jdk-24/hotspot/src/share/vm/c1/c1_GraphBuilder.cpp
Tom Rodriguez 2bba3afabc 6756768: C1 generates invalid code
Reviewed-by: kvn, jrose
2008-11-25 13:14:07 -08:00

3813 lines
141 KiB
C++

/*
* Copyright 1999-2007 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
#include "incls/_precompiled.incl"
#include "incls/_c1_GraphBuilder.cpp.incl"
class BlockListBuilder VALUE_OBJ_CLASS_SPEC {
private:
Compilation* _compilation;
IRScope* _scope;
BlockList _blocks; // internal list of all blocks
BlockList* _bci2block; // mapping from bci to blocks for GraphBuilder
// fields used by mark_loops
BitMap _active; // for iteration of control flow graph
BitMap _visited; // for iteration of control flow graph
intArray _loop_map; // caches the information if a block is contained in a loop
int _next_loop_index; // next free loop number
int _next_block_number; // for reverse postorder numbering of blocks
// accessors
Compilation* compilation() const { return _compilation; }
IRScope* scope() const { return _scope; }
ciMethod* method() const { return scope()->method(); }
XHandlers* xhandlers() const { return scope()->xhandlers(); }
// unified bailout support
void bailout(const char* msg) const { compilation()->bailout(msg); }
bool bailed_out() const { return compilation()->bailed_out(); }
// helper functions
BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
void handle_exceptions(BlockBegin* current, int cur_bci);
void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
void store_one(BlockBegin* current, int local);
void store_two(BlockBegin* current, int local);
void set_entries(int osr_bci);
void set_leaders();
void make_loop_header(BlockBegin* block);
void mark_loops();
int mark_loops(BlockBegin* b, bool in_subroutine);
// debugging
#ifndef PRODUCT
void print();
#endif
public:
// creation
BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
// accessors for GraphBuilder
BlockList* bci2block() const { return _bci2block; }
};
// Implementation of BlockListBuilder
BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
: _compilation(compilation)
, _scope(scope)
, _blocks(16)
, _bci2block(new BlockList(scope->method()->code_size(), NULL))
, _next_block_number(0)
, _active() // size not known yet
, _visited() // size not known yet
, _next_loop_index(0)
, _loop_map() // size not known yet
{
set_entries(osr_bci);
set_leaders();
CHECK_BAILOUT();
mark_loops();
NOT_PRODUCT(if (PrintInitialBlockList) print());
#ifndef PRODUCT
if (PrintCFGToFile) {
stringStream title;
title.print("BlockListBuilder ");
scope->method()->print_name(&title);
CFGPrinter::print_cfg(_bci2block, title.as_string(), false, false);
}
#endif
}
void BlockListBuilder::set_entries(int osr_bci) {
// generate start blocks
BlockBegin* std_entry = make_block_at(0, NULL);
if (scope()->caller() == NULL) {
std_entry->set(BlockBegin::std_entry_flag);
}
if (osr_bci != -1) {
BlockBegin* osr_entry = make_block_at(osr_bci, NULL);
osr_entry->set(BlockBegin::osr_entry_flag);
}
// generate exception entry blocks
XHandlers* list = xhandlers();
const int n = list->length();
for (int i = 0; i < n; i++) {
XHandler* h = list->handler_at(i);
BlockBegin* entry = make_block_at(h->handler_bci(), NULL);
entry->set(BlockBegin::exception_entry_flag);
h->set_entry_block(entry);
}
}
BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
BlockBegin* block = _bci2block->at(cur_bci);
if (block == NULL) {
block = new BlockBegin(cur_bci);
block->init_stores_to_locals(method()->max_locals());
_bci2block->at_put(cur_bci, block);
_blocks.append(block);
assert(predecessor == NULL || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
}
if (predecessor != NULL) {
if (block->is_set(BlockBegin::exception_entry_flag)) {
BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
}
predecessor->add_successor(block);
block->increment_total_preds();
}
return block;
}
inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
current->stores_to_locals().set_bit(local);
}
inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
store_one(current, local);
store_one(current, local + 1);
}
void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
// Draws edges from a block to its exception handlers
XHandlers* list = xhandlers();
const int n = list->length();
for (int i = 0; i < n; i++) {
XHandler* h = list->handler_at(i);
if (h->covers(cur_bci)) {
BlockBegin* entry = h->entry_block();
assert(entry != NULL && entry == _bci2block->at(h->handler_bci()), "entry must be set");
assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
// add each exception handler only once
if (!current->is_successor(entry)) {
current->add_successor(entry);
entry->increment_total_preds();
}
// stop when reaching catchall
if (h->catch_type() == 0) break;
}
}
}
void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
// start a new block after jsr-bytecode and link this block into cfg
make_block_at(next_bci, current);
// start a new block at the subroutine entry at mark it with special flag
BlockBegin* sr_block = make_block_at(sr_bci, current);
if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
sr_block->set(BlockBegin::subroutine_entry_flag);
}
}
void BlockListBuilder::set_leaders() {
bool has_xhandlers = xhandlers()->has_handlers();
BlockBegin* current = NULL;
// The information which bci starts a new block simplifies the analysis
// Without it, backward branches could jump to a bci where no block was created
// during bytecode iteration. This would require the creation of a new block at the
// branch target and a modification of the successor lists.
BitMap bci_block_start = method()->bci_block_start();
ciBytecodeStream s(method());
while (s.next() != ciBytecodeStream::EOBC()) {
int cur_bci = s.cur_bci();
if (bci_block_start.at(cur_bci)) {
current = make_block_at(cur_bci, current);
}
assert(current != NULL, "must have current block");
if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
handle_exceptions(current, cur_bci);
}
switch (s.cur_bc()) {
// track stores to local variables for selective creation of phi functions
case Bytecodes::_iinc: store_one(current, s.get_index()); break;
case Bytecodes::_istore: store_one(current, s.get_index()); break;
case Bytecodes::_lstore: store_two(current, s.get_index()); break;
case Bytecodes::_fstore: store_one(current, s.get_index()); break;
case Bytecodes::_dstore: store_two(current, s.get_index()); break;
case Bytecodes::_astore: store_one(current, s.get_index()); break;
case Bytecodes::_istore_0: store_one(current, 0); break;
case Bytecodes::_istore_1: store_one(current, 1); break;
case Bytecodes::_istore_2: store_one(current, 2); break;
case Bytecodes::_istore_3: store_one(current, 3); break;
case Bytecodes::_lstore_0: store_two(current, 0); break;
case Bytecodes::_lstore_1: store_two(current, 1); break;
case Bytecodes::_lstore_2: store_two(current, 2); break;
case Bytecodes::_lstore_3: store_two(current, 3); break;
case Bytecodes::_fstore_0: store_one(current, 0); break;
case Bytecodes::_fstore_1: store_one(current, 1); break;
case Bytecodes::_fstore_2: store_one(current, 2); break;
case Bytecodes::_fstore_3: store_one(current, 3); break;
case Bytecodes::_dstore_0: store_two(current, 0); break;
case Bytecodes::_dstore_1: store_two(current, 1); break;
case Bytecodes::_dstore_2: store_two(current, 2); break;
case Bytecodes::_dstore_3: store_two(current, 3); break;
case Bytecodes::_astore_0: store_one(current, 0); break;
case Bytecodes::_astore_1: store_one(current, 1); break;
case Bytecodes::_astore_2: store_one(current, 2); break;
case Bytecodes::_astore_3: store_one(current, 3); break;
// track bytecodes that affect the control flow
case Bytecodes::_athrow: // fall through
case Bytecodes::_ret: // fall through
case Bytecodes::_ireturn: // fall through
case Bytecodes::_lreturn: // fall through
case Bytecodes::_freturn: // fall through
case Bytecodes::_dreturn: // fall through
case Bytecodes::_areturn: // fall through
case Bytecodes::_return:
current = NULL;
break;
case Bytecodes::_ifeq: // fall through
case Bytecodes::_ifne: // fall through
case Bytecodes::_iflt: // fall through
case Bytecodes::_ifge: // fall through
case Bytecodes::_ifgt: // fall through
case Bytecodes::_ifle: // fall through
case Bytecodes::_if_icmpeq: // fall through
case Bytecodes::_if_icmpne: // fall through
case Bytecodes::_if_icmplt: // fall through
case Bytecodes::_if_icmpge: // fall through
case Bytecodes::_if_icmpgt: // fall through
case Bytecodes::_if_icmple: // fall through
case Bytecodes::_if_acmpeq: // fall through
case Bytecodes::_if_acmpne: // fall through
case Bytecodes::_ifnull: // fall through
case Bytecodes::_ifnonnull:
make_block_at(s.next_bci(), current);
make_block_at(s.get_dest(), current);
current = NULL;
break;
case Bytecodes::_goto:
make_block_at(s.get_dest(), current);
current = NULL;
break;
case Bytecodes::_goto_w:
make_block_at(s.get_far_dest(), current);
current = NULL;
break;
case Bytecodes::_jsr:
handle_jsr(current, s.get_dest(), s.next_bci());
current = NULL;
break;
case Bytecodes::_jsr_w:
handle_jsr(current, s.get_far_dest(), s.next_bci());
current = NULL;
break;
case Bytecodes::_tableswitch: {
// set block for each case
Bytecode_tableswitch *switch_ = Bytecode_tableswitch_at(s.cur_bcp());
int l = switch_->length();
for (int i = 0; i < l; i++) {
make_block_at(cur_bci + switch_->dest_offset_at(i), current);
}
make_block_at(cur_bci + switch_->default_offset(), current);
current = NULL;
break;
}
case Bytecodes::_lookupswitch: {
// set block for each case
Bytecode_lookupswitch *switch_ = Bytecode_lookupswitch_at(s.cur_bcp());
int l = switch_->number_of_pairs();
for (int i = 0; i < l; i++) {
make_block_at(cur_bci + switch_->pair_at(i)->offset(), current);
}
make_block_at(cur_bci + switch_->default_offset(), current);
current = NULL;
break;
}
}
}
}
void BlockListBuilder::mark_loops() {
ResourceMark rm;
_active = BitMap(BlockBegin::number_of_blocks()); _active.clear();
_visited = BitMap(BlockBegin::number_of_blocks()); _visited.clear();
_loop_map = intArray(BlockBegin::number_of_blocks(), 0);
_next_loop_index = 0;
_next_block_number = _blocks.length();
// recursively iterate the control flow graph
mark_loops(_bci2block->at(0), false);
assert(_next_block_number >= 0, "invalid block numbers");
}
void BlockListBuilder::make_loop_header(BlockBegin* block) {
if (block->is_set(BlockBegin::exception_entry_flag)) {
// exception edges may look like loops but don't mark them as such
// since it screws up block ordering.
return;
}
if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
block->set(BlockBegin::parser_loop_header_flag);
assert(_loop_map.at(block->block_id()) == 0, "must not be set yet");
assert(0 <= _next_loop_index && _next_loop_index < BitsPerInt, "_next_loop_index is used as a bit-index in integer");
_loop_map.at_put(block->block_id(), 1 << _next_loop_index);
if (_next_loop_index < 31) _next_loop_index++;
} else {
// block already marked as loop header
assert(is_power_of_2(_loop_map.at(block->block_id())), "exactly one bit must be set");
}
}
int BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
int block_id = block->block_id();
if (_visited.at(block_id)) {
if (_active.at(block_id)) {
// reached block via backward branch
make_loop_header(block);
}
// return cached loop information for this block
return _loop_map.at(block_id);
}
if (block->is_set(BlockBegin::subroutine_entry_flag)) {
in_subroutine = true;
}
// set active and visited bits before successors are processed
_visited.set_bit(block_id);
_active.set_bit(block_id);
intptr_t loop_state = 0;
for (int i = block->number_of_sux() - 1; i >= 0; i--) {
// recursively process all successors
loop_state |= mark_loops(block->sux_at(i), in_subroutine);
}
// clear active-bit after all successors are processed
_active.clear_bit(block_id);
// reverse-post-order numbering of all blocks
block->set_depth_first_number(_next_block_number);
_next_block_number--;
if (loop_state != 0 || in_subroutine ) {
// block is contained at least in one loop, so phi functions are necessary
// phi functions are also necessary for all locals stored in a subroutine
scope()->requires_phi_function().set_union(block->stores_to_locals());
}
if (block->is_set(BlockBegin::parser_loop_header_flag)) {
int header_loop_state = _loop_map.at(block_id);
assert(is_power_of_2((unsigned)header_loop_state), "exactly one bit must be set");
// If the highest bit is set (i.e. when integer value is negative), the method
// has 32 or more loops. This bit is never cleared because it is used for multiple loops
if (header_loop_state >= 0) {
clear_bits(loop_state, header_loop_state);
}
}
// cache and return loop information for this block
_loop_map.at_put(block_id, loop_state);
return loop_state;
}
#ifndef PRODUCT
int compare_depth_first(BlockBegin** a, BlockBegin** b) {
return (*a)->depth_first_number() - (*b)->depth_first_number();
}
void BlockListBuilder::print() {
tty->print("----- initial block list of BlockListBuilder for method ");
method()->print_short_name();
tty->cr();
// better readability if blocks are sorted in processing order
_blocks.sort(compare_depth_first);
for (int i = 0; i < _blocks.length(); i++) {
BlockBegin* cur = _blocks.at(i);
tty->print("%4d: B%-4d bci: %-4d preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
tty->print(cur->is_set(BlockBegin::std_entry_flag) ? " std" : " ");
tty->print(cur->is_set(BlockBegin::osr_entry_flag) ? " osr" : " ");
tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
tty->print(cur->is_set(BlockBegin::subroutine_entry_flag) ? " sr" : " ");
tty->print(cur->is_set(BlockBegin::parser_loop_header_flag) ? " lh" : " ");
if (cur->number_of_sux() > 0) {
tty->print(" sux: ");
for (int j = 0; j < cur->number_of_sux(); j++) {
BlockBegin* sux = cur->sux_at(j);
tty->print("B%d ", sux->block_id());
}
}
tty->cr();
}
}
#endif
// A simple growable array of Values indexed by ciFields
class FieldBuffer: public CompilationResourceObj {
private:
GrowableArray<Value> _values;
public:
FieldBuffer() {}
void kill() {
_values.trunc_to(0);
}
Value at(ciField* field) {
assert(field->holder()->is_loaded(), "must be a loaded field");
int offset = field->offset();
if (offset < _values.length()) {
return _values.at(offset);
} else {
return NULL;
}
}
void at_put(ciField* field, Value value) {
assert(field->holder()->is_loaded(), "must be a loaded field");
int offset = field->offset();
_values.at_put_grow(offset, value, NULL);
}
};
// MemoryBuffer is fairly simple model of the current state of memory.
// It partitions memory into several pieces. The first piece is
// generic memory where little is known about the owner of the memory.
// This is conceptually represented by the tuple <O, F, V> which says
// that the field F of object O has value V. This is flattened so
// that F is represented by the offset of the field and the parallel
// arrays _objects and _values are used for O and V. Loads of O.F can
// simply use V. Newly allocated objects are kept in a separate list
// along with a parallel array for each object which represents the
// current value of its fields. Stores of the default value to fields
// which have never been stored to before are eliminated since they
// are redundant. Once newly allocated objects are stored into
// another object or they are passed out of the current compile they
// are treated like generic memory.
class MemoryBuffer: public CompilationResourceObj {
private:
FieldBuffer _values;
GrowableArray<Value> _objects;
GrowableArray<Value> _newobjects;
GrowableArray<FieldBuffer*> _fields;
public:
MemoryBuffer() {}
StoreField* store(StoreField* st) {
if (!EliminateFieldAccess) {
return st;
}
Value object = st->obj();
Value value = st->value();
ciField* field = st->field();
if (field->holder()->is_loaded()) {
int offset = field->offset();
int index = _newobjects.find(object);
if (index != -1) {
// newly allocated object with no other stores performed on this field
FieldBuffer* buf = _fields.at(index);
if (buf->at(field) == NULL && is_default_value(value)) {
#ifndef PRODUCT
if (PrintIRDuringConstruction && Verbose) {
tty->print_cr("Eliminated store for object %d:", index);
st->print_line();
}
#endif
return NULL;
} else {
buf->at_put(field, value);
}
} else {
_objects.at_put_grow(offset, object, NULL);
_values.at_put(field, value);
}
store_value(value);
} else {
// if we held onto field names we could alias based on names but
// we don't know what's being stored to so kill it all.
kill();
}
return st;
}
// return true if this value correspond to the default value of a field.
bool is_default_value(Value value) {
Constant* con = value->as_Constant();
if (con) {
switch (con->type()->tag()) {
case intTag: return con->type()->as_IntConstant()->value() == 0;
case longTag: return con->type()->as_LongConstant()->value() == 0;
case floatTag: return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
case objectTag: return con->type() == objectNull;
default: ShouldNotReachHere();
}
}
return false;
}
// return either the actual value of a load or the load itself
Value load(LoadField* load) {
if (!EliminateFieldAccess) {
return load;
}
if (RoundFPResults && UseSSE < 2 && load->type()->is_float_kind()) {
// can't skip load since value might get rounded as a side effect
return load;
}
ciField* field = load->field();
Value object = load->obj();
if (field->holder()->is_loaded() && !field->is_volatile()) {
int offset = field->offset();
Value result = NULL;
int index = _newobjects.find(object);
if (index != -1) {
result = _fields.at(index)->at(field);
} else if (_objects.at_grow(offset, NULL) == object) {
result = _values.at(field);
}
if (result != NULL) {
#ifndef PRODUCT
if (PrintIRDuringConstruction && Verbose) {
tty->print_cr("Eliminated load: ");
load->print_line();
}
#endif
assert(result->type()->tag() == load->type()->tag(), "wrong types");
return result;
}
}
return load;
}
// Record this newly allocated object
void new_instance(NewInstance* object) {
int index = _newobjects.length();
_newobjects.append(object);
if (_fields.at_grow(index, NULL) == NULL) {
_fields.at_put(index, new FieldBuffer());
} else {
_fields.at(index)->kill();
}
}
void store_value(Value value) {
int index = _newobjects.find(value);
if (index != -1) {
// stored a newly allocated object into another object.
// Assume we've lost track of it as separate slice of memory.
// We could do better by keeping track of whether individual
// fields could alias each other.
_newobjects.remove_at(index);
// pull out the field info and store it at the end up the list
// of field info list to be reused later.
_fields.append(_fields.at(index));
_fields.remove_at(index);
}
}
void kill() {
_newobjects.trunc_to(0);
_objects.trunc_to(0);
_values.kill();
}
};
// Implementation of GraphBuilder's ScopeData
GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
: _parent(parent)
, _bci2block(NULL)
, _scope(NULL)
, _has_handler(false)
, _stream(NULL)
, _work_list(NULL)
, _parsing_jsr(false)
, _jsr_xhandlers(NULL)
, _caller_stack_size(-1)
, _continuation(NULL)
, _continuation_state(NULL)
, _num_returns(0)
, _cleanup_block(NULL)
, _cleanup_return_prev(NULL)
, _cleanup_state(NULL)
{
if (parent != NULL) {
_max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
} else {
_max_inline_size = MaxInlineSize;
}
if (_max_inline_size < MaxTrivialSize) {
_max_inline_size = MaxTrivialSize;
}
}
void GraphBuilder::kill_all() {
if (UseLocalValueNumbering) {
vmap()->kill_all();
}
_memory->kill();
}
BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
if (parsing_jsr()) {
// It is necessary to clone all blocks associated with a
// subroutine, including those for exception handlers in the scope
// of the method containing the jsr (because those exception
// handlers may contain ret instructions in some cases).
BlockBegin* block = bci2block()->at(bci);
if (block != NULL && block == parent()->bci2block()->at(bci)) {
BlockBegin* new_block = new BlockBegin(block->bci());
#ifndef PRODUCT
if (PrintInitialBlockList) {
tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
block->block_id(), block->bci(), new_block->block_id());
}
#endif
// copy data from cloned blocked
new_block->set_depth_first_number(block->depth_first_number());
if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
// Preserve certain flags for assertion checking
if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
if (block->is_set(BlockBegin::exception_entry_flag)) new_block->set(BlockBegin::exception_entry_flag);
// copy was_visited_flag to allow early detection of bailouts
// if a block that is used in a jsr has already been visited before,
// it is shared between the normal control flow and a subroutine
// BlockBegin::try_merge returns false when the flag is set, this leads
// to a compilation bailout
if (block->is_set(BlockBegin::was_visited_flag)) new_block->set(BlockBegin::was_visited_flag);
bci2block()->at_put(bci, new_block);
block = new_block;
}
return block;
} else {
return bci2block()->at(bci);
}
}
XHandlers* GraphBuilder::ScopeData::xhandlers() const {
if (_jsr_xhandlers == NULL) {
assert(!parsing_jsr(), "");
return scope()->xhandlers();
}
assert(parsing_jsr(), "");
return _jsr_xhandlers;
}
void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
_scope = scope;
bool parent_has_handler = false;
if (parent() != NULL) {
parent_has_handler = parent()->has_handler();
}
_has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
}
void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
Instruction* return_prev,
ValueStack* return_state) {
_cleanup_block = block;
_cleanup_return_prev = return_prev;
_cleanup_state = return_state;
}
void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
if (_work_list == NULL) {
_work_list = new BlockList();
}
if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
// Do not start parsing the continuation block while in a
// sub-scope
if (parsing_jsr()) {
if (block == jsr_continuation()) {
return;
}
} else {
if (block == continuation()) {
return;
}
}
block->set(BlockBegin::is_on_work_list_flag);
_work_list->push(block);
sort_top_into_worklist(_work_list, block);
}
}
void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
assert(worklist->top() == top, "");
// sort block descending into work list
const int dfn = top->depth_first_number();
assert(dfn != -1, "unknown depth first number");
int i = worklist->length()-2;
while (i >= 0) {
BlockBegin* b = worklist->at(i);
if (b->depth_first_number() < dfn) {
worklist->at_put(i+1, b);
} else {
break;
}
i --;
}
if (i >= -1) worklist->at_put(i + 1, top);
}
int GraphBuilder::ScopeData::caller_stack_size() const {
ValueStack* state = scope()->caller_state();
if (state == NULL) {
return 0;
}
return state->stack_size();
}
BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
if (is_work_list_empty()) {
return NULL;
}
return _work_list->pop();
}
bool GraphBuilder::ScopeData::is_work_list_empty() const {
return (_work_list == NULL || _work_list->length() == 0);
}
void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
assert(parsing_jsr(), "");
// clone all the exception handlers from the scope
XHandlers* handlers = new XHandlers(scope()->xhandlers());
const int n = handlers->length();
for (int i = 0; i < n; i++) {
// The XHandlers need to be adjusted to dispatch to the cloned
// handler block instead of the default one but the synthetic
// unlocker needs to be handled specially. The synthetic unlocker
// should be left alone since there can be only one and all code
// should dispatch to the same one.
XHandler* h = handlers->handler_at(i);
if (h->handler_bci() != SynchronizationEntryBCI) {
h->set_entry_block(block_at(h->handler_bci()));
} else {
assert(h->entry_block()->is_set(BlockBegin::default_exception_handler_flag),
"should be the synthetic unlock block");
}
}
_jsr_xhandlers = handlers;
}
int GraphBuilder::ScopeData::num_returns() {
if (parsing_jsr()) {
return parent()->num_returns();
}
return _num_returns;
}
void GraphBuilder::ScopeData::incr_num_returns() {
if (parsing_jsr()) {
parent()->incr_num_returns();
} else {
++_num_returns;
}
}
// Implementation of GraphBuilder
#define INLINE_BAILOUT(msg) { inline_bailout(msg); return false; }
void GraphBuilder::load_constant() {
ciConstant con = stream()->get_constant();
if (con.basic_type() == T_ILLEGAL) {
BAILOUT("could not resolve a constant");
} else {
ValueType* t = illegalType;
ValueStack* patch_state = NULL;
switch (con.basic_type()) {
case T_BOOLEAN: t = new IntConstant (con.as_boolean()); break;
case T_BYTE : t = new IntConstant (con.as_byte ()); break;
case T_CHAR : t = new IntConstant (con.as_char ()); break;
case T_SHORT : t = new IntConstant (con.as_short ()); break;
case T_INT : t = new IntConstant (con.as_int ()); break;
case T_LONG : t = new LongConstant (con.as_long ()); break;
case T_FLOAT : t = new FloatConstant (con.as_float ()); break;
case T_DOUBLE : t = new DoubleConstant (con.as_double ()); break;
case T_ARRAY : t = new ArrayConstant (con.as_object ()->as_array ()); break;
case T_OBJECT :
{
ciObject* obj = con.as_object();
if (obj->is_klass()) {
ciKlass* klass = obj->as_klass();
if (!klass->is_loaded() || PatchALot) {
patch_state = state()->copy();
t = new ObjectConstant(obj);
} else {
t = new InstanceConstant(klass->java_mirror());
}
} else {
t = new InstanceConstant(obj->as_instance());
}
break;
}
default : ShouldNotReachHere();
}
Value x;
if (patch_state != NULL) {
x = new Constant(t, patch_state);
} else {
x = new Constant(t);
}
push(t, append(x));
}
}
void GraphBuilder::load_local(ValueType* type, int index) {
Value x = state()->load_local(index);
push(type, x);
}
void GraphBuilder::store_local(ValueType* type, int index) {
Value x = pop(type);
store_local(state(), x, type, index);
}
void GraphBuilder::store_local(ValueStack* state, Value x, ValueType* type, int index) {
if (parsing_jsr()) {
// We need to do additional tracking of the location of the return
// address for jsrs since we don't handle arbitrary jsr/ret
// constructs. Here we are figuring out in which circumstances we
// need to bail out.
if (x->type()->is_address()) {
scope_data()->set_jsr_return_address_local(index);
// Also check parent jsrs (if any) at this time to see whether
// they are using this local. We don't handle skipping over a
// ret.
for (ScopeData* cur_scope_data = scope_data()->parent();
cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
cur_scope_data = cur_scope_data->parent()) {
if (cur_scope_data->jsr_return_address_local() == index) {
BAILOUT("subroutine overwrites return address from previous subroutine");
}
}
} else if (index == scope_data()->jsr_return_address_local()) {
scope_data()->set_jsr_return_address_local(-1);
}
}
state->store_local(index, round_fp(x));
}
void GraphBuilder::load_indexed(BasicType type) {
Value index = ipop();
Value array = apop();
Value length = NULL;
if (CSEArrayLength ||
(array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
(array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
length = append(new ArrayLength(array, lock_stack()));
}
push(as_ValueType(type), append(new LoadIndexed(array, index, length, type, lock_stack())));
}
void GraphBuilder::store_indexed(BasicType type) {
Value value = pop(as_ValueType(type));
Value index = ipop();
Value array = apop();
Value length = NULL;
if (CSEArrayLength ||
(array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
(array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
length = append(new ArrayLength(array, lock_stack()));
}
StoreIndexed* result = new StoreIndexed(array, index, length, type, value, lock_stack());
append(result);
_memory->store_value(value);
}
void GraphBuilder::stack_op(Bytecodes::Code code) {
switch (code) {
case Bytecodes::_pop:
{ state()->raw_pop();
}
break;
case Bytecodes::_pop2:
{ state()->raw_pop();
state()->raw_pop();
}
break;
case Bytecodes::_dup:
{ Value w = state()->raw_pop();
state()->raw_push(w);
state()->raw_push(w);
}
break;
case Bytecodes::_dup_x1:
{ Value w1 = state()->raw_pop();
Value w2 = state()->raw_pop();
state()->raw_push(w1);
state()->raw_push(w2);
state()->raw_push(w1);
}
break;
case Bytecodes::_dup_x2:
{ Value w1 = state()->raw_pop();
Value w2 = state()->raw_pop();
Value w3 = state()->raw_pop();
state()->raw_push(w1);
state()->raw_push(w3);
state()->raw_push(w2);
state()->raw_push(w1);
}
break;
case Bytecodes::_dup2:
{ Value w1 = state()->raw_pop();
Value w2 = state()->raw_pop();
state()->raw_push(w2);
state()->raw_push(w1);
state()->raw_push(w2);
state()->raw_push(w1);
}
break;
case Bytecodes::_dup2_x1:
{ Value w1 = state()->raw_pop();
Value w2 = state()->raw_pop();
Value w3 = state()->raw_pop();
state()->raw_push(w2);
state()->raw_push(w1);
state()->raw_push(w3);
state()->raw_push(w2);
state()->raw_push(w1);
}
break;
case Bytecodes::_dup2_x2:
{ Value w1 = state()->raw_pop();
Value w2 = state()->raw_pop();
Value w3 = state()->raw_pop();
Value w4 = state()->raw_pop();
state()->raw_push(w2);
state()->raw_push(w1);
state()->raw_push(w4);
state()->raw_push(w3);
state()->raw_push(w2);
state()->raw_push(w1);
}
break;
case Bytecodes::_swap:
{ Value w1 = state()->raw_pop();
Value w2 = state()->raw_pop();
state()->raw_push(w1);
state()->raw_push(w2);
}
break;
default:
ShouldNotReachHere();
break;
}
}
void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* stack) {
Value y = pop(type);
Value x = pop(type);
// NOTE: strictfp can be queried from current method since we don't
// inline methods with differing strictfp bits
Value res = new ArithmeticOp(code, x, y, method()->is_strict(), stack);
// Note: currently single-precision floating-point rounding on Intel is handled at the LIRGenerator level
res = append(res);
if (method()->is_strict()) {
res = round_fp(res);
}
push(type, res);
}
void GraphBuilder::negate_op(ValueType* type) {
push(type, append(new NegateOp(pop(type))));
}
void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
Value s = ipop();
Value x = pop(type);
// try to simplify
// Note: This code should go into the canonicalizer as soon as it can
// can handle canonicalized forms that contain more than one node.
if (CanonicalizeNodes && code == Bytecodes::_iushr) {
// pattern: x >>> s
IntConstant* s1 = s->type()->as_IntConstant();
if (s1 != NULL) {
// pattern: x >>> s1, with s1 constant
ShiftOp* l = x->as_ShiftOp();
if (l != NULL && l->op() == Bytecodes::_ishl) {
// pattern: (a << b) >>> s1
IntConstant* s0 = l->y()->type()->as_IntConstant();
if (s0 != NULL) {
// pattern: (a << s0) >>> s1
const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
if (s0c == s1c) {
if (s0c == 0) {
// pattern: (a << 0) >>> 0 => simplify to: a
ipush(l->x());
} else {
// pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
const int m = (1 << (BitsPerInt - s0c)) - 1;
Value s = append(new Constant(new IntConstant(m)));
ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
}
return;
}
}
}
}
}
// could not simplify
push(type, append(new ShiftOp(code, x, s)));
}
void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
Value y = pop(type);
Value x = pop(type);
push(type, append(new LogicOp(code, x, y)));
}
void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
ValueStack* state_before = state()->copy();
Value y = pop(type);
Value x = pop(type);
ipush(append(new CompareOp(code, x, y, state_before)));
}
void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
}
void GraphBuilder::increment() {
int index = stream()->get_index();
int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
load_local(intType, index);
ipush(append(new Constant(new IntConstant(delta))));
arithmetic_op(intType, Bytecodes::_iadd);
store_local(intType, index);
}
void GraphBuilder::_goto(int from_bci, int to_bci) {
profile_bci(from_bci);
append(new Goto(block_at(to_bci), to_bci <= from_bci));
}
void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
BlockBegin* tsux = block_at(stream()->get_dest());
BlockBegin* fsux = block_at(stream()->next_bci());
bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
If* if_node = append(new If(x, cond, false, y, tsux, fsux, is_bb ? state_before : NULL, is_bb))->as_If();
if (profile_branches() && (if_node != NULL)) {
if_node->set_profiled_method(method());
if_node->set_profiled_bci(bci());
if_node->set_should_profile(true);
}
}
void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
Value y = append(new Constant(intZero));
ValueStack* state_before = state()->copy();
Value x = ipop();
if_node(x, cond, y, state_before);
}
void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
Value y = append(new Constant(objectNull));
ValueStack* state_before = state()->copy();
Value x = apop();
if_node(x, cond, y, state_before);
}
void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
ValueStack* state_before = state()->copy();
Value y = pop(type);
Value x = pop(type);
if_node(x, cond, y, state_before);
}
void GraphBuilder::jsr(int dest) {
// We only handle well-formed jsrs (those which are "block-structured").
// If the bytecodes are strange (jumping out of a jsr block) then we
// might end up trying to re-parse a block containing a jsr which
// has already been activated. Watch for this case and bail out.
for (ScopeData* cur_scope_data = scope_data();
cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
cur_scope_data = cur_scope_data->parent()) {
if (cur_scope_data->jsr_entry_bci() == dest) {
BAILOUT("too-complicated jsr/ret structure");
}
}
push(addressType, append(new Constant(new AddressConstant(next_bci()))));
if (!try_inline_jsr(dest)) {
return; // bailed out while parsing and inlining subroutine
}
}
void GraphBuilder::ret(int local_index) {
if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
if (local_index != scope_data()->jsr_return_address_local()) {
BAILOUT("can not handle complicated jsr/ret constructs");
}
// Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
append(new Goto(scope_data()->jsr_continuation(), false));
}
void GraphBuilder::table_switch() {
Bytecode_tableswitch* switch_ = Bytecode_tableswitch_at(method()->code() + bci());
const int l = switch_->length();
if (CanonicalizeNodes && l == 1) {
// total of 2 successors => use If instead of switch
// Note: This code should go into the canonicalizer as soon as it can
// can handle canonicalized forms that contain more than one node.
Value key = append(new Constant(new IntConstant(switch_->low_key())));
BlockBegin* tsux = block_at(bci() + switch_->dest_offset_at(0));
BlockBegin* fsux = block_at(bci() + switch_->default_offset());
bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
ValueStack* state_before = is_bb ? state() : NULL;
append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
} else {
// collect successors
BlockList* sux = new BlockList(l + 1, NULL);
int i;
bool has_bb = false;
for (i = 0; i < l; i++) {
sux->at_put(i, block_at(bci() + switch_->dest_offset_at(i)));
if (switch_->dest_offset_at(i) < 0) has_bb = true;
}
// add default successor
sux->at_put(i, block_at(bci() + switch_->default_offset()));
ValueStack* state_before = has_bb ? state() : NULL;
append(new TableSwitch(ipop(), sux, switch_->low_key(), state_before, has_bb));
}
}
void GraphBuilder::lookup_switch() {
Bytecode_lookupswitch* switch_ = Bytecode_lookupswitch_at(method()->code() + bci());
const int l = switch_->number_of_pairs();
if (CanonicalizeNodes && l == 1) {
// total of 2 successors => use If instead of switch
// Note: This code should go into the canonicalizer as soon as it can
// can handle canonicalized forms that contain more than one node.
// simplify to If
LookupswitchPair* pair = switch_->pair_at(0);
Value key = append(new Constant(new IntConstant(pair->match())));
BlockBegin* tsux = block_at(bci() + pair->offset());
BlockBegin* fsux = block_at(bci() + switch_->default_offset());
bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
ValueStack* state_before = is_bb ? state() : NULL;
append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
} else {
// collect successors & keys
BlockList* sux = new BlockList(l + 1, NULL);
intArray* keys = new intArray(l, 0);
int i;
bool has_bb = false;
for (i = 0; i < l; i++) {
LookupswitchPair* pair = switch_->pair_at(i);
if (pair->offset() < 0) has_bb = true;
sux->at_put(i, block_at(bci() + pair->offset()));
keys->at_put(i, pair->match());
}
// add default successor
sux->at_put(i, block_at(bci() + switch_->default_offset()));
ValueStack* state_before = has_bb ? state() : NULL;
append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
}
}
void GraphBuilder::call_register_finalizer() {
// If the receiver requires finalization then emit code to perform
// the registration on return.
// Gather some type information about the receiver
Value receiver = state()->load_local(0);
assert(receiver != NULL, "must have a receiver");
ciType* declared_type = receiver->declared_type();
ciType* exact_type = receiver->exact_type();
if (exact_type == NULL &&
receiver->as_Local() &&
receiver->as_Local()->java_index() == 0) {
ciInstanceKlass* ik = compilation()->method()->holder();
if (ik->is_final()) {
exact_type = ik;
} else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
// test class is leaf class
compilation()->dependency_recorder()->assert_leaf_type(ik);
exact_type = ik;
} else {
declared_type = ik;
}
}
// see if we know statically that registration isn't required
bool needs_check = true;
if (exact_type != NULL) {
needs_check = exact_type->as_instance_klass()->has_finalizer();
} else if (declared_type != NULL) {
ciInstanceKlass* ik = declared_type->as_instance_klass();
if (!Dependencies::has_finalizable_subclass(ik)) {
compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
needs_check = false;
}
}
if (needs_check) {
// Perform the registration of finalizable objects.
load_local(objectType, 0);
append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
state()->pop_arguments(1),
true, lock_stack(), true));
}
}
void GraphBuilder::method_return(Value x) {
if (RegisterFinalizersAtInit &&
method()->intrinsic_id() == vmIntrinsics::_Object_init) {
call_register_finalizer();
}
// Check to see whether we are inlining. If so, Return
// instructions become Gotos to the continuation point.
if (continuation() != NULL) {
assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
// If the inlined method is synchronized, the monitor must be
// released before we jump to the continuation block.
if (method()->is_synchronized()) {
int i = state()->caller_state()->locks_size();
assert(state()->locks_size() == i + 1, "receiver must be locked here");
monitorexit(state()->lock_at(i), SynchronizationEntryBCI);
}
state()->truncate_stack(caller_stack_size());
if (x != NULL) {
state()->push(x->type(), x);
}
Goto* goto_callee = new Goto(continuation(), false);
// See whether this is the first return; if so, store off some
// of the state for later examination
if (num_returns() == 0) {
set_inline_cleanup_info(_block, _last, state());
}
// State at end of inlined method is the state of the caller
// without the method parameters on stack, including the
// return value, if any, of the inlined method on operand stack.
set_state(scope_data()->continuation_state()->copy());
if (x) {
state()->push(x->type(), x);
}
// The current bci() is in the wrong scope, so use the bci() of
// the continuation point.
append_with_bci(goto_callee, scope_data()->continuation()->bci());
incr_num_returns();
return;
}
state()->truncate_stack(0);
if (method()->is_synchronized()) {
// perform the unlocking before exiting the method
Value receiver;
if (!method()->is_static()) {
receiver = _initial_state->local_at(0);
} else {
receiver = append(new Constant(new ClassConstant(method()->holder())));
}
append_split(new MonitorExit(receiver, state()->unlock()));
}
append(new Return(x));
}
void GraphBuilder::access_field(Bytecodes::Code code) {
bool will_link;
ciField* field = stream()->get_field(will_link);
ciInstanceKlass* holder = field->holder();
BasicType field_type = field->type()->basic_type();
ValueType* type = as_ValueType(field_type);
// call will_link again to determine if the field is valid.
const bool is_loaded = holder->is_loaded() &&
field->will_link(method()->holder(), code);
const bool is_initialized = is_loaded && holder->is_initialized();
ValueStack* state_copy = NULL;
if (!is_initialized || PatchALot) {
// save state before instruction for debug info when
// deoptimization happens during patching
state_copy = state()->copy();
}
Value obj = NULL;
if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
// commoning of class constants should only occur if the class is
// fully initialized and resolved in this constant pool. The will_link test
// above essentially checks if this class is resolved in this constant pool
// so, the is_initialized flag should be suffiect.
if (state_copy != NULL) {
// build a patching constant
obj = new Constant(new ClassConstant(holder), state_copy);
} else {
obj = new Constant(new ClassConstant(holder));
}
}
const int offset = is_loaded ? field->offset() : -1;
switch (code) {
case Bytecodes::_getstatic: {
// check for compile-time constants, i.e., initialized static final fields
Instruction* constant = NULL;
if (field->is_constant() && !PatchALot) {
ciConstant field_val = field->constant_value();
BasicType field_type = field_val.basic_type();
switch (field_type) {
case T_ARRAY:
case T_OBJECT:
if (field_val.as_object()->has_encoding()) {
constant = new Constant(as_ValueType(field_val));
}
break;
default:
constant = new Constant(as_ValueType(field_val));
}
}
if (constant != NULL) {
push(type, append(constant));
state_copy = NULL; // Not a potential deoptimization point (see set_state_before logic below)
} else {
push(type, append(new LoadField(append(obj), offset, field, true,
lock_stack(), state_copy, is_loaded, is_initialized)));
}
break;
}
case Bytecodes::_putstatic:
{ Value val = pop(type);
append(new StoreField(append(obj), offset, field, val, true, lock_stack(), state_copy, is_loaded, is_initialized));
}
break;
case Bytecodes::_getfield :
{
LoadField* load = new LoadField(apop(), offset, field, false, lock_stack(), state_copy, is_loaded, true);
Value replacement = is_loaded ? _memory->load(load) : load;
if (replacement != load) {
assert(replacement->bci() != -99 || replacement->as_Phi() || replacement->as_Local(),
"should already by linked");
push(type, replacement);
} else {
push(type, append(load));
}
break;
}
case Bytecodes::_putfield :
{ Value val = pop(type);
StoreField* store = new StoreField(apop(), offset, field, val, false, lock_stack(), state_copy, is_loaded, true);
if (is_loaded) store = _memory->store(store);
if (store != NULL) {
append(store);
}
}
break;
default :
ShouldNotReachHere();
break;
}
}
Dependencies* GraphBuilder::dependency_recorder() const {
assert(DeoptC1, "need debug information");
compilation()->set_needs_debug_information(true);
return compilation()->dependency_recorder();
}
void GraphBuilder::invoke(Bytecodes::Code code) {
bool will_link;
ciMethod* target = stream()->get_method(will_link);
// we have to make sure the argument size (incl. the receiver)
// is correct for compilation (the call would fail later during
// linkage anyway) - was bug (gri 7/28/99)
if (target->is_loaded() && target->is_static() != (code == Bytecodes::_invokestatic)) BAILOUT("will cause link error");
ciInstanceKlass* klass = target->holder();
// check if CHA possible: if so, change the code to invoke_special
ciInstanceKlass* calling_klass = method()->holder();
ciKlass* holder = stream()->get_declared_method_holder();
ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
ciInstanceKlass* actual_recv = callee_holder;
// some methods are obviously bindable without any type checks so
// convert them directly to an invokespecial.
if (target->is_loaded() && !target->is_abstract() &&
target->can_be_statically_bound() && code == Bytecodes::_invokevirtual) {
code = Bytecodes::_invokespecial;
}
// NEEDS_CLEANUP
// I've added the target-is_loaded() test below but I don't really understand
// how klass->is_loaded() can be true and yet target->is_loaded() is false.
// this happened while running the JCK invokevirtual tests under doit. TKR
ciMethod* cha_monomorphic_target = NULL;
ciMethod* exact_target = NULL;
if (UseCHA && DeoptC1 && klass->is_loaded() && target->is_loaded()) {
Value receiver = NULL;
ciInstanceKlass* receiver_klass = NULL;
bool type_is_exact = false;
// try to find a precise receiver type
if (will_link && !target->is_static()) {
int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
receiver = state()->stack_at(index);
ciType* type = receiver->exact_type();
if (type != NULL && type->is_loaded() &&
type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
receiver_klass = (ciInstanceKlass*) type;
type_is_exact = true;
}
if (type == NULL) {
type = receiver->declared_type();
if (type != NULL && type->is_loaded() &&
type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
receiver_klass = (ciInstanceKlass*) type;
if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
// Insert a dependency on this type since
// find_monomorphic_target may assume it's already done.
dependency_recorder()->assert_leaf_type(receiver_klass);
type_is_exact = true;
}
}
}
}
if (receiver_klass != NULL && type_is_exact &&
receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
// If we have the exact receiver type we can bind directly to
// the method to call.
exact_target = target->resolve_invoke(calling_klass, receiver_klass);
if (exact_target != NULL) {
target = exact_target;
code = Bytecodes::_invokespecial;
}
}
if (receiver_klass != NULL &&
receiver_klass->is_subtype_of(actual_recv) &&
actual_recv->is_initialized()) {
actual_recv = receiver_klass;
}
if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
(code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
// Use CHA on the receiver to select a more precise method.
cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
} else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != NULL) {
// if there is only one implementor of this interface then we
// may be able bind this invoke directly to the implementing
// klass but we need both a dependence on the single interface
// and on the method we bind to. Additionally since all we know
// about the receiver type is the it's supposed to implement the
// interface we have to insert a check that it's the class we
// expect. Interface types are not checked by the verifier so
// they are roughly equivalent to Object.
ciInstanceKlass* singleton = NULL;
if (target->holder()->nof_implementors() == 1) {
singleton = target->holder()->implementor(0);
}
if (singleton) {
cha_monomorphic_target = target->find_monomorphic_target(calling_klass, target->holder(), singleton);
if (cha_monomorphic_target != NULL) {
// If CHA is able to bind this invoke then update the class
// to match that class, otherwise klass will refer to the
// interface.
klass = cha_monomorphic_target->holder();
actual_recv = target->holder();
// insert a check it's really the expected class.
CheckCast* c = new CheckCast(klass, receiver, NULL);
c->set_incompatible_class_change_check();
c->set_direct_compare(klass->is_final());
append_split(c);
}
}
}
}
if (cha_monomorphic_target != NULL) {
if (cha_monomorphic_target->is_abstract()) {
// Do not optimize for abstract methods
cha_monomorphic_target = NULL;
}
}
if (cha_monomorphic_target != NULL) {
if (!(target->is_final_method())) {
// If we inlined because CHA revealed only a single target method,
// then we are dependent on that target method not getting overridden
// by dynamic class loading. Be sure to test the "static" receiver
// dest_method here, as opposed to the actual receiver, which may
// falsely lead us to believe that the receiver is final or private.
dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target);
}
code = Bytecodes::_invokespecial;
}
// check if we could do inlining
if (!PatchALot && Inline && klass->is_loaded() &&
(klass->is_initialized() || klass->is_interface() && target->holder()->is_initialized())
&& target->will_link(klass, callee_holder, code)) {
// callee is known => check if we have static binding
assert(target->is_loaded(), "callee must be known");
if (code == Bytecodes::_invokestatic
|| code == Bytecodes::_invokespecial
|| code == Bytecodes::_invokevirtual && target->is_final_method()
) {
// static binding => check if callee is ok
ciMethod* inline_target = (cha_monomorphic_target != NULL)
? cha_monomorphic_target
: target;
bool res = try_inline(inline_target, (cha_monomorphic_target != NULL) || (exact_target != NULL));
CHECK_BAILOUT();
#ifndef PRODUCT
// printing
if (PrintInlining && !res) {
// if it was successfully inlined, then it was already printed.
print_inline_result(inline_target, res);
}
#endif
clear_inline_bailout();
if (res) {
// Register dependence if JVMTI has either breakpoint
// setting or hotswapping of methods capabilities since they may
// cause deoptimization.
if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
dependency_recorder()->assert_evol_method(inline_target);
}
return;
}
}
}
// If we attempted an inline which did not succeed because of a
// bailout during construction of the callee graph, the entire
// compilation has to be aborted. This is fairly rare and currently
// seems to only occur for jasm-generated classes which contain
// jsr/ret pairs which are not associated with finally clauses and
// do not have exception handlers in the containing method, and are
// therefore not caught early enough to abort the inlining without
// corrupting the graph. (We currently bail out with a non-empty
// stack at a ret in these situations.)
CHECK_BAILOUT();
// inlining not successful => standard invoke
bool is_static = code == Bytecodes::_invokestatic;
ValueType* result_type = as_ValueType(target->return_type());
Values* args = state()->pop_arguments(target->arg_size_no_receiver());
Value recv = is_static ? NULL : apop();
bool is_loaded = target->is_loaded();
int vtable_index = methodOopDesc::invalid_vtable_index;
#ifdef SPARC
// Currently only supported on Sparc.
// The UseInlineCaches only controls dispatch to invokevirtuals for
// loaded classes which we weren't able to statically bind.
if (!UseInlineCaches && is_loaded && code == Bytecodes::_invokevirtual
&& !target->can_be_statically_bound()) {
// Find a vtable index if one is available
vtable_index = target->resolve_vtable_index(calling_klass, callee_holder);
}
#endif
if (recv != NULL &&
(code == Bytecodes::_invokespecial ||
!is_loaded || target->is_final() ||
profile_calls())) {
// invokespecial always needs a NULL check. invokevirtual where
// the target is final or where it's not known that whether the
// target is final requires a NULL check. Otherwise normal
// invokevirtual will perform the null check during the lookup
// logic or the unverified entry point. Profiling of calls
// requires that the null check is performed in all cases.
null_check(recv);
}
if (profile_calls()) {
assert(cha_monomorphic_target == NULL || exact_target == NULL, "both can not be set");
ciKlass* target_klass = NULL;
if (cha_monomorphic_target != NULL) {
target_klass = cha_monomorphic_target->holder();
} else if (exact_target != NULL) {
target_klass = exact_target->holder();
}
profile_call(recv, target_klass);
}
Invoke* result = new Invoke(code, result_type, recv, args, vtable_index, target);
// push result
append_split(result);
if (result_type != voidType) {
if (method()->is_strict()) {
push(result_type, round_fp(result));
} else {
push(result_type, result);
}
}
}
void GraphBuilder::new_instance(int klass_index) {
bool will_link;
ciKlass* klass = stream()->get_klass(will_link);
assert(klass->is_instance_klass(), "must be an instance klass");
NewInstance* new_instance = new NewInstance(klass->as_instance_klass());
_memory->new_instance(new_instance);
apush(append_split(new_instance));
}
void GraphBuilder::new_type_array() {
apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index())));
}
void GraphBuilder::new_object_array() {
bool will_link;
ciKlass* klass = stream()->get_klass(will_link);
ValueStack* state_before = !klass->is_loaded() || PatchALot ? state()->copy() : NULL;
NewArray* n = new NewObjectArray(klass, ipop(), state_before);
apush(append_split(n));
}
bool GraphBuilder::direct_compare(ciKlass* k) {
if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
ciInstanceKlass* ik = k->as_instance_klass();
if (ik->is_final()) {
return true;
} else {
if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) {
// test class is leaf class
dependency_recorder()->assert_leaf_type(ik);
return true;
}
}
}
return false;
}
void GraphBuilder::check_cast(int klass_index) {
bool will_link;
ciKlass* klass = stream()->get_klass(will_link);
ValueStack* state_before = !klass->is_loaded() || PatchALot ? state()->copy() : NULL;
CheckCast* c = new CheckCast(klass, apop(), state_before);
apush(append_split(c));
c->set_direct_compare(direct_compare(klass));
if (profile_checkcasts()) {
c->set_profiled_method(method());
c->set_profiled_bci(bci());
c->set_should_profile(true);
}
}
void GraphBuilder::instance_of(int klass_index) {
bool will_link;
ciKlass* klass = stream()->get_klass(will_link);
ValueStack* state_before = !klass->is_loaded() || PatchALot ? state()->copy() : NULL;
InstanceOf* i = new InstanceOf(klass, apop(), state_before);
ipush(append_split(i));
i->set_direct_compare(direct_compare(klass));
}
void GraphBuilder::monitorenter(Value x, int bci) {
// save state before locking in case of deoptimization after a NullPointerException
ValueStack* lock_stack_before = lock_stack();
append_with_bci(new MonitorEnter(x, state()->lock(scope(), x), lock_stack_before), bci);
kill_all();
}
void GraphBuilder::monitorexit(Value x, int bci) {
// Note: the comment below is only relevant for the case where we do
// not deoptimize due to asynchronous exceptions (!(DeoptC1 &&
// DeoptOnAsyncException), which is not used anymore)
// Note: Potentially, the monitor state in an exception handler
// can be wrong due to wrong 'initialization' of the handler
// via a wrong asynchronous exception path. This can happen,
// if the exception handler range for asynchronous exceptions
// is too long (see also java bug 4327029, and comment in
// GraphBuilder::handle_exception()). This may cause 'under-
// flow' of the monitor stack => bailout instead.
if (state()->locks_size() < 1) BAILOUT("monitor stack underflow");
append_with_bci(new MonitorExit(x, state()->unlock()), bci);
kill_all();
}
void GraphBuilder::new_multi_array(int dimensions) {
bool will_link;
ciKlass* klass = stream()->get_klass(will_link);
ValueStack* state_before = !klass->is_loaded() || PatchALot ? state()->copy() : NULL;
Values* dims = new Values(dimensions, NULL);
// fill in all dimensions
int i = dimensions;
while (i-- > 0) dims->at_put(i, ipop());
// create array
NewArray* n = new NewMultiArray(klass, dims, state_before);
apush(append_split(n));
}
void GraphBuilder::throw_op(int bci) {
// We require that the debug info for a Throw be the "state before"
// the Throw (i.e., exception oop is still on TOS)
ValueStack* state_before = state()->copy();
Throw* t = new Throw(apop(), state_before);
append_with_bci(t, bci);
}
Value GraphBuilder::round_fp(Value fp_value) {
// no rounding needed if SSE2 is used
if (RoundFPResults && UseSSE < 2) {
// Must currently insert rounding node for doubleword values that
// are results of expressions (i.e., not loads from memory or
// constants)
if (fp_value->type()->tag() == doubleTag &&
fp_value->as_Constant() == NULL &&
fp_value->as_Local() == NULL && // method parameters need no rounding
fp_value->as_RoundFP() == NULL) {
return append(new RoundFP(fp_value));
}
}
return fp_value;
}
Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
Canonicalizer canon(instr, bci);
Instruction* i1 = canon.canonical();
if (i1->bci() != -99) {
// Canonicalizer returned an instruction which was already
// appended so simply return it.
return i1;
} else if (UseLocalValueNumbering) {
// Lookup the instruction in the ValueMap and add it to the map if
// it's not found.
Instruction* i2 = vmap()->find_insert(i1);
if (i2 != i1) {
// found an entry in the value map, so just return it.
assert(i2->bci() != -1, "should already be linked");
return i2;
}
ValueNumberingEffects vne(vmap());
i1->visit(&vne);
}
if (i1->as_Phi() == NULL && i1->as_Local() == NULL) {
// i1 was not eliminated => append it
assert(i1->next() == NULL, "shouldn't already be linked");
_last = _last->set_next(i1, canon.bci());
if (++_instruction_count >= InstructionCountCutoff
&& !bailed_out()) {
// set the bailout state but complete normal processing. We
// might do a little more work before noticing the bailout so we
// want processing to continue normally until it's noticed.
bailout("Method and/or inlining is too large");
}
#ifndef PRODUCT
if (PrintIRDuringConstruction) {
InstructionPrinter ip;
ip.print_line(i1);
if (Verbose) {
state()->print();
}
}
#endif
assert(_last == i1, "adjust code below");
StateSplit* s = i1->as_StateSplit();
if (s != NULL && i1->as_BlockEnd() == NULL) {
if (EliminateFieldAccess) {
Intrinsic* intrinsic = s->as_Intrinsic();
if (s->as_Invoke() != NULL || (intrinsic && !intrinsic->preserves_state())) {
_memory->kill();
}
}
s->set_state(state()->copy());
}
// set up exception handlers for this instruction if necessary
if (i1->can_trap()) {
assert(exception_state() != NULL || !has_handler(), "must have setup exception state");
i1->set_exception_handlers(handle_exception(bci));
}
}
return i1;
}
Instruction* GraphBuilder::append(Instruction* instr) {
assert(instr->as_StateSplit() == NULL || instr->as_BlockEnd() != NULL, "wrong append used");
return append_with_bci(instr, bci());
}
Instruction* GraphBuilder::append_split(StateSplit* instr) {
return append_with_bci(instr, bci());
}
void GraphBuilder::null_check(Value value) {
if (value->as_NewArray() != NULL || value->as_NewInstance() != NULL) {
return;
} else {
Constant* con = value->as_Constant();
if (con) {
ObjectType* c = con->type()->as_ObjectType();
if (c && c->is_loaded()) {
ObjectConstant* oc = c->as_ObjectConstant();
if (!oc || !oc->value()->is_null_object()) {
return;
}
}
}
}
append(new NullCheck(value, lock_stack()));
}
XHandlers* GraphBuilder::handle_exception(int cur_bci) {
// fast path if it is guaranteed that no exception handlers are present
if (!has_handler()) {
// TODO: check if return NULL is possible (avoids empty lists)
return new XHandlers();
}
XHandlers* exception_handlers = new XHandlers();
ScopeData* cur_scope_data = scope_data();
ValueStack* s = exception_state();
int scope_count = 0;
assert(s != NULL, "exception state must be set");
do {
assert(cur_scope_data->scope() == s->scope(), "scopes do not match");
assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci(), "invalid bci");
// join with all potential exception handlers
XHandlers* list = cur_scope_data->xhandlers();
const int n = list->length();
for (int i = 0; i < n; i++) {
XHandler* h = list->handler_at(i);
if (h->covers(cur_bci)) {
// h is a potential exception handler => join it
compilation()->set_has_exception_handlers(true);
BlockBegin* entry = h->entry_block();
if (entry == block()) {
// It's acceptable for an exception handler to cover itself
// but we don't handle that in the parser currently. It's
// very rare so we bailout instead of trying to handle it.
BAILOUT_("exception handler covers itself", exception_handlers);
}
assert(entry->bci() == h->handler_bci(), "must match");
assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
// previously this was a BAILOUT, but this is not necessary
// now because asynchronous exceptions are not handled this way.
assert(entry->state() == NULL || s->locks_size() == entry->state()->locks_size(), "locks do not match");
// xhandler start with an empty expression stack
s->truncate_stack(cur_scope_data->caller_stack_size());
// Note: Usually this join must work. However, very
// complicated jsr-ret structures where we don't ret from
// the subroutine can cause the objects on the monitor
// stacks to not match because blocks can be parsed twice.
// The only test case we've seen so far which exhibits this
// problem is caught by the infinite recursion test in
// GraphBuilder::jsr() if the join doesn't work.
if (!entry->try_merge(s)) {
BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
}
// add current state for correct handling of phi functions at begin of xhandler
int phi_operand = entry->add_exception_state(s);
// add entry to the list of xhandlers of this block
_block->add_exception_handler(entry);
// add back-edge from xhandler entry to this block
if (!entry->is_predecessor(_block)) {
entry->add_predecessor(_block);
}
// clone XHandler because phi_operand and scope_count can not be shared
XHandler* new_xhandler = new XHandler(h);
new_xhandler->set_phi_operand(phi_operand);
new_xhandler->set_scope_count(scope_count);
exception_handlers->append(new_xhandler);
// fill in exception handler subgraph lazily
assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
cur_scope_data->add_to_work_list(entry);
// stop when reaching catchall
if (h->catch_type() == 0) {
return exception_handlers;
}
}
}
// Set up iteration for next time.
// If parsing a jsr, do not grab exception handlers from the
// parent scopes for this method (already got them, and they
// needed to be cloned)
if (cur_scope_data->parsing_jsr()) {
IRScope* tmp_scope = cur_scope_data->scope();
while (cur_scope_data->parent() != NULL &&
cur_scope_data->parent()->scope() == tmp_scope) {
cur_scope_data = cur_scope_data->parent();
}
}
if (cur_scope_data != NULL) {
if (cur_scope_data->parent() != NULL) {
// must use pop_scope instead of caller_state to preserve all monitors
s = s->pop_scope();
}
cur_bci = cur_scope_data->scope()->caller_bci();
cur_scope_data = cur_scope_data->parent();
scope_count++;
}
} while (cur_scope_data != NULL);
return exception_handlers;
}
// Helper class for simplifying Phis.
class PhiSimplifier : public BlockClosure {
private:
bool _has_substitutions;
Value simplify(Value v);
public:
PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
start->iterate_preorder(this);
if (_has_substitutions) {
SubstitutionResolver sr(start);
}
}
void block_do(BlockBegin* b);
bool has_substitutions() const { return _has_substitutions; }
};
Value PhiSimplifier::simplify(Value v) {
Phi* phi = v->as_Phi();
if (phi == NULL) {
// no phi function
return v;
} else if (v->has_subst()) {
// already substituted; subst can be phi itself -> simplify
return simplify(v->subst());
} else if (phi->is_set(Phi::cannot_simplify)) {
// already tried to simplify phi before
return phi;
} else if (phi->is_set(Phi::visited)) {
// break cycles in phi functions
return phi;
} else if (phi->type()->is_illegal()) {
// illegal phi functions are ignored anyway
return phi;
} else {
// mark phi function as processed to break cycles in phi functions
phi->set(Phi::visited);
// simplify x = [y, x] and x = [y, y] to y
Value subst = NULL;
int opd_count = phi->operand_count();
for (int i = 0; i < opd_count; i++) {
Value opd = phi->operand_at(i);
assert(opd != NULL, "Operand must exist!");
if (opd->type()->is_illegal()) {
// if one operand is illegal, the entire phi function is illegal
phi->make_illegal();
phi->clear(Phi::visited);
return phi;
}
Value new_opd = simplify(opd);
assert(new_opd != NULL, "Simplified operand must exist!");
if (new_opd != phi && new_opd != subst) {
if (subst == NULL) {
subst = new_opd;
} else {
// no simplification possible
phi->set(Phi::cannot_simplify);
phi->clear(Phi::visited);
return phi;
}
}
}
// sucessfully simplified phi function
assert(subst != NULL, "illegal phi function");
_has_substitutions = true;
phi->clear(Phi::visited);
phi->set_subst(subst);
#ifndef PRODUCT
if (PrintPhiFunctions) {
tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
}
#endif
return subst;
}
}
void PhiSimplifier::block_do(BlockBegin* b) {
for_each_phi_fun(b, phi,
simplify(phi);
);
#ifdef ASSERT
for_each_phi_fun(b, phi,
assert(phi->operand_count() != 1 || phi->subst() != phi, "missed trivial simplification");
);
ValueStack* state = b->state()->caller_state();
int index;
Value value;
for_each_state(state) {
for_each_local_value(state, index, value) {
Phi* phi = value->as_Phi();
assert(phi == NULL || phi->block() != b, "must not have phi function to simplify in caller state");
}
}
#endif
}
// This method is called after all blocks are filled with HIR instructions
// It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
PhiSimplifier simplifier(start);
}
void GraphBuilder::connect_to_end(BlockBegin* beg) {
// setup iteration
kill_all();
_block = beg;
_state = beg->state()->copy();
_last = beg;
iterate_bytecodes_for_block(beg->bci());
}
BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
#ifndef PRODUCT
if (PrintIRDuringConstruction) {
tty->cr();
InstructionPrinter ip;
ip.print_instr(_block); tty->cr();
ip.print_stack(_block->state()); tty->cr();
ip.print_inline_level(_block);
ip.print_head();
tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
}
#endif
_skip_block = false;
assert(state() != NULL, "ValueStack missing!");
ciBytecodeStream s(method());
s.reset_to_bci(bci);
int prev_bci = bci;
scope_data()->set_stream(&s);
// iterate
Bytecodes::Code code = Bytecodes::_illegal;
bool push_exception = false;
if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == NULL) {
// first thing in the exception entry block should be the exception object.
push_exception = true;
}
while (!bailed_out() && last()->as_BlockEnd() == NULL &&
(code = stream()->next()) != ciBytecodeStream::EOBC() &&
(block_at(s.cur_bci()) == NULL || block_at(s.cur_bci()) == block())) {
if (has_handler() && can_trap(method(), code)) {
// copy the state because it is modified before handle_exception is called
set_exception_state(state()->copy());
} else {
// handle_exception is not called for this bytecode
set_exception_state(NULL);
}
// Check for active jsr during OSR compilation
if (compilation()->is_osr_compile()
&& scope()->is_top_scope()
&& parsing_jsr()
&& s.cur_bci() == compilation()->osr_bci()) {
bailout("OSR not supported while a jsr is active");
}
if (push_exception) {
apush(append(new ExceptionObject()));
push_exception = false;
}
// handle bytecode
switch (code) {
case Bytecodes::_nop : /* nothing to do */ break;
case Bytecodes::_aconst_null : apush(append(new Constant(objectNull ))); break;
case Bytecodes::_iconst_m1 : ipush(append(new Constant(new IntConstant (-1)))); break;
case Bytecodes::_iconst_0 : ipush(append(new Constant(intZero ))); break;
case Bytecodes::_iconst_1 : ipush(append(new Constant(intOne ))); break;
case Bytecodes::_iconst_2 : ipush(append(new Constant(new IntConstant ( 2)))); break;
case Bytecodes::_iconst_3 : ipush(append(new Constant(new IntConstant ( 3)))); break;
case Bytecodes::_iconst_4 : ipush(append(new Constant(new IntConstant ( 4)))); break;
case Bytecodes::_iconst_5 : ipush(append(new Constant(new IntConstant ( 5)))); break;
case Bytecodes::_lconst_0 : lpush(append(new Constant(new LongConstant ( 0)))); break;
case Bytecodes::_lconst_1 : lpush(append(new Constant(new LongConstant ( 1)))); break;
case Bytecodes::_fconst_0 : fpush(append(new Constant(new FloatConstant ( 0)))); break;
case Bytecodes::_fconst_1 : fpush(append(new Constant(new FloatConstant ( 1)))); break;
case Bytecodes::_fconst_2 : fpush(append(new Constant(new FloatConstant ( 2)))); break;
case Bytecodes::_dconst_0 : dpush(append(new Constant(new DoubleConstant( 0)))); break;
case Bytecodes::_dconst_1 : dpush(append(new Constant(new DoubleConstant( 1)))); break;
case Bytecodes::_bipush : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
case Bytecodes::_sipush : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
case Bytecodes::_ldc : // fall through
case Bytecodes::_ldc_w : // fall through
case Bytecodes::_ldc2_w : load_constant(); break;
case Bytecodes::_iload : load_local(intType , s.get_index()); break;
case Bytecodes::_lload : load_local(longType , s.get_index()); break;
case Bytecodes::_fload : load_local(floatType , s.get_index()); break;
case Bytecodes::_dload : load_local(doubleType , s.get_index()); break;
case Bytecodes::_aload : load_local(instanceType, s.get_index()); break;
case Bytecodes::_iload_0 : load_local(intType , 0); break;
case Bytecodes::_iload_1 : load_local(intType , 1); break;
case Bytecodes::_iload_2 : load_local(intType , 2); break;
case Bytecodes::_iload_3 : load_local(intType , 3); break;
case Bytecodes::_lload_0 : load_local(longType , 0); break;
case Bytecodes::_lload_1 : load_local(longType , 1); break;
case Bytecodes::_lload_2 : load_local(longType , 2); break;
case Bytecodes::_lload_3 : load_local(longType , 3); break;
case Bytecodes::_fload_0 : load_local(floatType , 0); break;
case Bytecodes::_fload_1 : load_local(floatType , 1); break;
case Bytecodes::_fload_2 : load_local(floatType , 2); break;
case Bytecodes::_fload_3 : load_local(floatType , 3); break;
case Bytecodes::_dload_0 : load_local(doubleType, 0); break;
case Bytecodes::_dload_1 : load_local(doubleType, 1); break;
case Bytecodes::_dload_2 : load_local(doubleType, 2); break;
case Bytecodes::_dload_3 : load_local(doubleType, 3); break;
case Bytecodes::_aload_0 : load_local(objectType, 0); break;
case Bytecodes::_aload_1 : load_local(objectType, 1); break;
case Bytecodes::_aload_2 : load_local(objectType, 2); break;
case Bytecodes::_aload_3 : load_local(objectType, 3); break;
case Bytecodes::_iaload : load_indexed(T_INT ); break;
case Bytecodes::_laload : load_indexed(T_LONG ); break;
case Bytecodes::_faload : load_indexed(T_FLOAT ); break;
case Bytecodes::_daload : load_indexed(T_DOUBLE); break;
case Bytecodes::_aaload : load_indexed(T_OBJECT); break;
case Bytecodes::_baload : load_indexed(T_BYTE ); break;
case Bytecodes::_caload : load_indexed(T_CHAR ); break;
case Bytecodes::_saload : load_indexed(T_SHORT ); break;
case Bytecodes::_istore : store_local(intType , s.get_index()); break;
case Bytecodes::_lstore : store_local(longType , s.get_index()); break;
case Bytecodes::_fstore : store_local(floatType , s.get_index()); break;
case Bytecodes::_dstore : store_local(doubleType, s.get_index()); break;
case Bytecodes::_astore : store_local(objectType, s.get_index()); break;
case Bytecodes::_istore_0 : store_local(intType , 0); break;
case Bytecodes::_istore_1 : store_local(intType , 1); break;
case Bytecodes::_istore_2 : store_local(intType , 2); break;
case Bytecodes::_istore_3 : store_local(intType , 3); break;
case Bytecodes::_lstore_0 : store_local(longType , 0); break;
case Bytecodes::_lstore_1 : store_local(longType , 1); break;
case Bytecodes::_lstore_2 : store_local(longType , 2); break;
case Bytecodes::_lstore_3 : store_local(longType , 3); break;
case Bytecodes::_fstore_0 : store_local(floatType , 0); break;
case Bytecodes::_fstore_1 : store_local(floatType , 1); break;
case Bytecodes::_fstore_2 : store_local(floatType , 2); break;
case Bytecodes::_fstore_3 : store_local(floatType , 3); break;
case Bytecodes::_dstore_0 : store_local(doubleType, 0); break;
case Bytecodes::_dstore_1 : store_local(doubleType, 1); break;
case Bytecodes::_dstore_2 : store_local(doubleType, 2); break;
case Bytecodes::_dstore_3 : store_local(doubleType, 3); break;
case Bytecodes::_astore_0 : store_local(objectType, 0); break;
case Bytecodes::_astore_1 : store_local(objectType, 1); break;
case Bytecodes::_astore_2 : store_local(objectType, 2); break;
case Bytecodes::_astore_3 : store_local(objectType, 3); break;
case Bytecodes::_iastore : store_indexed(T_INT ); break;
case Bytecodes::_lastore : store_indexed(T_LONG ); break;
case Bytecodes::_fastore : store_indexed(T_FLOAT ); break;
case Bytecodes::_dastore : store_indexed(T_DOUBLE); break;
case Bytecodes::_aastore : store_indexed(T_OBJECT); break;
case Bytecodes::_bastore : store_indexed(T_BYTE ); break;
case Bytecodes::_castore : store_indexed(T_CHAR ); break;
case Bytecodes::_sastore : store_indexed(T_SHORT ); break;
case Bytecodes::_pop : // fall through
case Bytecodes::_pop2 : // fall through
case Bytecodes::_dup : // fall through
case Bytecodes::_dup_x1 : // fall through
case Bytecodes::_dup_x2 : // fall through
case Bytecodes::_dup2 : // fall through
case Bytecodes::_dup2_x1 : // fall through
case Bytecodes::_dup2_x2 : // fall through
case Bytecodes::_swap : stack_op(code); break;
case Bytecodes::_iadd : arithmetic_op(intType , code); break;
case Bytecodes::_ladd : arithmetic_op(longType , code); break;
case Bytecodes::_fadd : arithmetic_op(floatType , code); break;
case Bytecodes::_dadd : arithmetic_op(doubleType, code); break;
case Bytecodes::_isub : arithmetic_op(intType , code); break;
case Bytecodes::_lsub : arithmetic_op(longType , code); break;
case Bytecodes::_fsub : arithmetic_op(floatType , code); break;
case Bytecodes::_dsub : arithmetic_op(doubleType, code); break;
case Bytecodes::_imul : arithmetic_op(intType , code); break;
case Bytecodes::_lmul : arithmetic_op(longType , code); break;
case Bytecodes::_fmul : arithmetic_op(floatType , code); break;
case Bytecodes::_dmul : arithmetic_op(doubleType, code); break;
case Bytecodes::_idiv : arithmetic_op(intType , code, lock_stack()); break;
case Bytecodes::_ldiv : arithmetic_op(longType , code, lock_stack()); break;
case Bytecodes::_fdiv : arithmetic_op(floatType , code); break;
case Bytecodes::_ddiv : arithmetic_op(doubleType, code); break;
case Bytecodes::_irem : arithmetic_op(intType , code, lock_stack()); break;
case Bytecodes::_lrem : arithmetic_op(longType , code, lock_stack()); break;
case Bytecodes::_frem : arithmetic_op(floatType , code); break;
case Bytecodes::_drem : arithmetic_op(doubleType, code); break;
case Bytecodes::_ineg : negate_op(intType ); break;
case Bytecodes::_lneg : negate_op(longType ); break;
case Bytecodes::_fneg : negate_op(floatType ); break;
case Bytecodes::_dneg : negate_op(doubleType); break;
case Bytecodes::_ishl : shift_op(intType , code); break;
case Bytecodes::_lshl : shift_op(longType, code); break;
case Bytecodes::_ishr : shift_op(intType , code); break;
case Bytecodes::_lshr : shift_op(longType, code); break;
case Bytecodes::_iushr : shift_op(intType , code); break;
case Bytecodes::_lushr : shift_op(longType, code); break;
case Bytecodes::_iand : logic_op(intType , code); break;
case Bytecodes::_land : logic_op(longType, code); break;
case Bytecodes::_ior : logic_op(intType , code); break;
case Bytecodes::_lor : logic_op(longType, code); break;
case Bytecodes::_ixor : logic_op(intType , code); break;
case Bytecodes::_lxor : logic_op(longType, code); break;
case Bytecodes::_iinc : increment(); break;
case Bytecodes::_i2l : convert(code, T_INT , T_LONG ); break;
case Bytecodes::_i2f : convert(code, T_INT , T_FLOAT ); break;
case Bytecodes::_i2d : convert(code, T_INT , T_DOUBLE); break;
case Bytecodes::_l2i : convert(code, T_LONG , T_INT ); break;
case Bytecodes::_l2f : convert(code, T_LONG , T_FLOAT ); break;
case Bytecodes::_l2d : convert(code, T_LONG , T_DOUBLE); break;
case Bytecodes::_f2i : convert(code, T_FLOAT , T_INT ); break;
case Bytecodes::_f2l : convert(code, T_FLOAT , T_LONG ); break;
case Bytecodes::_f2d : convert(code, T_FLOAT , T_DOUBLE); break;
case Bytecodes::_d2i : convert(code, T_DOUBLE, T_INT ); break;
case Bytecodes::_d2l : convert(code, T_DOUBLE, T_LONG ); break;
case Bytecodes::_d2f : convert(code, T_DOUBLE, T_FLOAT ); break;
case Bytecodes::_i2b : convert(code, T_INT , T_BYTE ); break;
case Bytecodes::_i2c : convert(code, T_INT , T_CHAR ); break;
case Bytecodes::_i2s : convert(code, T_INT , T_SHORT ); break;
case Bytecodes::_lcmp : compare_op(longType , code); break;
case Bytecodes::_fcmpl : compare_op(floatType , code); break;
case Bytecodes::_fcmpg : compare_op(floatType , code); break;
case Bytecodes::_dcmpl : compare_op(doubleType, code); break;
case Bytecodes::_dcmpg : compare_op(doubleType, code); break;
case Bytecodes::_ifeq : if_zero(intType , If::eql); break;
case Bytecodes::_ifne : if_zero(intType , If::neq); break;
case Bytecodes::_iflt : if_zero(intType , If::lss); break;
case Bytecodes::_ifge : if_zero(intType , If::geq); break;
case Bytecodes::_ifgt : if_zero(intType , If::gtr); break;
case Bytecodes::_ifle : if_zero(intType , If::leq); break;
case Bytecodes::_if_icmpeq : if_same(intType , If::eql); break;
case Bytecodes::_if_icmpne : if_same(intType , If::neq); break;
case Bytecodes::_if_icmplt : if_same(intType , If::lss); break;
case Bytecodes::_if_icmpge : if_same(intType , If::geq); break;
case Bytecodes::_if_icmpgt : if_same(intType , If::gtr); break;
case Bytecodes::_if_icmple : if_same(intType , If::leq); break;
case Bytecodes::_if_acmpeq : if_same(objectType, If::eql); break;
case Bytecodes::_if_acmpne : if_same(objectType, If::neq); break;
case Bytecodes::_goto : _goto(s.cur_bci(), s.get_dest()); break;
case Bytecodes::_jsr : jsr(s.get_dest()); break;
case Bytecodes::_ret : ret(s.get_index()); break;
case Bytecodes::_tableswitch : table_switch(); break;
case Bytecodes::_lookupswitch : lookup_switch(); break;
case Bytecodes::_ireturn : method_return(ipop()); break;
case Bytecodes::_lreturn : method_return(lpop()); break;
case Bytecodes::_freturn : method_return(fpop()); break;
case Bytecodes::_dreturn : method_return(dpop()); break;
case Bytecodes::_areturn : method_return(apop()); break;
case Bytecodes::_return : method_return(NULL ); break;
case Bytecodes::_getstatic : // fall through
case Bytecodes::_putstatic : // fall through
case Bytecodes::_getfield : // fall through
case Bytecodes::_putfield : access_field(code); break;
case Bytecodes::_invokevirtual : // fall through
case Bytecodes::_invokespecial : // fall through
case Bytecodes::_invokestatic : // fall through
case Bytecodes::_invokeinterface: invoke(code); break;
case Bytecodes::_xxxunusedxxx : ShouldNotReachHere(); break;
case Bytecodes::_new : new_instance(s.get_index_big()); break;
case Bytecodes::_newarray : new_type_array(); break;
case Bytecodes::_anewarray : new_object_array(); break;
case Bytecodes::_arraylength : ipush(append(new ArrayLength(apop(), lock_stack()))); break;
case Bytecodes::_athrow : throw_op(s.cur_bci()); break;
case Bytecodes::_checkcast : check_cast(s.get_index_big()); break;
case Bytecodes::_instanceof : instance_of(s.get_index_big()); break;
// Note: we do not have special handling for the monitorenter bytecode if DeoptC1 && DeoptOnAsyncException
case Bytecodes::_monitorenter : monitorenter(apop(), s.cur_bci()); break;
case Bytecodes::_monitorexit : monitorexit (apop(), s.cur_bci()); break;
case Bytecodes::_wide : ShouldNotReachHere(); break;
case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
case Bytecodes::_ifnull : if_null(objectType, If::eql); break;
case Bytecodes::_ifnonnull : if_null(objectType, If::neq); break;
case Bytecodes::_goto_w : _goto(s.cur_bci(), s.get_far_dest()); break;
case Bytecodes::_jsr_w : jsr(s.get_far_dest()); break;
case Bytecodes::_breakpoint : BAILOUT_("concurrent setting of breakpoint", NULL);
default : ShouldNotReachHere(); break;
}
// save current bci to setup Goto at the end
prev_bci = s.cur_bci();
}
CHECK_BAILOUT_(NULL);
// stop processing of this block (see try_inline_full)
if (_skip_block) {
_skip_block = false;
assert(_last && _last->as_BlockEnd(), "");
return _last->as_BlockEnd();
}
// if there are any, check if last instruction is a BlockEnd instruction
BlockEnd* end = last()->as_BlockEnd();
if (end == NULL) {
// all blocks must end with a BlockEnd instruction => add a Goto
end = new Goto(block_at(s.cur_bci()), false);
_last = _last->set_next(end, prev_bci);
}
assert(end == last()->as_BlockEnd(), "inconsistency");
// if the method terminates, we don't need the stack anymore
if (end->as_Return() != NULL) {
state()->clear_stack();
} else if (end->as_Throw() != NULL) {
// May have exception handler in caller scopes
state()->truncate_stack(scope()->lock_stack_size());
}
// connect to begin & set state
// NOTE that inlining may have changed the block we are parsing
block()->set_end(end);
end->set_state(state());
// propagate state
for (int i = end->number_of_sux() - 1; i >= 0; i--) {
BlockBegin* sux = end->sux_at(i);
assert(sux->is_predecessor(block()), "predecessor missing");
// be careful, bailout if bytecodes are strange
if (!sux->try_merge(state())) BAILOUT_("block join failed", NULL);
scope_data()->add_to_work_list(end->sux_at(i));
}
scope_data()->set_stream(NULL);
// done
return end;
}
void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
do {
if (start_in_current_block_for_inlining && !bailed_out()) {
iterate_bytecodes_for_block(0);
start_in_current_block_for_inlining = false;
} else {
BlockBegin* b;
while ((b = scope_data()->remove_from_work_list()) != NULL) {
if (!b->is_set(BlockBegin::was_visited_flag)) {
if (b->is_set(BlockBegin::osr_entry_flag)) {
// we're about to parse the osr entry block, so make sure
// we setup the OSR edge leading into this block so that
// Phis get setup correctly.
setup_osr_entry_block();
// this is no longer the osr entry block, so clear it.
b->clear(BlockBegin::osr_entry_flag);
}
b->set(BlockBegin::was_visited_flag);
connect_to_end(b);
}
}
}
} while (!bailed_out() && !scope_data()->is_work_list_empty());
}
bool GraphBuilder::_is_initialized = false;
bool GraphBuilder::_can_trap [Bytecodes::number_of_java_codes];
bool GraphBuilder::_is_async[Bytecodes::number_of_java_codes];
void GraphBuilder::initialize() {
// make sure initialization happens only once (need a
// lock here, if we allow the compiler to be re-entrant)
if (is_initialized()) return;
_is_initialized = true;
// the following bytecodes are assumed to potentially
// throw exceptions in compiled code - note that e.g.
// monitorexit & the return bytecodes do not throw
// exceptions since monitor pairing proved that they
// succeed (if monitor pairing succeeded)
Bytecodes::Code can_trap_list[] =
{ Bytecodes::_ldc
, Bytecodes::_ldc_w
, Bytecodes::_ldc2_w
, Bytecodes::_iaload
, Bytecodes::_laload
, Bytecodes::_faload
, Bytecodes::_daload
, Bytecodes::_aaload
, Bytecodes::_baload
, Bytecodes::_caload
, Bytecodes::_saload
, Bytecodes::_iastore
, Bytecodes::_lastore
, Bytecodes::_fastore
, Bytecodes::_dastore
, Bytecodes::_aastore
, Bytecodes::_bastore
, Bytecodes::_castore
, Bytecodes::_sastore
, Bytecodes::_idiv
, Bytecodes::_ldiv
, Bytecodes::_irem
, Bytecodes::_lrem
, Bytecodes::_getstatic
, Bytecodes::_putstatic
, Bytecodes::_getfield
, Bytecodes::_putfield
, Bytecodes::_invokevirtual
, Bytecodes::_invokespecial
, Bytecodes::_invokestatic
, Bytecodes::_invokeinterface
, Bytecodes::_new
, Bytecodes::_newarray
, Bytecodes::_anewarray
, Bytecodes::_arraylength
, Bytecodes::_athrow
, Bytecodes::_checkcast
, Bytecodes::_instanceof
, Bytecodes::_monitorenter
, Bytecodes::_multianewarray
};
// the following bytecodes are assumed to potentially
// throw asynchronous exceptions in compiled code due
// to safepoints (note: these entries could be merged
// with the can_trap_list - however, we need to know
// which ones are asynchronous for now - see also the
// comment in GraphBuilder::handle_exception)
Bytecodes::Code is_async_list[] =
{ Bytecodes::_ifeq
, Bytecodes::_ifne
, Bytecodes::_iflt
, Bytecodes::_ifge
, Bytecodes::_ifgt
, Bytecodes::_ifle
, Bytecodes::_if_icmpeq
, Bytecodes::_if_icmpne
, Bytecodes::_if_icmplt
, Bytecodes::_if_icmpge
, Bytecodes::_if_icmpgt
, Bytecodes::_if_icmple
, Bytecodes::_if_acmpeq
, Bytecodes::_if_acmpne
, Bytecodes::_goto
, Bytecodes::_jsr
, Bytecodes::_ret
, Bytecodes::_tableswitch
, Bytecodes::_lookupswitch
, Bytecodes::_ireturn
, Bytecodes::_lreturn
, Bytecodes::_freturn
, Bytecodes::_dreturn
, Bytecodes::_areturn
, Bytecodes::_return
, Bytecodes::_ifnull
, Bytecodes::_ifnonnull
, Bytecodes::_goto_w
, Bytecodes::_jsr_w
};
// inititialize trap tables
for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
_can_trap[i] = false;
_is_async[i] = false;
}
// set standard trap info
for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
_can_trap[can_trap_list[j]] = true;
}
// We now deoptimize if an asynchronous exception is thrown. This
// considerably cleans up corner case issues related to javac's
// incorrect exception handler ranges for async exceptions and
// allows us to precisely analyze the types of exceptions from
// certain bytecodes.
if (!(DeoptC1 && DeoptOnAsyncException)) {
// set asynchronous trap info
for (uint k = 0; k < ARRAY_SIZE(is_async_list); k++) {
assert(!_can_trap[is_async_list[k]], "can_trap_list and is_async_list should be disjoint");
_can_trap[is_async_list[k]] = true;
_is_async[is_async_list[k]] = true;
}
}
}
BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
assert(entry->is_set(f), "entry/flag mismatch");
// create header block
BlockBegin* h = new BlockBegin(entry->bci());
h->set_depth_first_number(0);
Value l = h;
if (profile_branches()) {
// Increment the invocation count on entry to the method. We
// can't use profile_invocation here because append isn't setup to
// work properly at this point. The instruction have to be
// appended to the instruction stream by hand.
Value m = new Constant(new ObjectConstant(compilation()->method()));
h->set_next(m, 0);
Value p = new ProfileCounter(m, methodOopDesc::interpreter_invocation_counter_offset_in_bytes(), 1);
m->set_next(p, 0);
l = p;
}
BlockEnd* g = new Goto(entry, false);
l->set_next(g, entry->bci());
h->set_end(g);
h->set(f);
// setup header block end state
ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
assert(s->stack_is_empty(), "must have empty stack at entry point");
g->set_state(s);
return h;
}
BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
BlockBegin* start = new BlockBegin(0);
// This code eliminates the empty start block at the beginning of
// each method. Previously, each method started with the
// start-block created below, and this block was followed by the
// header block that was always empty. This header block is only
// necesary if std_entry is also a backward branch target because
// then phi functions may be necessary in the header block. It's
// also necessary when profiling so that there's a single block that
// can increment the interpreter_invocation_count.
BlockBegin* new_header_block;
if (std_entry->number_of_preds() == 0 && !profile_branches()) {
new_header_block = std_entry;
} else {
new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
}
// setup start block (root for the IR graph)
Base* base =
new Base(
new_header_block,
osr_entry
);
start->set_next(base, 0);
start->set_end(base);
// create & setup state for start block
start->set_state(state->copy());
base->set_state(state->copy());
if (base->std_entry()->state() == NULL) {
// setup states for header blocks
base->std_entry()->merge(state);
}
assert(base->std_entry()->state() != NULL, "");
return start;
}
void GraphBuilder::setup_osr_entry_block() {
assert(compilation()->is_osr_compile(), "only for osrs");
int osr_bci = compilation()->osr_bci();
ciBytecodeStream s(method());
s.reset_to_bci(osr_bci);
s.next();
scope_data()->set_stream(&s);
// create a new block to be the osr setup code
_osr_entry = new BlockBegin(osr_bci);
_osr_entry->set(BlockBegin::osr_entry_flag);
_osr_entry->set_depth_first_number(0);
BlockBegin* target = bci2block()->at(osr_bci);
assert(target != NULL && target->is_set(BlockBegin::osr_entry_flag), "must be there");
// the osr entry has no values for locals
ValueStack* state = target->state()->copy();
_osr_entry->set_state(state);
kill_all();
_block = _osr_entry;
_state = _osr_entry->state()->copy();
_last = _osr_entry;
Value e = append(new OsrEntry());
e->set_needs_null_check(false);
// OSR buffer is
//
// locals[nlocals-1..0]
// monitors[number_of_locks-1..0]
//
// locals is a direct copy of the interpreter frame so in the osr buffer
// so first slot in the local array is the last local from the interpreter
// and last slot is local[0] (receiver) from the interpreter
//
// Similarly with locks. The first lock slot in the osr buffer is the nth lock
// from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
// in the interpreter frame (the method lock if a sync method)
// Initialize monitors in the compiled activation.
int index;
Value local;
// find all the locals that the interpreter thinks contain live oops
const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
// compute the offset into the locals so that we can treat the buffer
// as if the locals were still in the interpreter frame
int locals_offset = BytesPerWord * (method()->max_locals() - 1);
for_each_local_value(state, index, local) {
int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
Value get;
if (local->type()->is_object_kind() && !live_oops.at(index)) {
// The interpreter thinks this local is dead but the compiler
// doesn't so pretend that the interpreter passed in null.
get = append(new Constant(objectNull));
} else {
get = append(new UnsafeGetRaw(as_BasicType(local->type()), e,
append(new Constant(new IntConstant(offset))),
0,
true));
}
_state->store_local(index, get);
}
// the storage for the OSR buffer is freed manually in the LIRGenerator.
assert(state->caller_state() == NULL, "should be top scope");
state->clear_locals();
Goto* g = new Goto(target, false);
g->set_state(_state->copy());
append(g);
_osr_entry->set_end(g);
target->merge(_osr_entry->end()->state());
scope_data()->set_stream(NULL);
}
ValueStack* GraphBuilder::state_at_entry() {
ValueStack* state = new ValueStack(scope(), method()->max_locals(), method()->max_stack());
// Set up locals for receiver
int idx = 0;
if (!method()->is_static()) {
// we should always see the receiver
state->store_local(idx, new Local(objectType, idx));
idx = 1;
}
// Set up locals for incoming arguments
ciSignature* sig = method()->signature();
for (int i = 0; i < sig->count(); i++) {
ciType* type = sig->type_at(i);
BasicType basic_type = type->basic_type();
// don't allow T_ARRAY to propagate into locals types
if (basic_type == T_ARRAY) basic_type = T_OBJECT;
ValueType* vt = as_ValueType(basic_type);
state->store_local(idx, new Local(vt, idx));
idx += type->size();
}
// lock synchronized method
if (method()->is_synchronized()) {
state->lock(scope(), NULL);
}
return state;
}
GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
: _scope_data(NULL)
, _exception_state(NULL)
, _instruction_count(0)
, _osr_entry(NULL)
, _memory(new MemoryBuffer())
, _compilation(compilation)
, _inline_bailout_msg(NULL)
{
int osr_bci = compilation->osr_bci();
// determine entry points and bci2block mapping
BlockListBuilder blm(compilation, scope, osr_bci);
CHECK_BAILOUT();
BlockList* bci2block = blm.bci2block();
BlockBegin* start_block = bci2block->at(0);
assert(is_initialized(), "GraphBuilder must have been initialized");
push_root_scope(scope, bci2block, start_block);
// setup state for std entry
_initial_state = state_at_entry();
start_block->merge(_initial_state);
BlockBegin* sync_handler = NULL;
if (method()->is_synchronized() || DTraceMethodProbes) {
// setup an exception handler to do the unlocking and/or notification
sync_handler = new BlockBegin(-1);
sync_handler->set(BlockBegin::exception_entry_flag);
sync_handler->set(BlockBegin::is_on_work_list_flag);
sync_handler->set(BlockBegin::default_exception_handler_flag);
ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
XHandler* h = new XHandler(desc);
h->set_entry_block(sync_handler);
scope_data()->xhandlers()->append(h);
scope_data()->set_has_handler();
}
// complete graph
_vmap = new ValueMap();
scope->compute_lock_stack_size();
switch (scope->method()->intrinsic_id()) {
case vmIntrinsics::_dabs : // fall through
case vmIntrinsics::_dsqrt : // fall through
case vmIntrinsics::_dsin : // fall through
case vmIntrinsics::_dcos : // fall through
case vmIntrinsics::_dtan : // fall through
case vmIntrinsics::_dlog : // fall through
case vmIntrinsics::_dlog10 : // fall through
{
// Compiles where the root method is an intrinsic need a special
// compilation environment because the bytecodes for the method
// shouldn't be parsed during the compilation, only the special
// Intrinsic node should be emitted. If this isn't done the the
// code for the inlined version will be different than the root
// compiled version which could lead to monotonicity problems on
// intel.
// Set up a stream so that appending instructions works properly.
ciBytecodeStream s(scope->method());
s.reset_to_bci(0);
scope_data()->set_stream(&s);
s.next();
// setup the initial block state
_block = start_block;
_state = start_block->state()->copy();
_last = start_block;
load_local(doubleType, 0);
// Emit the intrinsic node.
bool result = try_inline_intrinsics(scope->method());
if (!result) BAILOUT("failed to inline intrinsic");
method_return(dpop());
// connect the begin and end blocks and we're all done.
BlockEnd* end = last()->as_BlockEnd();
block()->set_end(end);
end->set_state(state());
break;
}
default:
scope_data()->add_to_work_list(start_block);
iterate_all_blocks();
break;
}
CHECK_BAILOUT();
if (sync_handler && sync_handler->state() != NULL) {
Value lock = NULL;
if (method()->is_synchronized()) {
lock = method()->is_static() ? new Constant(new InstanceConstant(method()->holder()->java_mirror())) :
_initial_state->local_at(0);
sync_handler->state()->unlock();
sync_handler->state()->lock(scope, lock);
}
fill_sync_handler(lock, sync_handler, true);
}
_start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
eliminate_redundant_phis(_start);
NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
// for osr compile, bailout if some requirements are not fulfilled
if (osr_bci != -1) {
BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
assert(osr_block->is_set(BlockBegin::was_visited_flag),"osr entry must have been visited for osr compile");
// check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
if (!osr_block->state()->stack_is_empty()) {
BAILOUT("stack not empty at OSR entry point");
}
}
#ifndef PRODUCT
if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
#endif
}
ValueStack* GraphBuilder::lock_stack() {
// return a new ValueStack representing just the current lock stack
// (for debug info at safepoints in exception throwing or handling)
ValueStack* new_stack = state()->copy_locks();
return new_stack;
}
int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
int recur_level = 0;
for (IRScope* s = scope(); s != NULL; s = s->caller()) {
if (s->method() == cur_callee) {
++recur_level;
}
}
return recur_level;
}
bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known) {
// Clear out any existing inline bailout condition
clear_inline_bailout();
if (callee->should_exclude()) {
// callee is excluded
INLINE_BAILOUT("excluded by CompilerOracle")
} else if (!callee->can_be_compiled()) {
// callee is not compilable (prob. has breakpoints)
INLINE_BAILOUT("not compilable")
} else if (callee->intrinsic_id() != vmIntrinsics::_none && try_inline_intrinsics(callee)) {
// intrinsics can be native or not
return true;
} else if (callee->is_native()) {
// non-intrinsic natives cannot be inlined
INLINE_BAILOUT("non-intrinsic native")
} else if (callee->is_abstract()) {
INLINE_BAILOUT("abstract")
} else {
return try_inline_full(callee, holder_known);
}
}
bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
if (!InlineNatives ) INLINE_BAILOUT("intrinsic method inlining disabled");
if (callee->is_synchronized()) INLINE_BAILOUT("intrinsic method is synchronized");
// callee seems like a good candidate
// determine id
bool preserves_state = false;
bool cantrap = true;
vmIntrinsics::ID id = callee->intrinsic_id();
switch (id) {
case vmIntrinsics::_arraycopy :
if (!InlineArrayCopy) return false;
break;
case vmIntrinsics::_currentTimeMillis:
case vmIntrinsics::_nanoTime:
preserves_state = true;
cantrap = false;
break;
case vmIntrinsics::_floatToRawIntBits :
case vmIntrinsics::_intBitsToFloat :
case vmIntrinsics::_doubleToRawLongBits :
case vmIntrinsics::_longBitsToDouble :
if (!InlineMathNatives) return false;
preserves_state = true;
cantrap = false;
break;
case vmIntrinsics::_getClass :
if (!InlineClassNatives) return false;
preserves_state = true;
break;
case vmIntrinsics::_currentThread :
if (!InlineThreadNatives) return false;
preserves_state = true;
cantrap = false;
break;
case vmIntrinsics::_dabs : // fall through
case vmIntrinsics::_dsqrt : // fall through
case vmIntrinsics::_dsin : // fall through
case vmIntrinsics::_dcos : // fall through
case vmIntrinsics::_dtan : // fall through
case vmIntrinsics::_dlog : // fall through
case vmIntrinsics::_dlog10 : // fall through
if (!InlineMathNatives) return false;
cantrap = false;
preserves_state = true;
break;
// sun/misc/AtomicLong.attemptUpdate
case vmIntrinsics::_attemptUpdate :
if (!VM_Version::supports_cx8()) return false;
if (!InlineAtomicLong) return false;
preserves_state = true;
break;
// Use special nodes for Unsafe instructions so we can more easily
// perform an address-mode optimization on the raw variants
case vmIntrinsics::_getObject : return append_unsafe_get_obj(callee, T_OBJECT, false);
case vmIntrinsics::_getBoolean: return append_unsafe_get_obj(callee, T_BOOLEAN, false);
case vmIntrinsics::_getByte : return append_unsafe_get_obj(callee, T_BYTE, false);
case vmIntrinsics::_getShort : return append_unsafe_get_obj(callee, T_SHORT, false);
case vmIntrinsics::_getChar : return append_unsafe_get_obj(callee, T_CHAR, false);
case vmIntrinsics::_getInt : return append_unsafe_get_obj(callee, T_INT, false);
case vmIntrinsics::_getLong : return append_unsafe_get_obj(callee, T_LONG, false);
case vmIntrinsics::_getFloat : return append_unsafe_get_obj(callee, T_FLOAT, false);
case vmIntrinsics::_getDouble : return append_unsafe_get_obj(callee, T_DOUBLE, false);
case vmIntrinsics::_putObject : return append_unsafe_put_obj(callee, T_OBJECT, false);
case vmIntrinsics::_putBoolean: return append_unsafe_put_obj(callee, T_BOOLEAN, false);
case vmIntrinsics::_putByte : return append_unsafe_put_obj(callee, T_BYTE, false);
case vmIntrinsics::_putShort : return append_unsafe_put_obj(callee, T_SHORT, false);
case vmIntrinsics::_putChar : return append_unsafe_put_obj(callee, T_CHAR, false);
case vmIntrinsics::_putInt : return append_unsafe_put_obj(callee, T_INT, false);
case vmIntrinsics::_putLong : return append_unsafe_put_obj(callee, T_LONG, false);
case vmIntrinsics::_putFloat : return append_unsafe_put_obj(callee, T_FLOAT, false);
case vmIntrinsics::_putDouble : return append_unsafe_put_obj(callee, T_DOUBLE, false);
case vmIntrinsics::_getObjectVolatile : return append_unsafe_get_obj(callee, T_OBJECT, true);
case vmIntrinsics::_getBooleanVolatile: return append_unsafe_get_obj(callee, T_BOOLEAN, true);
case vmIntrinsics::_getByteVolatile : return append_unsafe_get_obj(callee, T_BYTE, true);
case vmIntrinsics::_getShortVolatile : return append_unsafe_get_obj(callee, T_SHORT, true);
case vmIntrinsics::_getCharVolatile : return append_unsafe_get_obj(callee, T_CHAR, true);
case vmIntrinsics::_getIntVolatile : return append_unsafe_get_obj(callee, T_INT, true);
case vmIntrinsics::_getLongVolatile : return append_unsafe_get_obj(callee, T_LONG, true);
case vmIntrinsics::_getFloatVolatile : return append_unsafe_get_obj(callee, T_FLOAT, true);
case vmIntrinsics::_getDoubleVolatile : return append_unsafe_get_obj(callee, T_DOUBLE, true);
case vmIntrinsics::_putObjectVolatile : return append_unsafe_put_obj(callee, T_OBJECT, true);
case vmIntrinsics::_putBooleanVolatile: return append_unsafe_put_obj(callee, T_BOOLEAN, true);
case vmIntrinsics::_putByteVolatile : return append_unsafe_put_obj(callee, T_BYTE, true);
case vmIntrinsics::_putShortVolatile : return append_unsafe_put_obj(callee, T_SHORT, true);
case vmIntrinsics::_putCharVolatile : return append_unsafe_put_obj(callee, T_CHAR, true);
case vmIntrinsics::_putIntVolatile : return append_unsafe_put_obj(callee, T_INT, true);
case vmIntrinsics::_putLongVolatile : return append_unsafe_put_obj(callee, T_LONG, true);
case vmIntrinsics::_putFloatVolatile : return append_unsafe_put_obj(callee, T_FLOAT, true);
case vmIntrinsics::_putDoubleVolatile : return append_unsafe_put_obj(callee, T_DOUBLE, true);
case vmIntrinsics::_getByte_raw : return append_unsafe_get_raw(callee, T_BYTE);
case vmIntrinsics::_getShort_raw : return append_unsafe_get_raw(callee, T_SHORT);
case vmIntrinsics::_getChar_raw : return append_unsafe_get_raw(callee, T_CHAR);
case vmIntrinsics::_getInt_raw : return append_unsafe_get_raw(callee, T_INT);
case vmIntrinsics::_getLong_raw : return append_unsafe_get_raw(callee, T_LONG);
case vmIntrinsics::_getFloat_raw : return append_unsafe_get_raw(callee, T_FLOAT);
case vmIntrinsics::_getDouble_raw : return append_unsafe_get_raw(callee, T_DOUBLE);
case vmIntrinsics::_putByte_raw : return append_unsafe_put_raw(callee, T_BYTE);
case vmIntrinsics::_putShort_raw : return append_unsafe_put_raw(callee, T_SHORT);
case vmIntrinsics::_putChar_raw : return append_unsafe_put_raw(callee, T_CHAR);
case vmIntrinsics::_putInt_raw : return append_unsafe_put_raw(callee, T_INT);
case vmIntrinsics::_putLong_raw : return append_unsafe_put_raw(callee, T_LONG);
case vmIntrinsics::_putFloat_raw : return append_unsafe_put_raw(callee, T_FLOAT);
case vmIntrinsics::_putDouble_raw : return append_unsafe_put_raw(callee, T_DOUBLE);
case vmIntrinsics::_prefetchRead : return append_unsafe_prefetch(callee, false, false);
case vmIntrinsics::_prefetchWrite : return append_unsafe_prefetch(callee, false, true);
case vmIntrinsics::_prefetchReadStatic : return append_unsafe_prefetch(callee, true, false);
case vmIntrinsics::_prefetchWriteStatic : return append_unsafe_prefetch(callee, true, true);
case vmIntrinsics::_checkIndex :
if (!InlineNIOCheckIndex) return false;
preserves_state = true;
break;
case vmIntrinsics::_putOrderedObject : return append_unsafe_put_obj(callee, T_OBJECT, true);
case vmIntrinsics::_putOrderedInt : return append_unsafe_put_obj(callee, T_INT, true);
case vmIntrinsics::_putOrderedLong : return append_unsafe_put_obj(callee, T_LONG, true);
case vmIntrinsics::_compareAndSwapLong:
if (!VM_Version::supports_cx8()) return false;
// fall through
case vmIntrinsics::_compareAndSwapInt:
case vmIntrinsics::_compareAndSwapObject:
append_unsafe_CAS(callee);
return true;
default : return false; // do not inline
}
// create intrinsic node
const bool has_receiver = !callee->is_static();
ValueType* result_type = as_ValueType(callee->return_type());
Values* args = state()->pop_arguments(callee->arg_size());
ValueStack* locks = lock_stack();
if (profile_calls()) {
// Don't profile in the special case where the root method
// is the intrinsic
if (callee != method()) {
Value recv = NULL;
if (has_receiver) {
recv = args->at(0);
null_check(recv);
}
profile_call(recv, NULL);
}
}
Intrinsic* result = new Intrinsic(result_type, id, args, has_receiver, lock_stack(),
preserves_state, cantrap);
// append instruction & push result
Value value = append_split(result);
if (result_type != voidType) push(result_type, value);
#ifndef PRODUCT
// printing
if (PrintInlining) {
print_inline_result(callee, true);
}
#endif
// done
return true;
}
bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
// Introduce a new callee continuation point - all Ret instructions
// will be replaced with Gotos to this point.
BlockBegin* cont = block_at(next_bci());
assert(cont != NULL, "continuation must exist (BlockListBuilder starts a new block after a jsr");
// Note: can not assign state to continuation yet, as we have to
// pick up the state from the Ret instructions.
// Push callee scope
push_scope_for_jsr(cont, jsr_dest_bci);
// Temporarily set up bytecode stream so we can append instructions
// (only using the bci of this stream)
scope_data()->set_stream(scope_data()->parent()->stream());
BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
assert(jsr_start_block != NULL, "jsr start block must exist");
assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
Goto* goto_sub = new Goto(jsr_start_block, false);
goto_sub->set_state(state());
// Must copy state to avoid wrong sharing when parsing bytecodes
assert(jsr_start_block->state() == NULL, "should have fresh jsr starting block");
jsr_start_block->set_state(state()->copy());
append(goto_sub);
_block->set_end(goto_sub);
_last = _block = jsr_start_block;
// Clear out bytecode stream
scope_data()->set_stream(NULL);
scope_data()->add_to_work_list(jsr_start_block);
// Ready to resume parsing in subroutine
iterate_all_blocks();
// If we bailed out during parsing, return immediately (this is bad news)
CHECK_BAILOUT_(false);
// Detect whether the continuation can actually be reached. If not,
// it has not had state set by the join() operations in
// iterate_bytecodes_for_block()/ret() and we should not touch the
// iteration state. The calling activation of
// iterate_bytecodes_for_block will then complete normally.
if (cont->state() != NULL) {
if (!cont->is_set(BlockBegin::was_visited_flag)) {
// add continuation to work list instead of parsing it immediately
scope_data()->parent()->add_to_work_list(cont);
}
}
assert(jsr_continuation() == cont, "continuation must not have changed");
assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
"continuation can only be visited in case of backward branches");
assert(_last && _last->as_BlockEnd(), "block must have end");
// continuation is in work list, so end iteration of current block
_skip_block = true;
pop_scope_for_jsr();
return true;
}
// Inline the entry of a synchronized method as a monitor enter and
// register the exception handler which releases the monitor if an
// exception is thrown within the callee. Note that the monitor enter
// cannot throw an exception itself, because the receiver is
// guaranteed to be non-null by the explicit null check at the
// beginning of inlining.
void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
assert(lock != NULL && sync_handler != NULL, "lock or handler missing");
set_exception_state(state()->copy());
monitorenter(lock, SynchronizationEntryBCI);
assert(_last->as_MonitorEnter() != NULL, "monitor enter expected");
_last->set_needs_null_check(false);
sync_handler->set(BlockBegin::exception_entry_flag);
sync_handler->set(BlockBegin::is_on_work_list_flag);
ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
XHandler* h = new XHandler(desc);
h->set_entry_block(sync_handler);
scope_data()->xhandlers()->append(h);
scope_data()->set_has_handler();
}
// If an exception is thrown and not handled within an inlined
// synchronized method, the monitor must be released before the
// exception is rethrown in the outer scope. Generate the appropriate
// instructions here.
void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
BlockBegin* orig_block = _block;
ValueStack* orig_state = _state;
Instruction* orig_last = _last;
_last = _block = sync_handler;
_state = sync_handler->state()->copy();
assert(sync_handler != NULL, "handler missing");
assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
assert(lock != NULL || default_handler, "lock or handler missing");
XHandler* h = scope_data()->xhandlers()->remove_last();
assert(h->entry_block() == sync_handler, "corrupt list of handlers");
block()->set(BlockBegin::was_visited_flag);
Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
assert(exception->is_pinned(), "must be");
int bci = SynchronizationEntryBCI;
if (lock) {
assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
if (lock->bci() == -99) {
lock = append_with_bci(lock, -1);
}
// exit the monitor in the context of the synchronized method
monitorexit(lock, SynchronizationEntryBCI);
// exit the context of the synchronized method
if (!default_handler) {
pop_scope();
_state = _state->copy();
bci = _state->scope()->caller_bci();
_state = _state->pop_scope()->copy();
}
}
// perform the throw as if at the the call site
apush(exception);
set_exception_state(state()->copy());
throw_op(bci);
BlockEnd* end = last()->as_BlockEnd();
block()->set_end(end);
end->set_state(state());
_block = orig_block;
_state = orig_state;
_last = orig_last;
}
bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known) {
assert(!callee->is_native(), "callee must not be native");
// first perform tests of things it's not possible to inline
if (callee->has_exception_handlers() &&
!InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
if (callee->is_synchronized() &&
!InlineSynchronizedMethods ) INLINE_BAILOUT("callee is synchronized");
if (!callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
if (!callee->has_balanced_monitors()) INLINE_BAILOUT("callee's monitors do not match");
// Proper inlining of methods with jsrs requires a little more work.
if (callee->has_jsrs() ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
// now perform tests that are based on flag settings
if (inline_level() > MaxInlineLevel ) INLINE_BAILOUT("too-deep inlining");
if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("too-deep recursive inlining");
if (callee->code_size() > max_inline_size() ) INLINE_BAILOUT("callee is too large");
// don't inline throwable methods unless the inlining tree is rooted in a throwable class
if (callee->name() == ciSymbol::object_initializer_name() &&
callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
// Throwable constructor call
IRScope* top = scope();
while (top->caller() != NULL) {
top = top->caller();
}
if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
INLINE_BAILOUT("don't inline Throwable constructors");
}
}
// When SSE2 is used on intel, then no special handling is needed
// for strictfp because the enum-constant is fixed at compile time,
// the check for UseSSE2 is needed here
if (strict_fp_requires_explicit_rounding && UseSSE < 2 && method()->is_strict() != callee->is_strict()) {
INLINE_BAILOUT("caller and callee have different strict fp requirements");
}
if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
}
#ifndef PRODUCT
// printing
if (PrintInlining) {
print_inline_result(callee, true);
}
#endif
// NOTE: Bailouts from this point on, which occur at the
// GraphBuilder level, do not cause bailout just of the inlining but
// in fact of the entire compilation.
BlockBegin* orig_block = block();
const int args_base = state()->stack_size() - callee->arg_size();
assert(args_base >= 0, "stack underflow during inlining");
// Insert null check if necessary
Value recv = NULL;
if (code() != Bytecodes::_invokestatic) {
// note: null check must happen even if first instruction of callee does
// an implicit null check since the callee is in a different scope
// and we must make sure exception handling does the right thing
assert(!callee->is_static(), "callee must not be static");
assert(callee->arg_size() > 0, "must have at least a receiver");
recv = state()->stack_at(args_base);
null_check(recv);
}
if (profile_inlined_calls()) {
profile_call(recv, holder_known ? callee->holder() : NULL);
}
profile_invocation(callee);
// Introduce a new callee continuation point - if the callee has
// more than one return instruction or the return does not allow
// fall-through of control flow, all return instructions of the
// callee will need to be replaced by Goto's pointing to this
// continuation point.
BlockBegin* cont = block_at(next_bci());
bool continuation_existed = true;
if (cont == NULL) {
cont = new BlockBegin(next_bci());
// low number so that continuation gets parsed as early as possible
cont->set_depth_first_number(0);
#ifndef PRODUCT
if (PrintInitialBlockList) {
tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
cont->block_id(), cont->bci(), bci());
}
#endif
continuation_existed = false;
}
// Record number of predecessors of continuation block before
// inlining, to detect if inlined method has edges to its
// continuation after inlining.
int continuation_preds = cont->number_of_preds();
// Push callee scope
push_scope(callee, cont);
// the BlockListBuilder for the callee could have bailed out
CHECK_BAILOUT_(false);
// Temporarily set up bytecode stream so we can append instructions
// (only using the bci of this stream)
scope_data()->set_stream(scope_data()->parent()->stream());
// Pass parameters into callee state: add assignments
// note: this will also ensure that all arguments are computed before being passed
ValueStack* callee_state = state();
ValueStack* caller_state = scope()->caller_state();
{ int i = args_base;
while (i < caller_state->stack_size()) {
const int par_no = i - args_base;
Value arg = caller_state->stack_at_inc(i);
// NOTE: take base() of arg->type() to avoid problems storing
// constants
store_local(callee_state, arg, arg->type()->base(), par_no);
}
}
// Remove args from stack.
// Note that we preserve locals state in case we can use it later
// (see use of pop_scope() below)
caller_state->truncate_stack(args_base);
callee_state->truncate_stack(args_base);
// Setup state that is used at returns form the inlined method.
// This is essentially the state of the continuation block,
// but without the return value on stack, if any, this will
// be pushed at the return instruction (see method_return).
scope_data()->set_continuation_state(caller_state->copy());
// Compute lock stack size for callee scope now that args have been passed
scope()->compute_lock_stack_size();
Value lock;
BlockBegin* sync_handler;
// Inline the locking of the receiver if the callee is synchronized
if (callee->is_synchronized()) {
lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
: state()->local_at(0);
sync_handler = new BlockBegin(-1);
inline_sync_entry(lock, sync_handler);
// recompute the lock stack size
scope()->compute_lock_stack_size();
}
BlockBegin* callee_start_block = block_at(0);
if (callee_start_block != NULL) {
assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
Goto* goto_callee = new Goto(callee_start_block, false);
goto_callee->set_state(state());
// The state for this goto is in the scope of the callee, so use
// the entry bci for the callee instead of the call site bci.
append_with_bci(goto_callee, 0);
_block->set_end(goto_callee);
callee_start_block->merge(callee_state);
_last = _block = callee_start_block;
scope_data()->add_to_work_list(callee_start_block);
}
// Clear out bytecode stream
scope_data()->set_stream(NULL);
// Ready to resume parsing in callee (either in the same block we
// were in before or in the callee's start block)
iterate_all_blocks(callee_start_block == NULL);
// If we bailed out during parsing, return immediately (this is bad news)
if (bailed_out()) return false;
// iterate_all_blocks theoretically traverses in random order; in
// practice, we have only traversed the continuation if we are
// inlining into a subroutine
assert(continuation_existed ||
!continuation()->is_set(BlockBegin::was_visited_flag),
"continuation should not have been parsed yet if we created it");
// If we bailed out during parsing, return immediately (this is bad news)
CHECK_BAILOUT_(false);
// At this point we are almost ready to return and resume parsing of
// the caller back in the GraphBuilder. The only thing we want to do
// first is an optimization: during parsing of the callee we
// generated at least one Goto to the continuation block. If we
// generated exactly one, and if the inlined method spanned exactly
// one block (and we didn't have to Goto its entry), then we snip
// off the Goto to the continuation, allowing control to fall
// through back into the caller block and effectively performing
// block merging. This allows load elimination and CSE to take place
// across multiple callee scopes if they are relatively simple, and
// is currently essential to making inlining profitable.
if ( num_returns() == 1
&& block() == orig_block
&& block() == inline_cleanup_block()) {
_last = inline_cleanup_return_prev();
_state = inline_cleanup_state()->pop_scope();
} else if (continuation_preds == cont->number_of_preds()) {
// Inlining caused that the instructions after the invoke in the
// caller are not reachable any more. So skip filling this block
// with instructions!
assert (cont == continuation(), "");
assert(_last && _last->as_BlockEnd(), "");
_skip_block = true;
} else {
// Resume parsing in continuation block unless it was already parsed.
// Note that if we don't change _last here, iteration in
// iterate_bytecodes_for_block will stop when we return.
if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
// add continuation to work list instead of parsing it immediately
assert(_last && _last->as_BlockEnd(), "");
scope_data()->parent()->add_to_work_list(continuation());
_skip_block = true;
}
}
// Fill the exception handler for synchronized methods with instructions
if (callee->is_synchronized() && sync_handler->state() != NULL) {
fill_sync_handler(lock, sync_handler);
} else {
pop_scope();
}
compilation()->notice_inlined_method(callee);
return true;
}
void GraphBuilder::inline_bailout(const char* msg) {
assert(msg != NULL, "inline bailout msg must exist");
_inline_bailout_msg = msg;
}
void GraphBuilder::clear_inline_bailout() {
_inline_bailout_msg = NULL;
}
void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
ScopeData* data = new ScopeData(NULL);
data->set_scope(scope);
data->set_bci2block(bci2block);
_scope_data = data;
_block = start;
}
void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
scope()->add_callee(callee_scope);
BlockListBuilder blb(compilation(), callee_scope, -1);
CHECK_BAILOUT();
if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
// this scope can be inlined directly into the caller so remove
// the block at bci 0.
blb.bci2block()->at_put(0, NULL);
}
callee_scope->set_caller_state(state());
set_state(state()->push_scope(callee_scope));
ScopeData* data = new ScopeData(scope_data());
data->set_scope(callee_scope);
data->set_bci2block(blb.bci2block());
data->set_continuation(continuation);
_scope_data = data;
}
void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
ScopeData* data = new ScopeData(scope_data());
data->set_parsing_jsr();
data->set_jsr_entry_bci(jsr_dest_bci);
data->set_jsr_return_address_local(-1);
// Must clone bci2block list as we will be mutating it in order to
// properly clone all blocks in jsr region as well as exception
// handlers containing rets
BlockList* new_bci2block = new BlockList(bci2block()->length());
new_bci2block->push_all(bci2block());
data->set_bci2block(new_bci2block);
data->set_scope(scope());
data->setup_jsr_xhandlers();
data->set_continuation(continuation());
if (continuation() != NULL) {
assert(continuation_state() != NULL, "");
data->set_continuation_state(continuation_state()->copy());
}
data->set_jsr_continuation(jsr_continuation);
_scope_data = data;
}
void GraphBuilder::pop_scope() {
int number_of_locks = scope()->number_of_locks();
_scope_data = scope_data()->parent();
// accumulate minimum number of monitor slots to be reserved
scope()->set_min_number_of_locks(number_of_locks);
}
void GraphBuilder::pop_scope_for_jsr() {
_scope_data = scope_data()->parent();
}
bool GraphBuilder::append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* offset = args->at(2);
#ifndef _LP64
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
#endif
Instruction* op = append(new UnsafeGetObject(t, args->at(1), offset, is_volatile));
push(op->type(), op);
compilation()->set_has_unsafe_access(true);
}
return InlineUnsafeOps;
}
bool GraphBuilder::append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* offset = args->at(2);
#ifndef _LP64
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
#endif
Instruction* op = append(new UnsafePutObject(t, args->at(1), offset, args->at(3), is_volatile));
compilation()->set_has_unsafe_access(true);
kill_all();
}
return InlineUnsafeOps;
}
bool GraphBuilder::append_unsafe_get_raw(ciMethod* callee, BasicType t) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* op = append(new UnsafeGetRaw(t, args->at(1), false));
push(op->type(), op);
compilation()->set_has_unsafe_access(true);
}
return InlineUnsafeOps;
}
bool GraphBuilder::append_unsafe_put_raw(ciMethod* callee, BasicType t) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
null_check(args->at(0));
Instruction* op = append(new UnsafePutRaw(t, args->at(1), args->at(2)));
compilation()->set_has_unsafe_access(true);
}
return InlineUnsafeOps;
}
bool GraphBuilder::append_unsafe_prefetch(ciMethod* callee, bool is_static, bool is_store) {
if (InlineUnsafeOps) {
Values* args = state()->pop_arguments(callee->arg_size());
int obj_arg_index = 1; // Assume non-static case
if (is_static) {
obj_arg_index = 0;
} else {
null_check(args->at(0));
}
Instruction* offset = args->at(obj_arg_index + 1);
#ifndef _LP64
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
#endif
Instruction* op = is_store ? append(new UnsafePrefetchWrite(args->at(obj_arg_index), offset))
: append(new UnsafePrefetchRead (args->at(obj_arg_index), offset));
compilation()->set_has_unsafe_access(true);
}
return InlineUnsafeOps;
}
void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
ValueType* result_type = as_ValueType(callee->return_type());
assert(result_type->is_int(), "int result");
Values* args = state()->pop_arguments(callee->arg_size());
// Pop off some args to speically handle, then push back
Value newval = args->pop();
Value cmpval = args->pop();
Value offset = args->pop();
Value src = args->pop();
Value unsafe_obj = args->pop();
// Separately handle the unsafe arg. It is not needed for code
// generation, but must be null checked
null_check(unsafe_obj);
#ifndef _LP64
offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
#endif
args->push(src);
args->push(offset);
args->push(cmpval);
args->push(newval);
// An unsafe CAS can alias with other field accesses, but we don't
// know which ones so mark the state as no preserved. This will
// cause CSE to invalidate memory across it.
bool preserves_state = false;
Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, lock_stack(), preserves_state);
append_split(result);
push(result_type, result);
compilation()->set_has_unsafe_access(true);
}
#ifndef PRODUCT
void GraphBuilder::print_inline_result(ciMethod* callee, bool res) {
const char sync_char = callee->is_synchronized() ? 's' : ' ';
const char exception_char = callee->has_exception_handlers() ? '!' : ' ';
const char monitors_char = callee->has_monitor_bytecodes() ? 'm' : ' ';
tty->print(" %c%c%c ", sync_char, exception_char, monitors_char);
for (int i = 0; i < scope()->level(); i++) tty->print(" ");
if (res) {
tty->print(" ");
} else {
tty->print("- ");
}
tty->print("@ %d ", bci());
callee->print_short_name();
tty->print(" (%d bytes)", callee->code_size());
if (_inline_bailout_msg) {
tty->print(" %s", _inline_bailout_msg);
}
tty->cr();
if (res && CIPrintMethodCodes) {
callee->print_codes();
}
}
void GraphBuilder::print_stats() {
vmap()->print();
}
#endif // PRODUCT
void GraphBuilder::profile_call(Value recv, ciKlass* known_holder) {
append(new ProfileCall(method(), bci(), recv, known_holder));
}
void GraphBuilder::profile_invocation(ciMethod* callee) {
if (profile_calls()) {
// increment the interpreter_invocation_count for the inlinee
Value m = append(new Constant(new ObjectConstant(callee)));
append(new ProfileCounter(m, methodOopDesc::interpreter_invocation_counter_offset_in_bytes(), 1));
}
}
void GraphBuilder::profile_bci(int bci) {
if (profile_branches()) {
ciMethodData* md = method()->method_data();
if (md == NULL) {
BAILOUT("out of memory building methodDataOop");
}
ciProfileData* data = md->bci_to_data(bci);
assert(data != NULL && data->is_JumpData(), "need JumpData for goto");
Value mdo = append(new Constant(new ObjectConstant(md)));
append(new ProfileCounter(mdo, md->byte_offset_of_slot(data, JumpData::taken_offset()), 1));
}
}