3789983e89
Reviewed-by: darcy, ihse
170 lines
7.5 KiB
Java
170 lines
7.5 KiB
Java
/*
|
|
* Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
import java.util.*;
|
|
import java.util.function.*;
|
|
import java.util.stream.*;
|
|
|
|
import static java.lang.Double.*;
|
|
|
|
/*
|
|
* @test
|
|
* @bug 8006572 8030212
|
|
* @summary Test for use of non-naive summation in stream-related sum and average operations.
|
|
*/
|
|
public class TestDoubleSumAverage {
|
|
public static void main(String... args) {
|
|
int failures = 0;
|
|
|
|
failures += testZeroAverageOfNonEmptyStream();
|
|
failures += testForCompenstation();
|
|
failures += testNonfiniteSum();
|
|
|
|
if (failures > 0) {
|
|
throw new RuntimeException("Found " + failures + " numerical failure(s).");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Test to verify that a non-empty stream with a zero average is non-empty.
|
|
*/
|
|
private static int testZeroAverageOfNonEmptyStream() {
|
|
Supplier<DoubleStream> ds = () -> DoubleStream.iterate(0.0, e -> 0.0).limit(10);
|
|
|
|
return compareUlpDifference(0.0, ds.get().average().getAsDouble(), 0);
|
|
}
|
|
|
|
/**
|
|
* Compute the sum and average of a sequence of double values in
|
|
* various ways and report an error if naive summation is used.
|
|
*/
|
|
private static int testForCompenstation() {
|
|
int failures = 0;
|
|
|
|
/*
|
|
* The exact sum of the test stream is 1 + 1e6*ulp(1.0) but a
|
|
* naive summation algorithm will return 1.0 since (1.0 +
|
|
* ulp(1.0)/2) will round to 1.0 again.
|
|
*/
|
|
double base = 1.0;
|
|
double increment = Math.ulp(base)/2.0;
|
|
int count = 1_000_001;
|
|
|
|
double expectedSum = base + (increment * (count - 1));
|
|
double expectedAvg = expectedSum / count;
|
|
|
|
// Factory for double a stream of [base, increment, ..., increment] limited to a size of count
|
|
Supplier<DoubleStream> ds = () -> DoubleStream.iterate(base, e -> increment).limit(count);
|
|
|
|
DoubleSummaryStatistics stats = ds.get().collect(DoubleSummaryStatistics::new,
|
|
DoubleSummaryStatistics::accept,
|
|
DoubleSummaryStatistics::combine);
|
|
|
|
failures += compareUlpDifference(expectedSum, stats.getSum(), 3);
|
|
failures += compareUlpDifference(expectedAvg, stats.getAverage(), 3);
|
|
|
|
failures += compareUlpDifference(expectedSum,
|
|
ds.get().sum(), 3);
|
|
failures += compareUlpDifference(expectedAvg,
|
|
ds.get().average().getAsDouble(), 3);
|
|
|
|
failures += compareUlpDifference(expectedSum,
|
|
ds.get().boxed().collect(Collectors.summingDouble(d -> d)), 3);
|
|
failures += compareUlpDifference(expectedAvg,
|
|
ds.get().boxed().collect(Collectors.averagingDouble(d -> d)),3);
|
|
return failures;
|
|
}
|
|
|
|
private static int testNonfiniteSum() {
|
|
int failures = 0;
|
|
|
|
Map<Supplier<DoubleStream>, Double> testCases = new LinkedHashMap<>();
|
|
testCases.put(() -> DoubleStream.of(MAX_VALUE, MAX_VALUE), POSITIVE_INFINITY);
|
|
testCases.put(() -> DoubleStream.of(-MAX_VALUE, -MAX_VALUE), NEGATIVE_INFINITY);
|
|
|
|
testCases.put(() -> DoubleStream.of(1.0d, POSITIVE_INFINITY, 1.0d), POSITIVE_INFINITY);
|
|
testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY), POSITIVE_INFINITY);
|
|
testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, POSITIVE_INFINITY), POSITIVE_INFINITY);
|
|
testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, POSITIVE_INFINITY, 0.0), POSITIVE_INFINITY);
|
|
|
|
testCases.put(() -> DoubleStream.of(1.0d, NEGATIVE_INFINITY, 1.0d), NEGATIVE_INFINITY);
|
|
testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY), NEGATIVE_INFINITY);
|
|
testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NEGATIVE_INFINITY), NEGATIVE_INFINITY);
|
|
testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NEGATIVE_INFINITY, 0.0), NEGATIVE_INFINITY);
|
|
|
|
testCases.put(() -> DoubleStream.of(1.0d, NaN, 1.0d), NaN);
|
|
testCases.put(() -> DoubleStream.of(NaN), NaN);
|
|
testCases.put(() -> DoubleStream.of(1.0d, NEGATIVE_INFINITY, POSITIVE_INFINITY, 1.0d), NaN);
|
|
testCases.put(() -> DoubleStream.of(1.0d, POSITIVE_INFINITY, NEGATIVE_INFINITY, 1.0d), NaN);
|
|
testCases.put(() -> DoubleStream.of(POSITIVE_INFINITY, NaN), NaN);
|
|
testCases.put(() -> DoubleStream.of(NEGATIVE_INFINITY, NaN), NaN);
|
|
testCases.put(() -> DoubleStream.of(NaN, POSITIVE_INFINITY), NaN);
|
|
testCases.put(() -> DoubleStream.of(NaN, NEGATIVE_INFINITY), NaN);
|
|
|
|
for(Map.Entry<Supplier<DoubleStream>, Double> testCase : testCases.entrySet()) {
|
|
Supplier<DoubleStream> ds = testCase.getKey();
|
|
double expected = testCase.getValue();
|
|
|
|
DoubleSummaryStatistics stats = ds.get().collect(DoubleSummaryStatistics::new,
|
|
DoubleSummaryStatistics::accept,
|
|
DoubleSummaryStatistics::combine);
|
|
|
|
failures += compareUlpDifference(expected, stats.getSum(), 0);
|
|
failures += compareUlpDifference(expected, stats.getAverage(), 0);
|
|
|
|
failures += compareUlpDifference(expected, ds.get().sum(), 0);
|
|
failures += compareUlpDifference(expected, ds.get().average().getAsDouble(), 0);
|
|
|
|
failures += compareUlpDifference(expected, ds.get().boxed().collect(Collectors.summingDouble(d -> d)), 0);
|
|
failures += compareUlpDifference(expected, ds.get().boxed().collect(Collectors.averagingDouble(d -> d)), 0);
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Compute the ulp difference of two double values and compare against an error threshold.
|
|
*/
|
|
private static int compareUlpDifference(double expected, double computed, double threshold) {
|
|
if (!Double.isFinite(expected)) {
|
|
// Handle NaN and infinity cases
|
|
if (Double.compare(expected, computed) == 0)
|
|
return 0;
|
|
else {
|
|
System.err.printf("Unexpected sum, %g rather than %g.%n",
|
|
computed, expected);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
double ulpDifference = Math.abs(expected - computed) / Math.ulp(expected);
|
|
|
|
if (ulpDifference > threshold) {
|
|
System.err.printf("Numerical summation error too large, %g ulps rather than %g.%n",
|
|
ulpDifference, threshold);
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
}
|