34493248c0
Reviewed-by: bpb
812 lines
34 KiB
Java
812 lines
34 KiB
Java
/*
|
|
* Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation. Oracle designates this
|
|
* particular file as subject to the "Classpath" exception as provided
|
|
* by Oracle in the LICENSE file that accompanied this code.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/**
|
|
* A transliteration of the "Freely Distributable Math Library"
|
|
* algorithms from C into Java. That is, this port of the algorithms
|
|
* is as close to the C originals as possible while still being
|
|
* readable legal Java.
|
|
*/
|
|
public class FdlibmTranslit {
|
|
private FdlibmTranslit() {
|
|
throw new UnsupportedOperationException("No FdLibmTranslit instances for you.");
|
|
}
|
|
|
|
/**
|
|
* Return the low-order 32 bits of the double argument as an int.
|
|
*/
|
|
private static int __LO(double x) {
|
|
long transducer = Double.doubleToRawLongBits(x);
|
|
return (int)transducer;
|
|
}
|
|
|
|
/**
|
|
* Return a double with its low-order bits of the second argument
|
|
* and the high-order bits of the first argument..
|
|
*/
|
|
private static double __LO(double x, int low) {
|
|
long transX = Double.doubleToRawLongBits(x);
|
|
return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
|
|
(low & 0x0000_0000_FFFF_FFFFL));
|
|
}
|
|
|
|
/**
|
|
* Return the high-order 32 bits of the double argument as an int.
|
|
*/
|
|
private static int __HI(double x) {
|
|
long transducer = Double.doubleToRawLongBits(x);
|
|
return (int)(transducer >> 32);
|
|
}
|
|
|
|
/**
|
|
* Return a double with its high-order bits of the second argument
|
|
* and the low-order bits of the first argument..
|
|
*/
|
|
private static double __HI(double x, int high) {
|
|
long transX = Double.doubleToRawLongBits(x);
|
|
return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
|
|
( ((long)high)) << 32 );
|
|
}
|
|
|
|
public static double hypot(double x, double y) {
|
|
return Hypot.compute(x, y);
|
|
}
|
|
|
|
public static double cbrt(double x) {
|
|
return Cbrt.compute(x);
|
|
}
|
|
|
|
public static double log10(double x) {
|
|
return Log10.compute(x);
|
|
}
|
|
|
|
public static double log1p(double x) {
|
|
return Log1p.compute(x);
|
|
}
|
|
|
|
public static double expm1(double x) {
|
|
return Expm1.compute(x);
|
|
}
|
|
|
|
/**
|
|
* cbrt(x)
|
|
* Return cube root of x
|
|
*/
|
|
public static class Cbrt {
|
|
// unsigned
|
|
private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
|
|
private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
|
|
|
|
private static final double C = 5.42857142857142815906e-01; /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
|
|
private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
|
|
private static final double E = 1.41428571428571436819e+00; /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
|
|
private static final double F = 1.60714285714285720630e+00; /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
|
|
private static final double G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
|
|
|
|
public static double compute(double x) {
|
|
int hx;
|
|
double r, s, t=0.0, w;
|
|
int sign; // unsigned
|
|
|
|
hx = __HI(x); // high word of x
|
|
sign = hx & 0x80000000; // sign= sign(x)
|
|
hx ^= sign;
|
|
if (hx >= 0x7ff00000)
|
|
return (x+x); // cbrt(NaN,INF) is itself
|
|
if ((hx | __LO(x)) == 0)
|
|
return(x); // cbrt(0) is itself
|
|
|
|
x = __HI(x, hx); // x <- |x|
|
|
// rough cbrt to 5 bits
|
|
if (hx < 0x00100000) { // subnormal number
|
|
t = __HI(t, 0x43500000); // set t= 2**54
|
|
t *= x;
|
|
t = __HI(t, __HI(t)/3+B2);
|
|
} else {
|
|
t = __HI(t, hx/3+B1);
|
|
}
|
|
|
|
// new cbrt to 23 bits, may be implemented in single precision
|
|
r = t * t/x;
|
|
s = C + r*t;
|
|
t *= G + F/(s + E + D/s);
|
|
|
|
// chopped to 20 bits and make it larger than cbrt(x)
|
|
t = __LO(t, 0);
|
|
t = __HI(t, __HI(t)+0x00000001);
|
|
|
|
|
|
// one step newton iteration to 53 bits with error less than 0.667 ulps
|
|
s = t * t; // t*t is exact
|
|
r = x / s;
|
|
w = t + t;
|
|
r= (r - t)/(w + r); // r-s is exact
|
|
t= t + t*r;
|
|
|
|
// retore the sign bit
|
|
t = __HI(t, __HI(t) | sign);
|
|
return(t);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* hypot(x,y)
|
|
*
|
|
* Method :
|
|
* If (assume round-to-nearest) z = x*x + y*y
|
|
* has error less than sqrt(2)/2 ulp, than
|
|
* sqrt(z) has error less than 1 ulp (exercise).
|
|
*
|
|
* So, compute sqrt(x*x + y*y) with some care as
|
|
* follows to get the error below 1 ulp:
|
|
*
|
|
* Assume x > y > 0;
|
|
* (if possible, set rounding to round-to-nearest)
|
|
* 1. if x > 2y use
|
|
* x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
|
|
* where x1 = x with lower 32 bits cleared, x2 = x - x1; else
|
|
* 2. if x <= 2y use
|
|
* t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
|
|
* where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
|
|
* y1= y with lower 32 bits chopped, y2 = y - y1.
|
|
*
|
|
* NOTE: scaling may be necessary if some argument is too
|
|
* large or too tiny
|
|
*
|
|
* Special cases:
|
|
* hypot(x,y) is INF if x or y is +INF or -INF; else
|
|
* hypot(x,y) is NAN if x or y is NAN.
|
|
*
|
|
* Accuracy:
|
|
* hypot(x,y) returns sqrt(x^2 + y^2) with error less
|
|
* than 1 ulps (units in the last place)
|
|
*/
|
|
static class Hypot {
|
|
public static double compute(double x, double y) {
|
|
double a = x;
|
|
double b = y;
|
|
double t1, t2, y1, y2, w;
|
|
int j, k, ha, hb;
|
|
|
|
ha = __HI(x) & 0x7fffffff; // high word of x
|
|
hb = __HI(y) & 0x7fffffff; // high word of y
|
|
if(hb > ha) {
|
|
a = y;
|
|
b = x;
|
|
j = ha;
|
|
ha = hb;
|
|
hb = j;
|
|
} else {
|
|
a = x;
|
|
b = y;
|
|
}
|
|
a = __HI(a, ha); // a <- |a|
|
|
b = __HI(b, hb); // b <- |b|
|
|
if ((ha - hb) > 0x3c00000) {
|
|
return a + b; // x / y > 2**60
|
|
}
|
|
k=0;
|
|
if (ha > 0x5f300000) { // a>2**500
|
|
if (ha >= 0x7ff00000) { // Inf or NaN
|
|
w = a + b; // for sNaN
|
|
if (((ha & 0xfffff) | __LO(a)) == 0)
|
|
w = a;
|
|
if (((hb ^ 0x7ff00000) | __LO(b)) == 0)
|
|
w = b;
|
|
return w;
|
|
}
|
|
// scale a and b by 2**-600
|
|
ha -= 0x25800000;
|
|
hb -= 0x25800000;
|
|
k += 600;
|
|
a = __HI(a, ha);
|
|
b = __HI(b, hb);
|
|
}
|
|
if (hb < 0x20b00000) { // b < 2**-500
|
|
if (hb <= 0x000fffff) { // subnormal b or 0 */
|
|
if ((hb | (__LO(b))) == 0)
|
|
return a;
|
|
t1 = 0;
|
|
t1 = __HI(t1, 0x7fd00000); // t1=2^1022
|
|
b *= t1;
|
|
a *= t1;
|
|
k -= 1022;
|
|
} else { // scale a and b by 2^600
|
|
ha += 0x25800000; // a *= 2^600
|
|
hb += 0x25800000; // b *= 2^600
|
|
k -= 600;
|
|
a = __HI(a, ha);
|
|
b = __HI(b, hb);
|
|
}
|
|
}
|
|
// medium size a and b
|
|
w = a - b;
|
|
if (w > b) {
|
|
t1 = 0;
|
|
t1 = __HI(t1, ha);
|
|
t2 = a - t1;
|
|
w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
|
|
} else {
|
|
a = a + a;
|
|
y1 = 0;
|
|
y1 = __HI(y1, hb);
|
|
y2 = b - y1;
|
|
t1 = 0;
|
|
t1 = __HI(t1, ha + 0x00100000);
|
|
t2 = a - t1;
|
|
w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
|
|
}
|
|
if (k != 0) {
|
|
t1 = 1.0;
|
|
int t1_hi = __HI(t1);
|
|
t1_hi += (k << 20);
|
|
t1 = __HI(t1, t1_hi);
|
|
return t1 * w;
|
|
} else
|
|
return w;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the exponential of x.
|
|
*
|
|
* Method
|
|
* 1. Argument reduction:
|
|
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
|
* Given x, find r and integer k such that
|
|
*
|
|
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
|
*
|
|
* Here r will be represented as r = hi-lo for better
|
|
* accuracy.
|
|
*
|
|
* 2. Approximation of exp(r) by a special rational function on
|
|
* the interval [0,0.34658]:
|
|
* Write
|
|
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
|
* We use a special Reme algorithm on [0,0.34658] to generate
|
|
* a polynomial of degree 5 to approximate R. The maximum error
|
|
* of this polynomial approximation is bounded by 2**-59. In
|
|
* other words,
|
|
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
|
* (where z=r*r, and the values of P1 to P5 are listed below)
|
|
* and
|
|
* | 5 | -59
|
|
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
|
* | |
|
|
* The computation of exp(r) thus becomes
|
|
* 2*r
|
|
* exp(r) = 1 + -------
|
|
* R - r
|
|
* r*R1(r)
|
|
* = 1 + r + ----------- (for better accuracy)
|
|
* 2 - R1(r)
|
|
* where
|
|
* 2 4 10
|
|
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
|
*
|
|
* 3. Scale back to obtain exp(x):
|
|
* From step 1, we have
|
|
* exp(x) = 2^k * exp(r)
|
|
*
|
|
* Special cases:
|
|
* exp(INF) is INF, exp(NaN) is NaN;
|
|
* exp(-INF) is 0, and
|
|
* for finite argument, only exp(0)=1 is exact.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Misc. info.
|
|
* For IEEE double
|
|
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
|
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
static class Exp {
|
|
private static final double one = 1.0;
|
|
private static final double[] halF = {0.5,-0.5,};
|
|
private static final double huge = 1.0e+300;
|
|
private static final double twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/
|
|
private static final double o_threshold= 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
|
|
private static final double u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
|
|
private static final double[] ln2HI ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
|
-6.93147180369123816490e-01}; /* 0xbfe62e42, 0xfee00000 */
|
|
private static final double[] ln2LO ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
|
-1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */
|
|
private static final double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
|
|
private static final double P1 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */
|
|
private static final double P2 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */
|
|
private static final double P3 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */
|
|
private static final double P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */
|
|
private static final double P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|
|
|
public static double compute(double x) {
|
|
double y,hi=0,lo=0,c,t;
|
|
int k=0,xsb;
|
|
/*unsigned*/ int hx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
xsb = (hx>>31)&1; /* sign bit of x */
|
|
hx &= 0x7fffffff; /* high word of |x| */
|
|
|
|
/* filter out non-finite argument */
|
|
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|
if(hx>=0x7ff00000) {
|
|
if(((hx&0xfffff)|__LO(x))!=0)
|
|
return x+x; /* NaN */
|
|
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
|
}
|
|
if(x > o_threshold) return huge*huge; /* overflow */
|
|
if(x < u_threshold) return twom1000*twom1000; /* underflow */
|
|
}
|
|
|
|
/* argument reduction */
|
|
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
|
} else {
|
|
k = (int)(invln2*x+halF[xsb]);
|
|
t = k;
|
|
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
|
lo = t*ln2LO[0];
|
|
}
|
|
x = hi - lo;
|
|
}
|
|
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
|
if(huge+x>one) return one+x;/* trigger inexact */
|
|
}
|
|
else k = 0;
|
|
|
|
/* x is now in primary range */
|
|
t = x*x;
|
|
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
|
if(k==0) return one-((x*c)/(c-2.0)-x);
|
|
else y = one-((lo-(x*c)/(2.0-c))-hi);
|
|
if(k >= -1021) {
|
|
y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
|
|
return y;
|
|
} else {
|
|
y = __HI(y, __HI(y) + ((k+1000)<<20));/* add k to y's exponent */
|
|
return y*twom1000;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Return the base 10 logarithm of x
|
|
*
|
|
* Method :
|
|
* Let log10_2hi = leading 40 bits of log10(2) and
|
|
* log10_2lo = log10(2) - log10_2hi,
|
|
* ivln10 = 1/log(10) rounded.
|
|
* Then
|
|
* n = ilogb(x),
|
|
* if(n<0) n = n+1;
|
|
* x = scalbn(x,-n);
|
|
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
|
|
*
|
|
* Note 1:
|
|
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding
|
|
* mode must set to Round-to-Nearest.
|
|
* Note 2:
|
|
* [1/log(10)] rounded to 53 bits has error .198 ulps;
|
|
* log10 is monotonic at all binary break points.
|
|
*
|
|
* Special cases:
|
|
* log10(x) is NaN with signal if x < 0;
|
|
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
|
|
* log10(NaN) is that NaN with no signal;
|
|
* log10(10**N) = N for N=0,1,...,22.
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following constants.
|
|
* The decimal values may be used, provided that the compiler will convert
|
|
* from decimal to binary accurately enough to produce the hexadecimal values
|
|
* shown.
|
|
*/
|
|
static class Log10 {
|
|
private static double two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
|
|
private static double ivln10 = 4.34294481903251816668e-01; /* 0x3FDBCB7B, 0x1526E50E */
|
|
|
|
private static double log10_2hi = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */
|
|
private static double log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
|
|
|
|
private static double zero = 0.0;
|
|
|
|
public static double compute(double x) {
|
|
double y,z;
|
|
int i,k,hx;
|
|
/*unsigned*/ int lx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
lx = __LO(x); /* low word of x */
|
|
|
|
k=0;
|
|
if (hx < 0x00100000) { /* x < 2**-1022 */
|
|
if (((hx&0x7fffffff)|lx)==0)
|
|
return -two54/zero; /* log(+-0)=-inf */
|
|
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
|
|
k -= 54; x *= two54; /* subnormal number, scale up x */
|
|
hx = __HI(x); /* high word of x */
|
|
}
|
|
if (hx >= 0x7ff00000) return x+x;
|
|
k += (hx>>20)-1023;
|
|
i = (k&0x80000000)>>>31; // unsigned shift
|
|
hx = (hx&0x000fffff)|((0x3ff-i)<<20);
|
|
y = (double)(k+i);
|
|
x = __HI(x, hx); //original: __HI(x) = hx;
|
|
z = y*log10_2lo + ivln10*StrictMath.log(x); // TOOD: switch to Translit.log when available
|
|
return z+y*log10_2hi;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Returns the natural logarithm of the sum of the argument and 1.
|
|
*
|
|
* Method :
|
|
* 1. Argument Reduction: find k and f such that
|
|
* 1+x = 2^k * (1+f),
|
|
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
|
*
|
|
* Note. If k=0, then f=x is exact. However, if k!=0, then f
|
|
* may not be representable exactly. In that case, a correction
|
|
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
|
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
|
* and add back the correction term c/u.
|
|
* (Note: when x > 2**53, one can simply return log(x))
|
|
*
|
|
* 2. Approximation of log1p(f).
|
|
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|
* = 2s + s*R
|
|
* We use a special Reme algorithm on [0,0.1716] to generate
|
|
* a polynomial of degree 14 to approximate R The maximum error
|
|
* of this polynomial approximation is bounded by 2**-58.45. In
|
|
* other words,
|
|
* 2 4 6 8 10 12 14
|
|
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
|
* (the values of Lp1 to Lp7 are listed in the program)
|
|
* and
|
|
* | 2 14 | -58.45
|
|
* | Lp1*s +...+Lp7*s - R(z) | <= 2
|
|
* | |
|
|
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|
* In order to guarantee error in log below 1ulp, we compute log
|
|
* by
|
|
* log1p(f) = f - (hfsq - s*(hfsq+R)).
|
|
*
|
|
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
|
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
|
* Here ln2 is split into two floating point number:
|
|
* ln2_hi + ln2_lo,
|
|
* where n*ln2_hi is always exact for |n| < 2000.
|
|
*
|
|
* Special cases:
|
|
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
|
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
|
* log1p(NaN) is that NaN with no signal.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*
|
|
* Note: Assuming log() return accurate answer, the following
|
|
* algorithm can be used to compute log1p(x) to within a few ULP:
|
|
*
|
|
* u = 1+x;
|
|
* if(u==1.0) return x ; else
|
|
* return log(u)*(x/(u-1.0));
|
|
*
|
|
* See HP-15C Advanced Functions Handbook, p.193.
|
|
*/
|
|
static class Log1p {
|
|
private static double ln2_hi = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
|
|
private static double ln2_lo = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
|
|
private static double two54 = 1.80143985094819840000e+16; /* 43500000 00000000 */
|
|
private static double Lp1 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
|
|
private static double Lp2 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
|
|
private static double Lp3 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
|
|
private static double Lp4 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
|
|
private static double Lp5 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
|
|
private static double Lp6 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
|
|
private static double Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
|
|
private static double zero = 0.0;
|
|
|
|
public static double compute(double x) {
|
|
double hfsq,f=0,c=0,s,z,R,u;
|
|
int k,hx,hu=0,ax;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
ax = hx&0x7fffffff;
|
|
|
|
k = 1;
|
|
if (hx < 0x3FDA827A) { /* x < 0.41422 */
|
|
if(ax>=0x3ff00000) { /* x <= -1.0 */
|
|
/*
|
|
* Added redundant test against hx to work around VC++
|
|
* code generation problem.
|
|
*/
|
|
if(x==-1.0 && (hx==0xbff00000)) /* log1p(-1)=-inf */
|
|
return -two54/zero;
|
|
else
|
|
return (x-x)/(x-x); /* log1p(x<-1)=NaN */
|
|
}
|
|
if(ax<0x3e200000) { /* |x| < 2**-29 */
|
|
if(two54+x>zero /* raise inexact */
|
|
&&ax<0x3c900000) /* |x| < 2**-54 */
|
|
return x;
|
|
else
|
|
return x - x*x*0.5;
|
|
}
|
|
if(hx>0||hx<=((int)0xbfd2bec3)) {
|
|
k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
|
|
}
|
|
if (hx >= 0x7ff00000) return x+x;
|
|
if(k!=0) {
|
|
if(hx<0x43400000) {
|
|
u = 1.0+x;
|
|
hu = __HI(u); /* high word of u */
|
|
k = (hu>>20)-1023;
|
|
c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
|
|
c /= u;
|
|
} else {
|
|
u = x;
|
|
hu = __HI(u); /* high word of u */
|
|
k = (hu>>20)-1023;
|
|
c = 0;
|
|
}
|
|
hu &= 0x000fffff;
|
|
if(hu<0x6a09e) {
|
|
u = __HI(u, hu|0x3ff00000); /* normalize u */
|
|
} else {
|
|
k += 1;
|
|
u = __HI(u, hu|0x3fe00000); /* normalize u/2 */
|
|
hu = (0x00100000-hu)>>2;
|
|
}
|
|
f = u-1.0;
|
|
}
|
|
hfsq=0.5*f*f;
|
|
if(hu==0) { /* |f| < 2**-20 */
|
|
if(f==zero) { if(k==0) return zero;
|
|
else {c += k*ln2_lo; return k*ln2_hi+c;}}
|
|
R = hfsq*(1.0-0.66666666666666666*f);
|
|
if(k==0) return f-R; else
|
|
return k*ln2_hi-((R-(k*ln2_lo+c))-f);
|
|
}
|
|
s = f/(2.0+f);
|
|
z = s*s;
|
|
R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
|
|
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
|
return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
|
|
}
|
|
}
|
|
|
|
/* expm1(x)
|
|
* Returns exp(x)-1, the exponential of x minus 1.
|
|
*
|
|
* Method
|
|
* 1. Argument reduction:
|
|
* Given x, find r and integer k such that
|
|
*
|
|
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
|
|
*
|
|
* Here a correction term c will be computed to compensate
|
|
* the error in r when rounded to a floating-point number.
|
|
*
|
|
* 2. Approximating expm1(r) by a special rational function on
|
|
* the interval [0,0.34658]:
|
|
* Since
|
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
|
|
* we define R1(r*r) by
|
|
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
|
|
* That is,
|
|
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
|
|
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
|
|
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
|
|
* We use a special Reme algorithm on [0,0.347] to generate
|
|
* a polynomial of degree 5 in r*r to approximate R1. The
|
|
* maximum error of this polynomial approximation is bounded
|
|
* by 2**-61. In other words,
|
|
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
|
|
* where Q1 = -1.6666666666666567384E-2,
|
|
* Q2 = 3.9682539681370365873E-4,
|
|
* Q3 = -9.9206344733435987357E-6,
|
|
* Q4 = 2.5051361420808517002E-7,
|
|
* Q5 = -6.2843505682382617102E-9;
|
|
* (where z=r*r, and the values of Q1 to Q5 are listed below)
|
|
* with error bounded by
|
|
* | 5 | -61
|
|
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
|
|
* | |
|
|
*
|
|
* expm1(r) = exp(r)-1 is then computed by the following
|
|
* specific way which minimize the accumulation rounding error:
|
|
* 2 3
|
|
* r r [ 3 - (R1 + R1*r/2) ]
|
|
* expm1(r) = r + --- + --- * [--------------------]
|
|
* 2 2 [ 6 - r*(3 - R1*r/2) ]
|
|
*
|
|
* To compensate the error in the argument reduction, we use
|
|
* expm1(r+c) = expm1(r) + c + expm1(r)*c
|
|
* ~ expm1(r) + c + r*c
|
|
* Thus c+r*c will be added in as the correction terms for
|
|
* expm1(r+c). Now rearrange the term to avoid optimization
|
|
* screw up:
|
|
* ( 2 2 )
|
|
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
|
|
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
|
|
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
|
|
* ( )
|
|
*
|
|
* = r - E
|
|
* 3. Scale back to obtain expm1(x):
|
|
* From step 1, we have
|
|
* expm1(x) = either 2^k*[expm1(r)+1] - 1
|
|
* = or 2^k*[expm1(r) + (1-2^-k)]
|
|
* 4. Implementation notes:
|
|
* (A). To save one multiplication, we scale the coefficient Qi
|
|
* to Qi*2^i, and replace z by (x^2)/2.
|
|
* (B). To achieve maximum accuracy, we compute expm1(x) by
|
|
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
|
|
* (ii) if k=0, return r-E
|
|
* (iii) if k=-1, return 0.5*(r-E)-0.5
|
|
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
|
|
* else return 1.0+2.0*(r-E);
|
|
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
|
|
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
|
|
* (vii) return 2^k(1-((E+2^-k)-r))
|
|
*
|
|
* Special cases:
|
|
* expm1(INF) is INF, expm1(NaN) is NaN;
|
|
* expm1(-INF) is -1, and
|
|
* for finite argument, only expm1(0)=0 is exact.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Misc. info.
|
|
* For IEEE double
|
|
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
static class Expm1 {
|
|
private static final double one = 1.0;
|
|
private static final double huge = 1.0e+300;
|
|
private static final double tiny = 1.0e-300;
|
|
private static final double o_threshold = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
|
|
private static final double ln2_hi = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
|
|
private static final double ln2_lo = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
|
|
private static final double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
|
|
/* scaled coefficients related to expm1 */
|
|
private static final double Q1 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */
|
|
private static final double Q2 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */
|
|
private static final double Q3 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */
|
|
private static final double Q4 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */
|
|
private static final double Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
|
|
|
|
static double compute(double x) {
|
|
double y,hi,lo,c=0,t,e,hxs,hfx,r1;
|
|
int k,xsb;
|
|
/*unsigned*/ int hx;
|
|
|
|
hx = __HI(x); /* high word of x */
|
|
xsb = hx&0x80000000; /* sign bit of x */
|
|
if(xsb==0) y=x; else y= -x; /* y = |x| */
|
|
hx &= 0x7fffffff; /* high word of |x| */
|
|
|
|
/* filter out huge and non-finite argument */
|
|
if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
|
|
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
|
if(hx>=0x7ff00000) {
|
|
if(((hx&0xfffff)|__LO(x))!=0)
|
|
return x+x; /* NaN */
|
|
else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
|
|
}
|
|
if(x > o_threshold) return huge*huge; /* overflow */
|
|
}
|
|
if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
|
|
if(x+tiny<0.0) /* raise inexact */
|
|
return tiny-one; /* return -1 */
|
|
}
|
|
}
|
|
|
|
/* argument reduction */
|
|
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
|
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
|
if(xsb==0)
|
|
{hi = x - ln2_hi; lo = ln2_lo; k = 1;}
|
|
else
|
|
{hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
|
|
} else {
|
|
k = (int)(invln2*x+((xsb==0)?0.5:-0.5));
|
|
t = k;
|
|
hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
|
|
lo = t*ln2_lo;
|
|
}
|
|
x = hi - lo;
|
|
c = (hi-x)-lo;
|
|
}
|
|
else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
|
|
t = huge+x; /* return x with inexact flags when x!=0 */
|
|
return x - (t-(huge+x));
|
|
}
|
|
else k = 0;
|
|
|
|
/* x is now in primary range */
|
|
hfx = 0.5*x;
|
|
hxs = x*hfx;
|
|
r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
|
|
t = 3.0-r1*hfx;
|
|
e = hxs*((r1-t)/(6.0 - x*t));
|
|
if(k==0) return x - (x*e-hxs); /* c is 0 */
|
|
else {
|
|
e = (x*(e-c)-c);
|
|
e -= hxs;
|
|
if(k== -1) return 0.5*(x-e)-0.5;
|
|
if(k==1) {
|
|
if(x < -0.25) return -2.0*(e-(x+0.5));
|
|
else return one+2.0*(x-e);
|
|
}
|
|
if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
|
|
y = one-(e-x);
|
|
y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
|
|
return y-one;
|
|
}
|
|
t = one;
|
|
if(k<20) {
|
|
t = __HI(t, 0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
|
|
y = t-(e-x);
|
|
y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
|
|
} else {
|
|
t = __HI(t, ((0x3ff-k)<<20)); /* 2^-k */
|
|
y = x-(e+t);
|
|
y += one;
|
|
y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
|
|
}
|
|
}
|
|
return y;
|
|
}
|
|
}
|
|
}
|