jdk-24/src/hotspot/share/c1/c1_InstructionPrinter.cpp
2017-09-12 19:03:39 +02:00

937 lines
26 KiB
C++

/*
* Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "c1/c1_InstructionPrinter.hpp"
#include "c1/c1_ValueStack.hpp"
#include "ci/ciArray.hpp"
#include "ci/ciInstance.hpp"
#include "ci/ciObject.hpp"
#ifndef PRODUCT
const char* InstructionPrinter::basic_type_name(BasicType type) {
switch (type) {
case T_BOOLEAN: return "boolean";
case T_BYTE : return "byte";
case T_CHAR : return "char";
case T_SHORT : return "short";
case T_INT : return "int";
case T_LONG : return "long";
case T_FLOAT : return "float";
case T_DOUBLE : return "double";
case T_ARRAY : return "array";
case T_OBJECT : return "object";
default : return "???";
}
}
const char* InstructionPrinter::cond_name(If::Condition cond) {
switch (cond) {
case If::eql: return "==";
case If::neq: return "!=";
case If::lss: return "<";
case If::leq: return "<=";
case If::gtr: return ">";
case If::geq: return ">=";
case If::aeq: return "|>=|";
case If::beq: return "|<=|";
default:
ShouldNotReachHere();
return NULL;
}
}
const char* InstructionPrinter::op_name(Bytecodes::Code op) {
switch (op) {
// arithmetic ops
case Bytecodes::_iadd : // fall through
case Bytecodes::_ladd : // fall through
case Bytecodes::_fadd : // fall through
case Bytecodes::_dadd : return "+";
case Bytecodes::_isub : // fall through
case Bytecodes::_lsub : // fall through
case Bytecodes::_fsub : // fall through
case Bytecodes::_dsub : return "-";
case Bytecodes::_imul : // fall through
case Bytecodes::_lmul : // fall through
case Bytecodes::_fmul : // fall through
case Bytecodes::_dmul : return "*";
case Bytecodes::_idiv : // fall through
case Bytecodes::_ldiv : // fall through
case Bytecodes::_fdiv : // fall through
case Bytecodes::_ddiv : return "/";
case Bytecodes::_irem : // fall through
case Bytecodes::_lrem : // fall through
case Bytecodes::_frem : // fall through
case Bytecodes::_drem : return "%";
// shift ops
case Bytecodes::_ishl : // fall through
case Bytecodes::_lshl : return "<<";
case Bytecodes::_ishr : // fall through
case Bytecodes::_lshr : return ">>";
case Bytecodes::_iushr: // fall through
case Bytecodes::_lushr: return ">>>";
// logic ops
case Bytecodes::_iand : // fall through
case Bytecodes::_land : return "&";
case Bytecodes::_ior : // fall through
case Bytecodes::_lor : return "|";
case Bytecodes::_ixor : // fall through
case Bytecodes::_lxor : return "^";
default : return Bytecodes::name(op);
}
}
bool InstructionPrinter::is_illegal_phi(Value v) {
Phi* phi = v ? v->as_Phi() : NULL;
if (phi && phi->is_illegal()) {
return true;
}
return false;
}
bool InstructionPrinter::is_phi_of_block(Value v, BlockBegin* b) {
Phi* phi = v ? v->as_Phi() : NULL;
return phi && phi->block() == b;
}
void InstructionPrinter::print_klass(ciKlass* klass) {
klass->name()->print_symbol_on(output());
}
void InstructionPrinter::print_object(Value obj) {
ValueType* type = obj->type();
if (type->as_ObjectConstant() != NULL) {
ciObject* value = type->as_ObjectConstant()->value();
if (value->is_null_object()) {
output()->print("null");
} else if (!value->is_loaded()) {
output()->print("<unloaded object " INTPTR_FORMAT ">", p2i(value));
} else {
output()->print("<object " INTPTR_FORMAT " klass=", p2i(value->constant_encoding()));
print_klass(value->klass());
output()->print(">");
}
} else if (type->as_InstanceConstant() != NULL) {
ciInstance* value = type->as_InstanceConstant()->value();
if (value->is_loaded()) {
output()->print("<instance " INTPTR_FORMAT " klass=", p2i(value->constant_encoding()));
print_klass(value->klass());
output()->print(">");
} else {
output()->print("<unloaded instance " INTPTR_FORMAT ">", p2i(value));
}
} else if (type->as_ArrayConstant() != NULL) {
output()->print("<array " INTPTR_FORMAT ">", p2i(type->as_ArrayConstant()->value()->constant_encoding()));
} else if (type->as_ClassConstant() != NULL) {
ciInstanceKlass* klass = type->as_ClassConstant()->value();
if (!klass->is_loaded()) {
output()->print("<unloaded> ");
}
output()->print("class ");
print_klass(klass);
} else if (type->as_MethodConstant() != NULL) {
ciMethod* m = type->as_MethodConstant()->value();
output()->print("<method %s.%s>", m->holder()->name()->as_utf8(), m->name()->as_utf8());
} else {
output()->print("???");
}
}
void InstructionPrinter::print_temp(Value value) {
output()->print("%c%d", value->type()->tchar(), value->id());
}
void InstructionPrinter::print_field(AccessField* field) {
print_value(field->obj());
output()->print("._%d", field->offset());
}
void InstructionPrinter::print_indexed(AccessIndexed* indexed) {
print_value(indexed->array());
output()->put('[');
print_value(indexed->index());
output()->put(']');
if (indexed->length() != NULL) {
output()->put('(');
print_value(indexed->length());
output()->put(')');
}
}
void InstructionPrinter::print_monitor(AccessMonitor* monitor) {
output()->print("monitor[%d](", monitor->monitor_no());
print_value(monitor->obj());
output()->put(')');
}
void InstructionPrinter::print_op2(Op2* instr) {
print_value(instr->x());
output()->print(" %s ", op_name(instr->op()));
print_value(instr->y());
}
void InstructionPrinter::print_value(Value value) {
if (value == NULL) {
output()->print("NULL");
} else {
print_temp(value);
}
}
void InstructionPrinter::print_instr(Instruction* instr) {
instr->visit(this);
}
void InstructionPrinter::print_stack(ValueStack* stack) {
int start_position = output()->position();
if (stack->stack_is_empty()) {
output()->print("empty stack");
} else {
output()->print("stack [");
for (int i = 0; i < stack->stack_size();) {
if (i > 0) output()->print(", ");
output()->print("%d:", i);
Value value = stack->stack_at_inc(i);
print_value(value);
Phi* phi = value->as_Phi();
if (phi != NULL) {
if (phi->operand()->is_valid()) {
output()->print(" ");
phi->operand()->print(output());
}
}
}
output()->put(']');
}
if (!stack->no_active_locks()) {
// print out the lines on the line below this
// one at the same indentation level.
output()->cr();
fill_to(start_position, ' ');
output()->print("locks [");
for (int i = i = 0; i < stack->locks_size(); i++) {
Value t = stack->lock_at(i);
if (i > 0) output()->print(", ");
output()->print("%d:", i);
if (t == NULL) {
// synchronized methods push null on the lock stack
output()->print("this");
} else {
print_value(t);
}
}
output()->print("]");
}
}
void InstructionPrinter::print_inline_level(BlockBegin* block) {
output()->print_cr("inlining depth %d", block->scope()->level());
}
void InstructionPrinter::print_unsafe_op(UnsafeOp* op, const char* name) {
output()->print("%s", name);
output()->print(".(");
}
void InstructionPrinter::print_unsafe_raw_op(UnsafeRawOp* op, const char* name) {
print_unsafe_op(op, name);
output()->print("base ");
print_value(op->base());
if (op->has_index()) {
output()->print(", index "); print_value(op->index());
output()->print(", log2_scale %d", op->log2_scale());
}
}
void InstructionPrinter::print_unsafe_object_op(UnsafeObjectOp* op, const char* name) {
print_unsafe_op(op, name);
print_value(op->object());
output()->print(", ");
print_value(op->offset());
}
void InstructionPrinter::print_phi(int i, Value v, BlockBegin* b) {
Phi* phi = v->as_Phi();
output()->print("%2d ", i);
print_value(v);
// print phi operands
if (phi && phi->block() == b) {
output()->print(" [");
for (int j = 0; j < phi->operand_count(); j ++) {
output()->print(" ");
Value opd = phi->operand_at(j);
if (opd) print_value(opd);
else output()->print("NULL");
}
output()->print("] ");
}
print_alias(v);
}
void InstructionPrinter::print_alias(Value v) {
if (v != v->subst()) {
output()->print("alias "); print_value(v->subst());
}
}
void InstructionPrinter::fill_to(int pos, char filler) {
while (output()->position() < pos) output()->put(filler);
}
void InstructionPrinter::print_head() {
const char filler = '_';
fill_to(bci_pos , filler); output()->print("bci" );
fill_to(use_pos , filler); output()->print("use" );
fill_to(temp_pos , filler); output()->print("tid" );
fill_to(instr_pos, filler); output()->print("instr");
fill_to(end_pos , filler);
output()->cr();
}
void InstructionPrinter::print_line(Instruction* instr) {
// print instruction data on one line
if (instr->is_pinned()) output()->put('.');
fill_to(bci_pos ); output()->print("%d", instr->printable_bci());
fill_to(use_pos ); output()->print("%d", instr->use_count());
fill_to(temp_pos ); print_temp(instr);
fill_to(instr_pos); print_instr(instr);
output()->cr();
// add a line for StateSplit instructions w/ non-empty stacks
// (make it robust so we can print incomplete instructions)
StateSplit* split = instr->as_StateSplit();
if (split != NULL && split->state() != NULL && !split->state()->stack_is_empty()) {
fill_to(instr_pos); print_stack(split->state());
output()->cr();
}
}
void InstructionPrinter::do_Phi(Phi* x) {
output()->print("phi function"); // make that more detailed later
if (x->is_illegal())
output()->print(" (illegal)");
}
void InstructionPrinter::do_Local(Local* x) {
output()->print("local[index %d]", x->java_index());
}
void InstructionPrinter::do_Constant(Constant* x) {
ValueType* t = x->type();
switch (t->tag()) {
case intTag : output()->print("%d" , t->as_IntConstant ()->value()); break;
case longTag : output()->print(JLONG_FORMAT, t->as_LongConstant()->value()); output()->print("L"); break;
case floatTag : output()->print("%g" , t->as_FloatConstant ()->value()); break;
case doubleTag : output()->print("%gD" , t->as_DoubleConstant()->value()); break;
case objectTag : print_object(x); break;
case addressTag: output()->print("bci:%d", t->as_AddressConstant()->value()); break;
default : output()->print("???"); break;
}
}
void InstructionPrinter::do_LoadField(LoadField* x) {
print_field(x);
output()->print(" (%c)", type2char(x->field()->type()->basic_type()));
output()->print(" %s", x->field()->name()->as_utf8());
}
void InstructionPrinter::do_StoreField(StoreField* x) {
print_field(x);
output()->print(" := ");
print_value(x->value());
output()->print(" (%c)", type2char(x->field()->type()->basic_type()));
output()->print(" %s", x->field()->name()->as_utf8());
}
void InstructionPrinter::do_ArrayLength(ArrayLength* x) {
print_value(x->array());
output()->print(".length");
}
void InstructionPrinter::do_LoadIndexed(LoadIndexed* x) {
print_indexed(x);
output()->print(" (%c)", type2char(x->elt_type()));
if (x->check_flag(Instruction::NeedsRangeCheckFlag)) {
output()->print(" [rc]");
}
}
void InstructionPrinter::do_StoreIndexed(StoreIndexed* x) {
print_indexed(x);
output()->print(" := ");
print_value(x->value());
output()->print(" (%c)", type2char(x->elt_type()));
if (x->check_flag(Instruction::NeedsRangeCheckFlag)) {
output()->print(" [rc]");
}
}
void InstructionPrinter::do_NegateOp(NegateOp* x) {
output()->put('-');
print_value(x->x());
}
void InstructionPrinter::do_ArithmeticOp(ArithmeticOp* x) {
print_op2(x);
}
void InstructionPrinter::do_ShiftOp(ShiftOp* x) {
print_op2(x);
}
void InstructionPrinter::do_LogicOp(LogicOp* x) {
print_op2(x);
}
void InstructionPrinter::do_CompareOp(CompareOp* x) {
print_op2(x);
}
void InstructionPrinter::do_IfOp(IfOp* x) {
print_value(x->x());
output()->print(" %s ", cond_name(x->cond()));
print_value(x->y());
output()->print(" ? ");
print_value(x->tval());
output()->print(" : ");
print_value(x->fval());
}
void InstructionPrinter::do_Convert(Convert* x) {
output()->print("%s(", Bytecodes::name(x->op()));
print_value(x->value());
output()->put(')');
}
void InstructionPrinter::do_NullCheck(NullCheck* x) {
output()->print("null_check(");
print_value(x->obj());
output()->put(')');
if (!x->can_trap()) {
output()->print(" (eliminated)");
}
}
void InstructionPrinter::do_TypeCast(TypeCast* x) {
output()->print("type_cast(");
print_value(x->obj());
output()->print(") ");
if (x->declared_type()->is_klass())
print_klass(x->declared_type()->as_klass());
else
output()->print("%s", type2name(x->declared_type()->basic_type()));
}
void InstructionPrinter::do_Invoke(Invoke* x) {
if (x->receiver() != NULL) {
print_value(x->receiver());
output()->print(".");
}
output()->print("%s(", Bytecodes::name(x->code()));
for (int i = 0; i < x->number_of_arguments(); i++) {
if (i > 0) output()->print(", ");
print_value(x->argument_at(i));
}
output()->print_cr(")");
fill_to(instr_pos);
output()->print("%s.%s%s",
x->target()->holder()->name()->as_utf8(),
x->target()->name()->as_utf8(),
x->target()->signature()->as_symbol()->as_utf8());
}
void InstructionPrinter::do_NewInstance(NewInstance* x) {
output()->print("new instance ");
print_klass(x->klass());
}
void InstructionPrinter::do_NewTypeArray(NewTypeArray* x) {
output()->print("new %s array [", basic_type_name(x->elt_type()));
print_value(x->length());
output()->put(']');
}
void InstructionPrinter::do_NewObjectArray(NewObjectArray* x) {
output()->print("new object array [");
print_value(x->length());
output()->print("] ");
print_klass(x->klass());
}
void InstructionPrinter::do_NewMultiArray(NewMultiArray* x) {
output()->print("new multi array [");
Values* dims = x->dims();
for (int i = 0; i < dims->length(); i++) {
if (i > 0) output()->print(", ");
print_value(dims->at(i));
}
output()->print("] ");
print_klass(x->klass());
}
void InstructionPrinter::do_MonitorEnter(MonitorEnter* x) {
output()->print("enter ");
print_monitor(x);
}
void InstructionPrinter::do_MonitorExit(MonitorExit* x) {
output()->print("exit ");
print_monitor(x);
}
void InstructionPrinter::do_Intrinsic(Intrinsic* x) {
const char* name = vmIntrinsics::name_at(x->id());
if (name[0] == '_') name++; // strip leading bug from _hashCode, etc.
const char* kname = vmSymbols::name_for(vmIntrinsics::class_for(x->id()));
if (strchr(name, '_') == NULL) {
kname = NULL;
} else {
const char* kptr = strrchr(kname, '/');
if (kptr != NULL) kname = kptr + 1;
}
if (kname == NULL)
output()->print("%s(", name);
else
output()->print("%s.%s(", kname, name);
for (int i = 0; i < x->number_of_arguments(); i++) {
if (i > 0) output()->print(", ");
print_value(x->argument_at(i));
}
output()->put(')');
}
void InstructionPrinter::do_BlockBegin(BlockBegin* x) {
// print block id
BlockEnd* end = x->end();
output()->print("B%d ", x->block_id());
// print flags
bool printed_flag = false;
if (x->is_set(BlockBegin::std_entry_flag)) {
if (!printed_flag) output()->print("(");
output()->print("S"); printed_flag = true;
}
if (x->is_set(BlockBegin::osr_entry_flag)) {
if (!printed_flag) output()->print("(");
output()->print("O"); printed_flag = true;
}
if (x->is_set(BlockBegin::exception_entry_flag)) {
if (!printed_flag) output()->print("(");
output()->print("E"); printed_flag = true;
}
if (x->is_set(BlockBegin::subroutine_entry_flag)) {
if (!printed_flag) output()->print("(");
output()->print("s"); printed_flag = true;
}
if (x->is_set(BlockBegin::parser_loop_header_flag)) {
if (!printed_flag) output()->print("(");
output()->print("LH"); printed_flag = true;
}
if (x->is_set(BlockBegin::backward_branch_target_flag)) {
if (!printed_flag) output()->print("(");
output()->print("b"); printed_flag = true;
}
if (x->is_set(BlockBegin::was_visited_flag)) {
if (!printed_flag) output()->print("(");
output()->print("V"); printed_flag = true;
}
if (printed_flag) output()->print(") ");
// print block bci range
output()->print("[%d, %d]", x->bci(), (end == NULL ? -1 : end->printable_bci()));
// print block successors
if (end != NULL && end->number_of_sux() > 0) {
output()->print(" ->");
for (int i = 0; i < end->number_of_sux(); i++) {
output()->print(" B%d", end->sux_at(i)->block_id());
}
}
// print exception handlers
if (x->number_of_exception_handlers() > 0) {
output()->print(" (xhandlers ");
for (int i = 0; i < x->number_of_exception_handlers(); i++) {
if (i > 0) output()->print(" ");
output()->print("B%d", x->exception_handler_at(i)->block_id());
}
output()->put(')');
}
// print dominator block
if (x->dominator() != NULL) {
output()->print(" dom B%d", x->dominator()->block_id());
}
// print predecessors and successors
if (x->successors()->length() > 0) {
output()->print(" sux:");
for (int i = 0; i < x->successors()->length(); i ++) {
output()->print(" B%d", x->successors()->at(i)->block_id());
}
}
if (x->number_of_preds() > 0) {
output()->print(" pred:");
for (int i = 0; i < x->number_of_preds(); i ++) {
output()->print(" B%d", x->pred_at(i)->block_id());
}
}
if (!_print_phis) {
return;
}
// print phi functions
bool has_phis_in_locals = false;
bool has_phis_on_stack = false;
if (x->end() && x->end()->state()) {
ValueStack* state = x->state();
int i = 0;
while (!has_phis_on_stack && i < state->stack_size()) {
Value v = state->stack_at_inc(i);
has_phis_on_stack = is_phi_of_block(v, x);
}
do {
for (i = 0; !has_phis_in_locals && i < state->locals_size();) {
Value v = state->local_at(i);
has_phis_in_locals = is_phi_of_block(v, x);
// also ignore illegal HiWords
if (v && !v->type()->is_illegal()) i += v->type()->size(); else i ++;
}
state = state->caller_state();
} while (state != NULL);
}
// print values in locals
if (has_phis_in_locals) {
output()->cr(); output()->print_cr("Locals:");
ValueStack* state = x->state();
do {
for (int i = 0; i < state->locals_size();) {
Value v = state->local_at(i);
if (v) {
print_phi(i, v, x); output()->cr();
// also ignore illegal HiWords
i += (v->type()->is_illegal() ? 1 : v->type()->size());
} else {
i ++;
}
}
output()->cr();
state = state->caller_state();
} while (state != NULL);
}
// print values on stack
if (has_phis_on_stack) {
output()->print_cr("Stack:");
int i = 0;
while (i < x->state()->stack_size()) {
int o = i;
Value v = x->state()->stack_at_inc(i);
if (v) {
print_phi(o, v, x); output()->cr();
}
}
}
}
void InstructionPrinter::do_CheckCast(CheckCast* x) {
output()->print("checkcast(");
print_value(x->obj());
output()->print(") ");
print_klass(x->klass());
}
void InstructionPrinter::do_InstanceOf(InstanceOf* x) {
output()->print("instanceof(");
print_value(x->obj());
output()->print(") ");
print_klass(x->klass());
}
void InstructionPrinter::do_Goto(Goto* x) {
output()->print("goto B%d", x->default_sux()->block_id());
if (x->is_safepoint()) output()->print(" (safepoint)");
}
void InstructionPrinter::do_If(If* x) {
output()->print("if ");
print_value(x->x());
output()->print(" %s ", cond_name(x->cond()));
print_value(x->y());
output()->print(" then B%d else B%d", x->sux_at(0)->block_id(), x->sux_at(1)->block_id());
if (x->is_safepoint()) output()->print(" (safepoint)");
}
void InstructionPrinter::do_IfInstanceOf(IfInstanceOf* x) {
output()->print("<IfInstanceOf>");
}
void InstructionPrinter::do_TableSwitch(TableSwitch* x) {
output()->print("tableswitch ");
if (x->is_safepoint()) output()->print("(safepoint) ");
print_value(x->tag());
output()->cr();
int l = x->length();
for (int i = 0; i < l; i++) {
fill_to(instr_pos);
output()->print_cr("case %5d: B%d", x->lo_key() + i, x->sux_at(i)->block_id());
}
fill_to(instr_pos);
output()->print("default : B%d", x->default_sux()->block_id());
}
void InstructionPrinter::do_LookupSwitch(LookupSwitch* x) {
output()->print("lookupswitch ");
if (x->is_safepoint()) output()->print("(safepoint) ");
print_value(x->tag());
output()->cr();
int l = x->length();
for (int i = 0; i < l; i++) {
fill_to(instr_pos);
output()->print_cr("case %5d: B%d", x->key_at(i), x->sux_at(i)->block_id());
}
fill_to(instr_pos);
output()->print("default : B%d", x->default_sux()->block_id());
}
void InstructionPrinter::do_Return(Return* x) {
if (x->result() == NULL) {
output()->print("return");
} else {
output()->print("%creturn ", x->type()->tchar());
print_value(x->result());
}
}
void InstructionPrinter::do_Throw(Throw* x) {
output()->print("throw ");
print_value(x->exception());
}
void InstructionPrinter::do_Base(Base* x) {
output()->print("std entry B%d", x->std_entry()->block_id());
if (x->number_of_sux() > 1) {
output()->print(" osr entry B%d", x->osr_entry()->block_id());
}
}
void InstructionPrinter::do_OsrEntry(OsrEntry* x) {
output()->print("osr entry");
}
void InstructionPrinter::do_ExceptionObject(ExceptionObject* x) {
output()->print("incoming exception");
}
void InstructionPrinter::do_RoundFP(RoundFP* x) {
output()->print("round_fp ");
print_value(x->input());
}
void InstructionPrinter::do_UnsafeGetRaw(UnsafeGetRaw* x) {
print_unsafe_raw_op(x, "UnsafeGetRaw");
output()->put(')');
}
void InstructionPrinter::do_UnsafePutRaw(UnsafePutRaw* x) {
print_unsafe_raw_op(x, "UnsafePutRaw");
output()->print(", value ");
print_value(x->value());
output()->put(')');
}
void InstructionPrinter::do_UnsafeGetObject(UnsafeGetObject* x) {
print_unsafe_object_op(x, "UnsafeGetObject");
output()->put(')');
}
void InstructionPrinter::do_UnsafePutObject(UnsafePutObject* x) {
print_unsafe_object_op(x, "UnsafePutObject");
output()->print(", value ");
print_value(x->value());
output()->put(')');
}
void InstructionPrinter::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
print_unsafe_object_op(x, x->is_add()?"UnsafeGetAndSetObject (add)":"UnsafeGetAndSetObject");
output()->print(", value ");
print_value(x->value());
output()->put(')');
}
void InstructionPrinter::do_RangeCheckPredicate(RangeCheckPredicate* x) {
if (x->x() != NULL && x->y() != NULL) {
output()->print("if ");
print_value(x->x());
output()->print(" %s ", cond_name(x->cond()));
print_value(x->y());
output()->print(" then deoptimize!");
} else {
output()->print("always deoptimize!");
}
}
#ifdef ASSERT
void InstructionPrinter::do_Assert(Assert* x) {
output()->print("assert ");
print_value(x->x());
output()->print(" %s ", cond_name(x->cond()));
print_value(x->y());
}
#endif
void InstructionPrinter::do_ProfileCall(ProfileCall* x) {
output()->print("profile ");
print_value(x->recv());
output()->print(" %s.%s", x->method()->holder()->name()->as_utf8(), x->method()->name()->as_utf8());
if (x->known_holder() != NULL) {
output()->print(", ");
print_klass(x->known_holder());
output()->print(" ");
}
for (int i = 0; i < x->nb_profiled_args(); i++) {
if (i > 0) output()->print(", ");
print_value(x->profiled_arg_at(i));
if (x->arg_needs_null_check(i)) {
output()->print(" [NC]");
}
}
output()->put(')');
}
void InstructionPrinter::do_ProfileReturnType(ProfileReturnType* x) {
output()->print("profile ret type ");
print_value(x->ret());
output()->print(" %s.%s", x->method()->holder()->name()->as_utf8(), x->method()->name()->as_utf8());
output()->put(')');
}
void InstructionPrinter::do_ProfileInvoke(ProfileInvoke* x) {
output()->print("profile_invoke ");
output()->print(" %s.%s", x->inlinee()->holder()->name()->as_utf8(), x->inlinee()->name()->as_utf8());
output()->put(')');
}
void InstructionPrinter::do_RuntimeCall(RuntimeCall* x) {
output()->print("call_rt %s(", x->entry_name());
for (int i = 0; i < x->number_of_arguments(); i++) {
if (i > 0) output()->print(", ");
print_value(x->argument_at(i));
}
output()->put(')');
}
void InstructionPrinter::do_MemBar(MemBar* x) {
if (os::is_MP()) {
LIR_Code code = x->code();
switch (code) {
case lir_membar_acquire : output()->print("membar_acquire"); break;
case lir_membar_release : output()->print("membar_release"); break;
case lir_membar : output()->print("membar"); break;
case lir_membar_loadload : output()->print("membar_loadload"); break;
case lir_membar_storestore: output()->print("membar_storestore"); break;
case lir_membar_loadstore : output()->print("membar_loadstore"); break;
case lir_membar_storeload : output()->print("membar_storeload"); break;
default : ShouldNotReachHere(); break;
}
}
}
#endif // PRODUCT