
//
PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
Compile *C = _compile;
new_created = false;
int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
// nothing to do if orig_phi is bottom memory or matches alias_idx
if (phi_alias_idx == Compile::AliasIdxBot || phi_alias_idx == alias_idx) {
return orig_phi;
}
// have we already created a Phi for this alias index?
PhiNode *result = get_map_phi(orig_phi->_idx);
const TypePtr *atype = C->get_adr_type(alias_idx);
if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
return result;
}
if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
if (C->do_escape_analysis() == true && !C->failing()) {
// Retry compilation without escape analysis.
// If this is the first failure, the sentinel string will "stick"
// to the Compile object, and the C2Compiler will see it and retry.
C->record_failure(C2Compiler::retry_no_escape_analysis());
}
return NULL;
}
orig_phi_worklist.append_if_missing(orig_phi);
result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
set_map_phi(orig_phi->_idx, result);
igvn->set_type(result, result->bottom_type());
record_for_optimizer(result);
new_created = true;
return result;
}
//
// Return a new version of Memory Phi "orig_phi" with the inputs having the
// specified alias index.
//
PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
Compile *C = _compile;
bool new_phi_created;
PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
if (!new_phi_created) {
return result;
}
GrowableArray<PhiNode *> phi_list;
GrowableArray<uint> cur_input;
PhiNode *phi = orig_phi;
uint idx = 1;
bool finished = false;
while(!finished) {
while (idx < phi->req()) {
Node *mem = find_mem(phi->in(idx), alias_idx, igvn);
if (mem != NULL && mem->is_Phi()) {
PhiNode *nphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
if (new_phi_created) {
// found an phi for which we created a new split, push current one on worklist and begin
// processing new one
phi_list.push(phi);
cur_input.push(idx);
phi = mem->as_Phi();
result = nphi;
idx = 1;
continue;
} else {
mem = nphi;
}
}
if (C->failing()) {
return NULL;
}
result->set_req(idx++, mem);
}
#ifdef ASSERT
// verify that the new Phi has an input for each input of the original
assert( phi->req() == result->req(), "must have same number of inputs.");
assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
for (uint i = 1; i < phi->req(); i++) {
assert((phi->in(i) == NULL) == (result->in(i) == NULL), "inputs must correspond.");
}
#endif
// we have finished processing a Phi, see if there are any more to do
finished = (phi_list.length() == 0 );
if (!finished) {
phi = phi_list.pop();
idx = cur_input.pop();
PhiNode *prev_phi = get_map_phi(phi->_idx);
prev_phi->set_req(idx++, result);
result = prev_phi;
}
}
return result;
}
//
// Convert the types of unescaped object to instance types where possible,
// propagate the new type information through the graph, and update memory
// edges and MergeMem inputs to reflect the new type.
//
// We start with allocations (and calls which may be allocations) on alloc_worklist.
// The processing is done in 4 phases:
//
// Phase 1: Process possible allocations from alloc_worklist. Create instance
// types for the CheckCastPP for allocations where possible.
// Propagate the the new types through users as follows:
// casts and Phi: push users on alloc_worklist
// AddP: cast Base and Address inputs to the instance type
// push any AddP users on alloc_worklist and push any memnode
// users onto memnode_worklist.
// Phase 2: Process MemNode's from memnode_worklist. compute new address type and
// search the Memory chain for a store with the appropriate type
// address type. If a Phi is found, create a new version with
// the approriate memory slices from each of the Phi inputs.
// For stores, process the users as follows:
// MemNode: push on memnode_worklist
// MergeMem: push on mergemem_worklist
// Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
// moving the first node encountered of each instance type to the
// the input corresponding to its alias index.
// appropriate memory slice.
// Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
//
// In the following example, the CheckCastPP nodes are the cast of allocation
// results and the allocation of node 29 is unescaped and eligible to be an
// instance type.
//
// We start with:
//
// 7 Parm #memory
// 10 ConI "12"
// 19 CheckCastPP "Foo"
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
// 29 CheckCastPP "Foo"
// 30 AddP _ 29 29 10 Foo+12 alias_index=4
//
// 40 StoreP 25 7 20 ... alias_index=4
// 50 StoreP 35 40 30 ... alias_index=4
// 60 StoreP 45 50 20 ... alias_index=4
// 70 LoadP _ 60 30 ... alias_index=4
// 80 Phi 75 50 60 Memory alias_index=4
// 90 LoadP _ 80 30 ... alias_index=4
// 100 LoadP _ 80 20 ... alias_index=4
//
//
// Phase 1 creates an instance type for node 29 assigning it an instance id of 24
// and creating a new alias index for node 30. This gives:
//
// 7 Parm #memory
// 10 ConI "12"
// 19 CheckCastPP "Foo"
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
// 29 CheckCastPP "Foo" iid=24
// 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
//
// 40 StoreP 25 7 20 ... alias_index=4
// 50 StoreP 35 40 30 ... alias_index=6
// 60 StoreP 45 50 20 ... alias_index=4
// 70 LoadP _ 60 30 ... alias_index=6
// 80 Phi 75 50 60 Memory alias_index=4
// 90 LoadP _ 80 30 ... alias_index=6
// 100 LoadP _ 80 20 ... alias_index=4
//
// In phase 2, new memory inputs are computed for the loads and stores,
// And a new version of the phi is created. In phase 4, the inputs to
// node 80 are updated and then the memory nodes are updated with the
// values computed in phase 2. This results in:
//
// 7 Parm #memory
// 10 ConI "12"
// 19 CheckCastPP "Foo"
// 20 AddP _ 19 19 10 Foo+12 alias_index=4
// 29 CheckCastPP "Foo" iid=24
// 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
//
// 40 StoreP 25 7 20 ... alias_index=4
// 50 StoreP 35 7 30 ... alias_index=6
// 60 StoreP 45 40 20 ... alias_index=4
// 70 LoadP _ 50 30 ... alias_index=6
// 80 Phi 75 40 60 Memory alias_index=4
// 120 Phi 75 50 50 Memory alias_index=6
// 90 LoadP _ 120 30 ... alias_index=6
// 100 LoadP _ 80 20 ... alias_index=4
//
void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
GrowableArray<Node *> memnode_worklist;
GrowableArray<Node *> mergemem_worklist;
GrowableArray<PhiNode *> orig_phis;
PhaseGVN *igvn = _compile->initial_gvn();
uint new_index_start = (uint) _compile->num_alias_types();
VectorSet visited(Thread::current()->resource_area());
VectorSet ptset(Thread::current()->resource_area());
// Phase 1: Process possible allocations from alloc_worklist. Create instance
// types for the CheckCastPP for allocations where possible.
while (alloc_worklist.length() != 0) {
Node *n = alloc_worklist.pop();
uint ni = n->_idx;
if (n->is_Call()) {
CallNode *alloc = n->as_Call();
// copy escape information to call node
PointsToNode ptn = _nodes->at(alloc->_idx);
PointsToNode::EscapeState es = escape_state(alloc, igvn);
alloc->_escape_state = es;
// find CheckCastPP of call return value
n = alloc->proj_out(TypeFunc::Parms);
if (n != NULL && n->outcnt() == 1) {
n = n->unique_out();
if (n->Opcode() != Op_CheckCastPP) {
continue;
}
} else {
continue;
}
// we have an allocation or call which returns a Java object, see if it is unescaped
if (es != PointsToNode::NoEscape || !ptn._unique_type) {
continue; // can't make a unique type
}
if (alloc->is_Allocate()) {
// Set the scalar_replaceable flag before the next check.
alloc->as_Allocate()->_is_scalar_replaceable = true;
}
set_map(alloc->_idx, n);
set_map(n->_idx, alloc);
const TypeInstPtr *t = igvn->type(n)->isa_instptr();
// Unique types which are arrays are not currently supported.
// The check for AllocateArray is needed in case an array
// allocation is immediately cast to Object
if (t == NULL || alloc->is_AllocateArray())
continue; // not a TypeInstPtr
const TypeOopPtr *tinst = t->cast_to_instance(ni);
igvn->hash_delete(n);
igvn->set_type(n, tinst);
n->raise_bottom_type(tinst);
igvn->hash_insert(n);
} else if (n->is_AddP()) {
ptset.Clear();
PointsTo(ptset, n->in(AddPNode::Address), igvn);
assert(ptset.Size() == 1, "AddP address is unique");
Node *base = get_map(ptset.getelem());
split_AddP(n, base, igvn);
} else if (n->is_Phi() || n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
if (visited.test_set(n->_idx)) {
assert(n->is_Phi(), "loops only through Phi's");
continue; // already processed
}
ptset.Clear();
PointsTo(ptset, n, igvn);
if (ptset.Size() == 1) {
TypeNode *tn = n->as_Type();
Node *val = get_map(ptset.getelem());
const TypeInstPtr *val_t = igvn->type(val)->isa_instptr();;
assert(val_t != NULL && val_t->is_instance(), "instance type expected.");
const TypeInstPtr *tn_t = igvn->type(tn)->isa_instptr();;
if (tn_t != NULL && val_t->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
igvn->hash_delete(tn);
igvn->set_type(tn, val_t);
tn->set_type(val_t);
igvn->hash_insert(tn);
}
}
} else {
continue;
}
// push users on appropriate worklist
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node *use = n->fast_out(i);
if(use->is_Mem() && use->in(MemNode::Address) == n) {
memnode_worklist.push(use);
} else if (use->is_AddP() || use->is_Phi() || use->Opcode() == Op_CastPP || use->Opcode() == Op_CheckCastPP) {
alloc_worklist.push(use);
}
}
}
uint new_index_end = (uint) _compile->num_alias_types();
// Phase 2: Process MemNode's from memnode_worklist. compute new address type and
// compute new values for Memory inputs (the Memory inputs are not
// actually updated until phase 4.)
if (memnode_worklist.length() == 0)
return; // nothing to do
while (memnode_worklist.length() != 0) {
Node *n = memnode_worklist.pop();
if (n->is_Phi()) {
assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
// we don't need to do anything, but the users must be pushed if we haven't processed
// this Phi before
if (visited.test_set(n->_idx))
continue;
} else {
assert(n->is_Mem(), "memory node required.");
Node *addr = n->in(MemNode::Address);
const Type *addr_t = igvn->type(addr);
if (addr_t == Type::TOP)
continue;
assert (addr_t->isa_ptr() != NULL, "pointer type required.");
int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
Node *mem = find_mem(n->in(MemNode::Memory), alias_idx, igvn);
if (mem->is_Phi()) {
mem = split_memory_phi(mem->as_Phi(), alias_idx, orig_phis, igvn);
}
if (_compile->failing()) {
return;
}
if (mem != n->in(MemNode::Memory))
set_map(n->_idx, mem);
if (n->is_Load()) {
continue; // don't push users
} else if (n->is_LoadStore()) {
// get the memory projection
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node *use = n->fast_out(i);
if (use->Opcode() == Op_SCMemProj) {
n = use;
break;
}
}
assert(n->Opcode() == Op_SCMemProj, "memory projection required");
}
}
// push user on appropriate worklist
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
Node *use = n->fast_out(i);
if (use->is_Phi()) {
memnode_worklist.push(use);
} else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
memnode_worklist.push(use);
} else if (use->is_MergeMem()) {
mergemem_worklist.push(use);
}
}
}
// Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
// moving the first node encountered of each instance type to the
// the input corresponding to its alias index.
while (mergemem_worklist.length() != 0) {
Node *n = mergemem_worklist.pop();
assert(n->is_MergeMem(), "MergeMem node required.");
MergeMemNode *nmm = n->as_MergeMem();
// Note: we don't want to use MergeMemStream here because we only want to
// scan inputs which exist at the start, not ones we add during processing
uint nslices = nmm->req();
igvn->hash_delete(nmm);
for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
Node * mem = nmm->in(i);
Node * cur = NULL;
if (mem == NULL || mem->is_top())
continue;
while (mem->is_Mem()) {
const Type *at = igvn->type(mem->in(MemNode::Address));
if (at != Type::TOP) {
assert (at->isa_ptr() != NULL, "pointer type required.");
uint idx = (uint)_compile->get_alias_index(at->is_ptr());
if (idx == i) {
if (cur == NULL)
cur = mem;
} else {
if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
nmm->set_memory_at(idx, mem);
}
}
}
mem = mem->in(MemNode::Memory);
}
nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
if (mem->is_Phi()) {
// We have encountered a Phi, we need to split the Phi for
// any instance of the current type if we haven't encountered
// a value of the instance along the chain.
for (uint ni = new_index_start; ni < new_index_end; ni++) {
if((uint)_compile->get_general_index(ni) == i) {
Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
if (nmm->is_empty_memory(m)) {
m = split_memory_phi(mem->as_Phi(), ni, orig_phis, igvn);
if (_compile->failing()) {
return;
}
nmm->set_memory_at(ni, m);
}
}
}
}
}
igvn->hash_insert(nmm);
record_for_optimizer(nmm);
}
// Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes
//
// First update the inputs of any non-instance Phi's from
// which we split out an instance Phi. Note we don't have
// to recursively process Phi's encounted on the input memory
// chains as is done in split_memory_phi() since they will
// also be processed here.
while (orig_phis.length() != 0) {
PhiNode *phi = orig_phis.pop();
int alias_idx = _compile->get_alias_index(phi->adr_type());
igvn->hash_delete(phi);
for (uint i = 1; i < phi->req(); i++) {
Node *mem = phi->in(i);
Node *new_mem = find_mem(mem, alias_idx, igvn);
if (mem != new_mem) {
phi->set_req(i, new_mem);
}
}
igvn->hash_insert(phi);
record_for_optimizer(phi);
}
// Update the memory inputs of MemNodes with the value we computed
// in Phase 2.
for (int i = 0; i < _nodes->length(); i++) {
Node *nmem = get_map(i);
if (nmem != NULL) {
Node *n = _nodes->at(i)._node;
if (n != NULL && n->is_Mem()) {
igvn->hash_delete(n);
n->set_req(MemNode::Memory, nmem);
igvn->hash_insert(n);
record_for_optimizer(n);
}
}
}
}
void ConnectionGraph::compute_escape() {
GrowableArray<int> worklist;
GrowableArray<Node *> alloc_worklist;
VectorSet visited(Thread::current()->resource_area());
PhaseGVN *igvn = _compile->initial_gvn();
// process Phi nodes from the deferred list, they may not have
while(_deferred.size() > 0) {
Node * n = _deferred.pop();
PhiNode * phi = n->as_Phi();
process_phi_escape(phi, igvn);
}
VectorSet ptset(Thread::current()->resource_area());
// remove deferred edges from the graph and collect
// information we will need for type splitting
for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
PointsToNode * ptn = _nodes->adr_at(ni);
PointsToNode::NodeType nt = ptn->node_type();
if (nt == PointsToNode::UnknownType) {
continue; // not a node we are interested in
}
Node *n = ptn->_node;
if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
remove_deferred(ni);
if (n->is_AddP()) {
// if this AddP computes an address which may point to more that one
// object, nothing the address points to can be a unique type.
Node *base = n->in(AddPNode::Base);
ptset.Clear();
PointsTo(ptset, base, igvn);
if (ptset.Size() > 1) {
for( VectorSetI j(&ptset); j.test(); ++j ) {
PointsToNode *ptaddr = _nodes->adr_at(j.elem);
ptaddr->_unique_type = false;
}
}
}
} else if (n->is_Call()) {
// initialize _escape_state of calls to GlobalEscape
n->as_Call()->_escape_state = PointsToNode::GlobalEscape;
// push call on alloc_worlist (alocations are calls)
// for processing by split_unique_types()
alloc_worklist.push(n);
}
}
// push all GlobalEscape nodes on the worklist
for (uint nj = 0; nj < (uint)_nodes->length(); nj++) {
if (_nodes->at(nj).escape_state() == PointsToNode::GlobalEscape) {
worklist.append(nj);
}
}
// mark all node reachable from GlobalEscape nodes
while(worklist.length() > 0) {
PointsToNode n = _nodes->at(worklist.pop());
for (uint ei = 0; ei < n.edge_count(); ei++) {
uint npi = n.edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() != PointsToNode::GlobalEscape) {
np->set_escape_state(PointsToNode::GlobalEscape);
worklist.append_if_missing(npi);
}
}
}
// push all ArgEscape nodes on the worklist
for (uint nk = 0; nk < (uint)_nodes->length(); nk++) {
if (_nodes->at(nk).escape_state() == PointsToNode::ArgEscape)
worklist.push(nk);
}
// mark all node reachable from ArgEscape nodes
while(worklist.length() > 0) {
PointsToNode n = _nodes->at(worklist.pop());
for (uint ei = 0; ei < n.edge_count(); ei++) {
uint npi = n.edge_target(ei);
PointsToNode *np = ptnode_adr(npi);
if (np->escape_state() != PointsToNode::ArgEscape) {
np->set_escape_state(PointsToNode::ArgEscape);
worklist.append_if_missing(npi);
}
}
}
_collecting = false;
// Now use the escape information to create unique types for
// unescaped objects
split_unique_types(alloc_worklist);
if (_compile->failing()) return;
// Clean up after split unique types.
ResourceMark rm;
PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
}
Node * ConnectionGraph::skip_casts(Node *n) {
while(n->Opcode() == Op_CastPP || n->Opcode() == Op_CheckCastPP) {
n = n->in(1);
}
return n;
}
void ConnectionGraph::process_phi_escape(PhiNode *phi, PhaseTransform *phase) {
if (phi->type()->isa_oopptr() == NULL)
return; // nothing to do if not an oop
PointsToNode *ptadr = ptnode_adr(phi->_idx);
int incount = phi->req();
int non_null_inputs = 0;
for (int i = 1; i < incount ; i++) {
if (phi->in(i) != NULL)
non_null_inputs++;
}
if (non_null_inputs == ptadr->_inputs_processed)
return; // no new inputs since the last time this node was processed,
// the current information is valid
ptadr->_inputs_processed = non_null_inputs; // prevent recursive processing of this node
for (int j = 1; j < incount ; j++) {
Node * n = phi->in(j);
if (n == NULL)
continue; // ignore NULL
n = skip_casts(n);
if (n->is_top() || n == phi)
continue; // ignore top or inputs which go back this node
int nopc = n->Opcode();
PointsToNode npt = _nodes->at(n->_idx);
if (_nodes->at(n->_idx).node_type() == PointsToNode::JavaObject) {
add_pointsto_edge(phi->_idx, n->_idx);
} else {
add_deferred_edge(phi->_idx, n->_idx);
}
}
}
void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
_processed.set(call->_idx);
switch (call->Opcode()) {
// arguments to allocation and locking don't escape
case Op_Allocate:
case Op_AllocateArray:
case Op_Lock:
case Op_Unlock:
break;
case Op_CallStaticJava:
// For a static call, we know exactly what method is being called.
// Use bytecode estimator to record the call's escape affects
{
ciMethod *meth = call->as_CallJava()->method();
if (meth != NULL) {
const TypeTuple * d = call->tf()->domain();
BCEscapeAnalyzer call_analyzer(meth);
VectorSet ptset(Thread::current()->resource_area());
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i);
int k = i - TypeFunc::Parms;
if (at->isa_oopptr() != NULL) {
Node *arg = skip_casts(call->in(i));
if (!call_analyzer.is_arg_stack(k)) {
// The argument global escapes, mark everything it could point to
ptset.Clear();
PointsTo(ptset, arg, phase);
for( VectorSetI j(&ptset); j.test(); ++j ) {
uint pt = j.elem;
set_escape_state(pt, PointsToNode::GlobalEscape);
}
} else if (!call_analyzer.is_arg_local(k)) {
// The argument itself doesn't escape, but any fields might
ptset.Clear();
PointsTo(ptset, arg, phase);
for( VectorSetI j(&ptset); j.test(); ++j ) {
uint pt = j.elem;
add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
}
}
}
}
call_analyzer.copy_dependencies(C()->dependencies());
break;
}
// fall-through if not a Java method
}
default:
// Some other type of call, assume the worst case: all arguments
// globally escape.
{
// adjust escape state for outgoing arguments
const TypeTuple * d = call->tf()->domain();
VectorSet ptset(Thread::current()->resource_area());
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i);
if (at->isa_oopptr() != NULL) {
Node *arg = skip_casts(call->in(i));
ptset.Clear();
PointsTo(ptset, arg, phase);
for( VectorSetI j(&ptset); j.test(); ++j ) {
uint pt = j.elem;
set_escape_state(pt, PointsToNode::GlobalEscape);
}
}
}
}
}
}
void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
CallNode *call = resproj->in(0)->as_Call();
PointsToNode *ptadr = ptnode_adr(resproj->_idx);
ptadr->_node = resproj;
ptadr->set_node_type(PointsToNode::LocalVar);
set_escape_state(resproj->_idx, PointsToNode::UnknownEscape);
_processed.set(resproj->_idx);
switch (call->Opcode()) {
case Op_Allocate:
{
Node *k = call->in(AllocateNode::KlassNode);
const TypeKlassPtr *kt;
if (k->Opcode() == Op_LoadKlass) {
kt = k->as_Load()->type()->isa_klassptr();
} else {
kt = k->as_Type()->type()->isa_klassptr();
}
assert(kt != NULL, "TypeKlassPtr required.");
ciKlass* cik = kt->klass();
ciInstanceKlass* ciik = cik->as_instance_klass();
PointsToNode *ptadr = ptnode_adr(call->_idx);
ptadr->set_node_type(PointsToNode::JavaObject);
if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
set_escape_state(call->_idx, PointsToNode::GlobalEscape);
add_pointsto_edge(resproj->_idx, _phantom_object);
} else {
set_escape_state(call->_idx, PointsToNode::NoEscape);
add_pointsto_edge(resproj->_idx, call->_idx);
}
_processed.set(call->_idx);
break;
}
case Op_AllocateArray:
{
PointsToNode *ptadr = ptnode_adr(call->_idx);
ptadr->set_node_type(PointsToNode::JavaObject);
set_escape_state(call->_idx, PointsToNode::NoEscape);
_processed.set(call->_idx);
add_pointsto_edge(resproj->_idx, call->_idx);
break;
}
case Op_Lock:
case Op_Unlock:
break;
case Op_CallStaticJava:
// For a static call, we know exactly what method is being called.
// Use bytecode estimator to record whether the call's return value escapes
{
const TypeTuple *r = call->tf()->range();
const Type* ret_type = NULL;
if (r->cnt() > TypeFunc::Parms)
ret_type = r->field_at(TypeFunc::Parms);
// Note: we use isa_ptr() instead of isa_oopptr() here because the
// _multianewarray functions return a TypeRawPtr.
if (ret_type == NULL || ret_type->isa_ptr() == NULL)
break; // doesn't return a pointer type
ciMethod *meth = call->as_CallJava()->method();
if (meth == NULL) {
// not a Java method, assume global escape
set_escape_state(call->_idx, PointsToNode::GlobalEscape);
if (resproj != NULL)
add_pointsto_edge(resproj->_idx, _phantom_object);
} else {
BCEscapeAnalyzer call_analyzer(meth);
VectorSet ptset(Thread::current()->resource_area());
if (call_analyzer.is_return_local() && resproj != NULL) {
// determine whether any arguments are returned
const TypeTuple * d = call->tf()->domain();
set_escape_state(call->_idx, PointsToNode::NoEscape);
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
const Type* at = d->field_at(i);
if (at->isa_oopptr() != NULL) {
Node *arg = skip_casts(call->in(i));
if (call_analyzer.is_arg_returned(i - TypeFunc::Parms)) {
PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
if (arg_esp->node_type() == PointsToNode::JavaObject)
add_pointsto_edge(resproj->_idx, arg->_idx);
else
add_deferred_edge(resproj->_idx, arg->_idx);
arg_esp->_hidden_alias = true;
}
}
}
} else {
set_escape_state(call->_idx, PointsToNode::GlobalEscape);
if (resproj != NULL)
add_pointsto_edge(resproj->_idx, _phantom_object);
}
call_analyzer.copy_dependencies(C()->dependencies());
}
break;
}
default:
// Some other type of call, assume the worst case that the
// returned value, if any, globally escapes.
{
const TypeTuple *r = call->tf()->range();
if (r->cnt() > TypeFunc::Parms) {
const Type* ret_type = r->field_at(TypeFunc::Parms);
// Note: we use isa_ptr() instead of isa_oopptr() here because the
// _multianewarray functions return a TypeRawPtr.
if (ret_type->isa_ptr() != NULL) {
PointsToNode *ptadr = ptnode_adr(call->_idx);
ptadr->set_node_type(PointsToNode::JavaObject);
set_escape_state(call->_idx, PointsToNode::GlobalEscape);
if (resproj != NULL)
add_pointsto_edge(resproj->_idx, _phantom_object);
}
}
}
}
}
void ConnectionGraph::record_for_escape_analysis(Node *n) {
if (_collecting) {
if (n->is_Phi()) {
PhiNode *phi = n->as_Phi();
const Type *pt = phi->type();
if ((pt->isa_oopptr() != NULL) || pt == TypePtr::NULL_PTR) {
PointsToNode *ptn = ptnode_adr(phi->_idx);
ptn->set_node_type(PointsToNode::LocalVar);
ptn->_node = n;
_deferred.push(n);
}
}
}
}
void ConnectionGraph::record_escape_work(Node *n, PhaseTransform *phase) {
int opc = n->Opcode();
PointsToNode *ptadr = ptnode_adr(n->_idx);
if (_processed.test(n->_idx))
return;
ptadr->_node = n;
if (n->is_Call()) {
CallNode *call = n->as_Call();
process_call_arguments(call, phase);
return;
}
switch (opc) {
case Op_AddP:
{
Node *base = skip_casts(n->in(AddPNode::Base));
ptadr->set_node_type(PointsToNode::Field);
// create a field edge to this node from everything adr could point to
VectorSet ptset(Thread::current()->resource_area());
PointsTo(ptset, base, phase);
for( VectorSetI i(&ptset); i.test(); ++i ) {
uint pt = i.elem;
add_field_edge(pt, n->_idx, type_to_offset(phase->type(n)));
}
break;
}
case Op_Parm:
{
ProjNode *nproj = n->as_Proj();
uint con = nproj->_con;
if (con < TypeFunc::Parms)
return;
const Type *t = nproj->in(0)->as_Start()->_domain->field_at(con);
if (t->isa_ptr() == NULL)
return;
ptadr->set_node_type(PointsToNode::JavaObject);
if (t->isa_oopptr() != NULL) {
set_escape_state(n->_idx, PointsToNode::ArgEscape);
} else {
// this must be the incoming state of an OSR compile, we have to assume anything
// passed in globally escapes
assert(_compile->is_osr_compilation(), "bad argument type for non-osr compilation");
set_escape_state(n->_idx, PointsToNode::GlobalEscape);
}
_processed.set(n->_idx);
break;
}
case Op_Phi:
{
PhiNode *phi = n->as_Phi();
if (phi->type()->isa_oopptr() == NULL)
return; // nothing to do if not an oop
ptadr->set_node_type(PointsToNode::LocalVar);
process_phi_escape(phi, phase);
break;
}
case Op_CreateEx:
{
// assume that all exception objects globally escape
ptadr->set_node_type(PointsToNode::JavaObject);
set_escape_state(n->_idx, PointsToNode::GlobalEscape);
_processed.set(n->_idx);
break;
}
case Op_ConP:
{
const Type *t = phase->type(n);
ptadr->set_node_type(PointsToNode::JavaObject);
// assume all pointer constants globally escape except for null
if (t == TypePtr::NULL_PTR)
set_escape_state(n->_idx, PointsToNode::NoEscape);
else
set_escape_state(n->_idx, PointsToNode::GlobalEscape);
_processed.set(n->_idx);
break;
}
case Op_LoadKlass:
{
ptadr->set_node_type(PointsToNode::JavaObject);
set_escape_state(n->_idx, PointsToNode::GlobalEscape);
_processed.set(n->_idx);
break;
}
case Op_LoadP:
{
const Type *t = phase->type(n);
if (!t->isa_oopptr())
return;
ptadr->set_node_type(PointsToNode::LocalVar);
set_escape_state(n->_idx, PointsToNode::UnknownEscape);
Node *adr = skip_casts(n->in(MemNode::Address));
const Type *adr_type = phase->type(adr);
Node *adr_base = skip_casts((adr->Opcode() == Op_AddP) ? adr->in(AddPNode::Base) : adr);
// For everything "adr" could point to, create a deferred edge from
// this node to each field with the same offset as "adr_type"
VectorSet ptset(Thread::current()->resource_area());
PointsTo(ptset, adr_base, phase);
// If ptset is empty, then this value must have been set outside
// this method, so we add the phantom node
if (ptset.Size() == 0)
ptset.set(_phantom_object);
for( VectorSetI i(&ptset); i.test(); ++i ) {
uint pt = i.elem;
add_deferred_edge_to_fields(n->_idx, pt, type_to_offset(adr_type));
}
break;
}
case Op_StoreP:
case Op_StorePConditional:
case Op_CompareAndSwapP:
{
Node *adr = n->in(MemNode::Address);
Node *val = skip_casts(n->in(MemNode::ValueIn));
const Type *adr_type = phase->type(adr);
if (!adr_type->isa_oopptr())
return;
assert(adr->Opcode() == Op_AddP, "expecting an AddP");
Node *adr_base = adr->in(AddPNode::Base);
// For everything "adr_base" could point to, create a deferred edge to "val" from each field
// with the same offset as "adr_type"
VectorSet ptset(Thread::current()->resource_area());
PointsTo(ptset, adr_base, phase);
for( VectorSetI i(&ptset); i.test(); ++i ) {
uint pt = i.elem;
add_edge_from_fields(pt, val->_idx, type_to_offset(adr_type));
}
break;
}
case Op_Proj:
{
ProjNode *nproj = n->as_Proj();
Node *n0 = nproj->in(0);
// we are only interested in the result projection from a call
if (nproj->_con == TypeFunc::Parms && n0->is_Call() ) {
process_call_result(nproj, phase);
}
break;
}
case Op_CastPP:
case Op_CheckCastPP:
{
ptadr->set_node_type(PointsToNode::LocalVar);
int ti = n->in(1)->_idx;
if (_nodes->at(ti).node_type() == PointsToNode::JavaObject) {
add_pointsto_edge(n->_idx, ti);
} else {
add_deferred_edge(n->_idx, ti);
}
break;
}
default:
;
// nothing to do
}
}
void ConnectionGraph::record_escape(Node *n, PhaseTransform *phase) {
if (_collecting)
record_escape_work(n, phase);
}
#ifndef PRODUCT
void ConnectionGraph::dump() {
PhaseGVN *igvn = _compile->initial_gvn();
bool first = true;
for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
PointsToNode *esp = _nodes->adr_at(ni);
if (esp->node_type() == PointsToNode::UnknownType || esp->_node == NULL)
continue;
PointsToNode::EscapeState es = escape_state(esp->_node, igvn);
if (es == PointsToNode::NoEscape || (Verbose &&
(es != PointsToNode::UnknownEscape || esp->edge_count() != 0))) {
// don't print null pointer node which almost every method has
if (esp->_node->Opcode() != Op_ConP || igvn->type(esp->_node) != TypePtr::NULL_PTR) {
if (first) {
tty->print("======== Connection graph for ");
C()->method()->print_short_name();
tty->cr();
first = false;
}
tty->print("%4d ", ni);
esp->dump();
}
}
}
}
#endif