2e87e3178c
Reviewed-by: gthornbr, kvn, cvarming
1823 lines
62 KiB
C++
1823 lines
62 KiB
C++
/*
|
|
* Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/classLoader.hpp"
|
|
#include "classfile/javaClasses.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "gc/shared/vmGCOperations.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#ifdef ASSERT
|
|
#include "memory/guardedMemory.hpp"
|
|
#endif
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "prims/jvm.h"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "prims/privilegedStack.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/atomic.inline.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/os.inline.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/vm_version.hpp"
|
|
#include "services/attachListener.hpp"
|
|
#include "services/mallocTracker.hpp"
|
|
#include "services/memTracker.hpp"
|
|
#include "services/nmtCommon.hpp"
|
|
#include "services/threadService.hpp"
|
|
#include "utilities/defaultStream.hpp"
|
|
#include "utilities/events.hpp"
|
|
|
|
# include <signal.h>
|
|
# include <errno.h>
|
|
|
|
OSThread* os::_starting_thread = NULL;
|
|
address os::_polling_page = NULL;
|
|
volatile int32_t* os::_mem_serialize_page = NULL;
|
|
uintptr_t os::_serialize_page_mask = 0;
|
|
long os::_rand_seed = 1;
|
|
int os::_processor_count = 0;
|
|
size_t os::_page_sizes[os::page_sizes_max];
|
|
|
|
#ifndef PRODUCT
|
|
julong os::num_mallocs = 0; // # of calls to malloc/realloc
|
|
julong os::alloc_bytes = 0; // # of bytes allocated
|
|
julong os::num_frees = 0; // # of calls to free
|
|
julong os::free_bytes = 0; // # of bytes freed
|
|
#endif
|
|
|
|
static juint cur_malloc_words = 0; // current size for MallocMaxTestWords
|
|
|
|
void os_init_globals() {
|
|
// Called from init_globals().
|
|
// See Threads::create_vm() in thread.cpp, and init.cpp.
|
|
os::init_globals();
|
|
}
|
|
|
|
// Fill in buffer with current local time as an ISO-8601 string.
|
|
// E.g., yyyy-mm-ddThh:mm:ss-zzzz.
|
|
// Returns buffer, or NULL if it failed.
|
|
// This would mostly be a call to
|
|
// strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
|
|
// except that on Windows the %z behaves badly, so we do it ourselves.
|
|
// Also, people wanted milliseconds on there,
|
|
// and strftime doesn't do milliseconds.
|
|
char* os::iso8601_time(char* buffer, size_t buffer_length) {
|
|
// Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
|
|
// 1 2
|
|
// 12345678901234567890123456789
|
|
// format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
|
|
static const size_t needed_buffer = 29;
|
|
|
|
// Sanity check the arguments
|
|
if (buffer == NULL) {
|
|
assert(false, "NULL buffer");
|
|
return NULL;
|
|
}
|
|
if (buffer_length < needed_buffer) {
|
|
assert(false, "buffer_length too small");
|
|
return NULL;
|
|
}
|
|
// Get the current time
|
|
jlong milliseconds_since_19700101 = javaTimeMillis();
|
|
const int milliseconds_per_microsecond = 1000;
|
|
const time_t seconds_since_19700101 =
|
|
milliseconds_since_19700101 / milliseconds_per_microsecond;
|
|
const int milliseconds_after_second =
|
|
milliseconds_since_19700101 % milliseconds_per_microsecond;
|
|
// Convert the time value to a tm and timezone variable
|
|
struct tm time_struct;
|
|
if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
|
|
assert(false, "Failed localtime_pd");
|
|
return NULL;
|
|
}
|
|
#if defined(_ALLBSD_SOURCE)
|
|
const time_t zone = (time_t) time_struct.tm_gmtoff;
|
|
#else
|
|
const time_t zone = timezone;
|
|
#endif
|
|
|
|
// If daylight savings time is in effect,
|
|
// we are 1 hour East of our time zone
|
|
const time_t seconds_per_minute = 60;
|
|
const time_t minutes_per_hour = 60;
|
|
const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
|
|
time_t UTC_to_local = zone;
|
|
if (time_struct.tm_isdst > 0) {
|
|
UTC_to_local = UTC_to_local - seconds_per_hour;
|
|
}
|
|
// Compute the time zone offset.
|
|
// localtime_pd() sets timezone to the difference (in seconds)
|
|
// between UTC and and local time.
|
|
// ISO 8601 says we need the difference between local time and UTC,
|
|
// we change the sign of the localtime_pd() result.
|
|
const time_t local_to_UTC = -(UTC_to_local);
|
|
// Then we have to figure out if if we are ahead (+) or behind (-) UTC.
|
|
char sign_local_to_UTC = '+';
|
|
time_t abs_local_to_UTC = local_to_UTC;
|
|
if (local_to_UTC < 0) {
|
|
sign_local_to_UTC = '-';
|
|
abs_local_to_UTC = -(abs_local_to_UTC);
|
|
}
|
|
// Convert time zone offset seconds to hours and minutes.
|
|
const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
|
|
const time_t zone_min =
|
|
((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
|
|
|
|
// Print an ISO 8601 date and time stamp into the buffer
|
|
const int year = 1900 + time_struct.tm_year;
|
|
const int month = 1 + time_struct.tm_mon;
|
|
const int printed = jio_snprintf(buffer, buffer_length,
|
|
"%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
|
|
year,
|
|
month,
|
|
time_struct.tm_mday,
|
|
time_struct.tm_hour,
|
|
time_struct.tm_min,
|
|
time_struct.tm_sec,
|
|
milliseconds_after_second,
|
|
sign_local_to_UTC,
|
|
zone_hours,
|
|
zone_min);
|
|
if (printed == 0) {
|
|
assert(false, "Failed jio_printf");
|
|
return NULL;
|
|
}
|
|
return buffer;
|
|
}
|
|
|
|
OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
|
|
#ifdef ASSERT
|
|
if (!(!thread->is_Java_thread() ||
|
|
Thread::current() == thread ||
|
|
Threads_lock->owned_by_self()
|
|
|| thread->is_Compiler_thread()
|
|
)) {
|
|
assert(false, "possibility of dangling Thread pointer");
|
|
}
|
|
#endif
|
|
|
|
if (p >= MinPriority && p <= MaxPriority) {
|
|
int priority = java_to_os_priority[p];
|
|
return set_native_priority(thread, priority);
|
|
} else {
|
|
assert(false, "Should not happen");
|
|
return OS_ERR;
|
|
}
|
|
}
|
|
|
|
// The mapping from OS priority back to Java priority may be inexact because
|
|
// Java priorities can map M:1 with native priorities. If you want the definite
|
|
// Java priority then use JavaThread::java_priority()
|
|
OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
|
|
int p;
|
|
int os_prio;
|
|
OSReturn ret = get_native_priority(thread, &os_prio);
|
|
if (ret != OS_OK) return ret;
|
|
|
|
if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
|
|
for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
|
|
} else {
|
|
// niceness values are in reverse order
|
|
for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
|
|
}
|
|
priority = (ThreadPriority)p;
|
|
return OS_OK;
|
|
}
|
|
|
|
|
|
// --------------------- sun.misc.Signal (optional) ---------------------
|
|
|
|
|
|
// SIGBREAK is sent by the keyboard to query the VM state
|
|
#ifndef SIGBREAK
|
|
#define SIGBREAK SIGQUIT
|
|
#endif
|
|
|
|
// sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
|
|
|
|
|
|
static void signal_thread_entry(JavaThread* thread, TRAPS) {
|
|
os::set_priority(thread, NearMaxPriority);
|
|
while (true) {
|
|
int sig;
|
|
{
|
|
// FIXME : Currently we have not decided what should be the status
|
|
// for this java thread blocked here. Once we decide about
|
|
// that we should fix this.
|
|
sig = os::signal_wait();
|
|
}
|
|
if (sig == os::sigexitnum_pd()) {
|
|
// Terminate the signal thread
|
|
return;
|
|
}
|
|
|
|
switch (sig) {
|
|
case SIGBREAK: {
|
|
// Check if the signal is a trigger to start the Attach Listener - in that
|
|
// case don't print stack traces.
|
|
if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
|
|
continue;
|
|
}
|
|
// Print stack traces
|
|
// Any SIGBREAK operations added here should make sure to flush
|
|
// the output stream (e.g. tty->flush()) after output. See 4803766.
|
|
// Each module also prints an extra carriage return after its output.
|
|
VM_PrintThreads op;
|
|
VMThread::execute(&op);
|
|
VM_PrintJNI jni_op;
|
|
VMThread::execute(&jni_op);
|
|
VM_FindDeadlocks op1(tty);
|
|
VMThread::execute(&op1);
|
|
Universe::print_heap_at_SIGBREAK();
|
|
if (PrintClassHistogram) {
|
|
VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
|
|
VMThread::execute(&op1);
|
|
}
|
|
if (JvmtiExport::should_post_data_dump()) {
|
|
JvmtiExport::post_data_dump();
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
// Dispatch the signal to java
|
|
HandleMark hm(THREAD);
|
|
Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
|
|
KlassHandle klass (THREAD, k);
|
|
if (klass.not_null()) {
|
|
JavaValue result(T_VOID);
|
|
JavaCallArguments args;
|
|
args.push_int(sig);
|
|
JavaCalls::call_static(
|
|
&result,
|
|
klass,
|
|
vmSymbols::dispatch_name(),
|
|
vmSymbols::int_void_signature(),
|
|
&args,
|
|
THREAD
|
|
);
|
|
}
|
|
if (HAS_PENDING_EXCEPTION) {
|
|
// tty is initialized early so we don't expect it to be null, but
|
|
// if it is we can't risk doing an initialization that might
|
|
// trigger additional out-of-memory conditions
|
|
if (tty != NULL) {
|
|
char klass_name[256];
|
|
char tmp_sig_name[16];
|
|
const char* sig_name = "UNKNOWN";
|
|
InstanceKlass::cast(PENDING_EXCEPTION->klass())->
|
|
name()->as_klass_external_name(klass_name, 256);
|
|
if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
|
|
sig_name = tmp_sig_name;
|
|
warning("Exception %s occurred dispatching signal %s to handler"
|
|
"- the VM may need to be forcibly terminated",
|
|
klass_name, sig_name );
|
|
}
|
|
CLEAR_PENDING_EXCEPTION;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void os::init_before_ergo() {
|
|
// We need to initialize large page support here because ergonomics takes some
|
|
// decisions depending on large page support and the calculated large page size.
|
|
large_page_init();
|
|
|
|
// We need to adapt the configured number of stack protection pages given
|
|
// in 4K pages to the actual os page size. We must do this before setting
|
|
// up minimal stack sizes etc. in os::init_2().
|
|
JavaThread::set_stack_red_zone_size (align_size_up(StackRedPages * 4 * K, vm_page_size()));
|
|
JavaThread::set_stack_yellow_zone_size (align_size_up(StackYellowPages * 4 * K, vm_page_size()));
|
|
JavaThread::set_stack_reserved_zone_size(align_size_up(StackReservedPages * 4 * K, vm_page_size()));
|
|
JavaThread::set_stack_shadow_zone_size (align_size_up(StackShadowPages * 4 * K, vm_page_size()));
|
|
|
|
// VM version initialization identifies some characteristics of the
|
|
// platform that are used during ergonomic decisions.
|
|
VM_Version::init_before_ergo();
|
|
}
|
|
|
|
void os::signal_init() {
|
|
if (!ReduceSignalUsage) {
|
|
// Setup JavaThread for processing signals
|
|
EXCEPTION_MARK;
|
|
Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
|
|
instanceKlassHandle klass (THREAD, k);
|
|
instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
|
|
|
|
const char thread_name[] = "Signal Dispatcher";
|
|
Handle string = java_lang_String::create_from_str(thread_name, CHECK);
|
|
|
|
// Initialize thread_oop to put it into the system threadGroup
|
|
Handle thread_group (THREAD, Universe::system_thread_group());
|
|
JavaValue result(T_VOID);
|
|
JavaCalls::call_special(&result, thread_oop,
|
|
klass,
|
|
vmSymbols::object_initializer_name(),
|
|
vmSymbols::threadgroup_string_void_signature(),
|
|
thread_group,
|
|
string,
|
|
CHECK);
|
|
|
|
KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
|
|
JavaCalls::call_special(&result,
|
|
thread_group,
|
|
group,
|
|
vmSymbols::add_method_name(),
|
|
vmSymbols::thread_void_signature(),
|
|
thread_oop, // ARG 1
|
|
CHECK);
|
|
|
|
os::signal_init_pd();
|
|
|
|
{ MutexLocker mu(Threads_lock);
|
|
JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
|
|
|
|
// At this point it may be possible that no osthread was created for the
|
|
// JavaThread due to lack of memory. We would have to throw an exception
|
|
// in that case. However, since this must work and we do not allow
|
|
// exceptions anyway, check and abort if this fails.
|
|
if (signal_thread == NULL || signal_thread->osthread() == NULL) {
|
|
vm_exit_during_initialization("java.lang.OutOfMemoryError",
|
|
os::native_thread_creation_failed_msg());
|
|
}
|
|
|
|
java_lang_Thread::set_thread(thread_oop(), signal_thread);
|
|
java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
|
|
java_lang_Thread::set_daemon(thread_oop());
|
|
|
|
signal_thread->set_threadObj(thread_oop());
|
|
Threads::add(signal_thread);
|
|
Thread::start(signal_thread);
|
|
}
|
|
// Handle ^BREAK
|
|
os::signal(SIGBREAK, os::user_handler());
|
|
}
|
|
}
|
|
|
|
|
|
void os::terminate_signal_thread() {
|
|
if (!ReduceSignalUsage)
|
|
signal_notify(sigexitnum_pd());
|
|
}
|
|
|
|
|
|
// --------------------- loading libraries ---------------------
|
|
|
|
typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
|
|
extern struct JavaVM_ main_vm;
|
|
|
|
static void* _native_java_library = NULL;
|
|
|
|
void* os::native_java_library() {
|
|
if (_native_java_library == NULL) {
|
|
char buffer[JVM_MAXPATHLEN];
|
|
char ebuf[1024];
|
|
|
|
// Try to load verify dll first. In 1.3 java dll depends on it and is not
|
|
// always able to find it when the loading executable is outside the JDK.
|
|
// In order to keep working with 1.2 we ignore any loading errors.
|
|
if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
|
|
"verify")) {
|
|
dll_load(buffer, ebuf, sizeof(ebuf));
|
|
}
|
|
|
|
// Load java dll
|
|
if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
|
|
"java")) {
|
|
_native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
|
|
}
|
|
if (_native_java_library == NULL) {
|
|
vm_exit_during_initialization("Unable to load native library", ebuf);
|
|
}
|
|
|
|
#if defined(__OpenBSD__)
|
|
// Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
|
|
// ignore errors
|
|
if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
|
|
"net")) {
|
|
dll_load(buffer, ebuf, sizeof(ebuf));
|
|
}
|
|
#endif
|
|
}
|
|
return _native_java_library;
|
|
}
|
|
|
|
/*
|
|
* Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
|
|
* If check_lib == true then we are looking for an
|
|
* Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
|
|
* this library is statically linked into the image.
|
|
* If check_lib == false then we will look for the appropriate symbol in the
|
|
* executable if agent_lib->is_static_lib() == true or in the shared library
|
|
* referenced by 'handle'.
|
|
*/
|
|
void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
|
|
const char *syms[], size_t syms_len) {
|
|
assert(agent_lib != NULL, "sanity check");
|
|
const char *lib_name;
|
|
void *handle = agent_lib->os_lib();
|
|
void *entryName = NULL;
|
|
char *agent_function_name;
|
|
size_t i;
|
|
|
|
// If checking then use the agent name otherwise test is_static_lib() to
|
|
// see how to process this lookup
|
|
lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
|
|
for (i = 0; i < syms_len; i++) {
|
|
agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
|
|
if (agent_function_name == NULL) {
|
|
break;
|
|
}
|
|
entryName = dll_lookup(handle, agent_function_name);
|
|
FREE_C_HEAP_ARRAY(char, agent_function_name);
|
|
if (entryName != NULL) {
|
|
break;
|
|
}
|
|
}
|
|
return entryName;
|
|
}
|
|
|
|
// See if the passed in agent is statically linked into the VM image.
|
|
bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
|
|
size_t syms_len) {
|
|
void *ret;
|
|
void *proc_handle;
|
|
void *save_handle;
|
|
|
|
assert(agent_lib != NULL, "sanity check");
|
|
if (agent_lib->name() == NULL) {
|
|
return false;
|
|
}
|
|
proc_handle = get_default_process_handle();
|
|
// Check for Agent_OnLoad/Attach_lib_name function
|
|
save_handle = agent_lib->os_lib();
|
|
// We want to look in this process' symbol table.
|
|
agent_lib->set_os_lib(proc_handle);
|
|
ret = find_agent_function(agent_lib, true, syms, syms_len);
|
|
if (ret != NULL) {
|
|
// Found an entry point like Agent_OnLoad_lib_name so we have a static agent
|
|
agent_lib->set_valid();
|
|
agent_lib->set_static_lib(true);
|
|
return true;
|
|
}
|
|
agent_lib->set_os_lib(save_handle);
|
|
return false;
|
|
}
|
|
|
|
// --------------------- heap allocation utilities ---------------------
|
|
|
|
char *os::strdup(const char *str, MEMFLAGS flags) {
|
|
size_t size = strlen(str);
|
|
char *dup_str = (char *)malloc(size + 1, flags);
|
|
if (dup_str == NULL) return NULL;
|
|
strcpy(dup_str, str);
|
|
return dup_str;
|
|
}
|
|
|
|
char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
|
|
char* p = os::strdup(str, flags);
|
|
if (p == NULL) {
|
|
vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
#define paranoid 0 /* only set to 1 if you suspect checking code has bug */
|
|
|
|
#ifdef ASSERT
|
|
|
|
static void verify_memory(void* ptr) {
|
|
GuardedMemory guarded(ptr);
|
|
if (!guarded.verify_guards()) {
|
|
tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
|
|
tty->print_cr("## memory stomp:");
|
|
guarded.print_on(tty);
|
|
fatal("memory stomping error");
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// This function supports testing of the malloc out of memory
|
|
// condition without really running the system out of memory.
|
|
//
|
|
static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
|
|
if (MallocMaxTestWords > 0) {
|
|
jint words = (jint)(alloc_size / BytesPerWord);
|
|
|
|
if ((cur_malloc_words + words) > MallocMaxTestWords) {
|
|
return true;
|
|
}
|
|
Atomic::add(words, (volatile jint *)&cur_malloc_words);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void* os::malloc(size_t size, MEMFLAGS flags) {
|
|
return os::malloc(size, flags, CALLER_PC);
|
|
}
|
|
|
|
void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
|
|
NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
|
|
NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
|
|
|
|
#ifdef ASSERT
|
|
// checking for the WatcherThread and crash_protection first
|
|
// since os::malloc can be called when the libjvm.{dll,so} is
|
|
// first loaded and we don't have a thread yet.
|
|
// try to find the thread after we see that the watcher thread
|
|
// exists and has crash protection.
|
|
WatcherThread *wt = WatcherThread::watcher_thread();
|
|
if (wt != NULL && wt->has_crash_protection()) {
|
|
Thread* thread = Thread::current_or_null();
|
|
if (thread == wt) {
|
|
assert(!wt->has_crash_protection(),
|
|
"Can't malloc with crash protection from WatcherThread");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (size == 0) {
|
|
// return a valid pointer if size is zero
|
|
// if NULL is returned the calling functions assume out of memory.
|
|
size = 1;
|
|
}
|
|
|
|
// NMT support
|
|
NMT_TrackingLevel level = MemTracker::tracking_level();
|
|
size_t nmt_header_size = MemTracker::malloc_header_size(level);
|
|
|
|
#ifndef ASSERT
|
|
const size_t alloc_size = size + nmt_header_size;
|
|
#else
|
|
const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
|
|
if (size + nmt_header_size > alloc_size) { // Check for rollover.
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
|
|
|
|
// For the test flag -XX:MallocMaxTestWords
|
|
if (has_reached_max_malloc_test_peak(size)) {
|
|
return NULL;
|
|
}
|
|
|
|
u_char* ptr;
|
|
ptr = (u_char*)::malloc(alloc_size);
|
|
|
|
#ifdef ASSERT
|
|
if (ptr == NULL) {
|
|
return NULL;
|
|
}
|
|
// Wrap memory with guard
|
|
GuardedMemory guarded(ptr, size + nmt_header_size);
|
|
ptr = guarded.get_user_ptr();
|
|
#endif
|
|
if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
|
|
tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
|
|
breakpoint();
|
|
}
|
|
debug_only(if (paranoid) verify_memory(ptr));
|
|
if (PrintMalloc && tty != NULL) {
|
|
tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
|
|
}
|
|
|
|
// we do not track guard memory
|
|
return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
|
|
}
|
|
|
|
void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
|
|
return os::realloc(memblock, size, flags, CALLER_PC);
|
|
}
|
|
|
|
void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
|
|
|
|
// For the test flag -XX:MallocMaxTestWords
|
|
if (has_reached_max_malloc_test_peak(size)) {
|
|
return NULL;
|
|
}
|
|
|
|
#ifndef ASSERT
|
|
NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
|
|
NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
|
|
// NMT support
|
|
void* membase = MemTracker::record_free(memblock);
|
|
NMT_TrackingLevel level = MemTracker::tracking_level();
|
|
size_t nmt_header_size = MemTracker::malloc_header_size(level);
|
|
void* ptr = ::realloc(membase, size + nmt_header_size);
|
|
return MemTracker::record_malloc(ptr, size, memflags, stack, level);
|
|
#else
|
|
if (memblock == NULL) {
|
|
return os::malloc(size, memflags, stack);
|
|
}
|
|
if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
|
|
tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
|
|
breakpoint();
|
|
}
|
|
// NMT support
|
|
void* membase = MemTracker::malloc_base(memblock);
|
|
verify_memory(membase);
|
|
NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
|
|
if (size == 0) {
|
|
return NULL;
|
|
}
|
|
// always move the block
|
|
void* ptr = os::malloc(size, memflags, stack);
|
|
if (PrintMalloc && tty != NULL) {
|
|
tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
|
|
}
|
|
// Copy to new memory if malloc didn't fail
|
|
if ( ptr != NULL ) {
|
|
GuardedMemory guarded(MemTracker::malloc_base(memblock));
|
|
// Guard's user data contains NMT header
|
|
size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
|
|
memcpy(ptr, memblock, MIN2(size, memblock_size));
|
|
if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
|
|
if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
|
|
tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
|
|
breakpoint();
|
|
}
|
|
os::free(memblock);
|
|
}
|
|
return ptr;
|
|
#endif
|
|
}
|
|
|
|
|
|
void os::free(void *memblock) {
|
|
NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
|
|
#ifdef ASSERT
|
|
if (memblock == NULL) return;
|
|
if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
|
|
if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
|
|
breakpoint();
|
|
}
|
|
void* membase = MemTracker::record_free(memblock);
|
|
verify_memory(membase);
|
|
NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
|
|
|
|
GuardedMemory guarded(membase);
|
|
size_t size = guarded.get_user_size();
|
|
inc_stat_counter(&free_bytes, size);
|
|
membase = guarded.release_for_freeing();
|
|
if (PrintMalloc && tty != NULL) {
|
|
fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
|
|
}
|
|
::free(membase);
|
|
#else
|
|
void* membase = MemTracker::record_free(memblock);
|
|
::free(membase);
|
|
#endif
|
|
}
|
|
|
|
void os::init_random(long initval) {
|
|
_rand_seed = initval;
|
|
}
|
|
|
|
|
|
long os::random() {
|
|
/* standard, well-known linear congruential random generator with
|
|
* next_rand = (16807*seed) mod (2**31-1)
|
|
* see
|
|
* (1) "Random Number Generators: Good Ones Are Hard to Find",
|
|
* S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
|
|
* (2) "Two Fast Implementations of the 'Minimal Standard' Random
|
|
* Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
|
|
*/
|
|
const long a = 16807;
|
|
const unsigned long m = 2147483647;
|
|
const long q = m / a; assert(q == 127773, "weird math");
|
|
const long r = m % a; assert(r == 2836, "weird math");
|
|
|
|
// compute az=2^31p+q
|
|
unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
|
|
unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
|
|
lo += (hi & 0x7FFF) << 16;
|
|
|
|
// if q overflowed, ignore the overflow and increment q
|
|
if (lo > m) {
|
|
lo &= m;
|
|
++lo;
|
|
}
|
|
lo += hi >> 15;
|
|
|
|
// if (p+q) overflowed, ignore the overflow and increment (p+q)
|
|
if (lo > m) {
|
|
lo &= m;
|
|
++lo;
|
|
}
|
|
return (_rand_seed = lo);
|
|
}
|
|
|
|
// The INITIALIZED state is distinguished from the SUSPENDED state because the
|
|
// conditions in which a thread is first started are different from those in which
|
|
// a suspension is resumed. These differences make it hard for us to apply the
|
|
// tougher checks when starting threads that we want to do when resuming them.
|
|
// However, when start_thread is called as a result of Thread.start, on a Java
|
|
// thread, the operation is synchronized on the Java Thread object. So there
|
|
// cannot be a race to start the thread and hence for the thread to exit while
|
|
// we are working on it. Non-Java threads that start Java threads either have
|
|
// to do so in a context in which races are impossible, or should do appropriate
|
|
// locking.
|
|
|
|
void os::start_thread(Thread* thread) {
|
|
// guard suspend/resume
|
|
MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
|
|
OSThread* osthread = thread->osthread();
|
|
osthread->set_state(RUNNABLE);
|
|
pd_start_thread(thread);
|
|
}
|
|
|
|
void os::abort(bool dump_core) {
|
|
abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
|
|
}
|
|
|
|
//---------------------------------------------------------------------------
|
|
// Helper functions for fatal error handler
|
|
|
|
void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
|
|
assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
|
|
|
|
int cols = 0;
|
|
int cols_per_line = 0;
|
|
switch (unitsize) {
|
|
case 1: cols_per_line = 16; break;
|
|
case 2: cols_per_line = 8; break;
|
|
case 4: cols_per_line = 4; break;
|
|
case 8: cols_per_line = 2; break;
|
|
default: return;
|
|
}
|
|
|
|
address p = start;
|
|
st->print(PTR_FORMAT ": ", p2i(start));
|
|
while (p < end) {
|
|
switch (unitsize) {
|
|
case 1: st->print("%02x", *(u1*)p); break;
|
|
case 2: st->print("%04x", *(u2*)p); break;
|
|
case 4: st->print("%08x", *(u4*)p); break;
|
|
case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
|
|
}
|
|
p += unitsize;
|
|
cols++;
|
|
if (cols >= cols_per_line && p < end) {
|
|
cols = 0;
|
|
st->cr();
|
|
st->print(PTR_FORMAT ": ", p2i(p));
|
|
} else {
|
|
st->print(" ");
|
|
}
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_environment_variables(outputStream* st, const char** env_list) {
|
|
if (env_list) {
|
|
st->print_cr("Environment Variables:");
|
|
|
|
for (int i = 0; env_list[i] != NULL; i++) {
|
|
char *envvar = ::getenv(env_list[i]);
|
|
if (envvar != NULL) {
|
|
st->print("%s", env_list[i]);
|
|
st->print("=");
|
|
st->print_cr("%s", envvar);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
|
|
// cpu
|
|
st->print("CPU:");
|
|
st->print("total %d", os::processor_count());
|
|
// It's not safe to query number of active processors after crash
|
|
// st->print("(active %d)", os::active_processor_count());
|
|
st->print(" %s", VM_Version::features_string());
|
|
st->cr();
|
|
pd_print_cpu_info(st, buf, buflen);
|
|
}
|
|
|
|
// Print a one line string summarizing the cpu, number of cores, memory, and operating system version
|
|
void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
|
|
st->print("Host: ");
|
|
#ifndef PRODUCT
|
|
if (get_host_name(buf, buflen)) {
|
|
st->print("%s, ", buf);
|
|
}
|
|
#endif // PRODUCT
|
|
get_summary_cpu_info(buf, buflen);
|
|
st->print("%s, ", buf);
|
|
size_t mem = physical_memory()/G;
|
|
if (mem == 0) { // for low memory systems
|
|
mem = physical_memory()/M;
|
|
st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
|
|
} else {
|
|
st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
|
|
}
|
|
get_summary_os_info(buf, buflen);
|
|
st->print_raw(buf);
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
|
|
const int secs_per_day = 86400;
|
|
const int secs_per_hour = 3600;
|
|
const int secs_per_min = 60;
|
|
|
|
time_t tloc;
|
|
(void)time(&tloc);
|
|
char* timestring = ctime(&tloc); // ctime adds newline.
|
|
// edit out the newline
|
|
char* nl = strchr(timestring, '\n');
|
|
if (nl != NULL) {
|
|
*nl = '\0';
|
|
}
|
|
|
|
struct tm tz;
|
|
if (localtime_pd(&tloc, &tz) != NULL) {
|
|
::strftime(buf, buflen, "%Z", &tz);
|
|
st->print("Time: %s %s", timestring, buf);
|
|
} else {
|
|
st->print("Time: %s", timestring);
|
|
}
|
|
|
|
double t = os::elapsedTime();
|
|
// NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
|
|
// Linux. Must be a bug in glibc ? Workaround is to round "t" to int
|
|
// before printf. We lost some precision, but who cares?
|
|
int eltime = (int)t; // elapsed time in seconds
|
|
|
|
// print elapsed time in a human-readable format:
|
|
int eldays = eltime / secs_per_day;
|
|
int day_secs = eldays * secs_per_day;
|
|
int elhours = (eltime - day_secs) / secs_per_hour;
|
|
int hour_secs = elhours * secs_per_hour;
|
|
int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
|
|
int minute_secs = elmins * secs_per_min;
|
|
int elsecs = (eltime - day_secs - hour_secs - minute_secs);
|
|
st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
|
|
}
|
|
|
|
// moved from debug.cpp (used to be find()) but still called from there
|
|
// The verbose parameter is only set by the debug code in one case
|
|
void os::print_location(outputStream* st, intptr_t x, bool verbose) {
|
|
address addr = (address)x;
|
|
CodeBlob* b = CodeCache::find_blob_unsafe(addr);
|
|
if (b != NULL) {
|
|
if (b->is_buffer_blob()) {
|
|
// the interpreter is generated into a buffer blob
|
|
InterpreterCodelet* i = Interpreter::codelet_containing(addr);
|
|
if (i != NULL) {
|
|
st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
|
|
i->print_on(st);
|
|
return;
|
|
}
|
|
if (Interpreter::contains(addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
|
|
" (not bytecode specific)", p2i(addr));
|
|
return;
|
|
}
|
|
//
|
|
if (AdapterHandlerLibrary::contains(b)) {
|
|
st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
|
|
AdapterHandlerLibrary::print_handler_on(st, b);
|
|
}
|
|
// the stubroutines are generated into a buffer blob
|
|
StubCodeDesc* d = StubCodeDesc::desc_for(addr);
|
|
if (d != NULL) {
|
|
st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
|
|
d->print_on(st);
|
|
st->cr();
|
|
return;
|
|
}
|
|
if (StubRoutines::contains(addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
|
|
return;
|
|
}
|
|
// the InlineCacheBuffer is using stubs generated into a buffer blob
|
|
if (InlineCacheBuffer::contains(addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
|
|
return;
|
|
}
|
|
VtableStub* v = VtableStubs::stub_containing(addr);
|
|
if (v != NULL) {
|
|
st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
|
|
v->print_on(st);
|
|
st->cr();
|
|
return;
|
|
}
|
|
}
|
|
nmethod* nm = b->as_nmethod_or_null();
|
|
if (nm != NULL) {
|
|
ResourceMark rm;
|
|
st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
|
|
p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
|
|
if (verbose) {
|
|
st->print(" for ");
|
|
nm->method()->print_value_on(st);
|
|
}
|
|
st->cr();
|
|
nm->print_nmethod(verbose);
|
|
return;
|
|
}
|
|
st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
|
|
b->print_on(st);
|
|
return;
|
|
}
|
|
|
|
if (Universe::heap()->is_in(addr)) {
|
|
HeapWord* p = Universe::heap()->block_start(addr);
|
|
bool print = false;
|
|
// If we couldn't find it it just may mean that heap wasn't parsable
|
|
// See if we were just given an oop directly
|
|
if (p != NULL && Universe::heap()->block_is_obj(p)) {
|
|
print = true;
|
|
} else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
|
|
p = (HeapWord*) addr;
|
|
print = true;
|
|
}
|
|
if (print) {
|
|
if (p == (HeapWord*) addr) {
|
|
st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
|
|
} else {
|
|
st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
|
|
}
|
|
oop(p)->print_on(st);
|
|
return;
|
|
}
|
|
} else {
|
|
if (Universe::heap()->is_in_reserved(addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is an unallocated location "
|
|
"in the heap", p2i(addr));
|
|
return;
|
|
}
|
|
}
|
|
if (JNIHandles::is_global_handle((jobject) addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
|
|
return;
|
|
}
|
|
if (JNIHandles::is_weak_global_handle((jobject) addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
|
|
return;
|
|
}
|
|
#ifndef PRODUCT
|
|
// we don't keep the block list in product mode
|
|
if (JNIHandleBlock::any_contains((jobject) addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
|
|
// Check for privilege stack
|
|
if (thread->privileged_stack_top() != NULL &&
|
|
thread->privileged_stack_top()->contains(addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
|
|
"for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
|
|
if (verbose) thread->print_on(st);
|
|
return;
|
|
}
|
|
// If the addr is a java thread print information about that.
|
|
if (addr == (address)thread) {
|
|
if (verbose) {
|
|
thread->print_on(st);
|
|
} else {
|
|
st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
|
|
}
|
|
return;
|
|
}
|
|
// If the addr is in the stack region for this thread then report that
|
|
// and print thread info
|
|
if (thread->on_local_stack(addr)) {
|
|
st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
|
|
INTPTR_FORMAT, p2i(addr), p2i(thread));
|
|
if (verbose) thread->print_on(st);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
// Check if in metaspace and print types that have vptrs (only method now)
|
|
if (Metaspace::contains(addr)) {
|
|
if (Method::has_method_vptr((const void*)addr)) {
|
|
((Method*)addr)->print_value_on(st);
|
|
st->cr();
|
|
} else {
|
|
// Use addr->print() from the debugger instead (not here)
|
|
st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Try an OS specific find
|
|
if (os::find(addr, st)) {
|
|
return;
|
|
}
|
|
|
|
st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
|
|
}
|
|
|
|
// Looks like all platforms except IA64 can use the same function to check
|
|
// if C stack is walkable beyond current frame. The check for fp() is not
|
|
// necessary on Sparc, but it's harmless.
|
|
bool os::is_first_C_frame(frame* fr) {
|
|
#if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
|
|
// On IA64 we have to check if the callers bsp is still valid
|
|
// (i.e. within the register stack bounds).
|
|
// Notice: this only works for threads created by the VM and only if
|
|
// we walk the current stack!!! If we want to be able to walk
|
|
// arbitrary other threads, we'll have to somehow store the thread
|
|
// object in the frame.
|
|
Thread *thread = Thread::current();
|
|
if ((address)fr->fp() <=
|
|
thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
|
|
// This check is a little hacky, because on Linux the first C
|
|
// frame's ('start_thread') register stack frame starts at
|
|
// "register_stack_base + 0x48" while on HPUX, the first C frame's
|
|
// ('__pthread_bound_body') register stack frame seems to really
|
|
// start at "register_stack_base".
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
#elif defined(IA64) && defined(_WIN32)
|
|
return true;
|
|
#else
|
|
// Load up sp, fp, sender sp and sender fp, check for reasonable values.
|
|
// Check usp first, because if that's bad the other accessors may fault
|
|
// on some architectures. Ditto ufp second, etc.
|
|
uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
|
|
// sp on amd can be 32 bit aligned.
|
|
uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
|
|
|
|
uintptr_t usp = (uintptr_t)fr->sp();
|
|
if ((usp & sp_align_mask) != 0) return true;
|
|
|
|
uintptr_t ufp = (uintptr_t)fr->fp();
|
|
if ((ufp & fp_align_mask) != 0) return true;
|
|
|
|
uintptr_t old_sp = (uintptr_t)fr->sender_sp();
|
|
if ((old_sp & sp_align_mask) != 0) return true;
|
|
if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
|
|
|
|
uintptr_t old_fp = (uintptr_t)fr->link();
|
|
if ((old_fp & fp_align_mask) != 0) return true;
|
|
if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
|
|
|
|
// stack grows downwards; if old_fp is below current fp or if the stack
|
|
// frame is too large, either the stack is corrupted or fp is not saved
|
|
// on stack (i.e. on x86, ebp may be used as general register). The stack
|
|
// is not walkable beyond current frame.
|
|
if (old_fp < ufp) return true;
|
|
if (old_fp - ufp > 64 * K) return true;
|
|
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
extern "C" void test_random() {
|
|
const double m = 2147483647;
|
|
double mean = 0.0, variance = 0.0, t;
|
|
long reps = 10000;
|
|
unsigned long seed = 1;
|
|
|
|
tty->print_cr("seed %ld for %ld repeats...", seed, reps);
|
|
os::init_random(seed);
|
|
long num;
|
|
for (int k = 0; k < reps; k++) {
|
|
num = os::random();
|
|
double u = (double)num / m;
|
|
assert(u >= 0.0 && u <= 1.0, "bad random number!");
|
|
|
|
// calculate mean and variance of the random sequence
|
|
mean += u;
|
|
variance += (u*u);
|
|
}
|
|
mean /= reps;
|
|
variance /= (reps - 1);
|
|
|
|
assert(num == 1043618065, "bad seed");
|
|
tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
|
|
tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
|
|
const double eps = 0.0001;
|
|
t = fabsd(mean - 0.5018);
|
|
assert(t < eps, "bad mean");
|
|
t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
|
|
assert(t < eps, "bad variance");
|
|
}
|
|
#endif
|
|
|
|
|
|
// Set up the boot classpath.
|
|
|
|
char* os::format_boot_path(const char* format_string,
|
|
const char* home,
|
|
int home_len,
|
|
char fileSep,
|
|
char pathSep) {
|
|
assert((fileSep == '/' && pathSep == ':') ||
|
|
(fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
|
|
|
|
// Scan the format string to determine the length of the actual
|
|
// boot classpath, and handle platform dependencies as well.
|
|
int formatted_path_len = 0;
|
|
const char* p;
|
|
for (p = format_string; *p != 0; ++p) {
|
|
if (*p == '%') formatted_path_len += home_len - 1;
|
|
++formatted_path_len;
|
|
}
|
|
|
|
char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
|
|
if (formatted_path == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// Create boot classpath from format, substituting separator chars and
|
|
// java home directory.
|
|
char* q = formatted_path;
|
|
for (p = format_string; *p != 0; ++p) {
|
|
switch (*p) {
|
|
case '%':
|
|
strcpy(q, home);
|
|
q += home_len;
|
|
break;
|
|
case '/':
|
|
*q++ = fileSep;
|
|
break;
|
|
case ':':
|
|
*q++ = pathSep;
|
|
break;
|
|
default:
|
|
*q++ = *p;
|
|
}
|
|
}
|
|
*q = '\0';
|
|
|
|
assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
|
|
return formatted_path;
|
|
}
|
|
|
|
bool os::set_boot_path(char fileSep, char pathSep) {
|
|
const char* home = Arguments::get_java_home();
|
|
int home_len = (int)strlen(home);
|
|
|
|
struct stat st;
|
|
|
|
// modular image if "modules" jimage exists
|
|
char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
|
|
if (jimage == NULL) return false;
|
|
bool has_jimage = (os::stat(jimage, &st) == 0);
|
|
if (has_jimage) {
|
|
Arguments::set_sysclasspath(jimage);
|
|
FREE_C_HEAP_ARRAY(char, jimage);
|
|
return true;
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, jimage);
|
|
|
|
// check if developer build with exploded modules
|
|
char* base_classes = format_boot_path("%/modules/java.base", home, home_len, fileSep, pathSep);
|
|
if (base_classes == NULL) return false;
|
|
if (os::stat(base_classes, &st) == 0) {
|
|
Arguments::set_sysclasspath(base_classes);
|
|
FREE_C_HEAP_ARRAY(char, base_classes);
|
|
return true;
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, base_classes);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Splits a path, based on its separator, the number of
|
|
* elements is returned back in n.
|
|
* It is the callers responsibility to:
|
|
* a> check the value of n, and n may be 0.
|
|
* b> ignore any empty path elements
|
|
* c> free up the data.
|
|
*/
|
|
char** os::split_path(const char* path, int* n) {
|
|
*n = 0;
|
|
if (path == NULL || strlen(path) == 0) {
|
|
return NULL;
|
|
}
|
|
const char psepchar = *os::path_separator();
|
|
char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
|
|
if (inpath == NULL) {
|
|
return NULL;
|
|
}
|
|
strcpy(inpath, path);
|
|
int count = 1;
|
|
char* p = strchr(inpath, psepchar);
|
|
// Get a count of elements to allocate memory
|
|
while (p != NULL) {
|
|
count++;
|
|
p++;
|
|
p = strchr(p, psepchar);
|
|
}
|
|
char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
|
|
if (opath == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// do the actual splitting
|
|
p = inpath;
|
|
for (int i = 0 ; i < count ; i++) {
|
|
size_t len = strcspn(p, os::path_separator());
|
|
if (len > JVM_MAXPATHLEN) {
|
|
return NULL;
|
|
}
|
|
// allocate the string and add terminator storage
|
|
char* s = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
|
|
if (s == NULL) {
|
|
return NULL;
|
|
}
|
|
strncpy(s, p, len);
|
|
s[len] = '\0';
|
|
opath[i] = s;
|
|
p += len + 1;
|
|
}
|
|
FREE_C_HEAP_ARRAY(char, inpath);
|
|
*n = count;
|
|
return opath;
|
|
}
|
|
|
|
void os::set_memory_serialize_page(address page) {
|
|
int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
|
|
_mem_serialize_page = (volatile int32_t *)page;
|
|
// We initialize the serialization page shift count here
|
|
// We assume a cache line size of 64 bytes
|
|
assert(SerializePageShiftCount == count, "JavaThread size changed; "
|
|
"SerializePageShiftCount constant should be %d", count);
|
|
set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
|
|
}
|
|
|
|
static volatile intptr_t SerializePageLock = 0;
|
|
|
|
// This method is called from signal handler when SIGSEGV occurs while the current
|
|
// thread tries to store to the "read-only" memory serialize page during state
|
|
// transition.
|
|
void os::block_on_serialize_page_trap() {
|
|
log_debug(safepoint)("Block until the serialize page permission restored");
|
|
|
|
// When VMThread is holding the SerializePageLock during modifying the
|
|
// access permission of the memory serialize page, the following call
|
|
// will block until the permission of that page is restored to rw.
|
|
// Generally, it is unsafe to manipulate locks in signal handlers, but in
|
|
// this case, it's OK as the signal is synchronous and we know precisely when
|
|
// it can occur.
|
|
Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
|
|
Thread::muxRelease(&SerializePageLock);
|
|
}
|
|
|
|
// Serialize all thread state variables
|
|
void os::serialize_thread_states() {
|
|
// On some platforms such as Solaris & Linux, the time duration of the page
|
|
// permission restoration is observed to be much longer than expected due to
|
|
// scheduler starvation problem etc. To avoid the long synchronization
|
|
// time and expensive page trap spinning, 'SerializePageLock' is used to block
|
|
// the mutator thread if such case is encountered. See bug 6546278 for details.
|
|
Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
|
|
os::protect_memory((char *)os::get_memory_serialize_page(),
|
|
os::vm_page_size(), MEM_PROT_READ);
|
|
os::protect_memory((char *)os::get_memory_serialize_page(),
|
|
os::vm_page_size(), MEM_PROT_RW);
|
|
Thread::muxRelease(&SerializePageLock);
|
|
}
|
|
|
|
// Returns true if the current stack pointer is above the stack shadow
|
|
// pages, false otherwise.
|
|
bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method) {
|
|
if (!thread->is_Java_thread()) return false;
|
|
address sp = current_stack_pointer();
|
|
// Check if we have StackShadowPages above the yellow zone. This parameter
|
|
// is dependent on the depth of the maximum VM call stack possible from
|
|
// the handler for stack overflow. 'instanceof' in the stack overflow
|
|
// handler or a println uses at least 8k stack of VM and native code
|
|
// respectively.
|
|
const int framesize_in_bytes =
|
|
Interpreter::size_top_interpreter_activation(method()) * wordSize;
|
|
|
|
assert((thread->stack_base() - thread->stack_size()) +
|
|
(JavaThread::stack_guard_zone_size() +
|
|
JavaThread::stack_shadow_zone_size() + framesize_in_bytes) ==
|
|
((JavaThread*)thread)->stack_overflow_limit() + framesize_in_bytes, "sanity");
|
|
|
|
return (sp > ((JavaThread*)thread)->stack_overflow_limit() + framesize_in_bytes);
|
|
}
|
|
|
|
size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
|
|
assert(min_pages > 0, "sanity");
|
|
if (UseLargePages) {
|
|
const size_t max_page_size = region_size / min_pages;
|
|
|
|
for (size_t i = 0; _page_sizes[i] != 0; ++i) {
|
|
const size_t page_size = _page_sizes[i];
|
|
if (page_size <= max_page_size) {
|
|
if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
|
|
return page_size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return vm_page_size();
|
|
}
|
|
|
|
size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
|
|
return page_size_for_region(region_size, min_pages, true);
|
|
}
|
|
|
|
size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
|
|
return page_size_for_region(region_size, min_pages, false);
|
|
}
|
|
|
|
static const char* errno_to_string (int e, bool short_text) {
|
|
#define ALL_SHARED_ENUMS(X) \
|
|
X(E2BIG, "Argument list too long") \
|
|
X(EACCES, "Permission denied") \
|
|
X(EADDRINUSE, "Address in use") \
|
|
X(EADDRNOTAVAIL, "Address not available") \
|
|
X(EAFNOSUPPORT, "Address family not supported") \
|
|
X(EAGAIN, "Resource unavailable, try again") \
|
|
X(EALREADY, "Connection already in progress") \
|
|
X(EBADF, "Bad file descriptor") \
|
|
X(EBADMSG, "Bad message") \
|
|
X(EBUSY, "Device or resource busy") \
|
|
X(ECANCELED, "Operation canceled") \
|
|
X(ECHILD, "No child processes") \
|
|
X(ECONNABORTED, "Connection aborted") \
|
|
X(ECONNREFUSED, "Connection refused") \
|
|
X(ECONNRESET, "Connection reset") \
|
|
X(EDEADLK, "Resource deadlock would occur") \
|
|
X(EDESTADDRREQ, "Destination address required") \
|
|
X(EDOM, "Mathematics argument out of domain of function") \
|
|
X(EEXIST, "File exists") \
|
|
X(EFAULT, "Bad address") \
|
|
X(EFBIG, "File too large") \
|
|
X(EHOSTUNREACH, "Host is unreachable") \
|
|
X(EIDRM, "Identifier removed") \
|
|
X(EILSEQ, "Illegal byte sequence") \
|
|
X(EINPROGRESS, "Operation in progress") \
|
|
X(EINTR, "Interrupted function") \
|
|
X(EINVAL, "Invalid argument") \
|
|
X(EIO, "I/O error") \
|
|
X(EISCONN, "Socket is connected") \
|
|
X(EISDIR, "Is a directory") \
|
|
X(ELOOP, "Too many levels of symbolic links") \
|
|
X(EMFILE, "Too many open files") \
|
|
X(EMLINK, "Too many links") \
|
|
X(EMSGSIZE, "Message too large") \
|
|
X(ENAMETOOLONG, "Filename too long") \
|
|
X(ENETDOWN, "Network is down") \
|
|
X(ENETRESET, "Connection aborted by network") \
|
|
X(ENETUNREACH, "Network unreachable") \
|
|
X(ENFILE, "Too many files open in system") \
|
|
X(ENOBUFS, "No buffer space available") \
|
|
X(ENODATA, "No message is available on the STREAM head read queue") \
|
|
X(ENODEV, "No such device") \
|
|
X(ENOENT, "No such file or directory") \
|
|
X(ENOEXEC, "Executable file format error") \
|
|
X(ENOLCK, "No locks available") \
|
|
X(ENOLINK, "Reserved") \
|
|
X(ENOMEM, "Not enough space") \
|
|
X(ENOMSG, "No message of the desired type") \
|
|
X(ENOPROTOOPT, "Protocol not available") \
|
|
X(ENOSPC, "No space left on device") \
|
|
X(ENOSR, "No STREAM resources") \
|
|
X(ENOSTR, "Not a STREAM") \
|
|
X(ENOSYS, "Function not supported") \
|
|
X(ENOTCONN, "The socket is not connected") \
|
|
X(ENOTDIR, "Not a directory") \
|
|
X(ENOTEMPTY, "Directory not empty") \
|
|
X(ENOTSOCK, "Not a socket") \
|
|
X(ENOTSUP, "Not supported") \
|
|
X(ENOTTY, "Inappropriate I/O control operation") \
|
|
X(ENXIO, "No such device or address") \
|
|
X(EOPNOTSUPP, "Operation not supported on socket") \
|
|
X(EOVERFLOW, "Value too large to be stored in data type") \
|
|
X(EPERM, "Operation not permitted") \
|
|
X(EPIPE, "Broken pipe") \
|
|
X(EPROTO, "Protocol error") \
|
|
X(EPROTONOSUPPORT, "Protocol not supported") \
|
|
X(EPROTOTYPE, "Protocol wrong type for socket") \
|
|
X(ERANGE, "Result too large") \
|
|
X(EROFS, "Read-only file system") \
|
|
X(ESPIPE, "Invalid seek") \
|
|
X(ESRCH, "No such process") \
|
|
X(ETIME, "Stream ioctl() timeout") \
|
|
X(ETIMEDOUT, "Connection timed out") \
|
|
X(ETXTBSY, "Text file busy") \
|
|
X(EWOULDBLOCK, "Operation would block") \
|
|
X(EXDEV, "Cross-device link")
|
|
|
|
#define DEFINE_ENTRY(e, text) { e, #e, text },
|
|
|
|
static const struct {
|
|
int v;
|
|
const char* short_text;
|
|
const char* long_text;
|
|
} table [] = {
|
|
|
|
ALL_SHARED_ENUMS(DEFINE_ENTRY)
|
|
|
|
// The following enums are not defined on all platforms.
|
|
#ifdef ESTALE
|
|
DEFINE_ENTRY(ESTALE, "Reserved")
|
|
#endif
|
|
#ifdef EDQUOT
|
|
DEFINE_ENTRY(EDQUOT, "Reserved")
|
|
#endif
|
|
#ifdef EMULTIHOP
|
|
DEFINE_ENTRY(EMULTIHOP, "Reserved")
|
|
#endif
|
|
|
|
// End marker.
|
|
{ -1, "Unknown errno", "Unknown error" }
|
|
|
|
};
|
|
|
|
#undef DEFINE_ENTRY
|
|
#undef ALL_FLAGS
|
|
|
|
int i = 0;
|
|
while (table[i].v != -1 && table[i].v != e) {
|
|
i ++;
|
|
}
|
|
|
|
return short_text ? table[i].short_text : table[i].long_text;
|
|
|
|
}
|
|
|
|
const char* os::strerror(int e) {
|
|
return errno_to_string(e, false);
|
|
}
|
|
|
|
const char* os::errno_name(int e) {
|
|
return errno_to_string(e, true);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
|
|
{
|
|
if (TracePageSizes) {
|
|
tty->print("%s: ", str);
|
|
for (int i = 0; i < count; ++i) {
|
|
tty->print(" " SIZE_FORMAT, page_sizes[i]);
|
|
}
|
|
tty->cr();
|
|
}
|
|
}
|
|
|
|
void os::trace_page_sizes(const char* str, const size_t region_min_size,
|
|
const size_t region_max_size, const size_t page_size,
|
|
const char* base, const size_t size)
|
|
{
|
|
if (TracePageSizes) {
|
|
tty->print_cr("%s: min=" SIZE_FORMAT " max=" SIZE_FORMAT
|
|
" pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
|
|
" size=" SIZE_FORMAT,
|
|
str, region_min_size, region_max_size,
|
|
page_size, p2i(base), size);
|
|
}
|
|
}
|
|
#endif // #ifndef PRODUCT
|
|
|
|
// This is the working definition of a server class machine:
|
|
// >= 2 physical CPU's and >=2GB of memory, with some fuzz
|
|
// because the graphics memory (?) sometimes masks physical memory.
|
|
// If you want to change the definition of a server class machine
|
|
// on some OS or platform, e.g., >=4GB on Windows platforms,
|
|
// then you'll have to parameterize this method based on that state,
|
|
// as was done for logical processors here, or replicate and
|
|
// specialize this method for each platform. (Or fix os to have
|
|
// some inheritance structure and use subclassing. Sigh.)
|
|
// If you want some platform to always or never behave as a server
|
|
// class machine, change the setting of AlwaysActAsServerClassMachine
|
|
// and NeverActAsServerClassMachine in globals*.hpp.
|
|
bool os::is_server_class_machine() {
|
|
// First check for the early returns
|
|
if (NeverActAsServerClassMachine) {
|
|
return false;
|
|
}
|
|
if (AlwaysActAsServerClassMachine) {
|
|
return true;
|
|
}
|
|
// Then actually look at the machine
|
|
bool result = false;
|
|
const unsigned int server_processors = 2;
|
|
const julong server_memory = 2UL * G;
|
|
// We seem not to get our full complement of memory.
|
|
// We allow some part (1/8?) of the memory to be "missing",
|
|
// based on the sizes of DIMMs, and maybe graphics cards.
|
|
const julong missing_memory = 256UL * M;
|
|
|
|
/* Is this a server class machine? */
|
|
if ((os::active_processor_count() >= (int)server_processors) &&
|
|
(os::physical_memory() >= (server_memory - missing_memory))) {
|
|
const unsigned int logical_processors =
|
|
VM_Version::logical_processors_per_package();
|
|
if (logical_processors > 1) {
|
|
const unsigned int physical_packages =
|
|
os::active_processor_count() / logical_processors;
|
|
if (physical_packages >= server_processors) {
|
|
result = true;
|
|
}
|
|
} else {
|
|
result = true;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void os::SuspendedThreadTask::run() {
|
|
assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
|
|
internal_do_task();
|
|
_done = true;
|
|
}
|
|
|
|
bool os::create_stack_guard_pages(char* addr, size_t bytes) {
|
|
return os::pd_create_stack_guard_pages(addr, bytes);
|
|
}
|
|
|
|
char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
|
|
char* result = pd_reserve_memory(bytes, addr, alignment_hint);
|
|
if (result != NULL) {
|
|
MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
|
|
MEMFLAGS flags) {
|
|
char* result = pd_reserve_memory(bytes, addr, alignment_hint);
|
|
if (result != NULL) {
|
|
MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
|
|
MemTracker::record_virtual_memory_type((address)result, flags);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
|
|
char* result = pd_attempt_reserve_memory_at(bytes, addr);
|
|
if (result != NULL) {
|
|
MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void os::split_reserved_memory(char *base, size_t size,
|
|
size_t split, bool realloc) {
|
|
pd_split_reserved_memory(base, size, split, realloc);
|
|
}
|
|
|
|
bool os::commit_memory(char* addr, size_t bytes, bool executable) {
|
|
bool res = pd_commit_memory(addr, bytes, executable);
|
|
if (res) {
|
|
MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
|
|
bool executable) {
|
|
bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
|
|
if (res) {
|
|
MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
|
|
const char* mesg) {
|
|
pd_commit_memory_or_exit(addr, bytes, executable, mesg);
|
|
MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
|
|
}
|
|
|
|
void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
|
|
bool executable, const char* mesg) {
|
|
os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
|
|
MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
|
|
}
|
|
|
|
bool os::uncommit_memory(char* addr, size_t bytes) {
|
|
bool res;
|
|
if (MemTracker::tracking_level() > NMT_minimal) {
|
|
Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
|
|
res = pd_uncommit_memory(addr, bytes);
|
|
if (res) {
|
|
tkr.record((address)addr, bytes);
|
|
}
|
|
} else {
|
|
res = pd_uncommit_memory(addr, bytes);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
bool os::release_memory(char* addr, size_t bytes) {
|
|
bool res;
|
|
if (MemTracker::tracking_level() > NMT_minimal) {
|
|
Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
|
|
res = pd_release_memory(addr, bytes);
|
|
if (res) {
|
|
tkr.record((address)addr, bytes);
|
|
}
|
|
} else {
|
|
res = pd_release_memory(addr, bytes);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void os::pretouch_memory(void* start, void* end) {
|
|
for (volatile char *p = (char*)start; p < (char*)end; p += os::vm_page_size()) {
|
|
*p = 0;
|
|
}
|
|
}
|
|
|
|
char* os::map_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
|
|
if (result != NULL) {
|
|
MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
|
|
char *addr, size_t bytes, bool read_only,
|
|
bool allow_exec) {
|
|
return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
|
|
read_only, allow_exec);
|
|
}
|
|
|
|
bool os::unmap_memory(char *addr, size_t bytes) {
|
|
bool result;
|
|
if (MemTracker::tracking_level() > NMT_minimal) {
|
|
Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
|
|
result = pd_unmap_memory(addr, bytes);
|
|
if (result) {
|
|
tkr.record((address)addr, bytes);
|
|
}
|
|
} else {
|
|
result = pd_unmap_memory(addr, bytes);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
pd_free_memory(addr, bytes, alignment_hint);
|
|
}
|
|
|
|
void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
|
|
pd_realign_memory(addr, bytes, alignment_hint);
|
|
}
|
|
|
|
#ifndef TARGET_OS_FAMILY_windows
|
|
/* try to switch state from state "from" to state "to"
|
|
* returns the state set after the method is complete
|
|
*/
|
|
os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
|
|
os::SuspendResume::State to)
|
|
{
|
|
os::SuspendResume::State result =
|
|
(os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
|
|
if (result == from) {
|
|
// success
|
|
return to;
|
|
}
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
/////////////// Unit tests ///////////////
|
|
|
|
#ifndef PRODUCT
|
|
|
|
#define assert_eq(a,b) assert(a == b, SIZE_FORMAT " != " SIZE_FORMAT, a, b)
|
|
|
|
class TestOS : AllStatic {
|
|
static size_t small_page_size() {
|
|
return os::vm_page_size();
|
|
}
|
|
|
|
static size_t large_page_size() {
|
|
const size_t large_page_size_example = 4 * M;
|
|
return os::page_size_for_region_aligned(large_page_size_example, 1);
|
|
}
|
|
|
|
static void test_page_size_for_region_aligned() {
|
|
if (UseLargePages) {
|
|
const size_t small_page = small_page_size();
|
|
const size_t large_page = large_page_size();
|
|
|
|
if (large_page > small_page) {
|
|
size_t num_small_pages_in_large = large_page / small_page;
|
|
size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
|
|
|
|
assert_eq(page, small_page);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_page_size_for_region_alignment() {
|
|
if (UseLargePages) {
|
|
const size_t small_page = small_page_size();
|
|
const size_t large_page = large_page_size();
|
|
if (large_page > small_page) {
|
|
const size_t unaligned_region = large_page + 17;
|
|
size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
|
|
assert_eq(page, small_page);
|
|
|
|
const size_t num_pages = 5;
|
|
const size_t aligned_region = large_page * num_pages;
|
|
page = os::page_size_for_region_aligned(aligned_region, num_pages);
|
|
assert_eq(page, large_page);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void test_page_size_for_region_unaligned() {
|
|
if (UseLargePages) {
|
|
// Given exact page size, should return that page size.
|
|
for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
|
|
size_t expected = os::_page_sizes[i];
|
|
size_t actual = os::page_size_for_region_unaligned(expected, 1);
|
|
assert_eq(expected, actual);
|
|
}
|
|
|
|
// Given slightly larger size than a page size, return the page size.
|
|
for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
|
|
size_t expected = os::_page_sizes[i];
|
|
size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
|
|
assert_eq(expected, actual);
|
|
}
|
|
|
|
// Given a slightly smaller size than a page size,
|
|
// return the next smaller page size.
|
|
if (os::_page_sizes[1] > os::_page_sizes[0]) {
|
|
size_t expected = os::_page_sizes[0];
|
|
size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
|
|
assert_eq(actual, expected);
|
|
}
|
|
|
|
// Return small page size for values less than a small page.
|
|
size_t small_page = small_page_size();
|
|
size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
|
|
assert_eq(small_page, actual);
|
|
}
|
|
}
|
|
|
|
public:
|
|
static void run_tests() {
|
|
test_page_size_for_region_aligned();
|
|
test_page_size_for_region_alignment();
|
|
test_page_size_for_region_unaligned();
|
|
}
|
|
};
|
|
|
|
void TestOS_test() {
|
|
TestOS::run_tests();
|
|
}
|
|
|
|
#endif // PRODUCT
|