c96a95c4b8
Update copyright year for files that have been modified in 2008 Reviewed-by: ohair, tbell
951 lines
33 KiB
C++
951 lines
33 KiB
C++
/*
|
|
* Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
# include "incls/_precompiled.incl"
|
|
# include "incls/_space.cpp.incl"
|
|
|
|
void SpaceMemRegionOopsIterClosure::do_oop(oop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
|
|
void SpaceMemRegionOopsIterClosure::do_oop(narrowOop* p) { SpaceMemRegionOopsIterClosure::do_oop_work(p); }
|
|
|
|
HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
|
|
HeapWord* top_obj) {
|
|
if (top_obj != NULL) {
|
|
if (_sp->block_is_obj(top_obj)) {
|
|
if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
|
|
if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
|
|
// An arrayOop is starting on the dirty card - since we do exact
|
|
// store checks for objArrays we are done.
|
|
} else {
|
|
// Otherwise, it is possible that the object starting on the dirty
|
|
// card spans the entire card, and that the store happened on a
|
|
// later card. Figure out where the object ends.
|
|
// Use the block_size() method of the space over which
|
|
// the iteration is being done. That space (e.g. CMS) may have
|
|
// specific requirements on object sizes which will
|
|
// be reflected in the block_size() method.
|
|
top = top_obj + oop(top_obj)->size();
|
|
}
|
|
}
|
|
} else {
|
|
top = top_obj;
|
|
}
|
|
} else {
|
|
assert(top == _sp->end(), "only case where top_obj == NULL");
|
|
}
|
|
return top;
|
|
}
|
|
|
|
void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
|
|
HeapWord* bottom,
|
|
HeapWord* top) {
|
|
// 1. Blocks may or may not be objects.
|
|
// 2. Even when a block_is_obj(), it may not entirely
|
|
// occupy the block if the block quantum is larger than
|
|
// the object size.
|
|
// We can and should try to optimize by calling the non-MemRegion
|
|
// version of oop_iterate() for all but the extremal objects
|
|
// (for which we need to call the MemRegion version of
|
|
// oop_iterate()) To be done post-beta XXX
|
|
for (; bottom < top; bottom += _sp->block_size(bottom)) {
|
|
// As in the case of contiguous space above, we'd like to
|
|
// just use the value returned by oop_iterate to increment the
|
|
// current pointer; unfortunately, that won't work in CMS because
|
|
// we'd need an interface change (it seems) to have the space
|
|
// "adjust the object size" (for instance pad it up to its
|
|
// block alignment or minimum block size restrictions. XXX
|
|
if (_sp->block_is_obj(bottom) &&
|
|
!_sp->obj_allocated_since_save_marks(oop(bottom))) {
|
|
oop(bottom)->oop_iterate(_cl, mr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
|
|
|
|
// Some collectors need to do special things whenever their dirty
|
|
// cards are processed. For instance, CMS must remember mutator updates
|
|
// (i.e. dirty cards) so as to re-scan mutated objects.
|
|
// Such work can be piggy-backed here on dirty card scanning, so as to make
|
|
// it slightly more efficient than doing a complete non-detructive pre-scan
|
|
// of the card table.
|
|
MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure();
|
|
if (pCl != NULL) {
|
|
pCl->do_MemRegion(mr);
|
|
}
|
|
|
|
HeapWord* bottom = mr.start();
|
|
HeapWord* last = mr.last();
|
|
HeapWord* top = mr.end();
|
|
HeapWord* bottom_obj;
|
|
HeapWord* top_obj;
|
|
|
|
assert(_precision == CardTableModRefBS::ObjHeadPreciseArray ||
|
|
_precision == CardTableModRefBS::Precise,
|
|
"Only ones we deal with for now.");
|
|
|
|
assert(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
|
|
_last_bottom == NULL ||
|
|
top <= _last_bottom,
|
|
"Not decreasing");
|
|
NOT_PRODUCT(_last_bottom = mr.start());
|
|
|
|
bottom_obj = _sp->block_start(bottom);
|
|
top_obj = _sp->block_start(last);
|
|
|
|
assert(bottom_obj <= bottom, "just checking");
|
|
assert(top_obj <= top, "just checking");
|
|
|
|
// Given what we think is the top of the memory region and
|
|
// the start of the object at the top, get the actual
|
|
// value of the top.
|
|
top = get_actual_top(top, top_obj);
|
|
|
|
// If the previous call did some part of this region, don't redo.
|
|
if (_precision == CardTableModRefBS::ObjHeadPreciseArray &&
|
|
_min_done != NULL &&
|
|
_min_done < top) {
|
|
top = _min_done;
|
|
}
|
|
|
|
// Top may have been reset, and in fact may be below bottom,
|
|
// e.g. the dirty card region is entirely in a now free object
|
|
// -- something that could happen with a concurrent sweeper.
|
|
bottom = MIN2(bottom, top);
|
|
mr = MemRegion(bottom, top);
|
|
assert(bottom <= top &&
|
|
(_precision != CardTableModRefBS::ObjHeadPreciseArray ||
|
|
_min_done == NULL ||
|
|
top <= _min_done),
|
|
"overlap!");
|
|
|
|
// Walk the region if it is not empty; otherwise there is nothing to do.
|
|
if (!mr.is_empty()) {
|
|
walk_mem_region(mr, bottom_obj, top);
|
|
}
|
|
|
|
_min_done = bottom;
|
|
}
|
|
|
|
DirtyCardToOopClosure* Space::new_dcto_cl(OopClosure* cl,
|
|
CardTableModRefBS::PrecisionStyle precision,
|
|
HeapWord* boundary) {
|
|
return new DirtyCardToOopClosure(this, cl, precision, boundary);
|
|
}
|
|
|
|
HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
|
|
HeapWord* top_obj) {
|
|
if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
|
|
if (_precision == CardTableModRefBS::ObjHeadPreciseArray) {
|
|
if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
|
|
// An arrayOop is starting on the dirty card - since we do exact
|
|
// store checks for objArrays we are done.
|
|
} else {
|
|
// Otherwise, it is possible that the object starting on the dirty
|
|
// card spans the entire card, and that the store happened on a
|
|
// later card. Figure out where the object ends.
|
|
assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
|
|
"Block size and object size mismatch");
|
|
top = top_obj + oop(top_obj)->size();
|
|
}
|
|
}
|
|
} else {
|
|
top = (_sp->toContiguousSpace())->top();
|
|
}
|
|
return top;
|
|
}
|
|
|
|
void Filtering_DCTOC::walk_mem_region(MemRegion mr,
|
|
HeapWord* bottom,
|
|
HeapWord* top) {
|
|
// Note that this assumption won't hold if we have a concurrent
|
|
// collector in this space, which may have freed up objects after
|
|
// they were dirtied and before the stop-the-world GC that is
|
|
// examining cards here.
|
|
assert(bottom < top, "ought to be at least one obj on a dirty card.");
|
|
|
|
if (_boundary != NULL) {
|
|
// We have a boundary outside of which we don't want to look
|
|
// at objects, so create a filtering closure around the
|
|
// oop closure before walking the region.
|
|
FilteringClosure filter(_boundary, _cl);
|
|
walk_mem_region_with_cl(mr, bottom, top, &filter);
|
|
} else {
|
|
// No boundary, simply walk the heap with the oop closure.
|
|
walk_mem_region_with_cl(mr, bottom, top, _cl);
|
|
}
|
|
|
|
}
|
|
|
|
// We must replicate this so that the static type of "FilteringClosure"
|
|
// (see above) is apparent at the oop_iterate calls.
|
|
#define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
|
|
void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr, \
|
|
HeapWord* bottom, \
|
|
HeapWord* top, \
|
|
ClosureType* cl) { \
|
|
bottom += oop(bottom)->oop_iterate(cl, mr); \
|
|
if (bottom < top) { \
|
|
HeapWord* next_obj = bottom + oop(bottom)->size(); \
|
|
while (next_obj < top) { \
|
|
/* Bottom lies entirely below top, so we can call the */ \
|
|
/* non-memRegion version of oop_iterate below. */ \
|
|
oop(bottom)->oop_iterate(cl); \
|
|
bottom = next_obj; \
|
|
next_obj = bottom + oop(bottom)->size(); \
|
|
} \
|
|
/* Last object. */ \
|
|
oop(bottom)->oop_iterate(cl, mr); \
|
|
} \
|
|
}
|
|
|
|
// (There are only two of these, rather than N, because the split is due
|
|
// only to the introduction of the FilteringClosure, a local part of the
|
|
// impl of this abstraction.)
|
|
ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopClosure)
|
|
ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
|
|
|
|
DirtyCardToOopClosure*
|
|
ContiguousSpace::new_dcto_cl(OopClosure* cl,
|
|
CardTableModRefBS::PrecisionStyle precision,
|
|
HeapWord* boundary) {
|
|
return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
|
|
}
|
|
|
|
void Space::initialize(MemRegion mr, bool clear_space) {
|
|
HeapWord* bottom = mr.start();
|
|
HeapWord* end = mr.end();
|
|
assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
|
|
"invalid space boundaries");
|
|
set_bottom(bottom);
|
|
set_end(end);
|
|
if (clear_space) clear();
|
|
}
|
|
|
|
void Space::clear() {
|
|
if (ZapUnusedHeapArea) mangle_unused_area();
|
|
}
|
|
|
|
void ContiguousSpace::initialize(MemRegion mr, bool clear_space)
|
|
{
|
|
CompactibleSpace::initialize(mr, clear_space);
|
|
_concurrent_iteration_safe_limit = top();
|
|
}
|
|
|
|
void ContiguousSpace::clear() {
|
|
set_top(bottom());
|
|
set_saved_mark();
|
|
Space::clear();
|
|
}
|
|
|
|
bool Space::is_in(const void* p) const {
|
|
HeapWord* b = block_start(p);
|
|
return b != NULL && block_is_obj(b);
|
|
}
|
|
|
|
bool ContiguousSpace::is_in(const void* p) const {
|
|
return _bottom <= p && p < _top;
|
|
}
|
|
|
|
bool ContiguousSpace::is_free_block(const HeapWord* p) const {
|
|
return p >= _top;
|
|
}
|
|
|
|
void OffsetTableContigSpace::clear() {
|
|
ContiguousSpace::clear();
|
|
_offsets.initialize_threshold();
|
|
}
|
|
|
|
void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
|
|
Space::set_bottom(new_bottom);
|
|
_offsets.set_bottom(new_bottom);
|
|
}
|
|
|
|
void OffsetTableContigSpace::set_end(HeapWord* new_end) {
|
|
// Space should not advertize an increase in size
|
|
// until after the underlying offest table has been enlarged.
|
|
_offsets.resize(pointer_delta(new_end, bottom()));
|
|
Space::set_end(new_end);
|
|
}
|
|
|
|
void ContiguousSpace::mangle_unused_area() {
|
|
// to-space is used for storing marks during mark-sweep
|
|
mangle_region(MemRegion(top(), end()));
|
|
}
|
|
|
|
void ContiguousSpace::mangle_region(MemRegion mr) {
|
|
debug_only(Copy::fill_to_words(mr.start(), mr.word_size(), badHeapWord));
|
|
}
|
|
|
|
void CompactibleSpace::initialize(MemRegion mr, bool clear_space) {
|
|
Space::initialize(mr, clear_space);
|
|
_compaction_top = bottom();
|
|
_next_compaction_space = NULL;
|
|
}
|
|
|
|
HeapWord* CompactibleSpace::forward(oop q, size_t size,
|
|
CompactPoint* cp, HeapWord* compact_top) {
|
|
// q is alive
|
|
// First check if we should switch compaction space
|
|
assert(this == cp->space, "'this' should be current compaction space.");
|
|
size_t compaction_max_size = pointer_delta(end(), compact_top);
|
|
while (size > compaction_max_size) {
|
|
// switch to next compaction space
|
|
cp->space->set_compaction_top(compact_top);
|
|
cp->space = cp->space->next_compaction_space();
|
|
if (cp->space == NULL) {
|
|
cp->gen = GenCollectedHeap::heap()->prev_gen(cp->gen);
|
|
assert(cp->gen != NULL, "compaction must succeed");
|
|
cp->space = cp->gen->first_compaction_space();
|
|
assert(cp->space != NULL, "generation must have a first compaction space");
|
|
}
|
|
compact_top = cp->space->bottom();
|
|
cp->space->set_compaction_top(compact_top);
|
|
cp->threshold = cp->space->initialize_threshold();
|
|
compaction_max_size = pointer_delta(cp->space->end(), compact_top);
|
|
}
|
|
|
|
// store the forwarding pointer into the mark word
|
|
if ((HeapWord*)q != compact_top) {
|
|
q->forward_to(oop(compact_top));
|
|
assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
|
|
} else {
|
|
// if the object isn't moving we can just set the mark to the default
|
|
// mark and handle it specially later on.
|
|
q->init_mark();
|
|
assert(q->forwardee() == NULL, "should be forwarded to NULL");
|
|
}
|
|
|
|
VALIDATE_MARK_SWEEP_ONLY(MarkSweep::register_live_oop(q, size));
|
|
compact_top += size;
|
|
|
|
// we need to update the offset table so that the beginnings of objects can be
|
|
// found during scavenge. Note that we are updating the offset table based on
|
|
// where the object will be once the compaction phase finishes.
|
|
if (compact_top > cp->threshold)
|
|
cp->threshold =
|
|
cp->space->cross_threshold(compact_top - size, compact_top);
|
|
return compact_top;
|
|
}
|
|
|
|
|
|
bool CompactibleSpace::insert_deadspace(size_t& allowed_deadspace_words,
|
|
HeapWord* q, size_t deadlength) {
|
|
if (allowed_deadspace_words >= deadlength) {
|
|
allowed_deadspace_words -= deadlength;
|
|
oop(q)->set_mark(markOopDesc::prototype()->set_marked());
|
|
const size_t min_int_array_size = typeArrayOopDesc::header_size(T_INT);
|
|
if (deadlength >= min_int_array_size) {
|
|
oop(q)->set_klass(Universe::intArrayKlassObj());
|
|
typeArrayOop(q)->set_length((int)((deadlength - min_int_array_size)
|
|
* (HeapWordSize/sizeof(jint))));
|
|
} else {
|
|
assert((int) deadlength == instanceOopDesc::header_size(),
|
|
"size for smallest fake dead object doesn't match");
|
|
oop(q)->set_klass(SystemDictionary::object_klass());
|
|
}
|
|
assert((int) deadlength == oop(q)->size(),
|
|
"make sure size for fake dead object match");
|
|
// Recall that we required "q == compaction_top".
|
|
return true;
|
|
} else {
|
|
allowed_deadspace_words = 0;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#define block_is_always_obj(q) true
|
|
#define obj_size(q) oop(q)->size()
|
|
#define adjust_obj_size(s) s
|
|
|
|
void CompactibleSpace::prepare_for_compaction(CompactPoint* cp) {
|
|
SCAN_AND_FORWARD(cp, end, block_is_obj, block_size);
|
|
}
|
|
|
|
// Faster object search.
|
|
void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
|
|
SCAN_AND_FORWARD(cp, top, block_is_always_obj, obj_size);
|
|
}
|
|
|
|
void Space::adjust_pointers() {
|
|
// adjust all the interior pointers to point at the new locations of objects
|
|
// Used by MarkSweep::mark_sweep_phase3()
|
|
|
|
// First check to see if there is any work to be done.
|
|
if (used() == 0) {
|
|
return; // Nothing to do.
|
|
}
|
|
|
|
// Otherwise...
|
|
HeapWord* q = bottom();
|
|
HeapWord* t = end();
|
|
|
|
debug_only(HeapWord* prev_q = NULL);
|
|
while (q < t) {
|
|
if (oop(q)->is_gc_marked()) {
|
|
// q is alive
|
|
|
|
VALIDATE_MARK_SWEEP_ONLY(MarkSweep::track_interior_pointers(oop(q)));
|
|
// point all the oops to the new location
|
|
size_t size = oop(q)->adjust_pointers();
|
|
VALIDATE_MARK_SWEEP_ONLY(MarkSweep::check_interior_pointers());
|
|
|
|
debug_only(prev_q = q);
|
|
VALIDATE_MARK_SWEEP_ONLY(MarkSweep::validate_live_oop(oop(q), size));
|
|
|
|
q += size;
|
|
} else {
|
|
// q is not a live object. But we're not in a compactible space,
|
|
// So we don't have live ranges.
|
|
debug_only(prev_q = q);
|
|
q += block_size(q);
|
|
assert(q > prev_q, "we should be moving forward through memory");
|
|
}
|
|
}
|
|
assert(q == t, "just checking");
|
|
}
|
|
|
|
void CompactibleSpace::adjust_pointers() {
|
|
// Check first is there is any work to do.
|
|
if (used() == 0) {
|
|
return; // Nothing to do.
|
|
}
|
|
|
|
SCAN_AND_ADJUST_POINTERS(adjust_obj_size);
|
|
}
|
|
|
|
void CompactibleSpace::compact() {
|
|
SCAN_AND_COMPACT(obj_size);
|
|
}
|
|
|
|
void Space::print_short() const { print_short_on(tty); }
|
|
|
|
void Space::print_short_on(outputStream* st) const {
|
|
st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
|
|
(int) ((double) used() * 100 / capacity()));
|
|
}
|
|
|
|
void Space::print() const { print_on(tty); }
|
|
|
|
void Space::print_on(outputStream* st) const {
|
|
print_short_on(st);
|
|
st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
|
|
bottom(), end());
|
|
}
|
|
|
|
void ContiguousSpace::print_on(outputStream* st) const {
|
|
print_short_on(st);
|
|
st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
|
|
bottom(), top(), end());
|
|
}
|
|
|
|
void OffsetTableContigSpace::print_on(outputStream* st) const {
|
|
print_short_on(st);
|
|
st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
|
|
INTPTR_FORMAT ", " INTPTR_FORMAT ")",
|
|
bottom(), top(), _offsets.threshold(), end());
|
|
}
|
|
|
|
void ContiguousSpace::verify(bool allow_dirty) const {
|
|
HeapWord* p = bottom();
|
|
HeapWord* t = top();
|
|
HeapWord* prev_p = NULL;
|
|
while (p < t) {
|
|
oop(p)->verify();
|
|
prev_p = p;
|
|
p += oop(p)->size();
|
|
}
|
|
guarantee(p == top(), "end of last object must match end of space");
|
|
if (top() != end()) {
|
|
guarantee(top() == block_start(end()-1) &&
|
|
top() == block_start(top()),
|
|
"top should be start of unallocated block, if it exists");
|
|
}
|
|
}
|
|
|
|
void Space::oop_iterate(OopClosure* blk) {
|
|
ObjectToOopClosure blk2(blk);
|
|
object_iterate(&blk2);
|
|
}
|
|
|
|
HeapWord* Space::object_iterate_careful(ObjectClosureCareful* cl) {
|
|
guarantee(false, "NYI");
|
|
return bottom();
|
|
}
|
|
|
|
HeapWord* Space::object_iterate_careful_m(MemRegion mr,
|
|
ObjectClosureCareful* cl) {
|
|
guarantee(false, "NYI");
|
|
return bottom();
|
|
}
|
|
|
|
|
|
void Space::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
|
|
assert(!mr.is_empty(), "Should be non-empty");
|
|
// We use MemRegion(bottom(), end()) rather than used_region() below
|
|
// because the two are not necessarily equal for some kinds of
|
|
// spaces, in particular, certain kinds of free list spaces.
|
|
// We could use the more complicated but more precise:
|
|
// MemRegion(used_region().start(), round_to(used_region().end(), CardSize))
|
|
// but the slight imprecision seems acceptable in the assertion check.
|
|
assert(MemRegion(bottom(), end()).contains(mr),
|
|
"Should be within used space");
|
|
HeapWord* prev = cl->previous(); // max address from last time
|
|
if (prev >= mr.end()) { // nothing to do
|
|
return;
|
|
}
|
|
// This assert will not work when we go from cms space to perm
|
|
// space, and use same closure. Easy fix deferred for later. XXX YSR
|
|
// assert(prev == NULL || contains(prev), "Should be within space");
|
|
|
|
bool last_was_obj_array = false;
|
|
HeapWord *blk_start_addr, *region_start_addr;
|
|
if (prev > mr.start()) {
|
|
region_start_addr = prev;
|
|
blk_start_addr = prev;
|
|
assert(blk_start_addr == block_start(region_start_addr), "invariant");
|
|
} else {
|
|
region_start_addr = mr.start();
|
|
blk_start_addr = block_start(region_start_addr);
|
|
}
|
|
HeapWord* region_end_addr = mr.end();
|
|
MemRegion derived_mr(region_start_addr, region_end_addr);
|
|
while (blk_start_addr < region_end_addr) {
|
|
const size_t size = block_size(blk_start_addr);
|
|
if (block_is_obj(blk_start_addr)) {
|
|
last_was_obj_array = cl->do_object_bm(oop(blk_start_addr), derived_mr);
|
|
} else {
|
|
last_was_obj_array = false;
|
|
}
|
|
blk_start_addr += size;
|
|
}
|
|
if (!last_was_obj_array) {
|
|
assert((bottom() <= blk_start_addr) && (blk_start_addr <= end()),
|
|
"Should be within (closed) used space");
|
|
assert(blk_start_addr > prev, "Invariant");
|
|
cl->set_previous(blk_start_addr); // min address for next time
|
|
}
|
|
}
|
|
|
|
bool Space::obj_is_alive(const HeapWord* p) const {
|
|
assert (block_is_obj(p), "The address should point to an object");
|
|
return true;
|
|
}
|
|
|
|
void ContiguousSpace::object_iterate_mem(MemRegion mr, UpwardsObjectClosure* cl) {
|
|
assert(!mr.is_empty(), "Should be non-empty");
|
|
assert(used_region().contains(mr), "Should be within used space");
|
|
HeapWord* prev = cl->previous(); // max address from last time
|
|
if (prev >= mr.end()) { // nothing to do
|
|
return;
|
|
}
|
|
// See comment above (in more general method above) in case you
|
|
// happen to use this method.
|
|
assert(prev == NULL || is_in_reserved(prev), "Should be within space");
|
|
|
|
bool last_was_obj_array = false;
|
|
HeapWord *obj_start_addr, *region_start_addr;
|
|
if (prev > mr.start()) {
|
|
region_start_addr = prev;
|
|
obj_start_addr = prev;
|
|
assert(obj_start_addr == block_start(region_start_addr), "invariant");
|
|
} else {
|
|
region_start_addr = mr.start();
|
|
obj_start_addr = block_start(region_start_addr);
|
|
}
|
|
HeapWord* region_end_addr = mr.end();
|
|
MemRegion derived_mr(region_start_addr, region_end_addr);
|
|
while (obj_start_addr < region_end_addr) {
|
|
oop obj = oop(obj_start_addr);
|
|
const size_t size = obj->size();
|
|
last_was_obj_array = cl->do_object_bm(obj, derived_mr);
|
|
obj_start_addr += size;
|
|
}
|
|
if (!last_was_obj_array) {
|
|
assert((bottom() <= obj_start_addr) && (obj_start_addr <= end()),
|
|
"Should be within (closed) used space");
|
|
assert(obj_start_addr > prev, "Invariant");
|
|
cl->set_previous(obj_start_addr); // min address for next time
|
|
}
|
|
}
|
|
|
|
#ifndef SERIALGC
|
|
#define ContigSpace_PAR_OOP_ITERATE_DEFN(OopClosureType, nv_suffix) \
|
|
\
|
|
void ContiguousSpace::par_oop_iterate(MemRegion mr, OopClosureType* blk) {\
|
|
HeapWord* obj_addr = mr.start(); \
|
|
HeapWord* t = mr.end(); \
|
|
while (obj_addr < t) { \
|
|
assert(oop(obj_addr)->is_oop(), "Should be an oop"); \
|
|
obj_addr += oop(obj_addr)->oop_iterate(blk); \
|
|
} \
|
|
}
|
|
|
|
ALL_PAR_OOP_ITERATE_CLOSURES(ContigSpace_PAR_OOP_ITERATE_DEFN)
|
|
|
|
#undef ContigSpace_PAR_OOP_ITERATE_DEFN
|
|
#endif // SERIALGC
|
|
|
|
void ContiguousSpace::oop_iterate(OopClosure* blk) {
|
|
if (is_empty()) return;
|
|
HeapWord* obj_addr = bottom();
|
|
HeapWord* t = top();
|
|
// Could call objects iterate, but this is easier.
|
|
while (obj_addr < t) {
|
|
obj_addr += oop(obj_addr)->oop_iterate(blk);
|
|
}
|
|
}
|
|
|
|
void ContiguousSpace::oop_iterate(MemRegion mr, OopClosure* blk) {
|
|
if (is_empty()) {
|
|
return;
|
|
}
|
|
MemRegion cur = MemRegion(bottom(), top());
|
|
mr = mr.intersection(cur);
|
|
if (mr.is_empty()) {
|
|
return;
|
|
}
|
|
if (mr.equals(cur)) {
|
|
oop_iterate(blk);
|
|
return;
|
|
}
|
|
assert(mr.end() <= top(), "just took an intersection above");
|
|
HeapWord* obj_addr = block_start(mr.start());
|
|
HeapWord* t = mr.end();
|
|
|
|
// Handle first object specially.
|
|
oop obj = oop(obj_addr);
|
|
SpaceMemRegionOopsIterClosure smr_blk(blk, mr);
|
|
obj_addr += obj->oop_iterate(&smr_blk);
|
|
while (obj_addr < t) {
|
|
oop obj = oop(obj_addr);
|
|
assert(obj->is_oop(), "expected an oop");
|
|
obj_addr += obj->size();
|
|
// If "obj_addr" is not greater than top, then the
|
|
// entire object "obj" is within the region.
|
|
if (obj_addr <= t) {
|
|
obj->oop_iterate(blk);
|
|
} else {
|
|
// "obj" extends beyond end of region
|
|
obj->oop_iterate(&smr_blk);
|
|
break;
|
|
}
|
|
};
|
|
}
|
|
|
|
void ContiguousSpace::object_iterate(ObjectClosure* blk) {
|
|
if (is_empty()) return;
|
|
WaterMark bm = bottom_mark();
|
|
object_iterate_from(bm, blk);
|
|
}
|
|
|
|
void ContiguousSpace::object_iterate_from(WaterMark mark, ObjectClosure* blk) {
|
|
assert(mark.space() == this, "Mark does not match space");
|
|
HeapWord* p = mark.point();
|
|
while (p < top()) {
|
|
blk->do_object(oop(p));
|
|
p += oop(p)->size();
|
|
}
|
|
}
|
|
|
|
HeapWord*
|
|
ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) {
|
|
HeapWord * limit = concurrent_iteration_safe_limit();
|
|
assert(limit <= top(), "sanity check");
|
|
for (HeapWord* p = bottom(); p < limit;) {
|
|
size_t size = blk->do_object_careful(oop(p));
|
|
if (size == 0) {
|
|
return p; // failed at p
|
|
} else {
|
|
p += size;
|
|
}
|
|
}
|
|
return NULL; // all done
|
|
}
|
|
|
|
#define ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
|
|
\
|
|
void ContiguousSpace:: \
|
|
oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \
|
|
HeapWord* t; \
|
|
HeapWord* p = saved_mark_word(); \
|
|
assert(p != NULL, "expected saved mark"); \
|
|
\
|
|
const intx interval = PrefetchScanIntervalInBytes; \
|
|
do { \
|
|
t = top(); \
|
|
while (p < t) { \
|
|
Prefetch::write(p, interval); \
|
|
debug_only(HeapWord* prev = p); \
|
|
oop m = oop(p); \
|
|
p += m->oop_iterate(blk); \
|
|
} \
|
|
} while (t < top()); \
|
|
\
|
|
set_saved_mark_word(p); \
|
|
}
|
|
|
|
ALL_SINCE_SAVE_MARKS_CLOSURES(ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN)
|
|
|
|
#undef ContigSpace_OOP_SINCE_SAVE_MARKS_DEFN
|
|
|
|
// Very general, slow implementation.
|
|
HeapWord* ContiguousSpace::block_start(const void* p) const {
|
|
assert(MemRegion(bottom(), end()).contains(p), "p not in space");
|
|
if (p >= top()) {
|
|
return top();
|
|
} else {
|
|
HeapWord* last = bottom();
|
|
HeapWord* cur = last;
|
|
while (cur <= p) {
|
|
last = cur;
|
|
cur += oop(cur)->size();
|
|
}
|
|
assert(oop(last)->is_oop(), "Should be an object start");
|
|
return last;
|
|
}
|
|
}
|
|
|
|
size_t ContiguousSpace::block_size(const HeapWord* p) const {
|
|
assert(MemRegion(bottom(), end()).contains(p), "p not in space");
|
|
HeapWord* current_top = top();
|
|
assert(p <= current_top, "p is not a block start");
|
|
assert(p == current_top || oop(p)->is_oop(), "p is not a block start");
|
|
if (p < current_top)
|
|
return oop(p)->size();
|
|
else {
|
|
assert(p == current_top, "just checking");
|
|
return pointer_delta(end(), (HeapWord*) p);
|
|
}
|
|
}
|
|
|
|
// This version requires locking.
|
|
inline HeapWord* ContiguousSpace::allocate_impl(size_t size,
|
|
HeapWord* const end_value) {
|
|
assert(Heap_lock->owned_by_self() ||
|
|
(SafepointSynchronize::is_at_safepoint() &&
|
|
Thread::current()->is_VM_thread()),
|
|
"not locked");
|
|
HeapWord* obj = top();
|
|
if (pointer_delta(end_value, obj) >= size) {
|
|
HeapWord* new_top = obj + size;
|
|
set_top(new_top);
|
|
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
|
|
return obj;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
// This version is lock-free.
|
|
inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size,
|
|
HeapWord* const end_value) {
|
|
do {
|
|
HeapWord* obj = top();
|
|
if (pointer_delta(end_value, obj) >= size) {
|
|
HeapWord* new_top = obj + size;
|
|
HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
|
|
// result can be one of two:
|
|
// the old top value: the exchange succeeded
|
|
// otherwise: the new value of the top is returned.
|
|
if (result == obj) {
|
|
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
|
|
return obj;
|
|
}
|
|
} else {
|
|
return NULL;
|
|
}
|
|
} while (true);
|
|
}
|
|
|
|
// Requires locking.
|
|
HeapWord* ContiguousSpace::allocate(size_t size) {
|
|
return allocate_impl(size, end());
|
|
}
|
|
|
|
// Lock-free.
|
|
HeapWord* ContiguousSpace::par_allocate(size_t size) {
|
|
return par_allocate_impl(size, end());
|
|
}
|
|
|
|
void ContiguousSpace::allocate_temporary_filler(int factor) {
|
|
// allocate temporary type array decreasing free size with factor 'factor'
|
|
assert(factor >= 0, "just checking");
|
|
size_t size = pointer_delta(end(), top());
|
|
|
|
// if space is full, return
|
|
if (size == 0) return;
|
|
|
|
if (factor > 0) {
|
|
size -= size/factor;
|
|
}
|
|
size = align_object_size(size);
|
|
|
|
const size_t min_int_array_size = typeArrayOopDesc::header_size(T_INT);
|
|
if (size >= min_int_array_size) {
|
|
size_t length = (size - min_int_array_size) * (HeapWordSize / sizeof(jint));
|
|
// allocate uninitialized int array
|
|
typeArrayOop t = (typeArrayOop) allocate(size);
|
|
assert(t != NULL, "allocation should succeed");
|
|
t->set_mark(markOopDesc::prototype());
|
|
t->set_klass(Universe::intArrayKlassObj());
|
|
t->set_length((int)length);
|
|
} else {
|
|
assert((int) size == instanceOopDesc::header_size(),
|
|
"size for smallest fake object doesn't match");
|
|
instanceOop obj = (instanceOop) allocate(size);
|
|
obj->set_mark(markOopDesc::prototype());
|
|
obj->set_klass_gap(0);
|
|
obj->set_klass(SystemDictionary::object_klass());
|
|
}
|
|
}
|
|
|
|
void EdenSpace::clear() {
|
|
ContiguousSpace::clear();
|
|
set_soft_end(end());
|
|
}
|
|
|
|
// Requires locking.
|
|
HeapWord* EdenSpace::allocate(size_t size) {
|
|
return allocate_impl(size, soft_end());
|
|
}
|
|
|
|
// Lock-free.
|
|
HeapWord* EdenSpace::par_allocate(size_t size) {
|
|
return par_allocate_impl(size, soft_end());
|
|
}
|
|
|
|
HeapWord* ConcEdenSpace::par_allocate(size_t size)
|
|
{
|
|
do {
|
|
// The invariant is top() should be read before end() because
|
|
// top() can't be greater than end(), so if an update of _soft_end
|
|
// occurs between 'end_val = end();' and 'top_val = top();' top()
|
|
// also can grow up to the new end() and the condition
|
|
// 'top_val > end_val' is true. To ensure the loading order
|
|
// OrderAccess::loadload() is required after top() read.
|
|
HeapWord* obj = top();
|
|
OrderAccess::loadload();
|
|
if (pointer_delta(*soft_end_addr(), obj) >= size) {
|
|
HeapWord* new_top = obj + size;
|
|
HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
|
|
// result can be one of two:
|
|
// the old top value: the exchange succeeded
|
|
// otherwise: the new value of the top is returned.
|
|
if (result == obj) {
|
|
assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
|
|
return obj;
|
|
}
|
|
} else {
|
|
return NULL;
|
|
}
|
|
} while (true);
|
|
}
|
|
|
|
|
|
HeapWord* OffsetTableContigSpace::initialize_threshold() {
|
|
return _offsets.initialize_threshold();
|
|
}
|
|
|
|
HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
|
|
_offsets.alloc_block(start, end);
|
|
return _offsets.threshold();
|
|
}
|
|
|
|
OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
|
|
MemRegion mr) :
|
|
_offsets(sharedOffsetArray, mr),
|
|
_par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
|
|
{
|
|
_offsets.set_contig_space(this);
|
|
initialize(mr, true);
|
|
}
|
|
|
|
|
|
class VerifyOldOopClosure : public OopClosure {
|
|
public:
|
|
oop _the_obj;
|
|
bool _allow_dirty;
|
|
void do_oop(oop* p) {
|
|
_the_obj->verify_old_oop(p, _allow_dirty);
|
|
}
|
|
void do_oop(narrowOop* p) {
|
|
_the_obj->verify_old_oop(p, _allow_dirty);
|
|
}
|
|
};
|
|
|
|
#define OBJ_SAMPLE_INTERVAL 0
|
|
#define BLOCK_SAMPLE_INTERVAL 100
|
|
|
|
void OffsetTableContigSpace::verify(bool allow_dirty) const {
|
|
HeapWord* p = bottom();
|
|
HeapWord* prev_p = NULL;
|
|
VerifyOldOopClosure blk; // Does this do anything?
|
|
blk._allow_dirty = allow_dirty;
|
|
int objs = 0;
|
|
int blocks = 0;
|
|
|
|
if (VerifyObjectStartArray) {
|
|
_offsets.verify();
|
|
}
|
|
|
|
while (p < top()) {
|
|
size_t size = oop(p)->size();
|
|
// For a sampling of objects in the space, find it using the
|
|
// block offset table.
|
|
if (blocks == BLOCK_SAMPLE_INTERVAL) {
|
|
guarantee(p == block_start(p + (size/2)), "check offset computation");
|
|
blocks = 0;
|
|
} else {
|
|
blocks++;
|
|
}
|
|
|
|
if (objs == OBJ_SAMPLE_INTERVAL) {
|
|
oop(p)->verify();
|
|
blk._the_obj = oop(p);
|
|
oop(p)->oop_iterate(&blk);
|
|
objs = 0;
|
|
} else {
|
|
objs++;
|
|
}
|
|
prev_p = p;
|
|
p += size;
|
|
}
|
|
guarantee(p == top(), "end of last object must match end of space");
|
|
}
|
|
|
|
void OffsetTableContigSpace::serialize_block_offset_array_offsets(
|
|
SerializeOopClosure* soc) {
|
|
_offsets.serialize(soc);
|
|
}
|
|
|
|
|
|
int TenuredSpace::allowed_dead_ratio() const {
|
|
return MarkSweepDeadRatio;
|
|
}
|
|
|
|
|
|
int ContigPermSpace::allowed_dead_ratio() const {
|
|
return PermMarkSweepDeadRatio;
|
|
}
|