jdk-24/test/micro/org/openjdk/bench/java/lang/ThreadOnSpinWaitProducerConsumer.java
2022-06-07 07:23:30 +00:00

212 lines
6.3 KiB
Java

/*
* Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package org.openjdk.bench.java.lang;
import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.BenchmarkMode;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.OutputTimeUnit;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.Threads;
import org.openjdk.jmh.annotations.Warmup;
import org.openjdk.jmh.infra.Blackhole;
import java.math.BigInteger;
import java.util.Random;
import java.util.concurrent.TimeUnit;
import java.util.function.BooleanSupplier;
/**
* This microbenchmark models producer-consumer.
*
* The microbenchmark uses two thread: 1 for a producer, 1 for a consumer.
* The microbenchmark uses BigInteger to have latencies of producing/consuming
* data comparable with synchronization operations.
*
* Thread.onSpinWait is used in a spin loop which is used to avoid heavy locks.
* In the spin loop volatile fields are checked. To reduce overhead accessing them
* they are only checked after a number of iterations.
*/
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MICROSECONDS)
@State(Scope.Benchmark)
@Threads(1)
@Warmup(iterations = 5, time = 1)
@Measurement(iterations = 5, time = 1)
@Fork(value = 3)
public class ThreadOnSpinWaitProducerConsumer {
@Param({"100"})
public int maxNum;
@Param({"125"})
public int spinNum;
@Param({"10"})
public int checkSpinCondAfterIters;
@Param({"256"})
public int dataBitLength;
private Thread threadProducer;
private Thread threadConsumer;
private Object monitor;
private BigInteger a;
private BigInteger b;
private Blackhole bh;
private volatile int dataId;
private volatile int seenDataId;
private int producedDataCount;
private int consumedDataCount;
private void produceData() {
if (!isDataSeen()) {
return;
}
b = a.not();
++dataId;
++producedDataCount;
}
private void consumeData() {
if (isDataSeen()) {
return;
}
bh.consume(a.equals(b.not()));
seenDataId = dataId;
++consumedDataCount;
}
private boolean isDataSeen() {
return seenDataId == dataId;
}
private boolean isNewData() {
return seenDataId != dataId;
}
private boolean spinWaitForCondition(int spinNum, BooleanSupplier cond) {
for (int i = 0; i < spinNum; ++i) {
if ((i % checkSpinCondAfterIters) == 0 && cond.getAsBoolean()) {
return true;
}
Thread.onSpinWait();
}
return cond.getAsBoolean();
}
void produce() {
try {
while (dataId < maxNum) {
if (spinWaitForCondition(this.spinNum, this::isDataSeen)) {
synchronized (monitor) {
produceData();
monitor.notify();
}
} else {
synchronized (monitor) {
while (!isDataSeen()) {
monitor.wait();
}
produceData();
monitor.notify();
}
}
}
} catch (InterruptedException e) {}
}
void consume() {
try {
for (;;) {
if (spinWaitForCondition(this.spinNum, this::isNewData)) {
synchronized (monitor) {
consumeData();
monitor.notify();
}
} else {
synchronized (monitor) {
while (isDataSeen()) {
monitor.wait();
}
consumeData();
monitor.notify();
}
}
}
} catch (InterruptedException e) {}
}
@Setup(Level.Trial)
public void setup01() {
Random rnd = new Random(111);
a = BigInteger.probablePrime(dataBitLength, rnd);
monitor = new Object();
}
@Setup(Level.Invocation)
public void setup02() {
threadProducer = new Thread(this::produce);
threadConsumer = new Thread(this::consume);
}
@Benchmark
public void trial(Blackhole bh) throws Exception {
this.bh = bh;
producedDataCount = 0;
consumedDataCount = 0;
dataId = 0;
seenDataId = 0;
threadProducer.start();
threadConsumer.start();
threadProducer.join();
synchronized (monitor) {
while (!isDataSeen()) {
monitor.wait();
}
}
threadConsumer.interrupt();
threadConsumer.join();
if (producedDataCount != maxNum) {
throw new RuntimeException("Produced: " + producedDataCount + ". Expected: " + maxNum);
}
if (producedDataCount != consumedDataCount) {
throw new RuntimeException("produced != consumed: " + producedDataCount + " != " + consumedDataCount);
}
}
}