2e24ba80e9
C1 for SPARC needs to support JSR 292. Reviewed-by: never, jrose
2267 lines
75 KiB
C++
2267 lines
75 KiB
C++
/*
|
|
* Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
class BiasedLockingCounters;
|
|
|
|
// Contains all the definitions needed for x86 assembly code generation.
|
|
|
|
// Calling convention
|
|
class Argument VALUE_OBJ_CLASS_SPEC {
|
|
public:
|
|
enum {
|
|
#ifdef _LP64
|
|
#ifdef _WIN64
|
|
n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
|
|
n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... )
|
|
#else
|
|
n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
|
|
n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... )
|
|
#endif // _WIN64
|
|
n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ...
|
|
n_float_register_parameters_j = 8 // j_farg0, j_farg1, ...
|
|
#else
|
|
n_register_parameters = 0 // 0 registers used to pass arguments
|
|
#endif // _LP64
|
|
};
|
|
};
|
|
|
|
|
|
#ifdef _LP64
|
|
// Symbolically name the register arguments used by the c calling convention.
|
|
// Windows is different from linux/solaris. So much for standards...
|
|
|
|
#ifdef _WIN64
|
|
|
|
REGISTER_DECLARATION(Register, c_rarg0, rcx);
|
|
REGISTER_DECLARATION(Register, c_rarg1, rdx);
|
|
REGISTER_DECLARATION(Register, c_rarg2, r8);
|
|
REGISTER_DECLARATION(Register, c_rarg3, r9);
|
|
|
|
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
|
|
|
|
#else
|
|
|
|
REGISTER_DECLARATION(Register, c_rarg0, rdi);
|
|
REGISTER_DECLARATION(Register, c_rarg1, rsi);
|
|
REGISTER_DECLARATION(Register, c_rarg2, rdx);
|
|
REGISTER_DECLARATION(Register, c_rarg3, rcx);
|
|
REGISTER_DECLARATION(Register, c_rarg4, r8);
|
|
REGISTER_DECLARATION(Register, c_rarg5, r9);
|
|
|
|
REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
|
|
REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
|
|
|
|
#endif // _WIN64
|
|
|
|
// Symbolically name the register arguments used by the Java calling convention.
|
|
// We have control over the convention for java so we can do what we please.
|
|
// What pleases us is to offset the java calling convention so that when
|
|
// we call a suitable jni method the arguments are lined up and we don't
|
|
// have to do little shuffling. A suitable jni method is non-static and a
|
|
// small number of arguments (two fewer args on windows)
|
|
//
|
|
// |-------------------------------------------------------|
|
|
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 |
|
|
// |-------------------------------------------------------|
|
|
// | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg)
|
|
// | rdi rsi rdx rcx r8 r9 | solaris/linux
|
|
// |-------------------------------------------------------|
|
|
// | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 |
|
|
// |-------------------------------------------------------|
|
|
|
|
REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
|
|
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
|
|
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
|
|
// Windows runs out of register args here
|
|
#ifdef _WIN64
|
|
REGISTER_DECLARATION(Register, j_rarg3, rdi);
|
|
REGISTER_DECLARATION(Register, j_rarg4, rsi);
|
|
#else
|
|
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
|
|
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
|
|
#endif /* _WIN64 */
|
|
REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
|
|
|
|
REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
|
|
REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
|
|
REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
|
|
REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
|
|
REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
|
|
REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
|
|
REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
|
|
REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
|
|
|
|
REGISTER_DECLARATION(Register, rscratch1, r10); // volatile
|
|
REGISTER_DECLARATION(Register, rscratch2, r11); // volatile
|
|
|
|
REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
|
|
REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
|
|
|
|
#else
|
|
// rscratch1 will apear in 32bit code that is dead but of course must compile
|
|
// Using noreg ensures if the dead code is incorrectly live and executed it
|
|
// will cause an assertion failure
|
|
#define rscratch1 noreg
|
|
|
|
#endif // _LP64
|
|
|
|
// JSR 292 fixed register usages:
|
|
REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
|
|
|
|
// Address is an abstraction used to represent a memory location
|
|
// using any of the amd64 addressing modes with one object.
|
|
//
|
|
// Note: A register location is represented via a Register, not
|
|
// via an address for efficiency & simplicity reasons.
|
|
|
|
class ArrayAddress;
|
|
|
|
class Address VALUE_OBJ_CLASS_SPEC {
|
|
public:
|
|
enum ScaleFactor {
|
|
no_scale = -1,
|
|
times_1 = 0,
|
|
times_2 = 1,
|
|
times_4 = 2,
|
|
times_8 = 3,
|
|
times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
|
|
};
|
|
static ScaleFactor times(int size) {
|
|
assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
|
|
if (size == 8) return times_8;
|
|
if (size == 4) return times_4;
|
|
if (size == 2) return times_2;
|
|
return times_1;
|
|
}
|
|
static int scale_size(ScaleFactor scale) {
|
|
assert(scale != no_scale, "");
|
|
assert(((1 << (int)times_1) == 1 &&
|
|
(1 << (int)times_2) == 2 &&
|
|
(1 << (int)times_4) == 4 &&
|
|
(1 << (int)times_8) == 8), "");
|
|
return (1 << (int)scale);
|
|
}
|
|
|
|
private:
|
|
Register _base;
|
|
Register _index;
|
|
ScaleFactor _scale;
|
|
int _disp;
|
|
RelocationHolder _rspec;
|
|
|
|
// Easily misused constructors make them private
|
|
// %%% can we make these go away?
|
|
NOT_LP64(Address(address loc, RelocationHolder spec);)
|
|
Address(int disp, address loc, relocInfo::relocType rtype);
|
|
Address(int disp, address loc, RelocationHolder spec);
|
|
|
|
public:
|
|
|
|
int disp() { return _disp; }
|
|
// creation
|
|
Address()
|
|
: _base(noreg),
|
|
_index(noreg),
|
|
_scale(no_scale),
|
|
_disp(0) {
|
|
}
|
|
|
|
// No default displacement otherwise Register can be implicitly
|
|
// converted to 0(Register) which is quite a different animal.
|
|
|
|
Address(Register base, int disp)
|
|
: _base(base),
|
|
_index(noreg),
|
|
_scale(no_scale),
|
|
_disp(disp) {
|
|
}
|
|
|
|
Address(Register base, Register index, ScaleFactor scale, int disp = 0)
|
|
: _base (base),
|
|
_index(index),
|
|
_scale(scale),
|
|
_disp (disp) {
|
|
assert(!index->is_valid() == (scale == Address::no_scale),
|
|
"inconsistent address");
|
|
}
|
|
|
|
Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
|
|
: _base (base),
|
|
_index(index.register_or_noreg()),
|
|
_scale(scale),
|
|
_disp (disp + (index.constant_or_zero() * scale_size(scale))) {
|
|
if (!index.is_register()) scale = Address::no_scale;
|
|
assert(!_index->is_valid() == (scale == Address::no_scale),
|
|
"inconsistent address");
|
|
}
|
|
|
|
Address plus_disp(int disp) const {
|
|
Address a = (*this);
|
|
a._disp += disp;
|
|
return a;
|
|
}
|
|
|
|
// The following two overloads are used in connection with the
|
|
// ByteSize type (see sizes.hpp). They simplify the use of
|
|
// ByteSize'd arguments in assembly code. Note that their equivalent
|
|
// for the optimized build are the member functions with int disp
|
|
// argument since ByteSize is mapped to an int type in that case.
|
|
//
|
|
// Note: DO NOT introduce similar overloaded functions for WordSize
|
|
// arguments as in the optimized mode, both ByteSize and WordSize
|
|
// are mapped to the same type and thus the compiler cannot make a
|
|
// distinction anymore (=> compiler errors).
|
|
|
|
#ifdef ASSERT
|
|
Address(Register base, ByteSize disp)
|
|
: _base(base),
|
|
_index(noreg),
|
|
_scale(no_scale),
|
|
_disp(in_bytes(disp)) {
|
|
}
|
|
|
|
Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
|
|
: _base(base),
|
|
_index(index),
|
|
_scale(scale),
|
|
_disp(in_bytes(disp)) {
|
|
assert(!index->is_valid() == (scale == Address::no_scale),
|
|
"inconsistent address");
|
|
}
|
|
|
|
Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
|
|
: _base (base),
|
|
_index(index.register_or_noreg()),
|
|
_scale(scale),
|
|
_disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
|
|
if (!index.is_register()) scale = Address::no_scale;
|
|
assert(!_index->is_valid() == (scale == Address::no_scale),
|
|
"inconsistent address");
|
|
}
|
|
|
|
#endif // ASSERT
|
|
|
|
// accessors
|
|
bool uses(Register reg) const { return _base == reg || _index == reg; }
|
|
Register base() const { return _base; }
|
|
Register index() const { return _index; }
|
|
ScaleFactor scale() const { return _scale; }
|
|
int disp() const { return _disp; }
|
|
|
|
// Convert the raw encoding form into the form expected by the constructor for
|
|
// Address. An index of 4 (rsp) corresponds to having no index, so convert
|
|
// that to noreg for the Address constructor.
|
|
static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
|
|
|
|
static Address make_array(ArrayAddress);
|
|
|
|
private:
|
|
bool base_needs_rex() const {
|
|
return _base != noreg && _base->encoding() >= 8;
|
|
}
|
|
|
|
bool index_needs_rex() const {
|
|
return _index != noreg &&_index->encoding() >= 8;
|
|
}
|
|
|
|
relocInfo::relocType reloc() const { return _rspec.type(); }
|
|
|
|
friend class Assembler;
|
|
friend class MacroAssembler;
|
|
friend class LIR_Assembler; // base/index/scale/disp
|
|
};
|
|
|
|
//
|
|
// AddressLiteral has been split out from Address because operands of this type
|
|
// need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
|
|
// the few instructions that need to deal with address literals are unique and the
|
|
// MacroAssembler does not have to implement every instruction in the Assembler
|
|
// in order to search for address literals that may need special handling depending
|
|
// on the instruction and the platform. As small step on the way to merging i486/amd64
|
|
// directories.
|
|
//
|
|
class AddressLiteral VALUE_OBJ_CLASS_SPEC {
|
|
friend class ArrayAddress;
|
|
RelocationHolder _rspec;
|
|
// Typically we use AddressLiterals we want to use their rval
|
|
// However in some situations we want the lval (effect address) of the item.
|
|
// We provide a special factory for making those lvals.
|
|
bool _is_lval;
|
|
|
|
// If the target is far we'll need to load the ea of this to
|
|
// a register to reach it. Otherwise if near we can do rip
|
|
// relative addressing.
|
|
|
|
address _target;
|
|
|
|
protected:
|
|
// creation
|
|
AddressLiteral()
|
|
: _is_lval(false),
|
|
_target(NULL)
|
|
{}
|
|
|
|
public:
|
|
|
|
|
|
AddressLiteral(address target, relocInfo::relocType rtype);
|
|
|
|
AddressLiteral(address target, RelocationHolder const& rspec)
|
|
: _rspec(rspec),
|
|
_is_lval(false),
|
|
_target(target)
|
|
{}
|
|
|
|
AddressLiteral addr() {
|
|
AddressLiteral ret = *this;
|
|
ret._is_lval = true;
|
|
return ret;
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
address target() { return _target; }
|
|
bool is_lval() { return _is_lval; }
|
|
|
|
relocInfo::relocType reloc() const { return _rspec.type(); }
|
|
const RelocationHolder& rspec() const { return _rspec; }
|
|
|
|
friend class Assembler;
|
|
friend class MacroAssembler;
|
|
friend class Address;
|
|
friend class LIR_Assembler;
|
|
};
|
|
|
|
// Convience classes
|
|
class RuntimeAddress: public AddressLiteral {
|
|
|
|
public:
|
|
|
|
RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
|
|
|
|
};
|
|
|
|
class OopAddress: public AddressLiteral {
|
|
|
|
public:
|
|
|
|
OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
|
|
|
|
};
|
|
|
|
class ExternalAddress: public AddressLiteral {
|
|
|
|
public:
|
|
|
|
ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
|
|
|
|
};
|
|
|
|
class InternalAddress: public AddressLiteral {
|
|
|
|
public:
|
|
|
|
InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
|
|
|
|
};
|
|
|
|
// x86 can do array addressing as a single operation since disp can be an absolute
|
|
// address amd64 can't. We create a class that expresses the concept but does extra
|
|
// magic on amd64 to get the final result
|
|
|
|
class ArrayAddress VALUE_OBJ_CLASS_SPEC {
|
|
private:
|
|
|
|
AddressLiteral _base;
|
|
Address _index;
|
|
|
|
public:
|
|
|
|
ArrayAddress() {};
|
|
ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
|
|
AddressLiteral base() { return _base; }
|
|
Address index() { return _index; }
|
|
|
|
};
|
|
|
|
const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
|
|
|
|
// The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
|
|
// level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
|
|
// is what you get. The Assembler is generating code into a CodeBuffer.
|
|
|
|
class Assembler : public AbstractAssembler {
|
|
friend class AbstractAssembler; // for the non-virtual hack
|
|
friend class LIR_Assembler; // as_Address()
|
|
friend class StubGenerator;
|
|
|
|
public:
|
|
enum Condition { // The x86 condition codes used for conditional jumps/moves.
|
|
zero = 0x4,
|
|
notZero = 0x5,
|
|
equal = 0x4,
|
|
notEqual = 0x5,
|
|
less = 0xc,
|
|
lessEqual = 0xe,
|
|
greater = 0xf,
|
|
greaterEqual = 0xd,
|
|
below = 0x2,
|
|
belowEqual = 0x6,
|
|
above = 0x7,
|
|
aboveEqual = 0x3,
|
|
overflow = 0x0,
|
|
noOverflow = 0x1,
|
|
carrySet = 0x2,
|
|
carryClear = 0x3,
|
|
negative = 0x8,
|
|
positive = 0x9,
|
|
parity = 0xa,
|
|
noParity = 0xb
|
|
};
|
|
|
|
enum Prefix {
|
|
// segment overrides
|
|
CS_segment = 0x2e,
|
|
SS_segment = 0x36,
|
|
DS_segment = 0x3e,
|
|
ES_segment = 0x26,
|
|
FS_segment = 0x64,
|
|
GS_segment = 0x65,
|
|
|
|
REX = 0x40,
|
|
|
|
REX_B = 0x41,
|
|
REX_X = 0x42,
|
|
REX_XB = 0x43,
|
|
REX_R = 0x44,
|
|
REX_RB = 0x45,
|
|
REX_RX = 0x46,
|
|
REX_RXB = 0x47,
|
|
|
|
REX_W = 0x48,
|
|
|
|
REX_WB = 0x49,
|
|
REX_WX = 0x4A,
|
|
REX_WXB = 0x4B,
|
|
REX_WR = 0x4C,
|
|
REX_WRB = 0x4D,
|
|
REX_WRX = 0x4E,
|
|
REX_WRXB = 0x4F
|
|
};
|
|
|
|
enum WhichOperand {
|
|
// input to locate_operand, and format code for relocations
|
|
imm_operand = 0, // embedded 32-bit|64-bit immediate operand
|
|
disp32_operand = 1, // embedded 32-bit displacement or address
|
|
call32_operand = 2, // embedded 32-bit self-relative displacement
|
|
#ifndef _LP64
|
|
_WhichOperand_limit = 3
|
|
#else
|
|
narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop
|
|
_WhichOperand_limit = 4
|
|
#endif
|
|
};
|
|
|
|
|
|
|
|
// NOTE: The general philopsophy of the declarations here is that 64bit versions
|
|
// of instructions are freely declared without the need for wrapping them an ifdef.
|
|
// (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
|
|
// In the .cpp file the implementations are wrapped so that they are dropped out
|
|
// of the resulting jvm. This is done mostly to keep the footprint of KERNEL
|
|
// to the size it was prior to merging up the 32bit and 64bit assemblers.
|
|
//
|
|
// This does mean you'll get a linker/runtime error if you use a 64bit only instruction
|
|
// in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
|
|
|
|
private:
|
|
|
|
|
|
// 64bit prefixes
|
|
int prefix_and_encode(int reg_enc, bool byteinst = false);
|
|
int prefixq_and_encode(int reg_enc);
|
|
|
|
int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
|
|
int prefixq_and_encode(int dst_enc, int src_enc);
|
|
|
|
void prefix(Register reg);
|
|
void prefix(Address adr);
|
|
void prefixq(Address adr);
|
|
|
|
void prefix(Address adr, Register reg, bool byteinst = false);
|
|
void prefixq(Address adr, Register reg);
|
|
|
|
void prefix(Address adr, XMMRegister reg);
|
|
|
|
void prefetch_prefix(Address src);
|
|
|
|
// Helper functions for groups of instructions
|
|
void emit_arith_b(int op1, int op2, Register dst, int imm8);
|
|
|
|
void emit_arith(int op1, int op2, Register dst, int32_t imm32);
|
|
// only 32bit??
|
|
void emit_arith(int op1, int op2, Register dst, jobject obj);
|
|
void emit_arith(int op1, int op2, Register dst, Register src);
|
|
|
|
void emit_operand(Register reg,
|
|
Register base, Register index, Address::ScaleFactor scale,
|
|
int disp,
|
|
RelocationHolder const& rspec,
|
|
int rip_relative_correction = 0);
|
|
|
|
void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
|
|
|
|
// operands that only take the original 32bit registers
|
|
void emit_operand32(Register reg, Address adr);
|
|
|
|
void emit_operand(XMMRegister reg,
|
|
Register base, Register index, Address::ScaleFactor scale,
|
|
int disp,
|
|
RelocationHolder const& rspec);
|
|
|
|
void emit_operand(XMMRegister reg, Address adr);
|
|
|
|
void emit_operand(MMXRegister reg, Address adr);
|
|
|
|
// workaround gcc (3.2.1-7) bug
|
|
void emit_operand(Address adr, MMXRegister reg);
|
|
|
|
|
|
// Immediate-to-memory forms
|
|
void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
|
|
|
|
void emit_farith(int b1, int b2, int i);
|
|
|
|
|
|
protected:
|
|
#ifdef ASSERT
|
|
void check_relocation(RelocationHolder const& rspec, int format);
|
|
#endif
|
|
|
|
inline void emit_long64(jlong x);
|
|
|
|
void emit_data(jint data, relocInfo::relocType rtype, int format);
|
|
void emit_data(jint data, RelocationHolder const& rspec, int format);
|
|
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
|
|
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
|
|
|
|
|
|
bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
|
|
|
|
// These are all easily abused and hence protected
|
|
|
|
// 32BIT ONLY SECTION
|
|
#ifndef _LP64
|
|
// Make these disappear in 64bit mode since they would never be correct
|
|
void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
|
|
void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
|
|
|
|
void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
|
|
void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
|
|
|
|
void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY
|
|
#else
|
|
// 64BIT ONLY SECTION
|
|
void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY
|
|
|
|
void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
|
|
void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
|
|
|
|
void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
|
|
void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
|
|
#endif // _LP64
|
|
|
|
// These are unique in that we are ensured by the caller that the 32bit
|
|
// relative in these instructions will always be able to reach the potentially
|
|
// 64bit address described by entry. Since they can take a 64bit address they
|
|
// don't have the 32 suffix like the other instructions in this class.
|
|
|
|
void call_literal(address entry, RelocationHolder const& rspec);
|
|
void jmp_literal(address entry, RelocationHolder const& rspec);
|
|
|
|
// Avoid using directly section
|
|
// Instructions in this section are actually usable by anyone without danger
|
|
// of failure but have performance issues that are addressed my enhanced
|
|
// instructions which will do the proper thing base on the particular cpu.
|
|
// We protect them because we don't trust you...
|
|
|
|
// Don't use next inc() and dec() methods directly. INC & DEC instructions
|
|
// could cause a partial flag stall since they don't set CF flag.
|
|
// Use MacroAssembler::decrement() & MacroAssembler::increment() methods
|
|
// which call inc() & dec() or add() & sub() in accordance with
|
|
// the product flag UseIncDec value.
|
|
|
|
void decl(Register dst);
|
|
void decl(Address dst);
|
|
void decq(Register dst);
|
|
void decq(Address dst);
|
|
|
|
void incl(Register dst);
|
|
void incl(Address dst);
|
|
void incq(Register dst);
|
|
void incq(Address dst);
|
|
|
|
// New cpus require use of movsd and movss to avoid partial register stall
|
|
// when loading from memory. But for old Opteron use movlpd instead of movsd.
|
|
// The selection is done in MacroAssembler::movdbl() and movflt().
|
|
|
|
// Move Scalar Single-Precision Floating-Point Values
|
|
void movss(XMMRegister dst, Address src);
|
|
void movss(XMMRegister dst, XMMRegister src);
|
|
void movss(Address dst, XMMRegister src);
|
|
|
|
// Move Scalar Double-Precision Floating-Point Values
|
|
void movsd(XMMRegister dst, Address src);
|
|
void movsd(XMMRegister dst, XMMRegister src);
|
|
void movsd(Address dst, XMMRegister src);
|
|
void movlpd(XMMRegister dst, Address src);
|
|
|
|
// New cpus require use of movaps and movapd to avoid partial register stall
|
|
// when moving between registers.
|
|
void movaps(XMMRegister dst, XMMRegister src);
|
|
void movapd(XMMRegister dst, XMMRegister src);
|
|
|
|
// End avoid using directly
|
|
|
|
|
|
// Instruction prefixes
|
|
void prefix(Prefix p);
|
|
|
|
public:
|
|
|
|
// Creation
|
|
Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
|
|
|
|
// Decoding
|
|
static address locate_operand(address inst, WhichOperand which);
|
|
static address locate_next_instruction(address inst);
|
|
|
|
// Utilities
|
|
|
|
#ifdef _LP64
|
|
static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); }
|
|
static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
|
|
#else
|
|
static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) ) <= x && x < ( 1 << (nbits-1) ); }
|
|
static bool is_simm32(int32_t x) { return true; }
|
|
#endif // LP64
|
|
|
|
// Generic instructions
|
|
// Does 32bit or 64bit as needed for the platform. In some sense these
|
|
// belong in macro assembler but there is no need for both varieties to exist
|
|
|
|
void lea(Register dst, Address src);
|
|
|
|
void mov(Register dst, Register src);
|
|
|
|
void pusha();
|
|
void popa();
|
|
|
|
void pushf();
|
|
void popf();
|
|
|
|
void push(int32_t imm32);
|
|
|
|
void push(Register src);
|
|
|
|
void pop(Register dst);
|
|
|
|
// These are dummies to prevent surprise implicit conversions to Register
|
|
void push(void* v);
|
|
void pop(void* v);
|
|
|
|
|
|
// These do register sized moves/scans
|
|
void rep_mov();
|
|
void rep_set();
|
|
void repne_scan();
|
|
#ifdef _LP64
|
|
void repne_scanl();
|
|
#endif
|
|
|
|
// Vanilla instructions in lexical order
|
|
|
|
void adcl(Register dst, int32_t imm32);
|
|
void adcl(Register dst, Address src);
|
|
void adcl(Register dst, Register src);
|
|
|
|
void adcq(Register dst, int32_t imm32);
|
|
void adcq(Register dst, Address src);
|
|
void adcq(Register dst, Register src);
|
|
|
|
|
|
void addl(Address dst, int32_t imm32);
|
|
void addl(Address dst, Register src);
|
|
void addl(Register dst, int32_t imm32);
|
|
void addl(Register dst, Address src);
|
|
void addl(Register dst, Register src);
|
|
|
|
void addq(Address dst, int32_t imm32);
|
|
void addq(Address dst, Register src);
|
|
void addq(Register dst, int32_t imm32);
|
|
void addq(Register dst, Address src);
|
|
void addq(Register dst, Register src);
|
|
|
|
|
|
void addr_nop_4();
|
|
void addr_nop_5();
|
|
void addr_nop_7();
|
|
void addr_nop_8();
|
|
|
|
// Add Scalar Double-Precision Floating-Point Values
|
|
void addsd(XMMRegister dst, Address src);
|
|
void addsd(XMMRegister dst, XMMRegister src);
|
|
|
|
// Add Scalar Single-Precision Floating-Point Values
|
|
void addss(XMMRegister dst, Address src);
|
|
void addss(XMMRegister dst, XMMRegister src);
|
|
|
|
void andl(Register dst, int32_t imm32);
|
|
void andl(Register dst, Address src);
|
|
void andl(Register dst, Register src);
|
|
|
|
void andq(Register dst, int32_t imm32);
|
|
void andq(Register dst, Address src);
|
|
void andq(Register dst, Register src);
|
|
|
|
|
|
// Bitwise Logical AND of Packed Double-Precision Floating-Point Values
|
|
void andpd(XMMRegister dst, Address src);
|
|
void andpd(XMMRegister dst, XMMRegister src);
|
|
|
|
void bsfl(Register dst, Register src);
|
|
void bsrl(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void bsfq(Register dst, Register src);
|
|
void bsrq(Register dst, Register src);
|
|
#endif
|
|
|
|
void bswapl(Register reg);
|
|
|
|
void bswapq(Register reg);
|
|
|
|
void call(Label& L, relocInfo::relocType rtype);
|
|
void call(Register reg); // push pc; pc <- reg
|
|
void call(Address adr); // push pc; pc <- adr
|
|
|
|
void cdql();
|
|
|
|
void cdqq();
|
|
|
|
void cld() { emit_byte(0xfc); }
|
|
|
|
void clflush(Address adr);
|
|
|
|
void cmovl(Condition cc, Register dst, Register src);
|
|
void cmovl(Condition cc, Register dst, Address src);
|
|
|
|
void cmovq(Condition cc, Register dst, Register src);
|
|
void cmovq(Condition cc, Register dst, Address src);
|
|
|
|
|
|
void cmpb(Address dst, int imm8);
|
|
|
|
void cmpl(Address dst, int32_t imm32);
|
|
|
|
void cmpl(Register dst, int32_t imm32);
|
|
void cmpl(Register dst, Register src);
|
|
void cmpl(Register dst, Address src);
|
|
|
|
void cmpq(Address dst, int32_t imm32);
|
|
void cmpq(Address dst, Register src);
|
|
|
|
void cmpq(Register dst, int32_t imm32);
|
|
void cmpq(Register dst, Register src);
|
|
void cmpq(Register dst, Address src);
|
|
|
|
// these are dummies used to catch attempting to convert NULL to Register
|
|
void cmpl(Register dst, void* junk); // dummy
|
|
void cmpq(Register dst, void* junk); // dummy
|
|
|
|
void cmpw(Address dst, int imm16);
|
|
|
|
void cmpxchg8 (Address adr);
|
|
|
|
void cmpxchgl(Register reg, Address adr);
|
|
|
|
void cmpxchgq(Register reg, Address adr);
|
|
|
|
// Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
|
|
void comisd(XMMRegister dst, Address src);
|
|
|
|
// Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
|
|
void comiss(XMMRegister dst, Address src);
|
|
|
|
// Identify processor type and features
|
|
void cpuid() {
|
|
emit_byte(0x0F);
|
|
emit_byte(0xA2);
|
|
}
|
|
|
|
// Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
|
|
void cvtsd2ss(XMMRegister dst, XMMRegister src);
|
|
|
|
// Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
|
|
void cvtsi2sdl(XMMRegister dst, Register src);
|
|
void cvtsi2sdq(XMMRegister dst, Register src);
|
|
|
|
// Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
|
|
void cvtsi2ssl(XMMRegister dst, Register src);
|
|
void cvtsi2ssq(XMMRegister dst, Register src);
|
|
|
|
// Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
|
|
void cvtdq2pd(XMMRegister dst, XMMRegister src);
|
|
|
|
// Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
|
|
void cvtdq2ps(XMMRegister dst, XMMRegister src);
|
|
|
|
// Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
|
|
void cvtss2sd(XMMRegister dst, XMMRegister src);
|
|
|
|
// Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
|
|
void cvttsd2sil(Register dst, Address src);
|
|
void cvttsd2sil(Register dst, XMMRegister src);
|
|
void cvttsd2siq(Register dst, XMMRegister src);
|
|
|
|
// Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
|
|
void cvttss2sil(Register dst, XMMRegister src);
|
|
void cvttss2siq(Register dst, XMMRegister src);
|
|
|
|
// Divide Scalar Double-Precision Floating-Point Values
|
|
void divsd(XMMRegister dst, Address src);
|
|
void divsd(XMMRegister dst, XMMRegister src);
|
|
|
|
// Divide Scalar Single-Precision Floating-Point Values
|
|
void divss(XMMRegister dst, Address src);
|
|
void divss(XMMRegister dst, XMMRegister src);
|
|
|
|
void emms();
|
|
|
|
void fabs();
|
|
|
|
void fadd(int i);
|
|
|
|
void fadd_d(Address src);
|
|
void fadd_s(Address src);
|
|
|
|
// "Alternate" versions of x87 instructions place result down in FPU
|
|
// stack instead of on TOS
|
|
|
|
void fadda(int i); // "alternate" fadd
|
|
void faddp(int i = 1);
|
|
|
|
void fchs();
|
|
|
|
void fcom(int i);
|
|
|
|
void fcomp(int i = 1);
|
|
void fcomp_d(Address src);
|
|
void fcomp_s(Address src);
|
|
|
|
void fcompp();
|
|
|
|
void fcos();
|
|
|
|
void fdecstp();
|
|
|
|
void fdiv(int i);
|
|
void fdiv_d(Address src);
|
|
void fdivr_s(Address src);
|
|
void fdiva(int i); // "alternate" fdiv
|
|
void fdivp(int i = 1);
|
|
|
|
void fdivr(int i);
|
|
void fdivr_d(Address src);
|
|
void fdiv_s(Address src);
|
|
|
|
void fdivra(int i); // "alternate" reversed fdiv
|
|
|
|
void fdivrp(int i = 1);
|
|
|
|
void ffree(int i = 0);
|
|
|
|
void fild_d(Address adr);
|
|
void fild_s(Address adr);
|
|
|
|
void fincstp();
|
|
|
|
void finit();
|
|
|
|
void fist_s (Address adr);
|
|
void fistp_d(Address adr);
|
|
void fistp_s(Address adr);
|
|
|
|
void fld1();
|
|
|
|
void fld_d(Address adr);
|
|
void fld_s(Address adr);
|
|
void fld_s(int index);
|
|
void fld_x(Address adr); // extended-precision (80-bit) format
|
|
|
|
void fldcw(Address src);
|
|
|
|
void fldenv(Address src);
|
|
|
|
void fldlg2();
|
|
|
|
void fldln2();
|
|
|
|
void fldz();
|
|
|
|
void flog();
|
|
void flog10();
|
|
|
|
void fmul(int i);
|
|
|
|
void fmul_d(Address src);
|
|
void fmul_s(Address src);
|
|
|
|
void fmula(int i); // "alternate" fmul
|
|
|
|
void fmulp(int i = 1);
|
|
|
|
void fnsave(Address dst);
|
|
|
|
void fnstcw(Address src);
|
|
|
|
void fnstsw_ax();
|
|
|
|
void fprem();
|
|
void fprem1();
|
|
|
|
void frstor(Address src);
|
|
|
|
void fsin();
|
|
|
|
void fsqrt();
|
|
|
|
void fst_d(Address adr);
|
|
void fst_s(Address adr);
|
|
|
|
void fstp_d(Address adr);
|
|
void fstp_d(int index);
|
|
void fstp_s(Address adr);
|
|
void fstp_x(Address adr); // extended-precision (80-bit) format
|
|
|
|
void fsub(int i);
|
|
void fsub_d(Address src);
|
|
void fsub_s(Address src);
|
|
|
|
void fsuba(int i); // "alternate" fsub
|
|
|
|
void fsubp(int i = 1);
|
|
|
|
void fsubr(int i);
|
|
void fsubr_d(Address src);
|
|
void fsubr_s(Address src);
|
|
|
|
void fsubra(int i); // "alternate" reversed fsub
|
|
|
|
void fsubrp(int i = 1);
|
|
|
|
void ftan();
|
|
|
|
void ftst();
|
|
|
|
void fucomi(int i = 1);
|
|
void fucomip(int i = 1);
|
|
|
|
void fwait();
|
|
|
|
void fxch(int i = 1);
|
|
|
|
void fxrstor(Address src);
|
|
|
|
void fxsave(Address dst);
|
|
|
|
void fyl2x();
|
|
|
|
void hlt();
|
|
|
|
void idivl(Register src);
|
|
|
|
void idivq(Register src);
|
|
|
|
void imull(Register dst, Register src);
|
|
void imull(Register dst, Register src, int value);
|
|
|
|
void imulq(Register dst, Register src);
|
|
void imulq(Register dst, Register src, int value);
|
|
|
|
|
|
// jcc is the generic conditional branch generator to run-
|
|
// time routines, jcc is used for branches to labels. jcc
|
|
// takes a branch opcode (cc) and a label (L) and generates
|
|
// either a backward branch or a forward branch and links it
|
|
// to the label fixup chain. Usage:
|
|
//
|
|
// Label L; // unbound label
|
|
// jcc(cc, L); // forward branch to unbound label
|
|
// bind(L); // bind label to the current pc
|
|
// jcc(cc, L); // backward branch to bound label
|
|
// bind(L); // illegal: a label may be bound only once
|
|
//
|
|
// Note: The same Label can be used for forward and backward branches
|
|
// but it may be bound only once.
|
|
|
|
void jcc(Condition cc, Label& L,
|
|
relocInfo::relocType rtype = relocInfo::none);
|
|
|
|
// Conditional jump to a 8-bit offset to L.
|
|
// WARNING: be very careful using this for forward jumps. If the label is
|
|
// not bound within an 8-bit offset of this instruction, a run-time error
|
|
// will occur.
|
|
void jccb(Condition cc, Label& L);
|
|
|
|
void jmp(Address entry); // pc <- entry
|
|
|
|
// Label operations & relative jumps (PPUM Appendix D)
|
|
void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L
|
|
|
|
void jmp(Register entry); // pc <- entry
|
|
|
|
// Unconditional 8-bit offset jump to L.
|
|
// WARNING: be very careful using this for forward jumps. If the label is
|
|
// not bound within an 8-bit offset of this instruction, a run-time error
|
|
// will occur.
|
|
void jmpb(Label& L);
|
|
|
|
void ldmxcsr( Address src );
|
|
|
|
void leal(Register dst, Address src);
|
|
|
|
void leaq(Register dst, Address src);
|
|
|
|
void lfence() {
|
|
emit_byte(0x0F);
|
|
emit_byte(0xAE);
|
|
emit_byte(0xE8);
|
|
}
|
|
|
|
void lock();
|
|
|
|
void lzcntl(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void lzcntq(Register dst, Register src);
|
|
#endif
|
|
|
|
enum Membar_mask_bits {
|
|
StoreStore = 1 << 3,
|
|
LoadStore = 1 << 2,
|
|
StoreLoad = 1 << 1,
|
|
LoadLoad = 1 << 0
|
|
};
|
|
|
|
// Serializes memory and blows flags
|
|
void membar(Membar_mask_bits order_constraint) {
|
|
if (os::is_MP()) {
|
|
// We only have to handle StoreLoad
|
|
if (order_constraint & StoreLoad) {
|
|
// All usable chips support "locked" instructions which suffice
|
|
// as barriers, and are much faster than the alternative of
|
|
// using cpuid instruction. We use here a locked add [esp],0.
|
|
// This is conveniently otherwise a no-op except for blowing
|
|
// flags.
|
|
// Any change to this code may need to revisit other places in
|
|
// the code where this idiom is used, in particular the
|
|
// orderAccess code.
|
|
lock();
|
|
addl(Address(rsp, 0), 0);// Assert the lock# signal here
|
|
}
|
|
}
|
|
}
|
|
|
|
void mfence();
|
|
|
|
// Moves
|
|
|
|
void mov64(Register dst, int64_t imm64);
|
|
|
|
void movb(Address dst, Register src);
|
|
void movb(Address dst, int imm8);
|
|
void movb(Register dst, Address src);
|
|
|
|
void movdl(XMMRegister dst, Register src);
|
|
void movdl(Register dst, XMMRegister src);
|
|
|
|
// Move Double Quadword
|
|
void movdq(XMMRegister dst, Register src);
|
|
void movdq(Register dst, XMMRegister src);
|
|
|
|
// Move Aligned Double Quadword
|
|
void movdqa(Address dst, XMMRegister src);
|
|
void movdqa(XMMRegister dst, Address src);
|
|
void movdqa(XMMRegister dst, XMMRegister src);
|
|
|
|
// Move Unaligned Double Quadword
|
|
void movdqu(Address dst, XMMRegister src);
|
|
void movdqu(XMMRegister dst, Address src);
|
|
void movdqu(XMMRegister dst, XMMRegister src);
|
|
|
|
void movl(Register dst, int32_t imm32);
|
|
void movl(Address dst, int32_t imm32);
|
|
void movl(Register dst, Register src);
|
|
void movl(Register dst, Address src);
|
|
void movl(Address dst, Register src);
|
|
|
|
// These dummies prevent using movl from converting a zero (like NULL) into Register
|
|
// by giving the compiler two choices it can't resolve
|
|
|
|
void movl(Address dst, void* junk);
|
|
void movl(Register dst, void* junk);
|
|
|
|
#ifdef _LP64
|
|
void movq(Register dst, Register src);
|
|
void movq(Register dst, Address src);
|
|
void movq(Address dst, Register src);
|
|
#endif
|
|
|
|
void movq(Address dst, MMXRegister src );
|
|
void movq(MMXRegister dst, Address src );
|
|
|
|
#ifdef _LP64
|
|
// These dummies prevent using movq from converting a zero (like NULL) into Register
|
|
// by giving the compiler two choices it can't resolve
|
|
|
|
void movq(Address dst, void* dummy);
|
|
void movq(Register dst, void* dummy);
|
|
#endif
|
|
|
|
// Move Quadword
|
|
void movq(Address dst, XMMRegister src);
|
|
void movq(XMMRegister dst, Address src);
|
|
|
|
void movsbl(Register dst, Address src);
|
|
void movsbl(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void movsbq(Register dst, Address src);
|
|
void movsbq(Register dst, Register src);
|
|
|
|
// Move signed 32bit immediate to 64bit extending sign
|
|
void movslq(Address dst, int32_t imm64);
|
|
void movslq(Register dst, int32_t imm64);
|
|
|
|
void movslq(Register dst, Address src);
|
|
void movslq(Register dst, Register src);
|
|
void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
|
|
#endif
|
|
|
|
void movswl(Register dst, Address src);
|
|
void movswl(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void movswq(Register dst, Address src);
|
|
void movswq(Register dst, Register src);
|
|
#endif
|
|
|
|
void movw(Address dst, int imm16);
|
|
void movw(Register dst, Address src);
|
|
void movw(Address dst, Register src);
|
|
|
|
void movzbl(Register dst, Address src);
|
|
void movzbl(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void movzbq(Register dst, Address src);
|
|
void movzbq(Register dst, Register src);
|
|
#endif
|
|
|
|
void movzwl(Register dst, Address src);
|
|
void movzwl(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void movzwq(Register dst, Address src);
|
|
void movzwq(Register dst, Register src);
|
|
#endif
|
|
|
|
void mull(Address src);
|
|
void mull(Register src);
|
|
|
|
// Multiply Scalar Double-Precision Floating-Point Values
|
|
void mulsd(XMMRegister dst, Address src);
|
|
void mulsd(XMMRegister dst, XMMRegister src);
|
|
|
|
// Multiply Scalar Single-Precision Floating-Point Values
|
|
void mulss(XMMRegister dst, Address src);
|
|
void mulss(XMMRegister dst, XMMRegister src);
|
|
|
|
void negl(Register dst);
|
|
|
|
#ifdef _LP64
|
|
void negq(Register dst);
|
|
#endif
|
|
|
|
void nop(int i = 1);
|
|
|
|
void notl(Register dst);
|
|
|
|
#ifdef _LP64
|
|
void notq(Register dst);
|
|
#endif
|
|
|
|
void orl(Address dst, int32_t imm32);
|
|
void orl(Register dst, int32_t imm32);
|
|
void orl(Register dst, Address src);
|
|
void orl(Register dst, Register src);
|
|
|
|
void orq(Address dst, int32_t imm32);
|
|
void orq(Register dst, int32_t imm32);
|
|
void orq(Register dst, Address src);
|
|
void orq(Register dst, Register src);
|
|
|
|
// SSE4.2 string instructions
|
|
void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
|
|
void pcmpestri(XMMRegister xmm1, Address src, int imm8);
|
|
|
|
#ifndef _LP64 // no 32bit push/pop on amd64
|
|
void popl(Address dst);
|
|
#endif
|
|
|
|
#ifdef _LP64
|
|
void popq(Address dst);
|
|
#endif
|
|
|
|
void popcntl(Register dst, Address src);
|
|
void popcntl(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void popcntq(Register dst, Address src);
|
|
void popcntq(Register dst, Register src);
|
|
#endif
|
|
|
|
// Prefetches (SSE, SSE2, 3DNOW only)
|
|
|
|
void prefetchnta(Address src);
|
|
void prefetchr(Address src);
|
|
void prefetcht0(Address src);
|
|
void prefetcht1(Address src);
|
|
void prefetcht2(Address src);
|
|
void prefetchw(Address src);
|
|
|
|
// Shuffle Packed Doublewords
|
|
void pshufd(XMMRegister dst, XMMRegister src, int mode);
|
|
void pshufd(XMMRegister dst, Address src, int mode);
|
|
|
|
// Shuffle Packed Low Words
|
|
void pshuflw(XMMRegister dst, XMMRegister src, int mode);
|
|
void pshuflw(XMMRegister dst, Address src, int mode);
|
|
|
|
// Shift Right Logical Quadword Immediate
|
|
void psrlq(XMMRegister dst, int shift);
|
|
|
|
// Logical Compare Double Quadword
|
|
void ptest(XMMRegister dst, XMMRegister src);
|
|
void ptest(XMMRegister dst, Address src);
|
|
|
|
// Interleave Low Bytes
|
|
void punpcklbw(XMMRegister dst, XMMRegister src);
|
|
|
|
#ifndef _LP64 // no 32bit push/pop on amd64
|
|
void pushl(Address src);
|
|
#endif
|
|
|
|
void pushq(Address src);
|
|
|
|
// Xor Packed Byte Integer Values
|
|
void pxor(XMMRegister dst, Address src);
|
|
void pxor(XMMRegister dst, XMMRegister src);
|
|
|
|
void rcll(Register dst, int imm8);
|
|
|
|
void rclq(Register dst, int imm8);
|
|
|
|
void ret(int imm16);
|
|
|
|
void sahf();
|
|
|
|
void sarl(Register dst, int imm8);
|
|
void sarl(Register dst);
|
|
|
|
void sarq(Register dst, int imm8);
|
|
void sarq(Register dst);
|
|
|
|
void sbbl(Address dst, int32_t imm32);
|
|
void sbbl(Register dst, int32_t imm32);
|
|
void sbbl(Register dst, Address src);
|
|
void sbbl(Register dst, Register src);
|
|
|
|
void sbbq(Address dst, int32_t imm32);
|
|
void sbbq(Register dst, int32_t imm32);
|
|
void sbbq(Register dst, Address src);
|
|
void sbbq(Register dst, Register src);
|
|
|
|
void setb(Condition cc, Register dst);
|
|
|
|
void shldl(Register dst, Register src);
|
|
|
|
void shll(Register dst, int imm8);
|
|
void shll(Register dst);
|
|
|
|
void shlq(Register dst, int imm8);
|
|
void shlq(Register dst);
|
|
|
|
void shrdl(Register dst, Register src);
|
|
|
|
void shrl(Register dst, int imm8);
|
|
void shrl(Register dst);
|
|
|
|
void shrq(Register dst, int imm8);
|
|
void shrq(Register dst);
|
|
|
|
void smovl(); // QQQ generic?
|
|
|
|
// Compute Square Root of Scalar Double-Precision Floating-Point Value
|
|
void sqrtsd(XMMRegister dst, Address src);
|
|
void sqrtsd(XMMRegister dst, XMMRegister src);
|
|
|
|
void std() { emit_byte(0xfd); }
|
|
|
|
void stmxcsr( Address dst );
|
|
|
|
void subl(Address dst, int32_t imm32);
|
|
void subl(Address dst, Register src);
|
|
void subl(Register dst, int32_t imm32);
|
|
void subl(Register dst, Address src);
|
|
void subl(Register dst, Register src);
|
|
|
|
void subq(Address dst, int32_t imm32);
|
|
void subq(Address dst, Register src);
|
|
void subq(Register dst, int32_t imm32);
|
|
void subq(Register dst, Address src);
|
|
void subq(Register dst, Register src);
|
|
|
|
|
|
// Subtract Scalar Double-Precision Floating-Point Values
|
|
void subsd(XMMRegister dst, Address src);
|
|
void subsd(XMMRegister dst, XMMRegister src);
|
|
|
|
// Subtract Scalar Single-Precision Floating-Point Values
|
|
void subss(XMMRegister dst, Address src);
|
|
void subss(XMMRegister dst, XMMRegister src);
|
|
|
|
void testb(Register dst, int imm8);
|
|
|
|
void testl(Register dst, int32_t imm32);
|
|
void testl(Register dst, Register src);
|
|
void testl(Register dst, Address src);
|
|
|
|
void testq(Register dst, int32_t imm32);
|
|
void testq(Register dst, Register src);
|
|
|
|
|
|
// Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
|
|
void ucomisd(XMMRegister dst, Address src);
|
|
void ucomisd(XMMRegister dst, XMMRegister src);
|
|
|
|
// Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
|
|
void ucomiss(XMMRegister dst, Address src);
|
|
void ucomiss(XMMRegister dst, XMMRegister src);
|
|
|
|
void xaddl(Address dst, Register src);
|
|
|
|
void xaddq(Address dst, Register src);
|
|
|
|
void xchgl(Register reg, Address adr);
|
|
void xchgl(Register dst, Register src);
|
|
|
|
void xchgq(Register reg, Address adr);
|
|
void xchgq(Register dst, Register src);
|
|
|
|
void xorl(Register dst, int32_t imm32);
|
|
void xorl(Register dst, Address src);
|
|
void xorl(Register dst, Register src);
|
|
|
|
void xorq(Register dst, Address src);
|
|
void xorq(Register dst, Register src);
|
|
|
|
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
|
|
void xorpd(XMMRegister dst, Address src);
|
|
void xorpd(XMMRegister dst, XMMRegister src);
|
|
|
|
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
|
|
void xorps(XMMRegister dst, Address src);
|
|
void xorps(XMMRegister dst, XMMRegister src);
|
|
|
|
void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
|
|
};
|
|
|
|
|
|
// MacroAssembler extends Assembler by frequently used macros.
|
|
//
|
|
// Instructions for which a 'better' code sequence exists depending
|
|
// on arguments should also go in here.
|
|
|
|
class MacroAssembler: public Assembler {
|
|
friend class LIR_Assembler;
|
|
friend class Runtime1; // as_Address()
|
|
protected:
|
|
|
|
Address as_Address(AddressLiteral adr);
|
|
Address as_Address(ArrayAddress adr);
|
|
|
|
// Support for VM calls
|
|
//
|
|
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
|
|
// may customize this version by overriding it for its purposes (e.g., to save/restore
|
|
// additional registers when doing a VM call).
|
|
#ifdef CC_INTERP
|
|
// c++ interpreter never wants to use interp_masm version of call_VM
|
|
#define VIRTUAL
|
|
#else
|
|
#define VIRTUAL virtual
|
|
#endif
|
|
|
|
VIRTUAL void call_VM_leaf_base(
|
|
address entry_point, // the entry point
|
|
int number_of_arguments // the number of arguments to pop after the call
|
|
);
|
|
|
|
// This is the base routine called by the different versions of call_VM. The interpreter
|
|
// may customize this version by overriding it for its purposes (e.g., to save/restore
|
|
// additional registers when doing a VM call).
|
|
//
|
|
// If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
|
|
// returns the register which contains the thread upon return. If a thread register has been
|
|
// specified, the return value will correspond to that register. If no last_java_sp is specified
|
|
// (noreg) than rsp will be used instead.
|
|
VIRTUAL void call_VM_base( // returns the register containing the thread upon return
|
|
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
|
|
Register java_thread, // the thread if computed before ; use noreg otherwise
|
|
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
|
|
address entry_point, // the entry point
|
|
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
|
|
bool check_exceptions // whether to check for pending exceptions after return
|
|
);
|
|
|
|
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
|
|
// The implementation is only non-empty for the InterpreterMacroAssembler,
|
|
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
|
|
virtual void check_and_handle_popframe(Register java_thread);
|
|
virtual void check_and_handle_earlyret(Register java_thread);
|
|
|
|
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
|
|
|
|
// helpers for FPU flag access
|
|
// tmp is a temporary register, if none is available use noreg
|
|
void save_rax (Register tmp);
|
|
void restore_rax(Register tmp);
|
|
|
|
public:
|
|
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
|
|
|
|
// Support for NULL-checks
|
|
//
|
|
// Generates code that causes a NULL OS exception if the content of reg is NULL.
|
|
// If the accessed location is M[reg + offset] and the offset is known, provide the
|
|
// offset. No explicit code generation is needed if the offset is within a certain
|
|
// range (0 <= offset <= page_size).
|
|
|
|
void null_check(Register reg, int offset = -1);
|
|
static bool needs_explicit_null_check(intptr_t offset);
|
|
|
|
// Required platform-specific helpers for Label::patch_instructions.
|
|
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
|
|
void pd_patch_instruction(address branch, address target);
|
|
#ifndef PRODUCT
|
|
static void pd_print_patched_instruction(address branch);
|
|
#endif
|
|
|
|
// The following 4 methods return the offset of the appropriate move instruction
|
|
|
|
// Support for fast byte/short loading with zero extension (depending on particular CPU)
|
|
int load_unsigned_byte(Register dst, Address src);
|
|
int load_unsigned_short(Register dst, Address src);
|
|
|
|
// Support for fast byte/short loading with sign extension (depending on particular CPU)
|
|
int load_signed_byte(Register dst, Address src);
|
|
int load_signed_short(Register dst, Address src);
|
|
|
|
// Support for sign-extension (hi:lo = extend_sign(lo))
|
|
void extend_sign(Register hi, Register lo);
|
|
|
|
// Loading values by size and signed-ness
|
|
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
|
|
|
|
// Support for inc/dec with optimal instruction selection depending on value
|
|
|
|
void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
|
|
void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
|
|
|
|
void decrementl(Address dst, int value = 1);
|
|
void decrementl(Register reg, int value = 1);
|
|
|
|
void decrementq(Register reg, int value = 1);
|
|
void decrementq(Address dst, int value = 1);
|
|
|
|
void incrementl(Address dst, int value = 1);
|
|
void incrementl(Register reg, int value = 1);
|
|
|
|
void incrementq(Register reg, int value = 1);
|
|
void incrementq(Address dst, int value = 1);
|
|
|
|
|
|
// Support optimal SSE move instructions.
|
|
void movflt(XMMRegister dst, XMMRegister src) {
|
|
if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
|
|
else { movss (dst, src); return; }
|
|
}
|
|
void movflt(XMMRegister dst, Address src) { movss(dst, src); }
|
|
void movflt(XMMRegister dst, AddressLiteral src);
|
|
void movflt(Address dst, XMMRegister src) { movss(dst, src); }
|
|
|
|
void movdbl(XMMRegister dst, XMMRegister src) {
|
|
if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
|
|
else { movsd (dst, src); return; }
|
|
}
|
|
|
|
void movdbl(XMMRegister dst, AddressLiteral src);
|
|
|
|
void movdbl(XMMRegister dst, Address src) {
|
|
if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
|
|
else { movlpd(dst, src); return; }
|
|
}
|
|
void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
|
|
|
|
void incrementl(AddressLiteral dst);
|
|
void incrementl(ArrayAddress dst);
|
|
|
|
// Alignment
|
|
void align(int modulus);
|
|
|
|
// Misc
|
|
void fat_nop(); // 5 byte nop
|
|
|
|
// Stack frame creation/removal
|
|
void enter();
|
|
void leave();
|
|
|
|
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
|
|
// The pointer will be loaded into the thread register.
|
|
void get_thread(Register thread);
|
|
|
|
|
|
// Support for VM calls
|
|
//
|
|
// It is imperative that all calls into the VM are handled via the call_VM macros.
|
|
// They make sure that the stack linkage is setup correctly. call_VM's correspond
|
|
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
|
|
|
|
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions = true);
|
|
|
|
// Overloadings with last_Java_sp
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
int number_of_arguments = 0,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, bool
|
|
check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions = true);
|
|
|
|
void call_VM_leaf(address entry_point,
|
|
int number_of_arguments = 0);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1, Register arg_2);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3);
|
|
|
|
// last Java Frame (fills frame anchor)
|
|
void set_last_Java_frame(Register thread,
|
|
Register last_java_sp,
|
|
Register last_java_fp,
|
|
address last_java_pc);
|
|
|
|
// thread in the default location (r15_thread on 64bit)
|
|
void set_last_Java_frame(Register last_java_sp,
|
|
Register last_java_fp,
|
|
address last_java_pc);
|
|
|
|
void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
|
|
|
|
// thread in the default location (r15_thread on 64bit)
|
|
void reset_last_Java_frame(bool clear_fp, bool clear_pc);
|
|
|
|
// Stores
|
|
void store_check(Register obj); // store check for obj - register is destroyed afterwards
|
|
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
|
|
|
|
void g1_write_barrier_pre(Register obj,
|
|
#ifndef _LP64
|
|
Register thread,
|
|
#endif
|
|
Register tmp,
|
|
Register tmp2,
|
|
bool tosca_live);
|
|
void g1_write_barrier_post(Register store_addr,
|
|
Register new_val,
|
|
#ifndef _LP64
|
|
Register thread,
|
|
#endif
|
|
Register tmp,
|
|
Register tmp2);
|
|
|
|
|
|
// split store_check(Register obj) to enhance instruction interleaving
|
|
void store_check_part_1(Register obj);
|
|
void store_check_part_2(Register obj);
|
|
|
|
// C 'boolean' to Java boolean: x == 0 ? 0 : 1
|
|
void c2bool(Register x);
|
|
|
|
// C++ bool manipulation
|
|
|
|
void movbool(Register dst, Address src);
|
|
void movbool(Address dst, bool boolconst);
|
|
void movbool(Address dst, Register src);
|
|
void testbool(Register dst);
|
|
|
|
// oop manipulations
|
|
void load_klass(Register dst, Register src);
|
|
void store_klass(Register dst, Register src);
|
|
|
|
void load_prototype_header(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void store_klass_gap(Register dst, Register src);
|
|
|
|
void load_heap_oop(Register dst, Address src);
|
|
void store_heap_oop(Address dst, Register src);
|
|
|
|
// This dummy is to prevent a call to store_heap_oop from
|
|
// converting a zero (like NULL) into a Register by giving
|
|
// the compiler two choices it can't resolve
|
|
|
|
void store_heap_oop(Address dst, void* dummy);
|
|
|
|
// Used for storing NULL. All other oop constants should be
|
|
// stored using routines that take a jobject.
|
|
void store_heap_oop_null(Address dst);
|
|
|
|
void encode_heap_oop(Register r);
|
|
void decode_heap_oop(Register r);
|
|
void encode_heap_oop_not_null(Register r);
|
|
void decode_heap_oop_not_null(Register r);
|
|
void encode_heap_oop_not_null(Register dst, Register src);
|
|
void decode_heap_oop_not_null(Register dst, Register src);
|
|
|
|
void set_narrow_oop(Register dst, jobject obj);
|
|
void set_narrow_oop(Address dst, jobject obj);
|
|
void cmp_narrow_oop(Register dst, jobject obj);
|
|
void cmp_narrow_oop(Address dst, jobject obj);
|
|
|
|
// if heap base register is used - reinit it with the correct value
|
|
void reinit_heapbase();
|
|
#endif // _LP64
|
|
|
|
// Int division/remainder for Java
|
|
// (as idivl, but checks for special case as described in JVM spec.)
|
|
// returns idivl instruction offset for implicit exception handling
|
|
int corrected_idivl(Register reg);
|
|
|
|
// Long division/remainder for Java
|
|
// (as idivq, but checks for special case as described in JVM spec.)
|
|
// returns idivq instruction offset for implicit exception handling
|
|
int corrected_idivq(Register reg);
|
|
|
|
void int3();
|
|
|
|
// Long operation macros for a 32bit cpu
|
|
// Long negation for Java
|
|
void lneg(Register hi, Register lo);
|
|
|
|
// Long multiplication for Java
|
|
// (destroys contents of eax, ebx, ecx and edx)
|
|
void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
|
|
|
|
// Long shifts for Java
|
|
// (semantics as described in JVM spec.)
|
|
void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
|
|
void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
|
|
|
|
// Long compare for Java
|
|
// (semantics as described in JVM spec.)
|
|
void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
|
|
|
|
|
|
// misc
|
|
|
|
// Sign extension
|
|
void sign_extend_short(Register reg);
|
|
void sign_extend_byte(Register reg);
|
|
|
|
// Division by power of 2, rounding towards 0
|
|
void division_with_shift(Register reg, int shift_value);
|
|
|
|
// Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
|
|
//
|
|
// CF (corresponds to C0) if x < y
|
|
// PF (corresponds to C2) if unordered
|
|
// ZF (corresponds to C3) if x = y
|
|
//
|
|
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
|
|
// tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
|
|
void fcmp(Register tmp);
|
|
// Variant of the above which allows y to be further down the stack
|
|
// and which only pops x and y if specified. If pop_right is
|
|
// specified then pop_left must also be specified.
|
|
void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
|
|
|
|
// Floating-point comparison for Java
|
|
// Compares the top-most stack entries on the FPU stack and stores the result in dst.
|
|
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
|
|
// (semantics as described in JVM spec.)
|
|
void fcmp2int(Register dst, bool unordered_is_less);
|
|
// Variant of the above which allows y to be further down the stack
|
|
// and which only pops x and y if specified. If pop_right is
|
|
// specified then pop_left must also be specified.
|
|
void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
|
|
|
|
// Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
|
|
// tmp is a temporary register, if none is available use noreg
|
|
void fremr(Register tmp);
|
|
|
|
|
|
// same as fcmp2int, but using SSE2
|
|
void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
|
|
void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
|
|
|
|
// Inlined sin/cos generator for Java; must not use CPU instruction
|
|
// directly on Intel as it does not have high enough precision
|
|
// outside of the range [-pi/4, pi/4]. Extra argument indicate the
|
|
// number of FPU stack slots in use; all but the topmost will
|
|
// require saving if a slow case is necessary. Assumes argument is
|
|
// on FP TOS; result is on FP TOS. No cpu registers are changed by
|
|
// this code.
|
|
void trigfunc(char trig, int num_fpu_regs_in_use = 1);
|
|
|
|
// branch to L if FPU flag C2 is set/not set
|
|
// tmp is a temporary register, if none is available use noreg
|
|
void jC2 (Register tmp, Label& L);
|
|
void jnC2(Register tmp, Label& L);
|
|
|
|
// Pop ST (ffree & fincstp combined)
|
|
void fpop();
|
|
|
|
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
|
|
void push_fTOS();
|
|
|
|
// pops double TOS element from CPU stack and pushes on FPU stack
|
|
void pop_fTOS();
|
|
|
|
void empty_FPU_stack();
|
|
|
|
void push_IU_state();
|
|
void pop_IU_state();
|
|
|
|
void push_FPU_state();
|
|
void pop_FPU_state();
|
|
|
|
void push_CPU_state();
|
|
void pop_CPU_state();
|
|
|
|
// Round up to a power of two
|
|
void round_to(Register reg, int modulus);
|
|
|
|
// Callee saved registers handling
|
|
void push_callee_saved_registers();
|
|
void pop_callee_saved_registers();
|
|
|
|
// allocation
|
|
void eden_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
);
|
|
void tlab_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Register t2, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
);
|
|
void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case);
|
|
|
|
// interface method calling
|
|
void lookup_interface_method(Register recv_klass,
|
|
Register intf_klass,
|
|
RegisterOrConstant itable_index,
|
|
Register method_result,
|
|
Register scan_temp,
|
|
Label& no_such_interface);
|
|
|
|
// Test sub_klass against super_klass, with fast and slow paths.
|
|
|
|
// The fast path produces a tri-state answer: yes / no / maybe-slow.
|
|
// One of the three labels can be NULL, meaning take the fall-through.
|
|
// If super_check_offset is -1, the value is loaded up from super_klass.
|
|
// No registers are killed, except temp_reg.
|
|
void check_klass_subtype_fast_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
Label* L_slow_path,
|
|
RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
|
|
|
|
// The rest of the type check; must be wired to a corresponding fast path.
|
|
// It does not repeat the fast path logic, so don't use it standalone.
|
|
// The temp_reg and temp2_reg can be noreg, if no temps are available.
|
|
// Updates the sub's secondary super cache as necessary.
|
|
// If set_cond_codes, condition codes will be Z on success, NZ on failure.
|
|
void check_klass_subtype_slow_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
bool set_cond_codes = false);
|
|
|
|
// Simplified, combined version, good for typical uses.
|
|
// Falls through on failure.
|
|
void check_klass_subtype(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Label& L_success);
|
|
|
|
// method handles (JSR 292)
|
|
void check_method_handle_type(Register mtype_reg, Register mh_reg,
|
|
Register temp_reg,
|
|
Label& wrong_method_type);
|
|
void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
|
|
Register temp_reg);
|
|
void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
|
|
Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
|
|
|
|
|
|
//----
|
|
void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
|
|
|
|
// Debugging
|
|
|
|
// only if +VerifyOops
|
|
void verify_oop(Register reg, const char* s = "broken oop");
|
|
void verify_oop_addr(Address addr, const char * s = "broken oop addr");
|
|
|
|
// only if +VerifyFPU
|
|
void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
|
|
|
|
// prints msg, dumps registers and stops execution
|
|
void stop(const char* msg);
|
|
|
|
// prints msg and continues
|
|
void warn(const char* msg);
|
|
|
|
static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
|
|
static void debug64(char* msg, int64_t pc, int64_t regs[]);
|
|
|
|
void os_breakpoint();
|
|
|
|
void untested() { stop("untested"); }
|
|
|
|
void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, sizeof(b), "unimplemented: %s", what); stop(b); }
|
|
|
|
void should_not_reach_here() { stop("should not reach here"); }
|
|
|
|
void print_CPU_state();
|
|
|
|
// Stack overflow checking
|
|
void bang_stack_with_offset(int offset) {
|
|
// stack grows down, caller passes positive offset
|
|
assert(offset > 0, "must bang with negative offset");
|
|
movl(Address(rsp, (-offset)), rax);
|
|
}
|
|
|
|
// Writes to stack successive pages until offset reached to check for
|
|
// stack overflow + shadow pages. Also, clobbers tmp
|
|
void bang_stack_size(Register size, Register tmp);
|
|
|
|
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
|
|
Register tmp,
|
|
int offset);
|
|
|
|
// Support for serializing memory accesses between threads
|
|
void serialize_memory(Register thread, Register tmp);
|
|
|
|
void verify_tlab();
|
|
|
|
// Biased locking support
|
|
// lock_reg and obj_reg must be loaded up with the appropriate values.
|
|
// swap_reg must be rax, and is killed.
|
|
// tmp_reg is optional. If it is supplied (i.e., != noreg) it will
|
|
// be killed; if not supplied, push/pop will be used internally to
|
|
// allocate a temporary (inefficient, avoid if possible).
|
|
// Optional slow case is for implementations (interpreter and C1) which branch to
|
|
// slow case directly. Leaves condition codes set for C2's Fast_Lock node.
|
|
// Returns offset of first potentially-faulting instruction for null
|
|
// check info (currently consumed only by C1). If
|
|
// swap_reg_contains_mark is true then returns -1 as it is assumed
|
|
// the calling code has already passed any potential faults.
|
|
int biased_locking_enter(Register lock_reg, Register obj_reg,
|
|
Register swap_reg, Register tmp_reg,
|
|
bool swap_reg_contains_mark,
|
|
Label& done, Label* slow_case = NULL,
|
|
BiasedLockingCounters* counters = NULL);
|
|
void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
|
|
|
|
|
|
Condition negate_condition(Condition cond);
|
|
|
|
// Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
|
|
// operands. In general the names are modified to avoid hiding the instruction in Assembler
|
|
// so that we don't need to implement all the varieties in the Assembler with trivial wrappers
|
|
// here in MacroAssembler. The major exception to this rule is call
|
|
|
|
// Arithmetics
|
|
|
|
|
|
void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
|
|
void addptr(Address dst, Register src);
|
|
|
|
void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
|
|
void addptr(Register dst, int32_t src);
|
|
void addptr(Register dst, Register src);
|
|
|
|
void andptr(Register dst, int32_t src);
|
|
void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
|
|
|
|
void cmp8(AddressLiteral src1, int imm);
|
|
|
|
// renamed to drag out the casting of address to int32_t/intptr_t
|
|
void cmp32(Register src1, int32_t imm);
|
|
|
|
void cmp32(AddressLiteral src1, int32_t imm);
|
|
// compare reg - mem, or reg - &mem
|
|
void cmp32(Register src1, AddressLiteral src2);
|
|
|
|
void cmp32(Register src1, Address src2);
|
|
|
|
#ifndef _LP64
|
|
void cmpoop(Address dst, jobject obj);
|
|
void cmpoop(Register dst, jobject obj);
|
|
#endif // _LP64
|
|
|
|
// NOTE src2 must be the lval. This is NOT an mem-mem compare
|
|
void cmpptr(Address src1, AddressLiteral src2);
|
|
|
|
void cmpptr(Register src1, AddressLiteral src2);
|
|
|
|
void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
// void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
|
|
void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
|
|
// cmp64 to avoild hiding cmpq
|
|
void cmp64(Register src1, AddressLiteral src);
|
|
|
|
void cmpxchgptr(Register reg, Address adr);
|
|
|
|
void locked_cmpxchgptr(Register reg, AddressLiteral adr);
|
|
|
|
|
|
void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
|
|
|
|
|
|
void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
|
|
|
|
void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
|
|
|
|
void shlptr(Register dst, int32_t shift);
|
|
void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
|
|
|
|
void shrptr(Register dst, int32_t shift);
|
|
void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
|
|
|
|
void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
|
|
void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
|
|
|
|
void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
|
|
|
|
void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
|
|
void subptr(Register dst, int32_t src);
|
|
void subptr(Register dst, Register src);
|
|
|
|
|
|
void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
|
|
void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
|
|
|
|
void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
|
|
void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
|
|
|
|
void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
|
|
|
|
|
|
|
|
// Helper functions for statistics gathering.
|
|
// Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
|
|
void cond_inc32(Condition cond, AddressLiteral counter_addr);
|
|
// Unconditional atomic increment.
|
|
void atomic_incl(AddressLiteral counter_addr);
|
|
|
|
void lea(Register dst, AddressLiteral adr);
|
|
void lea(Address dst, AddressLiteral adr);
|
|
void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
|
|
|
|
void leal32(Register dst, Address src) { leal(dst, src); }
|
|
|
|
void test32(Register src1, AddressLiteral src2);
|
|
|
|
void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
|
|
void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
|
|
void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
|
|
|
|
void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
|
|
void testptr(Register src1, Register src2);
|
|
|
|
void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
|
|
void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
|
|
|
|
// Calls
|
|
|
|
void call(Label& L, relocInfo::relocType rtype);
|
|
void call(Register entry);
|
|
|
|
// NOTE: this call tranfers to the effective address of entry NOT
|
|
// the address contained by entry. This is because this is more natural
|
|
// for jumps/calls.
|
|
void call(AddressLiteral entry);
|
|
|
|
// Jumps
|
|
|
|
// NOTE: these jumps tranfer to the effective address of dst NOT
|
|
// the address contained by dst. This is because this is more natural
|
|
// for jumps/calls.
|
|
void jump(AddressLiteral dst);
|
|
void jump_cc(Condition cc, AddressLiteral dst);
|
|
|
|
// 32bit can do a case table jump in one instruction but we no longer allow the base
|
|
// to be installed in the Address class. This jump will tranfers to the address
|
|
// contained in the location described by entry (not the address of entry)
|
|
void jump(ArrayAddress entry);
|
|
|
|
// Floating
|
|
|
|
void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
|
|
void andpd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
|
|
void comiss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
|
|
void comisd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void fldcw(Address src) { Assembler::fldcw(src); }
|
|
void fldcw(AddressLiteral src);
|
|
|
|
void fld_s(int index) { Assembler::fld_s(index); }
|
|
void fld_s(Address src) { Assembler::fld_s(src); }
|
|
void fld_s(AddressLiteral src);
|
|
|
|
void fld_d(Address src) { Assembler::fld_d(src); }
|
|
void fld_d(AddressLiteral src);
|
|
|
|
void fld_x(Address src) { Assembler::fld_x(src); }
|
|
void fld_x(AddressLiteral src);
|
|
|
|
void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
|
|
void ldmxcsr(AddressLiteral src);
|
|
|
|
private:
|
|
// these are private because users should be doing movflt/movdbl
|
|
|
|
void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
|
|
void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
|
|
void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
|
|
void movss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
|
|
void movlpd(XMMRegister dst, AddressLiteral src);
|
|
|
|
public:
|
|
|
|
void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
|
|
void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
|
|
void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
|
|
void movsd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
|
|
void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
|
|
void ucomiss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
|
|
void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
|
|
void ucomisd(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
|
|
void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
|
|
void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
|
|
void xorpd(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
|
|
void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
|
|
void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
|
|
void xorps(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Data
|
|
|
|
void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
|
|
|
|
void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
|
|
void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
|
|
|
|
void movoop(Register dst, jobject obj);
|
|
void movoop(Address dst, jobject obj);
|
|
|
|
void movptr(ArrayAddress dst, Register src);
|
|
// can this do an lea?
|
|
void movptr(Register dst, ArrayAddress src);
|
|
|
|
void movptr(Register dst, Address src);
|
|
|
|
void movptr(Register dst, AddressLiteral src);
|
|
|
|
void movptr(Register dst, intptr_t src);
|
|
void movptr(Register dst, Register src);
|
|
void movptr(Address dst, intptr_t src);
|
|
|
|
void movptr(Address dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
// Generally the next two are only used for moving NULL
|
|
// Although there are situations in initializing the mark word where
|
|
// they could be used. They are dangerous.
|
|
|
|
// They only exist on LP64 so that int32_t and intptr_t are not the same
|
|
// and we have ambiguous declarations.
|
|
|
|
void movptr(Address dst, int32_t imm32);
|
|
void movptr(Register dst, int32_t imm32);
|
|
#endif // _LP64
|
|
|
|
// to avoid hiding movl
|
|
void mov32(AddressLiteral dst, Register src);
|
|
void mov32(Register dst, AddressLiteral src);
|
|
|
|
// to avoid hiding movb
|
|
void movbyte(ArrayAddress dst, int src);
|
|
|
|
// Can push value or effective address
|
|
void pushptr(AddressLiteral src);
|
|
|
|
void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
|
|
void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
|
|
|
|
void pushoop(jobject obj);
|
|
|
|
// sign extend as need a l to ptr sized element
|
|
void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
|
|
void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
|
|
|
|
// IndexOf strings.
|
|
void string_indexof(Register str1, Register str2,
|
|
Register cnt1, Register cnt2, Register result,
|
|
XMMRegister vec, Register tmp);
|
|
|
|
// Compare strings.
|
|
void string_compare(Register str1, Register str2,
|
|
Register cnt1, Register cnt2, Register result,
|
|
XMMRegister vec1, XMMRegister vec2);
|
|
|
|
// Compare char[] arrays.
|
|
void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
|
|
Register limit, Register result, Register chr,
|
|
XMMRegister vec1, XMMRegister vec2);
|
|
|
|
#undef VIRTUAL
|
|
|
|
};
|
|
|
|
/**
|
|
* class SkipIfEqual:
|
|
*
|
|
* Instantiating this class will result in assembly code being output that will
|
|
* jump around any code emitted between the creation of the instance and it's
|
|
* automatic destruction at the end of a scope block, depending on the value of
|
|
* the flag passed to the constructor, which will be checked at run-time.
|
|
*/
|
|
class SkipIfEqual {
|
|
private:
|
|
MacroAssembler* _masm;
|
|
Label _label;
|
|
|
|
public:
|
|
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
|
|
~SkipIfEqual();
|
|
};
|
|
|
|
#ifdef ASSERT
|
|
inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
|
|
#endif
|