f626ed6a43
Reviewed-by: iklam, minqi
587 lines
20 KiB
C++
587 lines
20 KiB
C++
/*
|
|
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "utilities/globalDefinitions.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/ostream.hpp"
|
|
#include "utilities/align.hpp"
|
|
#include "unittest.hpp"
|
|
|
|
static size_t small_page_size() {
|
|
return os::vm_page_size();
|
|
}
|
|
|
|
static size_t large_page_size() {
|
|
const size_t large_page_size_example = 4 * M;
|
|
return os::page_size_for_region_aligned(large_page_size_example, 1);
|
|
}
|
|
|
|
TEST_VM(os, page_size_for_region) {
|
|
size_t large_page_example = 4 * M;
|
|
size_t large_page = os::page_size_for_region_aligned(large_page_example, 1);
|
|
|
|
size_t small_page = os::vm_page_size();
|
|
if (large_page > small_page) {
|
|
size_t num_small_in_large = large_page / small_page;
|
|
size_t page = os::page_size_for_region_aligned(large_page, num_small_in_large);
|
|
ASSERT_EQ(page, small_page) << "Did not get a small page";
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, page_size_for_region_aligned) {
|
|
if (UseLargePages) {
|
|
const size_t small_page = small_page_size();
|
|
const size_t large_page = large_page_size();
|
|
|
|
if (large_page > small_page) {
|
|
size_t num_small_pages_in_large = large_page / small_page;
|
|
size_t page = os::page_size_for_region_aligned(large_page, num_small_pages_in_large);
|
|
|
|
ASSERT_EQ(page, small_page);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, page_size_for_region_alignment) {
|
|
if (UseLargePages) {
|
|
const size_t small_page = small_page_size();
|
|
const size_t large_page = large_page_size();
|
|
if (large_page > small_page) {
|
|
const size_t unaligned_region = large_page + 17;
|
|
size_t page = os::page_size_for_region_aligned(unaligned_region, 1);
|
|
ASSERT_EQ(page, small_page);
|
|
|
|
const size_t num_pages = 5;
|
|
const size_t aligned_region = large_page * num_pages;
|
|
page = os::page_size_for_region_aligned(aligned_region, num_pages);
|
|
ASSERT_EQ(page, large_page);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, page_size_for_region_unaligned) {
|
|
if (UseLargePages) {
|
|
// Given exact page size, should return that page size.
|
|
for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
|
|
size_t expected = os::_page_sizes[i];
|
|
size_t actual = os::page_size_for_region_unaligned(expected, 1);
|
|
ASSERT_EQ(expected, actual);
|
|
}
|
|
|
|
// Given slightly larger size than a page size, return the page size.
|
|
for (size_t i = 0; os::_page_sizes[i] != 0; i++) {
|
|
size_t expected = os::_page_sizes[i];
|
|
size_t actual = os::page_size_for_region_unaligned(expected + 17, 1);
|
|
ASSERT_EQ(expected, actual);
|
|
}
|
|
|
|
// Given a slightly smaller size than a page size,
|
|
// return the next smaller page size.
|
|
if (os::_page_sizes[1] > os::_page_sizes[0]) {
|
|
size_t expected = os::_page_sizes[0];
|
|
size_t actual = os::page_size_for_region_unaligned(os::_page_sizes[1] - 17, 1);
|
|
ASSERT_EQ(actual, expected);
|
|
}
|
|
|
|
// Return small page size for values less than a small page.
|
|
size_t small_page = small_page_size();
|
|
size_t actual = os::page_size_for_region_unaligned(small_page - 17, 1);
|
|
ASSERT_EQ(small_page, actual);
|
|
}
|
|
}
|
|
|
|
TEST(os, test_random) {
|
|
const double m = 2147483647;
|
|
double mean = 0.0, variance = 0.0, t;
|
|
const int reps = 10000;
|
|
unsigned int seed = 1;
|
|
|
|
// tty->print_cr("seed %ld for %ld repeats...", seed, reps);
|
|
os::init_random(seed);
|
|
int num;
|
|
for (int k = 0; k < reps; k++) {
|
|
num = os::random();
|
|
double u = (double)num / m;
|
|
ASSERT_TRUE(u >= 0.0 && u <= 1.0) << "bad random number!";
|
|
|
|
// calculate mean and variance of the random sequence
|
|
mean += u;
|
|
variance += (u*u);
|
|
}
|
|
mean /= reps;
|
|
variance /= (reps - 1);
|
|
|
|
ASSERT_EQ(num, 1043618065) << "bad seed";
|
|
// tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
|
|
int intmean = mean*100;
|
|
ASSERT_EQ(intmean, 50);
|
|
// tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
|
|
int intvariance = variance*100;
|
|
ASSERT_EQ(intvariance, 33);
|
|
const double eps = 0.0001;
|
|
t = fabsd(mean - 0.5018);
|
|
ASSERT_LT(t, eps) << "bad mean";
|
|
t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
|
|
ASSERT_LT(t, eps) << "bad variance";
|
|
}
|
|
|
|
|
|
#ifdef ASSERT
|
|
TEST_VM_ASSERT_MSG(os, page_size_for_region_with_zero_min_pages, "sanity") {
|
|
size_t region_size = 16 * os::vm_page_size();
|
|
os::page_size_for_region_aligned(region_size, 0); // should assert
|
|
}
|
|
#endif
|
|
|
|
static void do_test_print_hex_dump(address addr, size_t len, int unitsize, const char* expected) {
|
|
char buf[256];
|
|
buf[0] = '\0';
|
|
stringStream ss(buf, sizeof(buf));
|
|
os::print_hex_dump(&ss, addr, addr + len, unitsize);
|
|
// tty->print_cr("expected: %s", expected);
|
|
// tty->print_cr("result: %s", buf);
|
|
ASSERT_NE(strstr(buf, expected), (char*)NULL);
|
|
}
|
|
|
|
TEST_VM(os, test_print_hex_dump) {
|
|
const char* pattern [4] = {
|
|
#ifdef VM_LITTLE_ENDIAN
|
|
"00 01 02 03 04 05 06 07",
|
|
"0100 0302 0504 0706",
|
|
"03020100 07060504",
|
|
"0706050403020100"
|
|
#else
|
|
"00 01 02 03 04 05 06 07",
|
|
"0001 0203 0405 0607",
|
|
"00010203 04050607",
|
|
"0001020304050607"
|
|
#endif
|
|
};
|
|
|
|
const char* pattern_not_readable [4] = {
|
|
"?? ?? ?? ?? ?? ?? ?? ??",
|
|
"???? ???? ???? ????",
|
|
"???????? ????????",
|
|
"????????????????"
|
|
};
|
|
|
|
// On AIX, zero page is readable.
|
|
address unreadable =
|
|
#ifdef AIX
|
|
(address) 0xFFFFFFFFFFFF0000ULL;
|
|
#else
|
|
(address) 0
|
|
#endif
|
|
;
|
|
|
|
ResourceMark rm;
|
|
char buf[64];
|
|
stringStream ss(buf, sizeof(buf));
|
|
outputStream* out = &ss;
|
|
// outputStream* out = tty; // enable for printout
|
|
|
|
// Test dumping unreadable memory
|
|
// Exclude test for Windows for now, since it needs SEH handling to work which cannot be
|
|
// guaranteed when we call directly into VM code. (see JDK-8220220)
|
|
#ifndef _WIN32
|
|
do_test_print_hex_dump(unreadable, 100, 1, pattern_not_readable[0]);
|
|
do_test_print_hex_dump(unreadable, 100, 2, pattern_not_readable[1]);
|
|
do_test_print_hex_dump(unreadable, 100, 4, pattern_not_readable[2]);
|
|
do_test_print_hex_dump(unreadable, 100, 8, pattern_not_readable[3]);
|
|
#endif
|
|
|
|
// Test dumping readable memory
|
|
address arr = (address)os::malloc(100, mtInternal);
|
|
for (int c = 0; c < 100; c++) {
|
|
arr[c] = c;
|
|
}
|
|
|
|
// properly aligned
|
|
do_test_print_hex_dump(arr, 100, 1, pattern[0]);
|
|
do_test_print_hex_dump(arr, 100, 2, pattern[1]);
|
|
do_test_print_hex_dump(arr, 100, 4, pattern[2]);
|
|
do_test_print_hex_dump(arr, 100, 8, pattern[3]);
|
|
|
|
// Not properly aligned. Should automatically down-align by unitsize
|
|
do_test_print_hex_dump(arr + 1, 100, 2, pattern[1]);
|
|
do_test_print_hex_dump(arr + 1, 100, 4, pattern[2]);
|
|
do_test_print_hex_dump(arr + 1, 100, 8, pattern[3]);
|
|
|
|
os::free(arr);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Test os::vsnprintf and friends.
|
|
|
|
static void check_snprintf_result(int expected, size_t limit, int actual, bool expect_count) {
|
|
if (expect_count || ((size_t)expected < limit)) {
|
|
ASSERT_EQ(expected, actual);
|
|
} else {
|
|
ASSERT_GT(0, actual);
|
|
}
|
|
}
|
|
|
|
// PrintFn is expected to be int (*)(char*, size_t, const char*, ...).
|
|
// But jio_snprintf is a C-linkage function with that signature, which
|
|
// has a different type on some platforms (like Solaris).
|
|
template<typename PrintFn>
|
|
static void test_snprintf(PrintFn pf, bool expect_count) {
|
|
const char expected[] = "abcdefghijklmnopqrstuvwxyz";
|
|
const int expected_len = sizeof(expected) - 1;
|
|
const size_t padding_size = 10;
|
|
char buffer[2 * (sizeof(expected) + padding_size)];
|
|
char check_buffer[sizeof(buffer)];
|
|
const char check_char = '1'; // Something not in expected.
|
|
memset(check_buffer, check_char, sizeof(check_buffer));
|
|
const size_t sizes_to_test[] = {
|
|
sizeof(buffer) - padding_size, // Fits, with plenty of space to spare.
|
|
sizeof(buffer)/2, // Fits, with space to spare.
|
|
sizeof(buffer)/4, // Doesn't fit.
|
|
sizeof(expected) + padding_size + 1, // Fits, with a little room to spare
|
|
sizeof(expected) + padding_size, // Fits exactly.
|
|
sizeof(expected) + padding_size - 1, // Doesn't quite fit.
|
|
2, // One char + terminating NUL.
|
|
1, // Only space for terminating NUL.
|
|
0 }; // No space at all.
|
|
for (unsigned i = 0; i < ARRAY_SIZE(sizes_to_test); ++i) {
|
|
memset(buffer, check_char, sizeof(buffer)); // To catch stray writes.
|
|
size_t test_size = sizes_to_test[i];
|
|
ResourceMark rm;
|
|
stringStream s;
|
|
s.print("test_size: " SIZE_FORMAT, test_size);
|
|
SCOPED_TRACE(s.as_string());
|
|
size_t prefix_size = padding_size;
|
|
guarantee(test_size <= (sizeof(buffer) - prefix_size), "invariant");
|
|
size_t write_size = MIN2(sizeof(expected), test_size);
|
|
size_t suffix_size = sizeof(buffer) - prefix_size - write_size;
|
|
char* write_start = buffer + prefix_size;
|
|
char* write_end = write_start + write_size;
|
|
|
|
int result = pf(write_start, test_size, "%s", expected);
|
|
|
|
check_snprintf_result(expected_len, test_size, result, expect_count);
|
|
|
|
// Verify expected output.
|
|
if (test_size > 0) {
|
|
ASSERT_EQ(0, strncmp(write_start, expected, write_size - 1));
|
|
// Verify terminating NUL of output.
|
|
ASSERT_EQ('\0', write_start[write_size - 1]);
|
|
} else {
|
|
guarantee(test_size == 0, "invariant");
|
|
guarantee(write_size == 0, "invariant");
|
|
guarantee(prefix_size + suffix_size == sizeof(buffer), "invariant");
|
|
guarantee(write_start == write_end, "invariant");
|
|
}
|
|
|
|
// Verify no scribbling on prefix or suffix.
|
|
ASSERT_EQ(0, strncmp(buffer, check_buffer, prefix_size));
|
|
ASSERT_EQ(0, strncmp(write_end, check_buffer, suffix_size));
|
|
}
|
|
|
|
// Special case of 0-length buffer with empty (except for terminator) output.
|
|
check_snprintf_result(0, 0, pf(NULL, 0, "%s", ""), expect_count);
|
|
check_snprintf_result(0, 0, pf(NULL, 0, ""), expect_count);
|
|
}
|
|
|
|
// This is probably equivalent to os::snprintf, but we're being
|
|
// explicit about what we're testing here.
|
|
static int vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
int result = os::vsnprintf(buf, len, fmt, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
|
|
TEST_VM(os, vsnprintf) {
|
|
test_snprintf(vsnprintf_wrapper, true);
|
|
}
|
|
|
|
TEST_VM(os, snprintf) {
|
|
test_snprintf(os::snprintf, true);
|
|
}
|
|
|
|
// These are declared in jvm.h; test here, with related functions.
|
|
extern "C" {
|
|
int jio_vsnprintf(char*, size_t, const char*, va_list);
|
|
int jio_snprintf(char*, size_t, const char*, ...);
|
|
}
|
|
|
|
// This is probably equivalent to jio_snprintf, but we're being
|
|
// explicit about what we're testing here.
|
|
static int jio_vsnprintf_wrapper(char* buf, size_t len, const char* fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
int result = jio_vsnprintf(buf, len, fmt, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
|
|
TEST_VM(os, jio_vsnprintf) {
|
|
test_snprintf(jio_vsnprintf_wrapper, false);
|
|
}
|
|
|
|
TEST_VM(os, jio_snprintf) {
|
|
test_snprintf(jio_snprintf, false);
|
|
}
|
|
|
|
// Test that os::release_memory() can deal with areas containing multiple mappings.
|
|
#define PRINT_MAPPINGS(s) { tty->print_cr("%s", s); os::print_memory_mappings((char*)p, total_range_len, tty); }
|
|
//#define PRINT_MAPPINGS
|
|
|
|
// Reserve an area consisting of multiple mappings
|
|
// (from multiple calls to os::reserve_memory)
|
|
static address reserve_multiple(int num_stripes, size_t stripe_len) {
|
|
assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity");
|
|
size_t total_range_len = num_stripes * stripe_len;
|
|
// Reserve a large contiguous area to get the address space...
|
|
address p = (address)os::reserve_memory(total_range_len);
|
|
EXPECT_NE(p, (address)NULL);
|
|
// .. release it...
|
|
EXPECT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
// ... re-reserve in the same spot multiple areas...
|
|
for (int stripe = 0; stripe < num_stripes; stripe ++) {
|
|
address q = p + (stripe * stripe_len);
|
|
q = (address)os::attempt_reserve_memory_at((char*)q, stripe_len);
|
|
EXPECT_NE(q, (address)NULL);
|
|
// Commit, alternatingly with or without exec permission,
|
|
// to prevent kernel from folding these mappings.
|
|
const bool executable = stripe % 2 == 0;
|
|
EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, executable));
|
|
}
|
|
return p;
|
|
}
|
|
|
|
// Reserve an area with a single call to os::reserve_memory,
|
|
// with multiple committed and uncommitted regions
|
|
static address reserve_one_commit_multiple(int num_stripes, size_t stripe_len) {
|
|
assert(is_aligned(stripe_len, os::vm_allocation_granularity()), "Sanity");
|
|
size_t total_range_len = num_stripes * stripe_len;
|
|
address p = (address)os::reserve_memory(total_range_len);
|
|
EXPECT_NE(p, (address)NULL);
|
|
for (int stripe = 0; stripe < num_stripes; stripe ++) {
|
|
address q = p + (stripe * stripe_len);
|
|
if (stripe % 2 == 0) {
|
|
EXPECT_TRUE(os::commit_memory((char*)q, stripe_len, false));
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
// Release a range allocated with reserve_multiple carefully, to not trip mapping
|
|
// asserts on Windows in os::release_memory()
|
|
static void carefully_release_multiple(address start, int num_stripes, size_t stripe_len) {
|
|
for (int stripe = 0; stripe < num_stripes; stripe ++) {
|
|
address q = start + (stripe * stripe_len);
|
|
EXPECT_TRUE(os::release_memory((char*)q, stripe_len));
|
|
}
|
|
}
|
|
struct NUMASwitcher {
|
|
const bool _b;
|
|
NUMASwitcher(bool v): _b(UseNUMAInterleaving) { UseNUMAInterleaving = v; }
|
|
~NUMASwitcher() { UseNUMAInterleaving = _b; }
|
|
};
|
|
#endif
|
|
|
|
TEST_VM(os, release_multi_mappings) {
|
|
// Test that we can release an area created with multiple reservation calls
|
|
const size_t stripe_len = 4 * M;
|
|
const int num_stripes = 4;
|
|
const size_t total_range_len = stripe_len * num_stripes;
|
|
|
|
// reserve address space...
|
|
address p = reserve_multiple(num_stripes, stripe_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("A");
|
|
|
|
// .. release it...
|
|
{
|
|
// On Windows, use UseNUMAInterleaving=1 which makes
|
|
// os::release_memory accept multi-map-ranges.
|
|
// Otherwise we would assert (see below for death test).
|
|
WINDOWS_ONLY(NUMASwitcher b(true);)
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
}
|
|
PRINT_MAPPINGS("B");
|
|
|
|
// re-reserve it. This should work unless release failed.
|
|
address p2 = (address)os::attempt_reserve_memory_at((char*)p, total_range_len);
|
|
ASSERT_EQ(p2, p);
|
|
PRINT_MAPPINGS("C");
|
|
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
// On Windows, test that we recognize bad ranges.
|
|
// On debug this would assert. Test that too.
|
|
// On other platforms, we are unable to recognize bad ranges.
|
|
#ifdef ASSERT
|
|
TEST_VM_ASSERT_MSG(os, release_bad_ranges, "bad release") {
|
|
#else
|
|
TEST_VM(os, release_bad_ranges) {
|
|
#endif
|
|
char* p = os::reserve_memory(4 * M);
|
|
ASSERT_NE(p, (char*)NULL);
|
|
// Release part of range
|
|
ASSERT_FALSE(os::release_memory(p, M));
|
|
// Release part of range
|
|
ASSERT_FALSE(os::release_memory(p + M, M));
|
|
// Release more than the range (explicitly switch off NUMA here
|
|
// to make os::release_memory() test more strictly and to not
|
|
// accidentally release neighbors)
|
|
{
|
|
NUMASwitcher b(false);
|
|
ASSERT_FALSE(os::release_memory(p, M * 5));
|
|
ASSERT_FALSE(os::release_memory(p - M, M * 5));
|
|
ASSERT_FALSE(os::release_memory(p - M, M * 6));
|
|
}
|
|
|
|
ASSERT_TRUE(os::release_memory(p, 4 * M)); // Release for real
|
|
ASSERT_FALSE(os::release_memory(p, 4 * M)); // Again, should fail
|
|
}
|
|
#endif // _WIN32
|
|
|
|
TEST_VM(os, release_one_mapping_multi_commits) {
|
|
// Test that we can release an area consisting of interleaved
|
|
// committed and uncommitted regions:
|
|
const size_t stripe_len = 4 * M;
|
|
const int num_stripes = 4;
|
|
const size_t total_range_len = stripe_len * num_stripes;
|
|
|
|
// reserve address space...
|
|
address p = reserve_one_commit_multiple(num_stripes, stripe_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("A");
|
|
|
|
// .. release it...
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
PRINT_MAPPINGS("B");
|
|
|
|
// re-reserve it. This should work unless release failed.
|
|
address p2 = (address)os::attempt_reserve_memory_at((char*)p, total_range_len);
|
|
ASSERT_EQ(p2, p);
|
|
PRINT_MAPPINGS("C");
|
|
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
PRINT_MAPPINGS("D");
|
|
}
|
|
|
|
TEST_VM(os, show_mappings_1) {
|
|
// Display an arbitrary large address range. Make this works, does not hang, etc.
|
|
char dummy[16 * K]; // silent truncation is fine, we don't care.
|
|
stringStream ss(dummy, sizeof(dummy));
|
|
os::print_memory_mappings((char*)0x1000, LP64_ONLY(1024) NOT_LP64(3) * G, &ss);
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
// Test os::win32::find_mapping
|
|
TEST_VM(os, find_mapping_simple) {
|
|
const size_t total_range_len = 4 * M;
|
|
os::win32::mapping_info_t mapping_info;
|
|
|
|
// Some obvious negatives
|
|
ASSERT_FALSE(os::win32::find_mapping((address)NULL, &mapping_info));
|
|
ASSERT_FALSE(os::win32::find_mapping((address)4711, &mapping_info));
|
|
|
|
// A simple allocation
|
|
{
|
|
address p = (address)os::reserve_memory(total_range_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("A");
|
|
for (size_t offset = 0; offset < total_range_len; offset += 4711) {
|
|
ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info));
|
|
ASSERT_EQ(mapping_info.base, p);
|
|
ASSERT_EQ(mapping_info.regions, 1);
|
|
ASSERT_EQ(mapping_info.size, total_range_len);
|
|
ASSERT_EQ(mapping_info.committed_size, 0);
|
|
}
|
|
// Test just outside the allocation
|
|
if (os::win32::find_mapping(p - 1, &mapping_info)) {
|
|
ASSERT_NE(mapping_info.base, p);
|
|
}
|
|
if (os::win32::find_mapping(p + total_range_len, &mapping_info)) {
|
|
ASSERT_NE(mapping_info.base, p);
|
|
}
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
PRINT_MAPPINGS("B");
|
|
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
|
|
}
|
|
}
|
|
|
|
TEST_VM(os, find_mapping_2) {
|
|
// A more complex allocation, consisting of multiple regions.
|
|
const size_t total_range_len = 4 * M;
|
|
os::win32::mapping_info_t mapping_info;
|
|
|
|
const size_t stripe_len = total_range_len / 4;
|
|
address p = reserve_one_commit_multiple(4, stripe_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("A");
|
|
for (size_t offset = 0; offset < total_range_len; offset += 4711) {
|
|
ASSERT_TRUE(os::win32::find_mapping(p + offset, &mapping_info));
|
|
ASSERT_EQ(mapping_info.base, p);
|
|
ASSERT_EQ(mapping_info.regions, 4);
|
|
ASSERT_EQ(mapping_info.size, total_range_len);
|
|
ASSERT_EQ(mapping_info.committed_size, total_range_len / 2);
|
|
}
|
|
// Test just outside the allocation
|
|
if (os::win32::find_mapping(p - 1, &mapping_info)) {
|
|
ASSERT_NE(mapping_info.base, p);
|
|
}
|
|
if (os::win32::find_mapping(p + total_range_len, &mapping_info)) {
|
|
ASSERT_NE(mapping_info.base, p);
|
|
}
|
|
ASSERT_TRUE(os::release_memory((char*)p, total_range_len));
|
|
PRINT_MAPPINGS("B");
|
|
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
|
|
}
|
|
|
|
TEST_VM(os, find_mapping_3) {
|
|
const size_t total_range_len = 4 * M;
|
|
os::win32::mapping_info_t mapping_info;
|
|
|
|
// A more complex case, consisting of multiple allocations.
|
|
{
|
|
const size_t stripe_len = total_range_len / 4;
|
|
address p = reserve_multiple(4, stripe_len);
|
|
ASSERT_NE(p, (address)NULL);
|
|
PRINT_MAPPINGS("E");
|
|
for (int stripe = 0; stripe < 4; stripe ++) {
|
|
ASSERT_TRUE(os::win32::find_mapping(p + (stripe * stripe_len), &mapping_info));
|
|
ASSERT_EQ(mapping_info.base, p + (stripe * stripe_len));
|
|
ASSERT_EQ(mapping_info.regions, 1);
|
|
ASSERT_EQ(mapping_info.size, stripe_len);
|
|
ASSERT_EQ(mapping_info.committed_size, stripe_len);
|
|
}
|
|
carefully_release_multiple(p, 4, stripe_len);
|
|
PRINT_MAPPINGS("F");
|
|
ASSERT_FALSE(os::win32::find_mapping(p, &mapping_info));
|
|
}
|
|
}
|
|
#endif // _WIN32
|