3789983e89
Reviewed-by: darcy, ihse
565 lines
21 KiB
C++
565 lines
21 KiB
C++
/*
|
|
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_OPTO_MATCHER_HPP
|
|
#define SHARE_VM_OPTO_MATCHER_HPP
|
|
|
|
#include "libadt/vectset.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "opto/node.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/regmask.hpp"
|
|
|
|
class Compile;
|
|
class Node;
|
|
class MachNode;
|
|
class MachTypeNode;
|
|
class MachOper;
|
|
|
|
//---------------------------Matcher-------------------------------------------
|
|
class Matcher : public PhaseTransform {
|
|
friend class VMStructs;
|
|
|
|
public:
|
|
|
|
// State and MStack class used in xform() and find_shared() iterative methods.
|
|
enum Node_State { Pre_Visit, // node has to be pre-visited
|
|
Visit, // visit node
|
|
Post_Visit, // post-visit node
|
|
Alt_Post_Visit // alternative post-visit path
|
|
};
|
|
|
|
class MStack: public Node_Stack {
|
|
public:
|
|
MStack(int size) : Node_Stack(size) { }
|
|
|
|
void push(Node *n, Node_State ns) {
|
|
Node_Stack::push(n, (uint)ns);
|
|
}
|
|
void push(Node *n, Node_State ns, Node *parent, int indx) {
|
|
++_inode_top;
|
|
if ((_inode_top + 1) >= _inode_max) grow();
|
|
_inode_top->node = parent;
|
|
_inode_top->indx = (uint)indx;
|
|
++_inode_top;
|
|
_inode_top->node = n;
|
|
_inode_top->indx = (uint)ns;
|
|
}
|
|
Node *parent() {
|
|
pop();
|
|
return node();
|
|
}
|
|
Node_State state() const {
|
|
return (Node_State)index();
|
|
}
|
|
void set_state(Node_State ns) {
|
|
set_index((uint)ns);
|
|
}
|
|
};
|
|
|
|
private:
|
|
// Private arena of State objects
|
|
ResourceArea _states_arena;
|
|
|
|
VectorSet _visited; // Visit bits
|
|
|
|
// Used to control the Label pass
|
|
VectorSet _shared; // Shared Ideal Node
|
|
VectorSet _dontcare; // Nothing the matcher cares about
|
|
|
|
// Private methods which perform the actual matching and reduction
|
|
// Walks the label tree, generating machine nodes
|
|
MachNode *ReduceInst( State *s, int rule, Node *&mem);
|
|
void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
|
|
uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
|
|
void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
|
|
|
|
// If this node already matched using "rule", return the MachNode for it.
|
|
MachNode* find_shared_node(Node* n, uint rule);
|
|
|
|
// Convert a dense opcode number to an expanded rule number
|
|
const int *_reduceOp;
|
|
const int *_leftOp;
|
|
const int *_rightOp;
|
|
|
|
// Map dense opcode number to info on when rule is swallowed constant.
|
|
const bool *_swallowed;
|
|
|
|
// Map dense rule number to determine if this is an instruction chain rule
|
|
const uint _begin_inst_chain_rule;
|
|
const uint _end_inst_chain_rule;
|
|
|
|
// We want to clone constants and possible CmpI-variants.
|
|
// If we do not clone CmpI, then we can have many instances of
|
|
// condition codes alive at once. This is OK on some chips and
|
|
// bad on others. Hence the machine-dependent table lookup.
|
|
const char *_must_clone;
|
|
|
|
// Find shared Nodes, or Nodes that otherwise are Matcher roots
|
|
void find_shared( Node *n );
|
|
#ifdef X86
|
|
bool is_bmi_pattern(Node *n, Node *m);
|
|
#endif
|
|
|
|
// Debug and profile information for nodes in old space:
|
|
GrowableArray<Node_Notes*>* _old_node_note_array;
|
|
|
|
// Node labeling iterator for instruction selection
|
|
Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
|
|
|
|
Node *transform( Node *dummy );
|
|
|
|
Node_List _projection_list; // For Machine nodes killing many values
|
|
|
|
Node_Array _shared_nodes;
|
|
|
|
debug_only(Node_Array _old2new_map;) // Map roots of ideal-trees to machine-roots
|
|
debug_only(Node_Array _new2old_map;) // Maps machine nodes back to ideal
|
|
|
|
// Accessors for the inherited field PhaseTransform::_nodes:
|
|
void grow_new_node_array(uint idx_limit) {
|
|
_nodes.map(idx_limit-1, NULL);
|
|
}
|
|
bool has_new_node(const Node* n) const {
|
|
return _nodes.at(n->_idx) != NULL;
|
|
}
|
|
Node* new_node(const Node* n) const {
|
|
assert(has_new_node(n), "set before get");
|
|
return _nodes.at(n->_idx);
|
|
}
|
|
void set_new_node(const Node* n, Node *nn) {
|
|
assert(!has_new_node(n), "set only once");
|
|
_nodes.map(n->_idx, nn);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Make sure only new nodes are reachable from this node
|
|
void verify_new_nodes_only(Node* root);
|
|
|
|
Node* _mem_node; // Ideal memory node consumed by mach node
|
|
#endif
|
|
|
|
// Mach node for ConP #NULL
|
|
MachNode* _mach_null;
|
|
|
|
void handle_precedence_edges(Node* n, MachNode *mach);
|
|
|
|
public:
|
|
int LabelRootDepth;
|
|
// Convert ideal machine register to a register mask for spill-loads
|
|
static const RegMask *idealreg2regmask[];
|
|
RegMask *idealreg2spillmask [_last_machine_leaf];
|
|
RegMask *idealreg2debugmask [_last_machine_leaf];
|
|
RegMask *idealreg2mhdebugmask[_last_machine_leaf];
|
|
void init_spill_mask( Node *ret );
|
|
// Convert machine register number to register mask
|
|
static uint mreg2regmask_max;
|
|
static RegMask mreg2regmask[];
|
|
static RegMask STACK_ONLY_mask;
|
|
|
|
MachNode* mach_null() const { return _mach_null; }
|
|
|
|
bool is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
|
|
void set_shared( Node *n ) { _shared.set(n->_idx); }
|
|
bool is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
|
|
void set_visited( Node *n ) { _visited.set(n->_idx); }
|
|
bool is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
|
|
void set_dontcare( Node *n ) { _dontcare.set(n->_idx); }
|
|
|
|
// Mode bit to tell DFA and expand rules whether we are running after
|
|
// (or during) register selection. Usually, the matcher runs before,
|
|
// but it will also get called to generate post-allocation spill code.
|
|
// In this situation, it is a deadly error to attempt to allocate more
|
|
// temporary registers.
|
|
bool _allocation_started;
|
|
|
|
// Machine register names
|
|
static const char *regName[];
|
|
// Machine register encodings
|
|
static const unsigned char _regEncode[];
|
|
// Machine Node names
|
|
const char **_ruleName;
|
|
// Rules that are cheaper to rematerialize than to spill
|
|
static const uint _begin_rematerialize;
|
|
static const uint _end_rematerialize;
|
|
|
|
// An array of chars, from 0 to _last_Mach_Reg.
|
|
// No Save = 'N' (for register windows)
|
|
// Save on Entry = 'E'
|
|
// Save on Call = 'C'
|
|
// Always Save = 'A' (same as SOE + SOC)
|
|
const char *_register_save_policy;
|
|
const char *_c_reg_save_policy;
|
|
// Convert a machine register to a machine register type, so-as to
|
|
// properly match spill code.
|
|
const int *_register_save_type;
|
|
// Maps from machine register to boolean; true if machine register can
|
|
// be holding a call argument in some signature.
|
|
static bool can_be_java_arg( int reg );
|
|
// Maps from machine register to boolean; true if machine register holds
|
|
// a spillable argument.
|
|
static bool is_spillable_arg( int reg );
|
|
|
|
// List of IfFalse or IfTrue Nodes that indicate a taken null test.
|
|
// List is valid in the post-matching space.
|
|
Node_List _null_check_tests;
|
|
void collect_null_checks( Node *proj, Node *orig_proj );
|
|
void validate_null_checks( );
|
|
|
|
Matcher();
|
|
|
|
// Get a projection node at position pos
|
|
Node* get_projection(uint pos) {
|
|
return _projection_list[pos];
|
|
}
|
|
|
|
// Push a projection node onto the projection list
|
|
void push_projection(Node* node) {
|
|
_projection_list.push(node);
|
|
}
|
|
|
|
Node* pop_projection() {
|
|
return _projection_list.pop();
|
|
}
|
|
|
|
// Number of nodes in the projection list
|
|
uint number_of_projections() const {
|
|
return _projection_list.size();
|
|
}
|
|
|
|
// Select instructions for entire method
|
|
void match();
|
|
|
|
// Helper for match
|
|
OptoReg::Name warp_incoming_stk_arg( VMReg reg );
|
|
|
|
// Transform, then walk. Does implicit DCE while walking.
|
|
// Name changed from "transform" to avoid it being virtual.
|
|
Node *xform( Node *old_space_node, int Nodes );
|
|
|
|
// Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
|
|
MachNode *match_tree( const Node *n );
|
|
MachNode *match_sfpt( SafePointNode *sfpt );
|
|
// Helper for match_sfpt
|
|
OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
|
|
|
|
// Initialize first stack mask and related masks.
|
|
void init_first_stack_mask();
|
|
|
|
// If we should save-on-entry this register
|
|
bool is_save_on_entry( int reg );
|
|
|
|
// Fixup the save-on-entry registers
|
|
void Fixup_Save_On_Entry( );
|
|
|
|
// --- Frame handling ---
|
|
|
|
// Register number of the stack slot corresponding to the incoming SP.
|
|
// Per the Big Picture in the AD file, it is:
|
|
// SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
|
|
OptoReg::Name _old_SP;
|
|
|
|
// Register number of the stack slot corresponding to the highest incoming
|
|
// argument on the stack. Per the Big Picture in the AD file, it is:
|
|
// _old_SP + out_preserve_stack_slots + incoming argument size.
|
|
OptoReg::Name _in_arg_limit;
|
|
|
|
// Register number of the stack slot corresponding to the new SP.
|
|
// Per the Big Picture in the AD file, it is:
|
|
// _in_arg_limit + pad0
|
|
OptoReg::Name _new_SP;
|
|
|
|
// Register number of the stack slot corresponding to the highest outgoing
|
|
// argument on the stack. Per the Big Picture in the AD file, it is:
|
|
// _new_SP + max outgoing arguments of all calls
|
|
OptoReg::Name _out_arg_limit;
|
|
|
|
OptoRegPair *_parm_regs; // Array of machine registers per argument
|
|
RegMask *_calling_convention_mask; // Array of RegMasks per argument
|
|
|
|
// Does matcher have a match rule for this ideal node?
|
|
static const bool has_match_rule(int opcode);
|
|
static const bool _hasMatchRule[_last_opcode];
|
|
|
|
// Does matcher have a match rule for this ideal node and is the
|
|
// predicate (if there is one) true?
|
|
// NOTE: If this function is used more commonly in the future, ADLC
|
|
// should generate this one.
|
|
static const bool match_rule_supported(int opcode);
|
|
|
|
// identify extra cases that we might want to provide match rules for
|
|
// e.g. Op_ vector nodes and other intrinsics while guarding with vlen
|
|
static const bool match_rule_supported_vector(int opcode, int vlen);
|
|
|
|
// Some microarchitectures have mask registers used on vectors
|
|
static const bool has_predicated_vectors(void);
|
|
|
|
// Some uarchs have different sized float register resources
|
|
static const int float_pressure(int default_pressure_threshold);
|
|
|
|
// Used to determine if we have fast l2f conversion
|
|
// USII has it, USIII doesn't
|
|
static const bool convL2FSupported(void);
|
|
|
|
// Vector width in bytes
|
|
static const int vector_width_in_bytes(BasicType bt);
|
|
|
|
// Limits on vector size (number of elements).
|
|
static const int max_vector_size(const BasicType bt);
|
|
static const int min_vector_size(const BasicType bt);
|
|
static const bool vector_size_supported(const BasicType bt, int size) {
|
|
return (Matcher::max_vector_size(bt) >= size &&
|
|
Matcher::min_vector_size(bt) <= size);
|
|
}
|
|
|
|
// Vector ideal reg
|
|
static const uint vector_ideal_reg(int len);
|
|
static const uint vector_shift_count_ideal_reg(int len);
|
|
|
|
// CPU supports misaligned vectors store/load.
|
|
static const bool misaligned_vectors_ok();
|
|
|
|
// Should original key array reference be passed to AES stubs
|
|
static const bool pass_original_key_for_aes();
|
|
|
|
// Used to determine a "low complexity" 64-bit constant. (Zero is simple.)
|
|
// The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
|
|
// Depends on the details of 64-bit constant generation on the CPU.
|
|
static const bool isSimpleConstant64(jlong con);
|
|
|
|
// These calls are all generated by the ADLC
|
|
|
|
// TRUE - grows up, FALSE - grows down (Intel)
|
|
virtual bool stack_direction() const;
|
|
|
|
// Java-Java calling convention
|
|
// (what you use when Java calls Java)
|
|
|
|
// Alignment of stack in bytes, standard Intel word alignment is 4.
|
|
// Sparc probably wants at least double-word (8).
|
|
static uint stack_alignment_in_bytes();
|
|
// Alignment of stack, measured in stack slots.
|
|
// The size of stack slots is defined by VMRegImpl::stack_slot_size.
|
|
static uint stack_alignment_in_slots() {
|
|
return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
|
|
}
|
|
|
|
// Array mapping arguments to registers. Argument 0 is usually the 'this'
|
|
// pointer. Registers can include stack-slots and regular registers.
|
|
static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
|
|
|
|
// Convert a sig into a calling convention register layout
|
|
// and find interesting things about it.
|
|
static OptoReg::Name find_receiver( bool is_outgoing );
|
|
// Return address register. On Intel it is a stack-slot. On PowerPC
|
|
// it is the Link register. On Sparc it is r31?
|
|
virtual OptoReg::Name return_addr() const;
|
|
RegMask _return_addr_mask;
|
|
// Return value register. On Intel it is EAX. On Sparc i0/o0.
|
|
static OptoRegPair return_value(uint ideal_reg, bool is_outgoing);
|
|
static OptoRegPair c_return_value(uint ideal_reg, bool is_outgoing);
|
|
RegMask _return_value_mask;
|
|
// Inline Cache Register
|
|
static OptoReg::Name inline_cache_reg();
|
|
static int inline_cache_reg_encode();
|
|
|
|
// Register for DIVI projection of divmodI
|
|
static RegMask divI_proj_mask();
|
|
// Register for MODI projection of divmodI
|
|
static RegMask modI_proj_mask();
|
|
|
|
// Register for DIVL projection of divmodL
|
|
static RegMask divL_proj_mask();
|
|
// Register for MODL projection of divmodL
|
|
static RegMask modL_proj_mask();
|
|
|
|
// Use hardware DIV instruction when it is faster than
|
|
// a code which use multiply for division by constant.
|
|
static bool use_asm_for_ldiv_by_con( jlong divisor );
|
|
|
|
static const RegMask method_handle_invoke_SP_save_mask();
|
|
|
|
// Java-Interpreter calling convention
|
|
// (what you use when calling between compiled-Java and Interpreted-Java
|
|
|
|
// Number of callee-save + always-save registers
|
|
// Ignores frame pointer and "special" registers
|
|
static int number_of_saved_registers();
|
|
|
|
// The Method-klass-holder may be passed in the inline_cache_reg
|
|
// and then expanded into the inline_cache_reg and a method_oop register
|
|
|
|
static OptoReg::Name interpreter_method_oop_reg();
|
|
static int interpreter_method_oop_reg_encode();
|
|
|
|
static OptoReg::Name compiler_method_oop_reg();
|
|
static const RegMask &compiler_method_oop_reg_mask();
|
|
static int compiler_method_oop_reg_encode();
|
|
|
|
// Interpreter's Frame Pointer Register
|
|
static OptoReg::Name interpreter_frame_pointer_reg();
|
|
|
|
// Java-Native calling convention
|
|
// (what you use when intercalling between Java and C++ code)
|
|
|
|
// Array mapping arguments to registers. Argument 0 is usually the 'this'
|
|
// pointer. Registers can include stack-slots and regular registers.
|
|
static void c_calling_convention( BasicType*, VMRegPair *, uint );
|
|
// Frame pointer. The frame pointer is kept at the base of the stack
|
|
// and so is probably the stack pointer for most machines. On Intel
|
|
// it is ESP. On the PowerPC it is R1. On Sparc it is SP.
|
|
OptoReg::Name c_frame_pointer() const;
|
|
static RegMask c_frame_ptr_mask;
|
|
|
|
// !!!!! Special stuff for building ScopeDescs
|
|
virtual int regnum_to_fpu_offset(int regnum);
|
|
|
|
// Is this branch offset small enough to be addressed by a short branch?
|
|
bool is_short_branch_offset(int rule, int br_size, int offset);
|
|
|
|
// Optional scaling for the parameter to the ClearArray/CopyArray node.
|
|
static const bool init_array_count_is_in_bytes;
|
|
|
|
// Some hardware needs 2 CMOV's for longs.
|
|
static const int long_cmove_cost();
|
|
|
|
// Some hardware have expensive CMOV for float and double.
|
|
static const int float_cmove_cost();
|
|
|
|
// Should the Matcher clone shifts on addressing modes, expecting them to
|
|
// be subsumed into complex addressing expressions or compute them into
|
|
// registers? True for Intel but false for most RISCs
|
|
bool clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited);
|
|
// Clone base + offset address expression
|
|
bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited);
|
|
|
|
static bool narrow_oop_use_complex_address();
|
|
static bool narrow_klass_use_complex_address();
|
|
|
|
static bool const_oop_prefer_decode();
|
|
static bool const_klass_prefer_decode();
|
|
|
|
// Generate implicit null check for narrow oops if it can fold
|
|
// into address expression (x64).
|
|
//
|
|
// [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
|
|
// NullCheck narrow_oop_reg
|
|
//
|
|
// When narrow oops can't fold into address expression (Sparc) and
|
|
// base is not null use decode_not_null and normal implicit null check.
|
|
// Note, decode_not_null node can be used here since it is referenced
|
|
// only on non null path but it requires special handling, see
|
|
// collect_null_checks():
|
|
//
|
|
// decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
|
|
// [oop_reg + offset]
|
|
// NullCheck oop_reg
|
|
//
|
|
// With Zero base and when narrow oops can not fold into address
|
|
// expression use normal implicit null check since only shift
|
|
// is needed to decode narrow oop.
|
|
//
|
|
// decode narrow_oop_reg, oop_reg // only 'shift'
|
|
// [oop_reg + offset]
|
|
// NullCheck oop_reg
|
|
//
|
|
inline static bool gen_narrow_oop_implicit_null_checks() {
|
|
// Advice matcher to perform null checks on the narrow oop side.
|
|
// Implicit checks are not possible on the uncompressed oop side anyway
|
|
// (at least not for read accesses).
|
|
// Performs significantly better (especially on Power 6).
|
|
if (!os::zero_page_read_protected()) {
|
|
return true;
|
|
}
|
|
return Universe::narrow_oop_use_implicit_null_checks() &&
|
|
(narrow_oop_use_complex_address() ||
|
|
Universe::narrow_oop_base() != NULL);
|
|
}
|
|
|
|
// Is it better to copy float constants, or load them directly from memory?
|
|
// Intel can load a float constant from a direct address, requiring no
|
|
// extra registers. Most RISCs will have to materialize an address into a
|
|
// register first, so they may as well materialize the constant immediately.
|
|
static const bool rematerialize_float_constants;
|
|
|
|
// If CPU can load and store mis-aligned doubles directly then no fixup is
|
|
// needed. Else we split the double into 2 integer pieces and move it
|
|
// piece-by-piece. Only happens when passing doubles into C code or when
|
|
// calling i2c adapters as the Java calling convention forces doubles to be
|
|
// aligned.
|
|
static const bool misaligned_doubles_ok;
|
|
|
|
// Does the CPU require postalloc expand (see block.cpp for description of
|
|
// postalloc expand)?
|
|
static const bool require_postalloc_expand;
|
|
|
|
// Perform a platform dependent implicit null fixup. This is needed
|
|
// on windows95 to take care of some unusual register constraints.
|
|
void pd_implicit_null_fixup(MachNode *load, uint idx);
|
|
|
|
// Advertise here if the CPU requires explicit rounding operations
|
|
// to implement the UseStrictFP mode.
|
|
static const bool strict_fp_requires_explicit_rounding;
|
|
|
|
// Are floats conerted to double when stored to stack during deoptimization?
|
|
static bool float_in_double();
|
|
// Do ints take an entire long register or just half?
|
|
static const bool int_in_long;
|
|
|
|
// Do the processor's shift instructions only use the low 5/6 bits
|
|
// of the count for 32/64 bit ints? If not we need to do the masking
|
|
// ourselves.
|
|
static const bool need_masked_shift_count;
|
|
|
|
// Whether code generation need accurate ConvI2L types.
|
|
static const bool convi2l_type_required;
|
|
|
|
// This routine is run whenever a graph fails to match.
|
|
// If it returns, the compiler should bailout to interpreter without error.
|
|
// In non-product mode, SoftMatchFailure is false to detect non-canonical
|
|
// graphs. Print a message and exit.
|
|
static void soft_match_failure() {
|
|
if( SoftMatchFailure ) return;
|
|
else { fatal("SoftMatchFailure is not allowed except in product"); }
|
|
}
|
|
|
|
// Check for a following volatile memory barrier without an
|
|
// intervening load and thus we don't need a barrier here. We
|
|
// retain the Node to act as a compiler ordering barrier.
|
|
static bool post_store_load_barrier(const Node* mb);
|
|
|
|
// Does n lead to an uncommon trap that can cause deoptimization?
|
|
static bool branches_to_uncommon_trap(const Node *n);
|
|
|
|
#ifdef ASSERT
|
|
void dump_old2new_map(); // machine-independent to machine-dependent
|
|
|
|
Node* find_old_node(Node* new_node) {
|
|
return _new2old_map[new_node->_idx];
|
|
}
|
|
#endif
|
|
};
|
|
|
|
#endif // SHARE_VM_OPTO_MATCHER_HPP
|