3789983e89
Reviewed-by: darcy, ihse
472 lines
14 KiB
C++
472 lines
14 KiB
C++
/*
|
|
* Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_OPTO_INDEXSET_HPP
|
|
#define SHARE_VM_OPTO_INDEXSET_HPP
|
|
|
|
#include "memory/allocation.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/regmask.hpp"
|
|
|
|
// This file defines the IndexSet class, a set of sparse integer indices.
|
|
// This data structure is used by the compiler in its liveness analysis and
|
|
// during register allocation.
|
|
|
|
//-------------------------------- class IndexSet ----------------------------
|
|
// An IndexSet is a piece-wise bitvector. At the top level, we have an array
|
|
// of pointers to bitvector chunks called BitBlocks. Each BitBlock has a fixed
|
|
// size and is allocated from a shared free list. The bits which are set in
|
|
// each BitBlock correspond to the elements of the set.
|
|
|
|
class IndexSet : public ResourceObj {
|
|
friend class IndexSetIterator;
|
|
|
|
public:
|
|
// When we allocate an IndexSet, it starts off with an array of top level block
|
|
// pointers of a set length. This size is intended to be large enough for the
|
|
// majority of IndexSets. In the cases when this size is not large enough,
|
|
// a separately allocated array is used.
|
|
|
|
// The length of the preallocated top level block array
|
|
enum { preallocated_block_list_size = 16 };
|
|
|
|
// Elements of a IndexSet get decomposed into three fields. The highest order
|
|
// bits are the block index, which tell which high level block holds the element.
|
|
// Within that block, the word index indicates which word holds the element.
|
|
// Finally, the bit index determines which single bit within that word indicates
|
|
// membership of the element in the set.
|
|
|
|
// The lengths of the index bitfields
|
|
enum { bit_index_length = 5,
|
|
word_index_length = 3,
|
|
block_index_length = 8 // not used
|
|
};
|
|
|
|
// Derived constants used for manipulating the index bitfields
|
|
enum {
|
|
bit_index_offset = 0, // not used
|
|
word_index_offset = bit_index_length,
|
|
block_index_offset = bit_index_length + word_index_length,
|
|
|
|
bits_per_word = 1 << bit_index_length,
|
|
words_per_block = 1 << word_index_length,
|
|
bits_per_block = bits_per_word * words_per_block,
|
|
|
|
bit_index_mask = right_n_bits(bit_index_length),
|
|
word_index_mask = right_n_bits(word_index_length)
|
|
};
|
|
|
|
// These routines are used for extracting the block, word, and bit index
|
|
// from an element.
|
|
static uint get_block_index(uint element) {
|
|
return element >> block_index_offset;
|
|
}
|
|
static uint get_word_index(uint element) {
|
|
return mask_bits(element >> word_index_offset,word_index_mask);
|
|
}
|
|
static uint get_bit_index(uint element) {
|
|
return mask_bits(element,bit_index_mask);
|
|
}
|
|
|
|
//------------------------------ class BitBlock ----------------------------
|
|
// The BitBlock class is a segment of a bitvector set.
|
|
|
|
class BitBlock : public ResourceObj {
|
|
friend class IndexSetIterator;
|
|
friend class IndexSet;
|
|
|
|
private:
|
|
// All of BitBlocks fields and methods are declared private. We limit
|
|
// access to IndexSet and IndexSetIterator.
|
|
|
|
// A BitBlock is composed of some number of 32 bit words. When a BitBlock
|
|
// is not in use by any IndexSet, it is stored on a free list. The next field
|
|
// is used by IndexSet to mainting this free list.
|
|
|
|
union {
|
|
uint32_t _words[words_per_block];
|
|
BitBlock *_next;
|
|
} _data;
|
|
|
|
// accessors
|
|
uint32_t* words() { return _data._words; }
|
|
void set_next(BitBlock *next) { _data._next = next; }
|
|
BitBlock *next() { return _data._next; }
|
|
|
|
// Operations. A BitBlock supports four simple operations,
|
|
// clear(), member(), insert(), and remove(). These methods do
|
|
// not assume that the block index has been masked out.
|
|
|
|
void clear() {
|
|
memset(words(), 0, sizeof(uint32_t) * words_per_block);
|
|
}
|
|
|
|
bool member(uint element) {
|
|
uint word_index = IndexSet::get_word_index(element);
|
|
uint bit_index = IndexSet::get_bit_index(element);
|
|
|
|
return ((words()[word_index] & (uint32_t)(0x1 << bit_index)) != 0);
|
|
}
|
|
|
|
bool insert(uint element) {
|
|
uint word_index = IndexSet::get_word_index(element);
|
|
uint bit_index = IndexSet::get_bit_index(element);
|
|
|
|
uint32_t bit = (0x1 << bit_index);
|
|
uint32_t before = words()[word_index];
|
|
words()[word_index] = before | bit;
|
|
return ((before & bit) != 0);
|
|
}
|
|
|
|
bool remove(uint element) {
|
|
uint word_index = IndexSet::get_word_index(element);
|
|
uint bit_index = IndexSet::get_bit_index(element);
|
|
|
|
uint32_t bit = (0x1 << bit_index);
|
|
uint32_t before = words()[word_index];
|
|
words()[word_index] = before & ~bit;
|
|
return ((before & bit) != 0);
|
|
}
|
|
};
|
|
|
|
//-------------------------- BitBlock allocation ---------------------------
|
|
private:
|
|
|
|
// All IndexSets share an arena from which they allocate BitBlocks. Unused
|
|
// BitBlocks are placed on a free list.
|
|
|
|
// The number of BitBlocks to allocate at a time
|
|
enum { bitblock_alloc_chunk_size = 50 };
|
|
|
|
static Arena *arena() { return Compile::current()->indexSet_arena(); }
|
|
|
|
static void populate_free_list();
|
|
|
|
public:
|
|
|
|
// Invalidate the current free BitBlock list and begin allocation
|
|
// from a new arena. It is essential that this method is called whenever
|
|
// the Arena being used for BitBlock allocation is reset.
|
|
static void reset_memory(Compile* compile, Arena *arena) {
|
|
compile->set_indexSet_free_block_list(NULL);
|
|
compile->set_indexSet_arena(arena);
|
|
|
|
// This should probably be done in a static initializer
|
|
_empty_block.clear();
|
|
}
|
|
|
|
private:
|
|
friend class BitBlock;
|
|
// A distinguished BitBlock which always remains empty. When a new IndexSet is
|
|
// created, all of its top level BitBlock pointers are initialized to point to
|
|
// this.
|
|
static BitBlock _empty_block;
|
|
|
|
//-------------------------- Members ------------------------------------------
|
|
|
|
// The number of elements in the set
|
|
uint _count;
|
|
|
|
// Our top level array of bitvector segments
|
|
BitBlock **_blocks;
|
|
|
|
BitBlock *_preallocated_block_list[preallocated_block_list_size];
|
|
|
|
// The number of top level array entries in use
|
|
uint _max_blocks;
|
|
|
|
// Our assertions need to know the maximum number allowed in the set
|
|
#ifdef ASSERT
|
|
uint _max_elements;
|
|
#endif
|
|
|
|
// The next IndexSet on the free list (not used at same time as count)
|
|
IndexSet *_next;
|
|
|
|
public:
|
|
//-------------------------- Free list operations ------------------------------
|
|
// Individual IndexSets can be placed on a free list. This is done in PhaseLive.
|
|
|
|
IndexSet *next() {
|
|
#ifdef ASSERT
|
|
if( VerifyOpto ) {
|
|
check_watch("removed from free list?", ((_next == NULL) ? 0 : _next->_serial_number));
|
|
}
|
|
#endif
|
|
return _next;
|
|
}
|
|
|
|
void set_next(IndexSet *next) {
|
|
#ifdef ASSERT
|
|
if( VerifyOpto ) {
|
|
check_watch("put on free list?", ((next == NULL) ? 0 : next->_serial_number));
|
|
}
|
|
#endif
|
|
_next = next;
|
|
}
|
|
|
|
private:
|
|
//-------------------------- Utility methods -----------------------------------
|
|
|
|
// Get the block which holds element
|
|
BitBlock *get_block_containing(uint element) const {
|
|
assert(element < _max_elements, "element out of bounds");
|
|
return _blocks[get_block_index(element)];
|
|
}
|
|
|
|
// Set a block in the top level array
|
|
void set_block(uint index, BitBlock *block) {
|
|
#ifdef ASSERT
|
|
if( VerifyOpto )
|
|
check_watch("set block", index);
|
|
#endif
|
|
_blocks[index] = block;
|
|
}
|
|
|
|
// Get a BitBlock from the free list
|
|
BitBlock *alloc_block();
|
|
|
|
// Get a BitBlock from the free list and place it in the top level array
|
|
BitBlock *alloc_block_containing(uint element);
|
|
|
|
// Free a block from the top level array, placing it on the free BitBlock list
|
|
void free_block(uint i);
|
|
|
|
public:
|
|
//-------------------------- Primitive set operations --------------------------
|
|
|
|
void clear() {
|
|
#ifdef ASSERT
|
|
if( VerifyOpto )
|
|
check_watch("clear");
|
|
#endif
|
|
_count = 0;
|
|
for (uint i = 0; i < _max_blocks; i++) {
|
|
BitBlock *block = _blocks[i];
|
|
if (block != &_empty_block) {
|
|
free_block(i);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint count() const { return _count; }
|
|
|
|
bool is_empty() const { return _count == 0; }
|
|
|
|
bool member(uint element) const {
|
|
return get_block_containing(element)->member(element);
|
|
}
|
|
|
|
bool insert(uint element) {
|
|
#ifdef ASSERT
|
|
if( VerifyOpto )
|
|
check_watch("insert", element);
|
|
#endif
|
|
if (element == 0) {
|
|
return 0;
|
|
}
|
|
BitBlock *block = get_block_containing(element);
|
|
if (block == &_empty_block) {
|
|
block = alloc_block_containing(element);
|
|
}
|
|
bool present = block->insert(element);
|
|
if (!present) {
|
|
_count++;
|
|
}
|
|
return !present;
|
|
}
|
|
|
|
bool remove(uint element) {
|
|
#ifdef ASSERT
|
|
if( VerifyOpto )
|
|
check_watch("remove", element);
|
|
#endif
|
|
|
|
BitBlock *block = get_block_containing(element);
|
|
bool present = block->remove(element);
|
|
if (present) {
|
|
_count--;
|
|
}
|
|
return present;
|
|
}
|
|
|
|
//-------------------------- Compound set operations ------------------------
|
|
// Compute the union of all elements of one and two which interfere
|
|
// with the RegMask mask. If the degree of the union becomes
|
|
// exceeds fail_degree, the union bails out. The underlying set is
|
|
// cleared before the union is performed.
|
|
uint lrg_union(uint lr1, uint lr2,
|
|
const uint fail_degree,
|
|
const class PhaseIFG *ifg,
|
|
const RegMask &mask);
|
|
|
|
|
|
//------------------------- Construction, initialization -----------------------
|
|
|
|
IndexSet() {}
|
|
|
|
// This constructor is used for making a deep copy of a IndexSet.
|
|
IndexSet(IndexSet *set);
|
|
|
|
// Perform initialization on a IndexSet
|
|
void initialize(uint max_element);
|
|
|
|
// Initialize a IndexSet. If the top level BitBlock array needs to be
|
|
// allocated, do it from the proffered arena. BitBlocks are still allocated
|
|
// from the static Arena member.
|
|
void initialize(uint max_element, Arena *arena);
|
|
|
|
// Exchange two sets
|
|
void swap(IndexSet *set);
|
|
|
|
//-------------------------- Debugging and statistics --------------------------
|
|
|
|
#ifndef PRODUCT
|
|
// Output a IndexSet for debugging
|
|
void dump() const;
|
|
#endif
|
|
|
|
#ifdef ASSERT
|
|
void tally_iteration_statistics() const;
|
|
|
|
// BitBlock allocation statistics
|
|
static julong _alloc_new;
|
|
static julong _alloc_total;
|
|
|
|
// Block density statistics
|
|
static julong _total_bits;
|
|
static julong _total_used_blocks;
|
|
static julong _total_unused_blocks;
|
|
|
|
// Sanity tests
|
|
void verify() const;
|
|
|
|
static int _serial_count;
|
|
int _serial_number;
|
|
|
|
// Check to see if the serial number of the current set is the one we're tracing.
|
|
// If it is, print a message.
|
|
void check_watch(const char *operation, uint operand) const {
|
|
if (IndexSetWatch != 0) {
|
|
if (IndexSetWatch == -1 || _serial_number == IndexSetWatch) {
|
|
tty->print_cr("IndexSet %d : %s ( %d )", _serial_number, operation, operand);
|
|
}
|
|
}
|
|
}
|
|
void check_watch(const char *operation) const {
|
|
if (IndexSetWatch != 0) {
|
|
if (IndexSetWatch == -1 || _serial_number == IndexSetWatch) {
|
|
tty->print_cr("IndexSet %d : %s", _serial_number, operation);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
static void print_statistics();
|
|
|
|
#endif
|
|
};
|
|
|
|
|
|
//-------------------------------- class IndexSetIterator --------------------
|
|
// An iterator for IndexSets.
|
|
|
|
class IndexSetIterator VALUE_OBJ_CLASS_SPEC {
|
|
friend class IndexSet;
|
|
|
|
public:
|
|
|
|
// We walk over the bits in a word in chunks of size window_size.
|
|
enum { window_size = 5,
|
|
window_mask = right_n_bits(window_size),
|
|
table_size = (1 << window_size) };
|
|
|
|
// For an integer of length window_size, what is the first set bit?
|
|
static const uint8_t _first_bit[table_size];
|
|
|
|
// For an integer of length window_size, what is the second set bit?
|
|
static const uint8_t _second_bit[table_size];
|
|
|
|
private:
|
|
// The current word we are inspecting
|
|
uint32_t _current;
|
|
|
|
// What element number are we currently on?
|
|
uint _value;
|
|
|
|
// The index of the next word we will inspect
|
|
uint _next_word;
|
|
|
|
// A pointer to the contents of the current block
|
|
uint32_t *_words;
|
|
|
|
// The index of the next block we will inspect
|
|
uint _next_block;
|
|
|
|
// A pointer to the blocks in our set
|
|
IndexSet::BitBlock **_blocks;
|
|
|
|
// The number of blocks in the set
|
|
uint _max_blocks;
|
|
|
|
// If the iterator was created from a non-const set, we replace
|
|
// non-canonical empty blocks with the _empty_block pointer. If
|
|
// _set is NULL, we do no replacement.
|
|
IndexSet *_set;
|
|
|
|
// Advance to the next non-empty word and return the next
|
|
// element in the set.
|
|
uint advance_and_next();
|
|
|
|
|
|
public:
|
|
|
|
// If an iterator is built from a constant set then empty blocks
|
|
// are not canonicalized.
|
|
IndexSetIterator(IndexSet *set);
|
|
IndexSetIterator(const IndexSet *set);
|
|
|
|
// Return the next element of the set. Return 0 when done.
|
|
uint next() {
|
|
uint current = _current;
|
|
if (current != 0) {
|
|
uint value = _value;
|
|
while (mask_bits(current,window_mask) == 0) {
|
|
current >>= window_size;
|
|
value += window_size;
|
|
}
|
|
|
|
uint advance = _second_bit[mask_bits(current,window_mask)];
|
|
_current = current >> advance;
|
|
_value = value + advance;
|
|
return value + _first_bit[mask_bits(current,window_mask)];
|
|
} else {
|
|
return advance_and_next();
|
|
}
|
|
}
|
|
};
|
|
|
|
#endif // SHARE_VM_OPTO_INDEXSET_HPP
|