6f1f675324
Reviewed-by: neliasso, thartmann
401 lines
14 KiB
C++
401 lines
14 KiB
C++
/*
|
|
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/chaitin.hpp"
|
|
#include "opto/live.hpp"
|
|
#include "opto/machnode.hpp"
|
|
|
|
|
|
// Compute live-in/live-out. We use a totally incremental algorithm. The LIVE
|
|
// problem is monotonic. The steady-state solution looks like this: pull a
|
|
// block from the worklist. It has a set of delta's - values which are newly
|
|
// live-in from the block. Push these to the live-out sets of all predecessor
|
|
// blocks. At each predecessor, the new live-out values are ANDed with what is
|
|
// already live-out (extra stuff is added to the live-out sets). Then the
|
|
// remaining new live-out values are ANDed with what is locally defined.
|
|
// Leftover bits become the new live-in for the predecessor block, and the pred
|
|
// block is put on the worklist.
|
|
// The locally live-in stuff is computed once and added to predecessor
|
|
// live-out sets. This separate compilation is done in the outer loop below.
|
|
PhaseLive::PhaseLive(const PhaseCFG &cfg, const LRG_List &names, Arena *arena, bool keep_deltas)
|
|
: Phase(LIVE),
|
|
_live(0),
|
|
_livein(0),
|
|
_cfg(cfg),
|
|
_names(names),
|
|
_arena(arena),
|
|
_keep_deltas(keep_deltas) {
|
|
}
|
|
|
|
void PhaseLive::compute(uint maxlrg) {
|
|
_maxlrg = maxlrg;
|
|
_worklist = new (_arena) Block_List();
|
|
|
|
// Init the sparse live arrays. This data is live on exit from here!
|
|
// The _live info is the live-out info.
|
|
_live = (IndexSet*)_arena->Amalloc(sizeof(IndexSet) * _cfg.number_of_blocks());
|
|
uint i;
|
|
for (i = 0; i < _cfg.number_of_blocks(); i++) {
|
|
_live[i].initialize(_maxlrg);
|
|
}
|
|
|
|
if (_keep_deltas) {
|
|
_livein = (IndexSet*)_arena->Amalloc(sizeof(IndexSet) * _cfg.number_of_blocks());
|
|
for (i = 0; i < _cfg.number_of_blocks(); i++) {
|
|
_livein[i].initialize(_maxlrg);
|
|
}
|
|
}
|
|
|
|
// Init the sparse arrays for delta-sets.
|
|
ResourceMark rm; // Nuke temp storage on exit
|
|
|
|
// Does the memory used by _defs and _deltas get reclaimed? Does it matter? TT
|
|
|
|
// Array of values defined locally in blocks
|
|
_defs = NEW_RESOURCE_ARRAY(IndexSet,_cfg.number_of_blocks());
|
|
for (i = 0; i < _cfg.number_of_blocks(); i++) {
|
|
_defs[i].initialize(_maxlrg);
|
|
}
|
|
|
|
// Array of delta-set pointers, indexed by block pre_order-1.
|
|
_deltas = NEW_RESOURCE_ARRAY(IndexSet*,_cfg.number_of_blocks());
|
|
memset(_deltas, 0, sizeof(IndexSet*)* _cfg.number_of_blocks());
|
|
|
|
_free_IndexSet = NULL;
|
|
|
|
// Blocks having done pass-1
|
|
VectorSet first_pass(Thread::current()->resource_area());
|
|
|
|
// Outer loop: must compute local live-in sets and push into predecessors.
|
|
for (uint j = _cfg.number_of_blocks(); j > 0; j--) {
|
|
Block* block = _cfg.get_block(j - 1);
|
|
|
|
// Compute the local live-in set. Start with any new live-out bits.
|
|
IndexSet* use = getset(block);
|
|
IndexSet* def = &_defs[block->_pre_order-1];
|
|
DEBUG_ONLY(IndexSet *def_outside = getfreeset();)
|
|
uint i;
|
|
for (i = block->number_of_nodes(); i > 1; i--) {
|
|
Node* n = block->get_node(i-1);
|
|
if (n->is_Phi()) {
|
|
break;
|
|
}
|
|
|
|
uint r = _names.at(n->_idx);
|
|
assert(!def_outside->member(r), "Use of external LRG overlaps the same LRG defined in this block");
|
|
def->insert(r);
|
|
use->remove(r);
|
|
uint cnt = n->req();
|
|
for (uint k = 1; k < cnt; k++) {
|
|
Node *nk = n->in(k);
|
|
uint nkidx = nk->_idx;
|
|
if (_cfg.get_block_for_node(nk) != block) {
|
|
uint u = _names.at(nkidx);
|
|
use->insert(u);
|
|
DEBUG_ONLY(def_outside->insert(u);)
|
|
}
|
|
}
|
|
}
|
|
#ifdef ASSERT
|
|
def_outside->set_next(_free_IndexSet);
|
|
_free_IndexSet = def_outside; // Drop onto free list
|
|
#endif
|
|
// Remove anything defined by Phis and the block start instruction
|
|
for (uint k = i; k > 0; k--) {
|
|
uint r = _names.at(block->get_node(k - 1)->_idx);
|
|
def->insert(r);
|
|
use->remove(r);
|
|
}
|
|
|
|
// Push these live-in things to predecessors
|
|
for (uint l = 1; l < block->num_preds(); l++) {
|
|
Block* p = _cfg.get_block_for_node(block->pred(l));
|
|
add_liveout(p, use, first_pass);
|
|
|
|
// PhiNode uses go in the live-out set of prior blocks.
|
|
for (uint k = i; k > 0; k--) {
|
|
Node *phi = block->get_node(k - 1);
|
|
if (l < phi->req()) {
|
|
add_liveout(p, _names.at(phi->in(l)->_idx), first_pass);
|
|
}
|
|
}
|
|
}
|
|
freeset(block);
|
|
first_pass.set(block->_pre_order);
|
|
|
|
// Inner loop: blocks that picked up new live-out values to be propagated
|
|
while (_worklist->size()) {
|
|
Block* block = _worklist->pop();
|
|
IndexSet *delta = getset(block);
|
|
assert(delta->count(), "missing delta set");
|
|
|
|
// Add new-live-in to predecessors live-out sets
|
|
for (uint l = 1; l < block->num_preds(); l++) {
|
|
Block* predecessor = _cfg.get_block_for_node(block->pred(l));
|
|
add_liveout(predecessor, delta, first_pass);
|
|
}
|
|
|
|
freeset(block);
|
|
} // End of while-worklist-not-empty
|
|
|
|
} // End of for-all-blocks-outer-loop
|
|
|
|
// We explicitly clear all of the IndexSets which we are about to release.
|
|
// This allows us to recycle their internal memory into IndexSet's free list.
|
|
|
|
for (i = 0; i < _cfg.number_of_blocks(); i++) {
|
|
_defs[i].clear();
|
|
if (_deltas[i]) {
|
|
// Is this always true?
|
|
_deltas[i]->clear();
|
|
}
|
|
}
|
|
IndexSet *free = _free_IndexSet;
|
|
while (free != NULL) {
|
|
IndexSet *temp = free;
|
|
free = free->next();
|
|
temp->clear();
|
|
}
|
|
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void PhaseLive::stats(uint iters) const {
|
|
}
|
|
#endif
|
|
|
|
// Get an IndexSet for a block. Return existing one, if any. Make a new
|
|
// empty one if a prior one does not exist.
|
|
IndexSet *PhaseLive::getset(Block *p) {
|
|
IndexSet *delta = _deltas[p->_pre_order-1];
|
|
if (!delta) { // Not on worklist?
|
|
// Get a free set; flag as being on worklist
|
|
delta = _deltas[p->_pre_order-1] = getfreeset();
|
|
}
|
|
return delta; // Return set of new live-out items
|
|
}
|
|
|
|
// Pull from free list, or allocate. Internal allocation on the returned set
|
|
// is always from thread local storage.
|
|
IndexSet *PhaseLive::getfreeset() {
|
|
IndexSet *f = _free_IndexSet;
|
|
if (!f) {
|
|
f = new IndexSet;
|
|
f->initialize(_maxlrg, Thread::current()->resource_area());
|
|
} else {
|
|
// Pull from free list
|
|
_free_IndexSet = f->next();
|
|
f->initialize(_maxlrg, Thread::current()->resource_area());
|
|
}
|
|
return f;
|
|
}
|
|
|
|
// Free an IndexSet from a block.
|
|
void PhaseLive::freeset(Block *p) {
|
|
IndexSet *f = _deltas[p->_pre_order-1];
|
|
if (_keep_deltas) {
|
|
add_livein(p, f);
|
|
}
|
|
f->set_next(_free_IndexSet);
|
|
_free_IndexSet = f; // Drop onto free list
|
|
_deltas[p->_pre_order-1] = NULL;
|
|
}
|
|
|
|
// Add a live-out value to a given blocks live-out set. If it is new, then
|
|
// also add it to the delta set and stick the block on the worklist.
|
|
void PhaseLive::add_liveout(Block *p, uint r, VectorSet &first_pass) {
|
|
IndexSet *live = &_live[p->_pre_order-1];
|
|
if (live->insert(r)) { // If actually inserted...
|
|
// We extended the live-out set. See if the value is generated locally.
|
|
// If it is not, then we must extend the live-in set.
|
|
if (!_defs[p->_pre_order-1].member(r)) {
|
|
if (!_deltas[p->_pre_order-1] && // Not on worklist?
|
|
first_pass.test(p->_pre_order)) {
|
|
_worklist->push(p); // Actually go on worklist if already 1st pass
|
|
}
|
|
getset(p)->insert(r);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add a vector of live-out values to a given blocks live-out set.
|
|
void PhaseLive::add_liveout(Block *p, IndexSet *lo, VectorSet &first_pass) {
|
|
IndexSet *live = &_live[p->_pre_order-1];
|
|
IndexSet *defs = &_defs[p->_pre_order-1];
|
|
IndexSet *on_worklist = _deltas[p->_pre_order-1];
|
|
IndexSet *delta = on_worklist ? on_worklist : getfreeset();
|
|
|
|
if (!lo->is_empty()) {
|
|
IndexSetIterator elements(lo);
|
|
uint r;
|
|
while ((r = elements.next()) != 0) {
|
|
if (live->insert(r) && // If actually inserted...
|
|
!defs->member(r)) { // and not defined locally
|
|
delta->insert(r); // Then add to live-in set
|
|
}
|
|
}
|
|
}
|
|
|
|
if (delta->count()) { // If actually added things
|
|
_deltas[p->_pre_order-1] = delta; // Flag as on worklist now
|
|
if (!on_worklist && // Not on worklist?
|
|
first_pass.test(p->_pre_order)) {
|
|
_worklist->push(p); // Actually go on worklist if already 1st pass
|
|
}
|
|
} else { // Nothing there; just free it
|
|
delta->set_next(_free_IndexSet);
|
|
_free_IndexSet = delta; // Drop onto free list
|
|
}
|
|
}
|
|
|
|
// Add a vector of live-in values to a given blocks live-in set.
|
|
void PhaseLive::add_livein(Block *p, IndexSet *lo) {
|
|
IndexSet *livein = &_livein[p->_pre_order-1];
|
|
if (!livein->is_empty()) {
|
|
IndexSetIterator elements(lo);
|
|
uint r;
|
|
while ((r = elements.next()) != 0) {
|
|
livein->insert(r); // Then add to live-in set
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
// Dump the live-out set for a block
|
|
void PhaseLive::dump(const Block *b) const {
|
|
tty->print("Block %d: ",b->_pre_order);
|
|
if (_keep_deltas) {
|
|
tty->print("LiveIn: "); _livein[b->_pre_order-1].dump();
|
|
}
|
|
tty->print("LiveOut: "); _live[b->_pre_order-1].dump();
|
|
uint cnt = b->number_of_nodes();
|
|
for (uint i = 0; i < cnt; i++) {
|
|
tty->print("L%d/", _names.at(b->get_node(i)->_idx));
|
|
b->get_node(i)->dump();
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
|
|
// Verify that base pointers and derived pointers are still sane.
|
|
void PhaseChaitin::verify_base_ptrs(ResourceArea *a) const {
|
|
#ifdef ASSERT
|
|
Unique_Node_List worklist(a);
|
|
for (uint i = 0; i < _cfg.number_of_blocks(); i++) {
|
|
Block* block = _cfg.get_block(i);
|
|
for (uint j = block->end_idx() + 1; j > 1; j--) {
|
|
Node* n = block->get_node(j-1);
|
|
if (n->is_Phi()) {
|
|
break;
|
|
}
|
|
// Found a safepoint?
|
|
if (n->is_MachSafePoint()) {
|
|
MachSafePointNode *sfpt = n->as_MachSafePoint();
|
|
JVMState* jvms = sfpt->jvms();
|
|
if (jvms != NULL) {
|
|
// Now scan for a live derived pointer
|
|
if (jvms->oopoff() < sfpt->req()) {
|
|
// Check each derived/base pair
|
|
for (uint idx = jvms->oopoff(); idx < sfpt->req(); idx++) {
|
|
Node *check = sfpt->in(idx);
|
|
bool is_derived = ((idx - jvms->oopoff()) & 1) == 0;
|
|
// search upwards through spills and spill phis for AddP
|
|
worklist.clear();
|
|
worklist.push(check);
|
|
uint k = 0;
|
|
while (k < worklist.size()) {
|
|
check = worklist.at(k);
|
|
assert(check,"Bad base or derived pointer");
|
|
// See PhaseChaitin::find_base_for_derived() for all cases.
|
|
int isc = check->is_Copy();
|
|
if (isc) {
|
|
worklist.push(check->in(isc));
|
|
} else if (check->is_Phi()) {
|
|
for (uint m = 1; m < check->req(); m++)
|
|
worklist.push(check->in(m));
|
|
} else if (check->is_Con()) {
|
|
if (is_derived) {
|
|
// Derived is NULL+offset
|
|
assert(!is_derived || check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad derived pointer");
|
|
} else {
|
|
assert(check->bottom_type()->is_ptr()->_offset == 0,"Bad base pointer");
|
|
// Base either ConP(NULL) or loadConP
|
|
if (check->is_Mach()) {
|
|
assert(check->as_Mach()->ideal_Opcode() == Op_ConP,"Bad base pointer");
|
|
} else {
|
|
assert(check->Opcode() == Op_ConP &&
|
|
check->bottom_type()->is_ptr()->ptr() == TypePtr::Null,"Bad base pointer");
|
|
}
|
|
}
|
|
} else if (check->bottom_type()->is_ptr()->_offset == 0) {
|
|
if (check->is_Proj() || (check->is_Mach() &&
|
|
(check->as_Mach()->ideal_Opcode() == Op_CreateEx ||
|
|
check->as_Mach()->ideal_Opcode() == Op_ThreadLocal ||
|
|
check->as_Mach()->ideal_Opcode() == Op_CMoveP ||
|
|
check->as_Mach()->ideal_Opcode() == Op_CheckCastPP ||
|
|
#ifdef _LP64
|
|
(UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_CastPP) ||
|
|
(UseCompressedOops && check->as_Mach()->ideal_Opcode() == Op_DecodeN) ||
|
|
(UseCompressedClassPointers && check->as_Mach()->ideal_Opcode() == Op_DecodeNKlass) ||
|
|
#endif
|
|
check->as_Mach()->ideal_Opcode() == Op_LoadP ||
|
|
check->as_Mach()->ideal_Opcode() == Op_LoadKlass))) {
|
|
// Valid nodes
|
|
} else {
|
|
check->dump();
|
|
assert(false,"Bad base or derived pointer");
|
|
}
|
|
} else {
|
|
assert(is_derived,"Bad base pointer");
|
|
assert(check->is_Mach() && check->as_Mach()->ideal_Opcode() == Op_AddP,"Bad derived pointer");
|
|
}
|
|
k++;
|
|
assert(k < 100000,"Derived pointer checking in infinite loop");
|
|
} // End while
|
|
}
|
|
} // End of check for derived pointers
|
|
} // End of Kcheck for debug info
|
|
} // End of if found a safepoint
|
|
} // End of forall instructions in block
|
|
} // End of forall blocks
|
|
#endif
|
|
}
|
|
|
|
// Verify that graphs and base pointers are still sane.
|
|
void PhaseChaitin::verify(ResourceArea *a, bool verify_ifg) const {
|
|
#ifdef ASSERT
|
|
if (VerifyRegisterAllocator) {
|
|
_cfg.verify();
|
|
verify_base_ptrs(a);
|
|
if(verify_ifg)
|
|
_ifg->verify(this);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif
|