7b4f8073f0
Move symbols from permgen into C heap and reference count them Reviewed-by: never, acorn, jmasa, stefank
692 lines
26 KiB
C++
692 lines
26 KiB
C++
/*
|
|
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/symbolTable.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "gc_implementation/parallelScavenge/generationSizer.hpp"
|
|
#include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
|
|
#include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
|
|
#include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
|
|
#include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
|
|
#include "gc_implementation/parallelScavenge/psOldGen.hpp"
|
|
#include "gc_implementation/parallelScavenge/psPermGen.hpp"
|
|
#include "gc_implementation/parallelScavenge/psScavenge.hpp"
|
|
#include "gc_implementation/parallelScavenge/psYoungGen.hpp"
|
|
#include "gc_implementation/shared/isGCActiveMark.hpp"
|
|
#include "gc_implementation/shared/spaceDecorator.hpp"
|
|
#include "gc_interface/gcCause.hpp"
|
|
#include "memory/gcLocker.inline.hpp"
|
|
#include "memory/referencePolicy.hpp"
|
|
#include "memory/referenceProcessor.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/biasedLocking.hpp"
|
|
#include "runtime/fprofiler.hpp"
|
|
#include "runtime/safepoint.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
#include "services/management.hpp"
|
|
#include "services/memoryService.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/stack.inline.hpp"
|
|
|
|
elapsedTimer PSMarkSweep::_accumulated_time;
|
|
unsigned int PSMarkSweep::_total_invocations = 0;
|
|
jlong PSMarkSweep::_time_of_last_gc = 0;
|
|
CollectorCounters* PSMarkSweep::_counters = NULL;
|
|
|
|
void PSMarkSweep::initialize() {
|
|
MemRegion mr = Universe::heap()->reserved_region();
|
|
_ref_processor = new ReferenceProcessor(mr,
|
|
true, // atomic_discovery
|
|
false); // mt_discovery
|
|
_counters = new CollectorCounters("PSMarkSweep", 1);
|
|
}
|
|
|
|
// This method contains all heap specific policy for invoking mark sweep.
|
|
// PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
|
|
// the heap. It will do nothing further. If we need to bail out for policy
|
|
// reasons, scavenge before full gc, or any other specialized behavior, it
|
|
// needs to be added here.
|
|
//
|
|
// Note that this method should only be called from the vm_thread while
|
|
// at a safepoint!
|
|
//
|
|
// Note that the all_soft_refs_clear flag in the collector policy
|
|
// may be true because this method can be called without intervening
|
|
// activity. For example when the heap space is tight and full measure
|
|
// are being taken to free space.
|
|
|
|
void PSMarkSweep::invoke(bool maximum_heap_compaction) {
|
|
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
|
|
assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
|
|
assert(!Universe::heap()->is_gc_active(), "not reentrant");
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
GCCause::Cause gc_cause = heap->gc_cause();
|
|
PSAdaptiveSizePolicy* policy = heap->size_policy();
|
|
IsGCActiveMark mark;
|
|
|
|
if (ScavengeBeforeFullGC) {
|
|
PSScavenge::invoke_no_policy();
|
|
}
|
|
|
|
const bool clear_all_soft_refs =
|
|
heap->collector_policy()->should_clear_all_soft_refs();
|
|
|
|
int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
|
|
IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
|
|
PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
|
|
}
|
|
|
|
// This method contains no policy. You should probably
|
|
// be calling invoke() instead.
|
|
void PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
|
|
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
|
|
assert(ref_processor() != NULL, "Sanity");
|
|
|
|
if (GC_locker::check_active_before_gc()) {
|
|
return;
|
|
}
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
GCCause::Cause gc_cause = heap->gc_cause();
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
PSAdaptiveSizePolicy* size_policy = heap->size_policy();
|
|
|
|
// The scope of casr should end after code that can change
|
|
// CollectorPolicy::_should_clear_all_soft_refs.
|
|
ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
|
|
|
|
PSYoungGen* young_gen = heap->young_gen();
|
|
PSOldGen* old_gen = heap->old_gen();
|
|
PSPermGen* perm_gen = heap->perm_gen();
|
|
|
|
// Increment the invocation count
|
|
heap->increment_total_collections(true /* full */);
|
|
|
|
// Save information needed to minimize mangling
|
|
heap->record_gen_tops_before_GC();
|
|
|
|
// We need to track unique mark sweep invocations as well.
|
|
_total_invocations++;
|
|
|
|
AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
|
|
|
|
if (PrintHeapAtGC) {
|
|
Universe::print_heap_before_gc();
|
|
}
|
|
|
|
// Fill in TLABs
|
|
heap->accumulate_statistics_all_tlabs();
|
|
heap->ensure_parsability(true); // retire TLABs
|
|
|
|
if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
|
|
HandleMark hm; // Discard invalid handles created during verification
|
|
gclog_or_tty->print(" VerifyBeforeGC:");
|
|
Universe::verify(true);
|
|
}
|
|
|
|
// Verify object start arrays
|
|
if (VerifyObjectStartArray &&
|
|
VerifyBeforeGC) {
|
|
old_gen->verify_object_start_array();
|
|
perm_gen->verify_object_start_array();
|
|
}
|
|
|
|
heap->pre_full_gc_dump();
|
|
|
|
// Filled in below to track the state of the young gen after the collection.
|
|
bool eden_empty;
|
|
bool survivors_empty;
|
|
bool young_gen_empty;
|
|
|
|
{
|
|
HandleMark hm;
|
|
const bool is_system_gc = gc_cause == GCCause::_java_lang_system_gc;
|
|
// This is useful for debugging but don't change the output the
|
|
// the customer sees.
|
|
const char* gc_cause_str = "Full GC";
|
|
if (is_system_gc && PrintGCDetails) {
|
|
gc_cause_str = "Full GC (System)";
|
|
}
|
|
gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
|
|
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
|
|
TraceTime t1(gc_cause_str, PrintGC, !PrintGCDetails, gclog_or_tty);
|
|
TraceCollectorStats tcs(counters());
|
|
TraceMemoryManagerStats tms(true /* Full GC */);
|
|
|
|
if (TraceGen1Time) accumulated_time()->start();
|
|
|
|
// Let the size policy know we're starting
|
|
size_policy->major_collection_begin();
|
|
|
|
// When collecting the permanent generation methodOops may be moving,
|
|
// so we either have to flush all bcp data or convert it into bci.
|
|
CodeCache::gc_prologue();
|
|
Threads::gc_prologue();
|
|
BiasedLocking::preserve_marks();
|
|
|
|
// Capture heap size before collection for printing.
|
|
size_t prev_used = heap->used();
|
|
|
|
// Capture perm gen size before collection for sizing.
|
|
size_t perm_gen_prev_used = perm_gen->used_in_bytes();
|
|
|
|
// For PrintGCDetails
|
|
size_t old_gen_prev_used = old_gen->used_in_bytes();
|
|
size_t young_gen_prev_used = young_gen->used_in_bytes();
|
|
|
|
allocate_stacks();
|
|
|
|
NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
|
|
COMPILER2_PRESENT(DerivedPointerTable::clear());
|
|
|
|
ref_processor()->enable_discovery();
|
|
ref_processor()->setup_policy(clear_all_softrefs);
|
|
|
|
mark_sweep_phase1(clear_all_softrefs);
|
|
|
|
mark_sweep_phase2();
|
|
|
|
// Don't add any more derived pointers during phase3
|
|
COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
|
|
COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
|
|
|
|
mark_sweep_phase3();
|
|
|
|
mark_sweep_phase4();
|
|
|
|
restore_marks();
|
|
|
|
deallocate_stacks();
|
|
|
|
if (ZapUnusedHeapArea) {
|
|
// Do a complete mangle (top to end) because the usage for
|
|
// scratch does not maintain a top pointer.
|
|
young_gen->to_space()->mangle_unused_area_complete();
|
|
}
|
|
|
|
eden_empty = young_gen->eden_space()->is_empty();
|
|
if (!eden_empty) {
|
|
eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
|
|
}
|
|
|
|
// Update heap occupancy information which is used as
|
|
// input to soft ref clearing policy at the next gc.
|
|
Universe::update_heap_info_at_gc();
|
|
|
|
survivors_empty = young_gen->from_space()->is_empty() &&
|
|
young_gen->to_space()->is_empty();
|
|
young_gen_empty = eden_empty && survivors_empty;
|
|
|
|
BarrierSet* bs = heap->barrier_set();
|
|
if (bs->is_a(BarrierSet::ModRef)) {
|
|
ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
|
|
MemRegion old_mr = heap->old_gen()->reserved();
|
|
MemRegion perm_mr = heap->perm_gen()->reserved();
|
|
assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
|
|
|
|
if (young_gen_empty) {
|
|
modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
|
|
} else {
|
|
modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
|
|
}
|
|
}
|
|
|
|
BiasedLocking::restore_marks();
|
|
Threads::gc_epilogue();
|
|
CodeCache::gc_epilogue();
|
|
JvmtiExport::gc_epilogue();
|
|
|
|
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
|
|
|
|
ref_processor()->enqueue_discovered_references(NULL);
|
|
|
|
// Update time of last GC
|
|
reset_millis_since_last_gc();
|
|
|
|
// Let the size policy know we're done
|
|
size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
|
|
|
|
if (UseAdaptiveSizePolicy) {
|
|
|
|
if (PrintAdaptiveSizePolicy) {
|
|
gclog_or_tty->print("AdaptiveSizeStart: ");
|
|
gclog_or_tty->stamp();
|
|
gclog_or_tty->print_cr(" collection: %d ",
|
|
heap->total_collections());
|
|
if (Verbose) {
|
|
gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
|
|
" perm_gen_capacity: %d ",
|
|
old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
|
|
perm_gen->capacity_in_bytes());
|
|
}
|
|
}
|
|
|
|
// Don't check if the size_policy is ready here. Let
|
|
// the size_policy check that internally.
|
|
if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
|
|
((gc_cause != GCCause::_java_lang_system_gc) ||
|
|
UseAdaptiveSizePolicyWithSystemGC)) {
|
|
// Calculate optimal free space amounts
|
|
assert(young_gen->max_size() >
|
|
young_gen->from_space()->capacity_in_bytes() +
|
|
young_gen->to_space()->capacity_in_bytes(),
|
|
"Sizes of space in young gen are out-of-bounds");
|
|
size_t max_eden_size = young_gen->max_size() -
|
|
young_gen->from_space()->capacity_in_bytes() -
|
|
young_gen->to_space()->capacity_in_bytes();
|
|
size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
|
|
young_gen->eden_space()->used_in_bytes(),
|
|
old_gen->used_in_bytes(),
|
|
perm_gen->used_in_bytes(),
|
|
young_gen->eden_space()->capacity_in_bytes(),
|
|
old_gen->max_gen_size(),
|
|
max_eden_size,
|
|
true /* full gc*/,
|
|
gc_cause,
|
|
heap->collector_policy());
|
|
|
|
heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
|
|
|
|
// Don't resize the young generation at an major collection. A
|
|
// desired young generation size may have been calculated but
|
|
// resizing the young generation complicates the code because the
|
|
// resizing of the old generation may have moved the boundary
|
|
// between the young generation and the old generation. Let the
|
|
// young generation resizing happen at the minor collections.
|
|
}
|
|
if (PrintAdaptiveSizePolicy) {
|
|
gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
|
|
heap->total_collections());
|
|
}
|
|
}
|
|
|
|
if (UsePerfData) {
|
|
heap->gc_policy_counters()->update_counters();
|
|
heap->gc_policy_counters()->update_old_capacity(
|
|
old_gen->capacity_in_bytes());
|
|
heap->gc_policy_counters()->update_young_capacity(
|
|
young_gen->capacity_in_bytes());
|
|
}
|
|
|
|
heap->resize_all_tlabs();
|
|
|
|
// We collected the perm gen, so we'll resize it here.
|
|
perm_gen->compute_new_size(perm_gen_prev_used);
|
|
|
|
if (TraceGen1Time) accumulated_time()->stop();
|
|
|
|
if (PrintGC) {
|
|
if (PrintGCDetails) {
|
|
// Don't print a GC timestamp here. This is after the GC so
|
|
// would be confusing.
|
|
young_gen->print_used_change(young_gen_prev_used);
|
|
old_gen->print_used_change(old_gen_prev_used);
|
|
}
|
|
heap->print_heap_change(prev_used);
|
|
// Do perm gen after heap becase prev_used does
|
|
// not include the perm gen (done this way in the other
|
|
// collectors).
|
|
if (PrintGCDetails) {
|
|
perm_gen->print_used_change(perm_gen_prev_used);
|
|
}
|
|
}
|
|
|
|
// Track memory usage and detect low memory
|
|
MemoryService::track_memory_usage();
|
|
heap->update_counters();
|
|
}
|
|
|
|
if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
|
|
HandleMark hm; // Discard invalid handles created during verification
|
|
gclog_or_tty->print(" VerifyAfterGC:");
|
|
Universe::verify(false);
|
|
}
|
|
|
|
// Re-verify object start arrays
|
|
if (VerifyObjectStartArray &&
|
|
VerifyAfterGC) {
|
|
old_gen->verify_object_start_array();
|
|
perm_gen->verify_object_start_array();
|
|
}
|
|
|
|
if (ZapUnusedHeapArea) {
|
|
old_gen->object_space()->check_mangled_unused_area_complete();
|
|
perm_gen->object_space()->check_mangled_unused_area_complete();
|
|
}
|
|
|
|
NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
|
|
|
|
if (PrintHeapAtGC) {
|
|
Universe::print_heap_after_gc();
|
|
}
|
|
|
|
heap->post_full_gc_dump();
|
|
|
|
#ifdef TRACESPINNING
|
|
ParallelTaskTerminator::print_termination_counts();
|
|
#endif
|
|
}
|
|
|
|
bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
|
|
PSYoungGen* young_gen,
|
|
PSOldGen* old_gen) {
|
|
MutableSpace* const eden_space = young_gen->eden_space();
|
|
assert(!eden_space->is_empty(), "eden must be non-empty");
|
|
assert(young_gen->virtual_space()->alignment() ==
|
|
old_gen->virtual_space()->alignment(), "alignments do not match");
|
|
|
|
if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
|
|
return false;
|
|
}
|
|
|
|
// Both generations must be completely committed.
|
|
if (young_gen->virtual_space()->uncommitted_size() != 0) {
|
|
return false;
|
|
}
|
|
if (old_gen->virtual_space()->uncommitted_size() != 0) {
|
|
return false;
|
|
}
|
|
|
|
// Figure out how much to take from eden. Include the average amount promoted
|
|
// in the total; otherwise the next young gen GC will simply bail out to a
|
|
// full GC.
|
|
const size_t alignment = old_gen->virtual_space()->alignment();
|
|
const size_t eden_used = eden_space->used_in_bytes();
|
|
const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
|
|
const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
|
|
const size_t eden_capacity = eden_space->capacity_in_bytes();
|
|
|
|
if (absorb_size >= eden_capacity) {
|
|
return false; // Must leave some space in eden.
|
|
}
|
|
|
|
const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
|
|
if (new_young_size < young_gen->min_gen_size()) {
|
|
return false; // Respect young gen minimum size.
|
|
}
|
|
|
|
if (TraceAdaptiveGCBoundary && Verbose) {
|
|
gclog_or_tty->print(" absorbing " SIZE_FORMAT "K: "
|
|
"eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
|
|
"from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
|
|
"young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
|
|
absorb_size / K,
|
|
eden_capacity / K, (eden_capacity - absorb_size) / K,
|
|
young_gen->from_space()->used_in_bytes() / K,
|
|
young_gen->to_space()->used_in_bytes() / K,
|
|
young_gen->capacity_in_bytes() / K, new_young_size / K);
|
|
}
|
|
|
|
// Fill the unused part of the old gen.
|
|
MutableSpace* const old_space = old_gen->object_space();
|
|
HeapWord* const unused_start = old_space->top();
|
|
size_t const unused_words = pointer_delta(old_space->end(), unused_start);
|
|
|
|
if (unused_words > 0) {
|
|
if (unused_words < CollectedHeap::min_fill_size()) {
|
|
return false; // If the old gen cannot be filled, must give up.
|
|
}
|
|
CollectedHeap::fill_with_objects(unused_start, unused_words);
|
|
}
|
|
|
|
// Take the live data from eden and set both top and end in the old gen to
|
|
// eden top. (Need to set end because reset_after_change() mangles the region
|
|
// from end to virtual_space->high() in debug builds).
|
|
HeapWord* const new_top = eden_space->top();
|
|
old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
|
|
absorb_size);
|
|
young_gen->reset_after_change();
|
|
old_space->set_top(new_top);
|
|
old_space->set_end(new_top);
|
|
old_gen->reset_after_change();
|
|
|
|
// Update the object start array for the filler object and the data from eden.
|
|
ObjectStartArray* const start_array = old_gen->start_array();
|
|
for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
|
|
start_array->allocate_block(p);
|
|
}
|
|
|
|
// Could update the promoted average here, but it is not typically updated at
|
|
// full GCs and the value to use is unclear. Something like
|
|
//
|
|
// cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
|
|
|
|
size_policy->set_bytes_absorbed_from_eden(absorb_size);
|
|
return true;
|
|
}
|
|
|
|
void PSMarkSweep::allocate_stacks() {
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
|
|
PSYoungGen* young_gen = heap->young_gen();
|
|
|
|
MutableSpace* to_space = young_gen->to_space();
|
|
_preserved_marks = (PreservedMark*)to_space->top();
|
|
_preserved_count = 0;
|
|
|
|
// We want to calculate the size in bytes first.
|
|
_preserved_count_max = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
|
|
// Now divide by the size of a PreservedMark
|
|
_preserved_count_max /= sizeof(PreservedMark);
|
|
}
|
|
|
|
|
|
void PSMarkSweep::deallocate_stacks() {
|
|
_preserved_mark_stack.clear(true);
|
|
_preserved_oop_stack.clear(true);
|
|
_marking_stack.clear();
|
|
_objarray_stack.clear(true);
|
|
_revisit_klass_stack.clear(true);
|
|
_revisit_mdo_stack.clear(true);
|
|
}
|
|
|
|
void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
|
|
// Recursively traverse all live objects and mark them
|
|
EventMark m("1 mark object");
|
|
TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
|
|
trace(" 1");
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
|
|
// General strong roots.
|
|
{
|
|
ParallelScavengeHeap::ParStrongRootsScope psrs;
|
|
Universe::oops_do(mark_and_push_closure());
|
|
ReferenceProcessor::oops_do(mark_and_push_closure());
|
|
JNIHandles::oops_do(mark_and_push_closure()); // Global (strong) JNI handles
|
|
CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
|
|
Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
|
|
ObjectSynchronizer::oops_do(mark_and_push_closure());
|
|
FlatProfiler::oops_do(mark_and_push_closure());
|
|
Management::oops_do(mark_and_push_closure());
|
|
JvmtiExport::oops_do(mark_and_push_closure());
|
|
SystemDictionary::always_strong_oops_do(mark_and_push_closure());
|
|
// Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
|
|
//CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
|
|
}
|
|
|
|
// Flush marking stack.
|
|
follow_stack();
|
|
|
|
// Process reference objects found during marking
|
|
{
|
|
ref_processor()->setup_policy(clear_all_softrefs);
|
|
ref_processor()->process_discovered_references(
|
|
is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL);
|
|
}
|
|
|
|
// Follow system dictionary roots and unload classes
|
|
bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
|
|
|
|
// Follow code cache roots
|
|
CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
|
|
purged_class);
|
|
follow_stack(); // Flush marking stack
|
|
|
|
// Update subklass/sibling/implementor links of live klasses
|
|
follow_weak_klass_links();
|
|
assert(_marking_stack.is_empty(), "just drained");
|
|
|
|
// Visit memoized mdo's and clear unmarked weak refs
|
|
follow_mdo_weak_refs();
|
|
assert(_marking_stack.is_empty(), "just drained");
|
|
|
|
// Visit interned string tables and delete unmarked oops
|
|
StringTable::unlink(is_alive_closure());
|
|
// Clean up unreferenced symbols in symbol table.
|
|
SymbolTable::unlink();
|
|
|
|
assert(_marking_stack.is_empty(), "stack should be empty by now");
|
|
}
|
|
|
|
|
|
void PSMarkSweep::mark_sweep_phase2() {
|
|
EventMark m("2 compute new addresses");
|
|
TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
|
|
trace("2");
|
|
|
|
// Now all live objects are marked, compute the new object addresses.
|
|
|
|
// It is imperative that we traverse perm_gen LAST. If dead space is
|
|
// allowed a range of dead object may get overwritten by a dead int
|
|
// array. If perm_gen is not traversed last a klassOop may get
|
|
// overwritten. This is fine since it is dead, but if the class has dead
|
|
// instances we have to skip them, and in order to find their size we
|
|
// need the klassOop!
|
|
//
|
|
// It is not required that we traverse spaces in the same order in
|
|
// phase2, phase3 and phase4, but the ValidateMarkSweep live oops
|
|
// tracking expects us to do so. See comment under phase4.
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
|
|
PSOldGen* old_gen = heap->old_gen();
|
|
PSPermGen* perm_gen = heap->perm_gen();
|
|
|
|
// Begin compacting into the old gen
|
|
PSMarkSweepDecorator::set_destination_decorator_tenured();
|
|
|
|
// This will also compact the young gen spaces.
|
|
old_gen->precompact();
|
|
|
|
// Compact the perm gen into the perm gen
|
|
PSMarkSweepDecorator::set_destination_decorator_perm_gen();
|
|
|
|
perm_gen->precompact();
|
|
}
|
|
|
|
// This should be moved to the shared markSweep code!
|
|
class PSAlwaysTrueClosure: public BoolObjectClosure {
|
|
public:
|
|
void do_object(oop p) { ShouldNotReachHere(); }
|
|
bool do_object_b(oop p) { return true; }
|
|
};
|
|
static PSAlwaysTrueClosure always_true;
|
|
|
|
void PSMarkSweep::mark_sweep_phase3() {
|
|
// Adjust the pointers to reflect the new locations
|
|
EventMark m("3 adjust pointers");
|
|
TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
|
|
trace("3");
|
|
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
|
|
PSYoungGen* young_gen = heap->young_gen();
|
|
PSOldGen* old_gen = heap->old_gen();
|
|
PSPermGen* perm_gen = heap->perm_gen();
|
|
|
|
// General strong roots.
|
|
Universe::oops_do(adjust_root_pointer_closure());
|
|
ReferenceProcessor::oops_do(adjust_root_pointer_closure());
|
|
JNIHandles::oops_do(adjust_root_pointer_closure()); // Global (strong) JNI handles
|
|
Threads::oops_do(adjust_root_pointer_closure(), NULL);
|
|
ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
|
|
FlatProfiler::oops_do(adjust_root_pointer_closure());
|
|
Management::oops_do(adjust_root_pointer_closure());
|
|
JvmtiExport::oops_do(adjust_root_pointer_closure());
|
|
// SO_AllClasses
|
|
SystemDictionary::oops_do(adjust_root_pointer_closure());
|
|
//CodeCache::scavenge_root_nmethods_oops_do(adjust_root_pointer_closure());
|
|
|
|
// Now adjust pointers in remaining weak roots. (All of which should
|
|
// have been cleared if they pointed to non-surviving objects.)
|
|
// Global (weak) JNI handles
|
|
JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
|
|
|
|
CodeCache::oops_do(adjust_pointer_closure());
|
|
StringTable::oops_do(adjust_root_pointer_closure());
|
|
ref_processor()->weak_oops_do(adjust_root_pointer_closure());
|
|
PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
|
|
|
|
adjust_marks();
|
|
|
|
young_gen->adjust_pointers();
|
|
old_gen->adjust_pointers();
|
|
perm_gen->adjust_pointers();
|
|
}
|
|
|
|
void PSMarkSweep::mark_sweep_phase4() {
|
|
EventMark m("4 compact heap");
|
|
TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
|
|
trace("4");
|
|
|
|
// All pointers are now adjusted, move objects accordingly
|
|
|
|
// It is imperative that we traverse perm_gen first in phase4. All
|
|
// classes must be allocated earlier than their instances, and traversing
|
|
// perm_gen first makes sure that all klassOops have moved to their new
|
|
// location before any instance does a dispatch through it's klass!
|
|
ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
|
|
assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
|
|
|
|
PSYoungGen* young_gen = heap->young_gen();
|
|
PSOldGen* old_gen = heap->old_gen();
|
|
PSPermGen* perm_gen = heap->perm_gen();
|
|
|
|
perm_gen->compact();
|
|
old_gen->compact();
|
|
young_gen->compact();
|
|
}
|
|
|
|
jlong PSMarkSweep::millis_since_last_gc() {
|
|
jlong ret_val = os::javaTimeMillis() - _time_of_last_gc;
|
|
// XXX See note in genCollectedHeap::millis_since_last_gc().
|
|
if (ret_val < 0) {
|
|
NOT_PRODUCT(warning("time warp: %d", ret_val);)
|
|
return 0;
|
|
}
|
|
return ret_val;
|
|
}
|
|
|
|
void PSMarkSweep::reset_millis_since_last_gc() {
|
|
_time_of_last_gc = os::javaTimeMillis();
|
|
}
|