959 lines
42 KiB
C++
959 lines
42 KiB
C++
/*
|
|
* Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
* have any questions.
|
|
*
|
|
*/
|
|
|
|
class DebugInfoCache;
|
|
class FpuStackAllocator;
|
|
class IRScopeDebugInfo;
|
|
class Interval;
|
|
class IntervalWalker;
|
|
class LIRGenerator;
|
|
class LinearScan;
|
|
class MoveResolver;
|
|
class Range;
|
|
|
|
define_array(IntervalArray, Interval*)
|
|
define_stack(IntervalList, IntervalArray)
|
|
|
|
define_array(IntervalsArray, IntervalList*)
|
|
define_stack(IntervalsList, IntervalsArray)
|
|
|
|
define_array(OopMapArray, OopMap*)
|
|
define_stack(OopMapList, OopMapArray)
|
|
|
|
define_array(ScopeValueArray, ScopeValue*)
|
|
|
|
define_array(LIR_OpListArray, LIR_OpList*);
|
|
define_stack(LIR_OpListStack, LIR_OpListArray);
|
|
|
|
|
|
enum IntervalUseKind {
|
|
// priority of use kinds must be ascending
|
|
noUse = 0,
|
|
loopEndMarker = 1,
|
|
shouldHaveRegister = 2,
|
|
mustHaveRegister = 3,
|
|
|
|
firstValidKind = 1,
|
|
lastValidKind = 3
|
|
};
|
|
define_array(UseKindArray, IntervalUseKind)
|
|
define_stack(UseKindStack, UseKindArray)
|
|
|
|
|
|
enum IntervalKind {
|
|
fixedKind = 0, // interval pre-colored by LIR_Generator
|
|
anyKind = 1, // no register/memory allocated by LIR_Generator
|
|
nofKinds,
|
|
firstKind = fixedKind
|
|
};
|
|
|
|
|
|
// during linear scan an interval is in one of four states in
|
|
enum IntervalState {
|
|
unhandledState = 0, // unhandled state (not processed yet)
|
|
activeState = 1, // life and is in a physical register
|
|
inactiveState = 2, // in a life time hole and is in a physical register
|
|
handledState = 3, // spilled or not life again
|
|
invalidState = -1
|
|
};
|
|
|
|
|
|
enum IntervalSpillState {
|
|
noDefinitionFound, // starting state of calculation: no definition found yet
|
|
oneDefinitionFound, // one definition has already been found.
|
|
// Note: two consecutive definitions are treated as one (e.g. consecutive move and add because of two-operand LIR form)
|
|
// the position of this definition is stored in _definition_pos
|
|
oneMoveInserted, // one spill move has already been inserted.
|
|
storeAtDefinition, // the interval should be stored immediately after its definition because otherwise
|
|
// there would be multiple redundant stores
|
|
startInMemory, // the interval starts in memory (e.g. method parameter), so a store is never necessary
|
|
noOptimization // the interval has more then one definition (e.g. resulting from phi moves), so stores to memory are not optimized
|
|
};
|
|
|
|
|
|
#define for_each_interval_kind(kind) \
|
|
for (IntervalKind kind = firstKind; kind < nofKinds; kind = (IntervalKind)(kind + 1))
|
|
|
|
#define for_each_visitor_mode(mode) \
|
|
for (LIR_OpVisitState::OprMode mode = LIR_OpVisitState::firstMode; mode < LIR_OpVisitState::numModes; mode = (LIR_OpVisitState::OprMode)(mode + 1))
|
|
|
|
|
|
class LinearScan : public CompilationResourceObj {
|
|
// declare classes used by LinearScan as friends because they
|
|
// need a wide variety of functions declared here
|
|
//
|
|
// Only the small interface to the rest of the compiler is public
|
|
friend class Interval;
|
|
friend class IntervalWalker;
|
|
friend class LinearScanWalker;
|
|
friend class FpuStackAllocator;
|
|
friend class MoveResolver;
|
|
friend class LinearScanStatistic;
|
|
friend class LinearScanTimers;
|
|
friend class RegisterVerifier;
|
|
|
|
public:
|
|
enum {
|
|
any_reg = -1,
|
|
nof_cpu_regs = pd_nof_cpu_regs_linearscan,
|
|
nof_fpu_regs = pd_nof_fpu_regs_linearscan,
|
|
nof_xmm_regs = pd_nof_xmm_regs_linearscan,
|
|
nof_regs = nof_cpu_regs + nof_fpu_regs + nof_xmm_regs
|
|
};
|
|
|
|
private:
|
|
Compilation* _compilation;
|
|
IR* _ir;
|
|
LIRGenerator* _gen;
|
|
FrameMap* _frame_map;
|
|
|
|
BlockList _cached_blocks; // cached list with all blocks in linear-scan order (only correct if original list keeps unchanged)
|
|
int _num_virtual_regs; // number of virtual registers (without new registers introduced because of splitting intervals)
|
|
bool _has_fpu_registers; // true if this method uses any floating point registers (and so fpu stack allocation is necessary)
|
|
int _num_calls; // total number of calls in this method
|
|
int _max_spills; // number of stack slots used for intervals allocated to memory
|
|
int _unused_spill_slot; // unused spill slot for a single-word value because of alignment of a double-word value
|
|
|
|
IntervalList _intervals; // mapping from register number to interval
|
|
IntervalList* _new_intervals_from_allocation; // list with all intervals created during allocation when an existing interval is split
|
|
IntervalArray* _sorted_intervals; // intervals sorted by Interval::from()
|
|
|
|
LIR_OpArray _lir_ops; // mapping from LIR_Op id to LIR_Op node
|
|
BlockBeginArray _block_of_op; // mapping from LIR_Op id to the BlockBegin containing this instruction
|
|
BitMap _has_info; // bit set for each LIR_Op id that has a CodeEmitInfo
|
|
BitMap _has_call; // bit set for each LIR_Op id that destroys all caller save registers
|
|
BitMap2D _interval_in_loop; // bit set for each virtual register that is contained in each loop
|
|
|
|
// cached debug info to prevent multiple creation of same object
|
|
// TODO: cached scope values for registers could be static
|
|
ScopeValueArray _scope_value_cache;
|
|
|
|
static ConstantOopWriteValue _oop_null_scope_value;
|
|
static ConstantIntValue _int_m1_scope_value;
|
|
static ConstantIntValue _int_0_scope_value;
|
|
static ConstantIntValue _int_1_scope_value;
|
|
static ConstantIntValue _int_2_scope_value;
|
|
|
|
// accessors
|
|
IR* ir() const { return _ir; }
|
|
Compilation* compilation() const { return _compilation; }
|
|
LIRGenerator* gen() const { return _gen; }
|
|
FrameMap* frame_map() const { return _frame_map; }
|
|
|
|
// unified bailout support
|
|
void bailout(const char* msg) const { compilation()->bailout(msg); }
|
|
bool bailed_out() const { return compilation()->bailed_out(); }
|
|
|
|
// access to block list (sorted in linear scan order)
|
|
int block_count() const { assert(_cached_blocks.length() == ir()->linear_scan_order()->length(), "invalid cached block list"); return _cached_blocks.length(); }
|
|
BlockBegin* block_at(int idx) const { assert(_cached_blocks.at(idx) == ir()->linear_scan_order()->at(idx), "invalid cached block list"); return _cached_blocks.at(idx); }
|
|
|
|
int num_virtual_regs() const { return _num_virtual_regs; }
|
|
// size of live_in and live_out sets of BasicBlocks (BitMap needs rounded size for iteration)
|
|
int live_set_size() const { return round_to(_num_virtual_regs, BitsPerWord); }
|
|
bool has_fpu_registers() const { return _has_fpu_registers; }
|
|
int num_loops() const { return ir()->num_loops(); }
|
|
bool is_interval_in_loop(int interval, int loop) const { return _interval_in_loop.at(interval, loop); }
|
|
|
|
// handling of fpu stack allocation (platform dependent, needed for debug information generation)
|
|
#ifdef IA32
|
|
FpuStackAllocator* _fpu_stack_allocator;
|
|
bool use_fpu_stack_allocation() const { return UseSSE < 2 && has_fpu_registers(); }
|
|
#else
|
|
bool use_fpu_stack_allocation() const { return false; }
|
|
#endif
|
|
|
|
|
|
// access to interval list
|
|
int interval_count() const { return _intervals.length(); }
|
|
Interval* interval_at(int reg_num) const { return _intervals.at(reg_num); }
|
|
|
|
IntervalList* new_intervals_from_allocation() const { return _new_intervals_from_allocation; }
|
|
|
|
// access to LIR_Ops and Blocks indexed by op_id
|
|
int max_lir_op_id() const { assert(_lir_ops.length() > 0, "no operations"); return (_lir_ops.length() - 1) << 1; }
|
|
LIR_Op* lir_op_with_id(int op_id) const { assert(op_id >= 0 && op_id <= max_lir_op_id() && op_id % 2 == 0, "op_id out of range or not even"); return _lir_ops.at(op_id >> 1); }
|
|
BlockBegin* block_of_op_with_id(int op_id) const { assert(_block_of_op.length() > 0 && op_id >= 0 && op_id <= max_lir_op_id() + 1, "op_id out of range"); return _block_of_op.at(op_id >> 1); }
|
|
|
|
bool is_block_begin(int op_id) { return op_id == 0 || block_of_op_with_id(op_id) != block_of_op_with_id(op_id - 1); }
|
|
bool covers_block_begin(int op_id_1, int op_id_2) { return block_of_op_with_id(op_id_1) != block_of_op_with_id(op_id_2); }
|
|
|
|
bool has_call(int op_id) { assert(op_id % 2 == 0, "must be even"); return _has_call.at(op_id >> 1); }
|
|
bool has_info(int op_id) { assert(op_id % 2 == 0, "must be even"); return _has_info.at(op_id >> 1); }
|
|
|
|
|
|
// functions for converting LIR-Operands to register numbers
|
|
static bool is_valid_reg_num(int reg_num) { return reg_num >= 0; }
|
|
static int reg_num(LIR_Opr opr);
|
|
static int reg_numHi(LIR_Opr opr);
|
|
|
|
// functions for classification of intervals
|
|
static bool is_precolored_interval(const Interval* i);
|
|
static bool is_virtual_interval(const Interval* i);
|
|
|
|
static bool is_precolored_cpu_interval(const Interval* i);
|
|
static bool is_virtual_cpu_interval(const Interval* i);
|
|
static bool is_precolored_fpu_interval(const Interval* i);
|
|
static bool is_virtual_fpu_interval(const Interval* i);
|
|
|
|
static bool is_in_fpu_register(const Interval* i);
|
|
static bool is_oop_interval(const Interval* i);
|
|
|
|
|
|
// General helper functions
|
|
int allocate_spill_slot(bool double_word);
|
|
void assign_spill_slot(Interval* it);
|
|
void propagate_spill_slots();
|
|
|
|
Interval* create_interval(int reg_num);
|
|
void append_interval(Interval* it);
|
|
void copy_register_flags(Interval* from, Interval* to);
|
|
|
|
// platform dependent functions
|
|
static bool is_processed_reg_num(int reg_num);
|
|
static int num_physical_regs(BasicType type);
|
|
static bool requires_adjacent_regs(BasicType type);
|
|
static bool is_caller_save(int assigned_reg);
|
|
|
|
// spill move optimization: eliminate moves from register to stack if
|
|
// stack slot is known to be correct
|
|
void change_spill_definition_pos(Interval* interval, int def_pos);
|
|
void change_spill_state(Interval* interval, int spill_pos);
|
|
static bool must_store_at_definition(const Interval* i);
|
|
void eliminate_spill_moves();
|
|
|
|
// Phase 1: number all instructions in all blocks
|
|
void number_instructions();
|
|
|
|
// Phase 2: compute local live sets separately for each block
|
|
// (sets live_gen and live_kill for each block)
|
|
//
|
|
// helper methods used by compute_local_live_sets()
|
|
void set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill);
|
|
|
|
void compute_local_live_sets();
|
|
|
|
// Phase 3: perform a backward dataflow analysis to compute global live sets
|
|
// (sets live_in and live_out for each block)
|
|
void compute_global_live_sets();
|
|
|
|
|
|
// Phase 4: build intervals
|
|
// (fills the list _intervals)
|
|
//
|
|
// helper methods used by build_intervals()
|
|
void add_use (Value value, int from, int to, IntervalUseKind use_kind);
|
|
|
|
void add_def (LIR_Opr opr, int def_pos, IntervalUseKind use_kind);
|
|
void add_use (LIR_Opr opr, int from, int to, IntervalUseKind use_kind);
|
|
void add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind);
|
|
|
|
void add_def (int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type);
|
|
void add_use (int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type);
|
|
void add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type);
|
|
|
|
// Add platform dependent kills for particular LIR ops. Can be used
|
|
// to add platform dependent behaviour for some operations.
|
|
void pd_add_temps(LIR_Op* op);
|
|
|
|
IntervalUseKind use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr);
|
|
IntervalUseKind use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr);
|
|
void handle_method_arguments(LIR_Op* op);
|
|
void handle_doubleword_moves(LIR_Op* op);
|
|
void add_register_hints(LIR_Op* op);
|
|
|
|
void build_intervals();
|
|
|
|
|
|
// Phase 5: actual register allocation
|
|
// (Uses LinearScanWalker)
|
|
//
|
|
// helper functions for building a sorted list of intervals
|
|
NOT_PRODUCT(bool is_sorted(IntervalArray* intervals);)
|
|
static int interval_cmp(Interval** a, Interval** b);
|
|
void add_to_list(Interval** first, Interval** prev, Interval* interval);
|
|
void create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i));
|
|
|
|
void sort_intervals_before_allocation();
|
|
void sort_intervals_after_allocation();
|
|
void allocate_registers();
|
|
|
|
|
|
// Phase 6: resolve data flow
|
|
// (insert moves at edges between blocks if intervals have been split)
|
|
//
|
|
// helper functions for resolve_data_flow()
|
|
Interval* split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode);
|
|
Interval* interval_at_block_begin(BlockBegin* block, int reg_num);
|
|
Interval* interval_at_block_end(BlockBegin* block, int reg_num);
|
|
Interval* interval_at_op_id(int reg_num, int op_id);
|
|
void resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver);
|
|
void resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver);
|
|
void resolve_data_flow();
|
|
|
|
void resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver);
|
|
void resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver);
|
|
void resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver);
|
|
void resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver);
|
|
void resolve_exception_handlers();
|
|
|
|
// Phase 7: assign register numbers back to LIR
|
|
// (includes computation of debug information and oop maps)
|
|
//
|
|
// helper functions for assign_reg_num()
|
|
VMReg vm_reg_for_interval(Interval* interval);
|
|
VMReg vm_reg_for_operand(LIR_Opr opr);
|
|
|
|
static LIR_Opr operand_for_interval(Interval* interval);
|
|
static LIR_Opr calc_operand_for_interval(const Interval* interval);
|
|
LIR_Opr canonical_spill_opr(Interval* interval);
|
|
|
|
LIR_Opr color_lir_opr(LIR_Opr opr, int id, LIR_OpVisitState::OprMode);
|
|
|
|
// methods used for oop map computation
|
|
IntervalWalker* init_compute_oop_maps();
|
|
OopMap* compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site);
|
|
void compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op);
|
|
|
|
// methods used for debug information computation
|
|
void init_compute_debug_info();
|
|
|
|
MonitorValue* location_for_monitor_index(int monitor_index);
|
|
LocationValue* location_for_name(int name, Location::Type loc_type);
|
|
|
|
int append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values);
|
|
int append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values);
|
|
int append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values);
|
|
|
|
IRScopeDebugInfo* compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state, int cur_bci, int stack_end, int locks_end);
|
|
void compute_debug_info(CodeEmitInfo* info, int op_id);
|
|
|
|
void assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw);
|
|
void assign_reg_num();
|
|
|
|
|
|
// Phase 8: fpu stack allocation
|
|
// (Used only on x86 when fpu operands are present)
|
|
void allocate_fpu_stack();
|
|
|
|
|
|
// helper functions for printing state
|
|
#ifndef PRODUCT
|
|
static void print_bitmap(BitMap& bitmap);
|
|
void print_intervals(const char* label);
|
|
void print_lir(int level, const char* label, bool hir_valid = true);
|
|
#endif
|
|
|
|
#ifdef ASSERT
|
|
// verification functions for allocation
|
|
// (check that all intervals have a correct register and that no registers are overwritten)
|
|
void verify();
|
|
void verify_intervals();
|
|
void verify_no_oops_in_fixed_intervals();
|
|
void verify_constants();
|
|
void verify_registers();
|
|
#endif
|
|
|
|
public:
|
|
// creation
|
|
LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map);
|
|
|
|
// main entry function: perform linear scan register allocation
|
|
void do_linear_scan();
|
|
|
|
// accessors used by Compilation
|
|
int max_spills() const { return _max_spills; }
|
|
int num_calls() const { assert(_num_calls >= 0, "not set"); return _num_calls; }
|
|
|
|
// entry functions for printing
|
|
#ifndef PRODUCT
|
|
static void print_statistics();
|
|
static void print_timers(double total);
|
|
#endif
|
|
};
|
|
|
|
|
|
// Helper class for ordering moves that are inserted at the same position in the LIR
|
|
// When moves between registers are inserted, it is important that the moves are
|
|
// ordered such that no register is overwritten. So moves from register to stack
|
|
// are processed prior to moves from stack to register. When moves have circular
|
|
// dependencies, a temporary stack slot is used to break the circle.
|
|
// The same logic is used in the LinearScanWalker and in LinearScan during resolve_data_flow
|
|
// and therefore factored out in a separate class
|
|
class MoveResolver: public StackObj {
|
|
private:
|
|
LinearScan* _allocator;
|
|
|
|
LIR_List* _insert_list;
|
|
int _insert_idx;
|
|
LIR_InsertionBuffer _insertion_buffer; // buffer where moves are inserted
|
|
|
|
IntervalList _mapping_from;
|
|
LIR_OprList _mapping_from_opr;
|
|
IntervalList _mapping_to;
|
|
bool _multiple_reads_allowed;
|
|
int _register_blocked[LinearScan::nof_regs];
|
|
|
|
int register_blocked(int reg) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds"); return _register_blocked[reg]; }
|
|
void set_register_blocked(int reg, int direction) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds"); assert(direction == 1 || direction == -1, "out of bounds"); _register_blocked[reg] += direction; }
|
|
|
|
void block_registers(Interval* it);
|
|
void unblock_registers(Interval* it);
|
|
bool save_to_process_move(Interval* from, Interval* to);
|
|
|
|
void create_insertion_buffer(LIR_List* list);
|
|
void append_insertion_buffer();
|
|
void insert_move(Interval* from_interval, Interval* to_interval);
|
|
void insert_move(LIR_Opr from_opr, Interval* to_interval);
|
|
|
|
DEBUG_ONLY(void verify_before_resolve();)
|
|
void resolve_mappings();
|
|
public:
|
|
MoveResolver(LinearScan* allocator);
|
|
|
|
DEBUG_ONLY(void check_empty();)
|
|
void set_multiple_reads_allowed() { _multiple_reads_allowed = true; }
|
|
void set_insert_position(LIR_List* insert_list, int insert_idx);
|
|
void move_insert_position(LIR_List* insert_list, int insert_idx);
|
|
void add_mapping(Interval* from, Interval* to);
|
|
void add_mapping(LIR_Opr from, Interval* to);
|
|
void resolve_and_append_moves();
|
|
|
|
LinearScan* allocator() { return _allocator; }
|
|
bool has_mappings() { return _mapping_from.length() > 0; }
|
|
};
|
|
|
|
|
|
class Range : public CompilationResourceObj {
|
|
friend class Interval;
|
|
|
|
private:
|
|
static Range* _end; // sentinel (from == to == max_jint)
|
|
|
|
int _from; // from (inclusive)
|
|
int _to; // to (exclusive)
|
|
Range* _next; // linear list of Ranges
|
|
|
|
// used only by class Interval, so hide them
|
|
bool intersects(Range* r) const { return intersects_at(r) != -1; }
|
|
int intersects_at(Range* r) const;
|
|
|
|
public:
|
|
Range(int from, int to, Range* next);
|
|
|
|
static void initialize();
|
|
static Range* end() { return _end; }
|
|
|
|
int from() const { return _from; }
|
|
int to() const { return _to; }
|
|
Range* next() const { return _next; }
|
|
void set_from(int from) { _from = from; }
|
|
void set_to(int to) { _to = to; }
|
|
void set_next(Range* next) { _next = next; }
|
|
|
|
// for testing
|
|
void print(outputStream* out = tty) const PRODUCT_RETURN;
|
|
};
|
|
|
|
|
|
// Interval is an ordered list of disjoint ranges.
|
|
|
|
// For pre-colored double word LIR_Oprs, one interval is created for
|
|
// the low word register and one is created for the hi word register.
|
|
// On Intel for FPU double registers only one interval is created. At
|
|
// all times assigned_reg contains the reg. number of the physical
|
|
// register.
|
|
|
|
// For LIR_Opr in virtual registers a single interval can represent
|
|
// single and double word values. When a physical register is
|
|
// assigned to the interval, assigned_reg contains the
|
|
// phys. reg. number and for double word values assigned_regHi the
|
|
// phys. reg. number of the hi word if there is any. For spilled
|
|
// intervals assigned_reg contains the stack index. assigned_regHi is
|
|
// always -1.
|
|
|
|
class Interval : public CompilationResourceObj {
|
|
private:
|
|
static Interval* _end; // sentinel (interval with only range Range::end())
|
|
|
|
int _reg_num;
|
|
BasicType _type; // valid only for virtual registers
|
|
Range* _first; // sorted list of Ranges
|
|
intStack _use_pos_and_kinds; // sorted list of use-positions and their according use-kinds
|
|
|
|
Range* _current; // interval iteration: the current Range
|
|
Interval* _next; // interval iteration: sorted list of Intervals (ends with sentinel)
|
|
IntervalState _state; // interval iteration: to which set belongs this interval
|
|
|
|
|
|
int _assigned_reg;
|
|
int _assigned_regHi;
|
|
|
|
int _cached_to; // cached value: to of last range (-1: not cached)
|
|
LIR_Opr _cached_opr;
|
|
VMReg _cached_vm_reg;
|
|
|
|
Interval* _split_parent; // the original interval where this interval is derived from
|
|
IntervalList _split_children; // list of all intervals that are split off from this interval (only available for split parents)
|
|
Interval* _current_split_child; // the current split child that has been active or inactive last (always stored in split parents)
|
|
|
|
int _canonical_spill_slot; // the stack slot where all split parts of this interval are spilled to (always stored in split parents)
|
|
bool _insert_move_when_activated; // true if move is inserted between _current_split_child and this interval when interval gets active the first time
|
|
IntervalSpillState _spill_state; // for spill move optimization
|
|
int _spill_definition_pos; // position where the interval is defined (if defined only once)
|
|
Interval* _register_hint; // this interval should be in the same register as the hint interval
|
|
|
|
int calc_to();
|
|
Interval* new_split_child();
|
|
public:
|
|
Interval(int reg_num);
|
|
|
|
static void initialize();
|
|
static Interval* end() { return _end; }
|
|
|
|
// accessors
|
|
int reg_num() const { return _reg_num; }
|
|
void set_reg_num(int r) { assert(_reg_num == -1, "cannot change reg_num"); _reg_num = r; }
|
|
BasicType type() const { assert(_reg_num == -1 || _reg_num >= LIR_OprDesc::vreg_base, "cannot access type for fixed interval"); return _type; }
|
|
void set_type(BasicType type) { assert(_reg_num < LIR_OprDesc::vreg_base || _type == T_ILLEGAL || _type == type, "overwriting existing type"); _type = type; }
|
|
|
|
Range* first() const { return _first; }
|
|
int from() const { return _first->from(); }
|
|
int to() { if (_cached_to == -1) _cached_to = calc_to(); assert(_cached_to == calc_to(), "invalid cached value"); return _cached_to; }
|
|
int num_use_positions() const { return _use_pos_and_kinds.length() / 2; }
|
|
|
|
Interval* next() const { return _next; }
|
|
Interval** next_addr() { return &_next; }
|
|
void set_next(Interval* next) { _next = next; }
|
|
|
|
int assigned_reg() const { return _assigned_reg; }
|
|
int assigned_regHi() const { return _assigned_regHi; }
|
|
void assign_reg(int reg) { _assigned_reg = reg; _assigned_regHi = LinearScan::any_reg; }
|
|
void assign_reg(int reg,int regHi) { _assigned_reg = reg; _assigned_regHi = regHi; }
|
|
|
|
Interval* register_hint(bool search_split_child = true) const; // calculation needed
|
|
void set_register_hint(Interval* i) { _register_hint = i; }
|
|
|
|
int state() const { return _state; }
|
|
void set_state(IntervalState s) { _state = s; }
|
|
|
|
// access to split parent and split children
|
|
bool is_split_parent() const { return _split_parent == this; }
|
|
bool is_split_child() const { return _split_parent != this; }
|
|
Interval* split_parent() const { assert(_split_parent->is_split_parent(), "must be"); return _split_parent; }
|
|
Interval* split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode);
|
|
Interval* split_child_before_op_id(int op_id);
|
|
bool split_child_covers(int op_id, LIR_OpVisitState::OprMode mode);
|
|
DEBUG_ONLY(void check_split_children();)
|
|
|
|
// information stored in split parent, but available for all children
|
|
int canonical_spill_slot() const { return split_parent()->_canonical_spill_slot; }
|
|
void set_canonical_spill_slot(int slot) { assert(split_parent()->_canonical_spill_slot == -1, "overwriting existing value"); split_parent()->_canonical_spill_slot = slot; }
|
|
Interval* current_split_child() const { return split_parent()->_current_split_child; }
|
|
void make_current_split_child() { split_parent()->_current_split_child = this; }
|
|
|
|
bool insert_move_when_activated() const { return _insert_move_when_activated; }
|
|
void set_insert_move_when_activated(bool b) { _insert_move_when_activated = b; }
|
|
|
|
// for spill optimization
|
|
IntervalSpillState spill_state() const { return split_parent()->_spill_state; }
|
|
int spill_definition_pos() const { return split_parent()->_spill_definition_pos; }
|
|
void set_spill_state(IntervalSpillState state) { assert(state >= spill_state(), "state cannot decrease"); split_parent()->_spill_state = state; }
|
|
void set_spill_definition_pos(int pos) { assert(spill_definition_pos() == -1, "cannot set the position twice"); split_parent()->_spill_definition_pos = pos; }
|
|
// returns true if this interval has a shadow copy on the stack that is always correct
|
|
bool always_in_memory() const { return split_parent()->_spill_state == storeAtDefinition || split_parent()->_spill_state == startInMemory; }
|
|
|
|
// caching of values that take time to compute and are used multiple times
|
|
LIR_Opr cached_opr() const { return _cached_opr; }
|
|
VMReg cached_vm_reg() const { return _cached_vm_reg; }
|
|
void set_cached_opr(LIR_Opr opr) { _cached_opr = opr; }
|
|
void set_cached_vm_reg(VMReg reg) { _cached_vm_reg = reg; }
|
|
|
|
// access to use positions
|
|
int first_usage(IntervalUseKind min_use_kind) const; // id of the first operation requiring this interval in a register
|
|
int next_usage(IntervalUseKind min_use_kind, int from) const; // id of next usage seen from the given position
|
|
int next_usage_exact(IntervalUseKind exact_use_kind, int from) const;
|
|
int previous_usage(IntervalUseKind min_use_kind, int from) const;
|
|
|
|
// manipulating intervals
|
|
void add_use_pos(int pos, IntervalUseKind use_kind);
|
|
void add_range(int from, int to);
|
|
Interval* split(int split_pos);
|
|
Interval* split_from_start(int split_pos);
|
|
void remove_first_use_pos() { _use_pos_and_kinds.truncate(_use_pos_and_kinds.length() - 2); }
|
|
|
|
// test intersection
|
|
bool covers(int op_id, LIR_OpVisitState::OprMode mode) const;
|
|
bool has_hole_between(int from, int to);
|
|
bool intersects(Interval* i) const { return _first->intersects(i->_first); }
|
|
int intersects_at(Interval* i) const { return _first->intersects_at(i->_first); }
|
|
|
|
// range iteration
|
|
void rewind_range() { _current = _first; }
|
|
void next_range() { assert(this != _end, "not allowed on sentinel"); _current = _current->next(); }
|
|
int current_from() const { return _current->from(); }
|
|
int current_to() const { return _current->to(); }
|
|
bool current_at_end() const { return _current == Range::end(); }
|
|
bool current_intersects(Interval* it) { return _current->intersects(it->_current); };
|
|
int current_intersects_at(Interval* it) { return _current->intersects_at(it->_current); };
|
|
|
|
// printing
|
|
void print(outputStream* out = tty) const PRODUCT_RETURN;
|
|
};
|
|
|
|
|
|
class IntervalWalker : public CompilationResourceObj {
|
|
protected:
|
|
Compilation* _compilation;
|
|
LinearScan* _allocator;
|
|
|
|
Interval* _unhandled_first[nofKinds]; // sorted list of intervals, not life before the current position
|
|
Interval* _active_first [nofKinds]; // sorted list of intervals, life at the current position
|
|
Interval* _inactive_first [nofKinds]; // sorted list of intervals, intervals in a life time hole at the current position
|
|
|
|
Interval* _current; // the current interval coming from unhandled list
|
|
int _current_position; // the current position (intercept point through the intervals)
|
|
IntervalKind _current_kind; // and whether it is fixed_kind or any_kind.
|
|
|
|
|
|
Compilation* compilation() const { return _compilation; }
|
|
LinearScan* allocator() const { return _allocator; }
|
|
|
|
// unified bailout support
|
|
void bailout(const char* msg) const { compilation()->bailout(msg); }
|
|
bool bailed_out() const { return compilation()->bailed_out(); }
|
|
|
|
void check_bounds(IntervalKind kind) { assert(kind >= fixedKind && kind <= anyKind, "invalid interval_kind"); }
|
|
|
|
Interval** unhandled_first_addr(IntervalKind kind) { check_bounds(kind); return &_unhandled_first[kind]; }
|
|
Interval** active_first_addr(IntervalKind kind) { check_bounds(kind); return &_active_first[kind]; }
|
|
Interval** inactive_first_addr(IntervalKind kind) { check_bounds(kind); return &_inactive_first[kind]; }
|
|
|
|
void append_unsorted(Interval** first, Interval* interval);
|
|
void append_sorted(Interval** first, Interval* interval);
|
|
void append_to_unhandled(Interval** list, Interval* interval);
|
|
|
|
bool remove_from_list(Interval** list, Interval* i);
|
|
void remove_from_list(Interval* i);
|
|
|
|
void next_interval();
|
|
Interval* current() const { return _current; }
|
|
IntervalKind current_kind() const { return _current_kind; }
|
|
|
|
void walk_to(IntervalState state, int from);
|
|
|
|
// activate_current() is called when an unhandled interval becomes active (in current(), current_kind()).
|
|
// Return false if current() should not be moved the the active interval list.
|
|
// It is safe to append current to any interval list but the unhandled list.
|
|
virtual bool activate_current() { return true; }
|
|
|
|
// interval_moved() is called whenever an interval moves from one interval list to another.
|
|
// In the implementation of this method it is prohibited to move the interval to any list.
|
|
virtual void interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to);
|
|
|
|
public:
|
|
IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first);
|
|
|
|
Interval* unhandled_first(IntervalKind kind) { check_bounds(kind); return _unhandled_first[kind]; }
|
|
Interval* active_first(IntervalKind kind) { check_bounds(kind); return _active_first[kind]; }
|
|
Interval* inactive_first(IntervalKind kind) { check_bounds(kind); return _inactive_first[kind]; }
|
|
|
|
// active contains the intervals that are live after the lir_op
|
|
void walk_to(int lir_op_id);
|
|
// active contains the intervals that are live before the lir_op
|
|
void walk_before(int lir_op_id) { walk_to(lir_op_id-1); }
|
|
// walk through all intervals
|
|
void walk() { walk_to(max_jint); }
|
|
|
|
int current_position() { return _current_position; }
|
|
};
|
|
|
|
|
|
// The actual linear scan register allocator
|
|
class LinearScanWalker : public IntervalWalker {
|
|
enum {
|
|
any_reg = LinearScan::any_reg
|
|
};
|
|
|
|
private:
|
|
int _first_reg; // the reg. number of the first phys. register
|
|
int _last_reg; // the reg. nmber of the last phys. register
|
|
int _num_phys_regs; // required by current interval
|
|
bool _adjacent_regs; // have lo/hi words of phys. regs be adjacent
|
|
|
|
int _use_pos[LinearScan::nof_regs];
|
|
int _block_pos[LinearScan::nof_regs];
|
|
IntervalList* _spill_intervals[LinearScan::nof_regs];
|
|
|
|
MoveResolver _move_resolver; // for ordering spill moves
|
|
|
|
// accessors mapped to same functions in class LinearScan
|
|
int block_count() const { return allocator()->block_count(); }
|
|
BlockBegin* block_at(int idx) const { return allocator()->block_at(idx); }
|
|
BlockBegin* block_of_op_with_id(int op_id) const { return allocator()->block_of_op_with_id(op_id); }
|
|
|
|
void init_use_lists(bool only_process_use_pos);
|
|
void exclude_from_use(int reg);
|
|
void exclude_from_use(Interval* i);
|
|
void set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos);
|
|
void set_use_pos(Interval* i, int use_pos, bool only_process_use_pos);
|
|
void set_block_pos(int reg, Interval* i, int block_pos);
|
|
void set_block_pos(Interval* i, int block_pos);
|
|
|
|
void free_exclude_active_fixed();
|
|
void free_exclude_active_any();
|
|
void free_collect_inactive_fixed(Interval* cur);
|
|
void free_collect_inactive_any(Interval* cur);
|
|
void free_collect_unhandled(IntervalKind kind, Interval* cur);
|
|
void spill_exclude_active_fixed();
|
|
void spill_block_unhandled_fixed(Interval* cur);
|
|
void spill_block_inactive_fixed(Interval* cur);
|
|
void spill_collect_active_any();
|
|
void spill_collect_inactive_any(Interval* cur);
|
|
|
|
void insert_move(int op_id, Interval* src_it, Interval* dst_it);
|
|
int find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos);
|
|
int find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization);
|
|
void split_before_usage(Interval* it, int min_split_pos, int max_split_pos);
|
|
void split_for_spilling(Interval* it);
|
|
void split_stack_interval(Interval* it);
|
|
void split_when_partial_register_available(Interval* it, int register_available_until);
|
|
void split_and_spill_interval(Interval* it);
|
|
|
|
int find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split);
|
|
int find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split);
|
|
bool alloc_free_reg(Interval* cur);
|
|
|
|
int find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split);
|
|
int find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split);
|
|
void split_and_spill_intersecting_intervals(int reg, int regHi);
|
|
void alloc_locked_reg(Interval* cur);
|
|
|
|
bool no_allocation_possible(Interval* cur);
|
|
void update_phys_reg_range(bool requires_cpu_register);
|
|
void init_vars_for_alloc(Interval* cur);
|
|
bool pd_init_regs_for_alloc(Interval* cur);
|
|
|
|
void combine_spilled_intervals(Interval* cur);
|
|
bool is_move(LIR_Op* op, Interval* from, Interval* to);
|
|
|
|
bool activate_current();
|
|
|
|
public:
|
|
LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first);
|
|
|
|
// must be called when all intervals are allocated
|
|
void finish_allocation() { _move_resolver.resolve_and_append_moves(); }
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
When a block has more than one predecessor, and all predecessors end with
|
|
the same sequence of move-instructions, than this moves can be placed once
|
|
at the beginning of the block instead of multiple times in the predecessors.
|
|
|
|
Similarly, when a block has more than one successor, then equal sequences of
|
|
moves at the beginning of the successors can be placed once at the end of
|
|
the block. But because the moves must be inserted before all branch
|
|
instructions, this works only when there is exactly one conditional branch
|
|
at the end of the block (because the moves must be inserted before all
|
|
branches, but after all compares).
|
|
|
|
This optimization affects all kind of moves (reg->reg, reg->stack and
|
|
stack->reg). Because this optimization works best when a block contains only
|
|
few moves, it has a huge impact on the number of blocks that are totally
|
|
empty.
|
|
*/
|
|
class EdgeMoveOptimizer : public StackObj {
|
|
private:
|
|
// the class maintains a list with all lir-instruction-list of the
|
|
// successors (predecessors) and the current index into the lir-lists
|
|
LIR_OpListStack _edge_instructions;
|
|
intStack _edge_instructions_idx;
|
|
|
|
void init_instructions();
|
|
void append_instructions(LIR_OpList* instructions, int instructions_idx);
|
|
LIR_Op* instruction_at(int edge);
|
|
void remove_cur_instruction(int edge, bool decrement_index);
|
|
|
|
bool operations_different(LIR_Op* op1, LIR_Op* op2);
|
|
|
|
void optimize_moves_at_block_end(BlockBegin* cur);
|
|
void optimize_moves_at_block_begin(BlockBegin* cur);
|
|
|
|
EdgeMoveOptimizer();
|
|
|
|
public:
|
|
static void optimize(BlockList* code);
|
|
};
|
|
|
|
|
|
|
|
class ControlFlowOptimizer : public StackObj {
|
|
private:
|
|
BlockList _original_preds;
|
|
|
|
enum {
|
|
ShortLoopSize = 5
|
|
};
|
|
void reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx);
|
|
void reorder_short_loops(BlockList* code);
|
|
|
|
bool can_delete_block(BlockBegin* cur);
|
|
void substitute_branch_target(BlockBegin* cur, BlockBegin* target_from, BlockBegin* target_to);
|
|
void delete_empty_blocks(BlockList* code);
|
|
|
|
void delete_unnecessary_jumps(BlockList* code);
|
|
void delete_jumps_to_return(BlockList* code);
|
|
|
|
DEBUG_ONLY(void verify(BlockList* code);)
|
|
|
|
ControlFlowOptimizer();
|
|
public:
|
|
static void optimize(BlockList* code);
|
|
};
|
|
|
|
|
|
#ifndef PRODUCT
|
|
|
|
// Helper class for collecting statistics of LinearScan
|
|
class LinearScanStatistic : public StackObj {
|
|
public:
|
|
enum Counter {
|
|
// general counters
|
|
counter_method,
|
|
counter_fpu_method,
|
|
counter_loop_method,
|
|
counter_exception_method,
|
|
counter_loop,
|
|
counter_block,
|
|
counter_loop_block,
|
|
counter_exception_block,
|
|
counter_interval,
|
|
counter_fixed_interval,
|
|
counter_range,
|
|
counter_fixed_range,
|
|
counter_use_pos,
|
|
counter_fixed_use_pos,
|
|
counter_spill_slots,
|
|
blank_line_1,
|
|
|
|
// counter for classes of lir instructions
|
|
counter_instruction,
|
|
counter_label,
|
|
counter_entry,
|
|
counter_return,
|
|
counter_call,
|
|
counter_move,
|
|
counter_cmp,
|
|
counter_cond_branch,
|
|
counter_uncond_branch,
|
|
counter_stub_branch,
|
|
counter_alu,
|
|
counter_alloc,
|
|
counter_sync,
|
|
counter_throw,
|
|
counter_unwind,
|
|
counter_typecheck,
|
|
counter_fpu_stack,
|
|
counter_misc_inst,
|
|
counter_other_inst,
|
|
blank_line_2,
|
|
|
|
// counter for different types of moves
|
|
counter_move_total,
|
|
counter_move_reg_reg,
|
|
counter_move_reg_stack,
|
|
counter_move_stack_reg,
|
|
counter_move_stack_stack,
|
|
counter_move_reg_mem,
|
|
counter_move_mem_reg,
|
|
counter_move_const_any,
|
|
|
|
number_of_counters,
|
|
invalid_counter = -1
|
|
};
|
|
|
|
private:
|
|
int _counters_sum[number_of_counters];
|
|
int _counters_max[number_of_counters];
|
|
|
|
void inc_counter(Counter idx, int value = 1) { _counters_sum[idx] += value; }
|
|
|
|
const char* counter_name(int counter_idx);
|
|
Counter base_counter(int counter_idx);
|
|
|
|
void sum_up(LinearScanStatistic &method_statistic);
|
|
void collect(LinearScan* allocator);
|
|
|
|
public:
|
|
LinearScanStatistic();
|
|
void print(const char* title);
|
|
static void compute(LinearScan* allocator, LinearScanStatistic &global_statistic);
|
|
};
|
|
|
|
|
|
// Helper class for collecting compilation time of LinearScan
|
|
class LinearScanTimers : public StackObj {
|
|
public:
|
|
enum Timer {
|
|
timer_do_nothing,
|
|
timer_number_instructions,
|
|
timer_compute_local_live_sets,
|
|
timer_compute_global_live_sets,
|
|
timer_build_intervals,
|
|
timer_sort_intervals_before,
|
|
timer_allocate_registers,
|
|
timer_resolve_data_flow,
|
|
timer_sort_intervals_after,
|
|
timer_eliminate_spill_moves,
|
|
timer_assign_reg_num,
|
|
timer_allocate_fpu_stack,
|
|
timer_optimize_lir,
|
|
|
|
number_of_timers
|
|
};
|
|
|
|
private:
|
|
elapsedTimer _timers[number_of_timers];
|
|
const char* timer_name(int idx);
|
|
|
|
public:
|
|
LinearScanTimers();
|
|
|
|
void begin_method(); // called for each method when register allocation starts
|
|
void end_method(LinearScan* allocator); // called for each method when register allocation completed
|
|
void print(double total_time); // called before termination of VM to print global summary
|
|
|
|
elapsedTimer* timer(int idx) { return &(_timers[idx]); }
|
|
};
|
|
|
|
|
|
#endif // ifndef PRODUCT
|
|
|
|
|
|
// Pick up platform-dependent implementation details
|
|
# include "incls/_c1_LinearScan_pd.hpp.incl"
|