jdk-24/jdk/test/java/math/BigInteger/PrimeTest.java
Brian Burkhalter 30e8183ee8 8078672: Print and allow setting by Java property seeds used to initialize Random instances in java.lang numerics tests
Add ability to initial the random number generator from the system property "seed" and print to STDOUT the seed value actually used.

Reviewed-by: darcy
2015-04-29 16:34:49 -07:00

235 lines
9.1 KiB
Java

/*
* Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @library /lib/testlibrary/
* @build jdk.testlibrary.*
* @run main PrimeTest
* @bug 8026236 8074460 8078672
* @summary test primality verification methods in BigInteger (use -Dseed=X to set PRNG seed)
* @author bpb
* @key randomness
*/
import java.math.BigInteger;
import java.util.BitSet;
import java.util.List;
import java.util.NavigableSet;
import java.util.Set;
import java.util.SplittableRandom;
import java.util.TreeSet;
import static java.util.stream.Collectors.toCollection;
import static java.util.stream.Collectors.toList;
public class PrimeTest {
private static final int DEFAULT_UPPER_BOUND = 1299709; // 100000th prime
private static final int DEFAULT_CERTAINTY = 100;
private static final int NUM_NON_PRIMES = 10000;
/**
* Run the test.
*
* @param args The parameters.
* @throws Exception on failure
*/
public static void main(String[] args) throws Exception {
// Prepare arguments
int upperBound = args.length > 0 ? Integer.valueOf(args[0]) : DEFAULT_UPPER_BOUND;
int certainty = args.length > 1 ? Integer.valueOf(args[1]) : DEFAULT_CERTAINTY;
boolean parallel = args.length > 2 ? Boolean.valueOf(args[2]) : true;
// Echo parameter settings
System.out.println("Upper bound = " + upperBound
+ "\nCertainty = " + certainty
+ "\nParallel = " + parallel);
// Get primes through specified bound (inclusive) and Integer.MAX_VALUE
NavigableSet<BigInteger> primes = getPrimes(upperBound);
// Check whether known primes are identified as such
boolean primeTest = checkPrime(primes, certainty, parallel);
System.out.println("Prime test result: " + (primeTest ? "SUCCESS" : "FAILURE"));
if (!primeTest) {
System.err.println("Prime test failed");
}
// Check whether known non-primes are not identified as primes
boolean nonPrimeTest = checkNonPrime(primes, certainty);
System.out.println("Non-prime test result: " + (nonPrimeTest ? "SUCCESS" : "FAILURE"));
boolean mersennePrimeTest = checkMersennePrimes(certainty);
System.out.println("Mersenne test result: " + (mersennePrimeTest ? "SUCCESS" : "FAILURE"));
if (!primeTest || !nonPrimeTest || !mersennePrimeTest) {
throw new Exception("PrimeTest FAILED!");
}
System.out.println("PrimeTest succeeded!");
}
/**
* Create a {@code BitSet} wherein a set bit indicates the corresponding
* index plus 2 is prime. That is, if bit N is set, then the integer N + 2
* is prime. The values 0 and 1 are intentionally excluded. See the
* <a
* href="http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#Algorithm_description">
* Sieve of Eratosthenes</a> algorithm description for more information.
*
* @param upperBound The maximum prime to allow
* @return bits indicating which indexes represent primes
*/
private static BitSet createPrimes(int upperBound) {
int nbits = upperBound - 1;
BitSet bs = new BitSet(nbits);
for (int p = 2; p * p < upperBound;) {
for (int i = p * p; i < nbits + 2; i += p) {
bs.set(i - 2, true);
}
do {
++p;
} while (p > 1 && bs.get(p - 2));
}
bs.flip(0, nbits);
return bs;
}
/**
* Load the primes up to the specified bound (inclusive) into a
* {@code NavigableSet}, appending the prime {@code Integer.MAX_VALUE}.
*
* @param upperBound The maximum prime to allow
* @return a set of primes
*/
private static NavigableSet<BigInteger> getPrimes(int upperBound) {
BitSet bs = createPrimes(upperBound);
NavigableSet<BigInteger> primes = bs.stream()
.mapToObj(p -> BigInteger.valueOf(p + 2))
.collect(toCollection(TreeSet::new));
primes.add(BigInteger.valueOf(Integer.MAX_VALUE));
System.out.println(String.format("Created %d primes", primes.size()));
return primes;
}
/**
* Verifies whether the fraction of probable primes detected is at least 1 -
* 1/2^certainty.
*
* @return true if and only if the test succeeds
*/
private static boolean checkPrime(Set<BigInteger> primes,
int certainty,
boolean parallel) {
long probablePrimes = (parallel ? primes.parallelStream() : primes.stream())
.filter(bi -> bi.isProbablePrime(certainty))
.count();
// N = certainty / 2
// Success if p/t >= 1 - 1/4^N
// or (p/t)*4^N >= 4^N - 1
// or p*4^N >= t*(4^N - 1)
BigInteger p = BigInteger.valueOf(probablePrimes);
BigInteger t = BigInteger.valueOf(primes.size());
BigInteger fourToTheC = BigInteger.valueOf(4).pow(certainty / 2);
BigInteger fourToTheCMinusOne = fourToTheC.subtract(BigInteger.ONE);
BigInteger left = p.multiply(fourToTheC);
BigInteger right = t.multiply(fourToTheCMinusOne);
if (left.compareTo(right) < 0) {
System.err.println("Probable prime certainty test failed");
}
return left.compareTo(right) >= 0;
}
/**
* Verifies whether all {@code BigInteger}s in the tested range for which
* {@code isProbablePrime()} returns {@code false} are <i>not</i>
* prime numbers.
*
* @return true if and only if the test succeeds
*/
private static boolean checkNonPrime(NavigableSet<BigInteger> primes,
int certainty) {
int maxPrime = DEFAULT_UPPER_BOUND;
try {
maxPrime = primes.last().intValueExact();
} catch (ArithmeticException e) {
// ignore it
}
// Create a list of non-prime BigIntegers.
SplittableRandom splitRandom = RandomFactory.getSplittableRandom();
List<BigInteger> nonPrimeBigInts = (splitRandom)
.ints(NUM_NON_PRIMES, 2, maxPrime).mapToObj(BigInteger::valueOf)
.filter(b -> !b.isProbablePrime(certainty)).collect(toList());
// If there are any non-probable primes also in the primes list then fail.
boolean failed = nonPrimeBigInts.stream().anyMatch(primes::contains);
// In the event, print which purported non-primes were actually prime.
if (failed) {
for (BigInteger bigInt : nonPrimeBigInts) {
if (primes.contains(bigInt)) {
System.err.println("Prime value thought to be non-prime: " + bigInt);
}
}
}
return !failed;
}
/**
* Verifies whether a specified subset of Mersenne primes are correctly
* identified as being prime. See
* <a href="https://en.wikipedia.org/wiki/Mersenne_prime">Mersenne prime</a>
* for more information.
*
* @return true if and only if the test succeeds
*/
private static boolean checkMersennePrimes(int certainty) {
int[] MERSENNE_EXPONENTS = {
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
2281, 3217, 4253, // uncomment remaining array elements to make this test run a long time
/* 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497,
86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269,
2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951,
30402457, 32582657, 37156667, 42643801, 43112609, 57885161 */
};
System.out.println("Checking first "+MERSENNE_EXPONENTS.length+" Mersenne primes");
boolean result = true;
for (int n : MERSENNE_EXPONENTS) {
BigInteger mp = BigInteger.ONE.shiftLeft(n).subtract(BigInteger.ONE);
if (!mp.isProbablePrime(certainty)) {
System.err.println("Mp with p = "+n+" not classified as prime");
result = false;
}
}
return result;
}
}