jdk-24/test/jdk/java/lang/Double/ParseDouble.java
Naoto Sato 9f7094079b 8327261: Parsing test for Double/Float succeeds w/o testing all bad cases
Reviewed-by: darcy, gli, joehw, jlu, bpb, lancea
2024-03-06 16:15:23 +00:00

779 lines
23 KiB
Java

/*
* Copyright (c) 2001, 2024, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* @test
* @bug 4160406 4705734 4707389 4826774 4895911 4421494 6358355 7021568 7039369 4396272
* @summary Test for Double.parseDouble method and acceptance regex
*/
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.regex.*;
public class ParseDouble {
private static final BigDecimal HALF = BigDecimal.valueOf(0.5);
private static void fail(String val, double n) {
throw new RuntimeException("Double.parseDouble failed. String:" +
val + " Result:" + n);
}
private static void check(String val) {
double n = Double.parseDouble(val);
boolean isNegativeN = n < 0 || n == 0 && 1/n < 0;
double na = Math.abs(n);
String s = val.trim().toLowerCase();
switch (s.charAt(s.length() - 1)) {
case 'd':
case 'f':
s = s.substring(0, s.length() - 1);
break;
}
boolean isNegative = false;
if (s.charAt(0) == '+') {
s = s.substring(1);
} else if (s.charAt(0) == '-') {
s = s.substring(1);
isNegative = true;
}
if (s.equals("nan")) {
if (!Double.isNaN(n)) {
fail(val, n);
}
return;
}
if (Double.isNaN(n)) {
fail(val, n);
}
if (isNegativeN != isNegative)
fail(val, n);
if (s.equals("infinity")) {
if (na != Double.POSITIVE_INFINITY) {
fail(val, n);
}
return;
}
BigDecimal bd;
if (s.startsWith("0x")) {
s = s.substring(2);
int indP = s.indexOf('p');
long exp = Long.parseLong(s.substring(indP + 1));
int indD = s.indexOf('.');
String significand;
if (indD >= 0) {
significand = s.substring(0, indD) + s.substring(indD + 1, indP);
exp -= 4*(indP - indD - 1);
} else {
significand = s.substring(0, indP);
}
bd = new BigDecimal(new BigInteger(significand, 16));
if (exp >= 0) {
bd = bd.multiply(BigDecimal.valueOf(2).pow((int)exp));
} else {
bd = bd.divide(BigDecimal.valueOf(2).pow((int)-exp));
}
} else {
bd = new BigDecimal(s);
}
BigDecimal l, u;
if (Double.isInfinite(na)) {
l = new BigDecimal(Double.MAX_VALUE).add(new BigDecimal(Math.ulp(Double.MAX_VALUE)).multiply(HALF));
u = null;
} else {
l = new BigDecimal(na).subtract(new BigDecimal(Math.ulp(Math.nextUp(-na))).multiply(HALF));
u = new BigDecimal(na).add(new BigDecimal(Math.ulp(n)).multiply(HALF));
}
int cmpL = bd.compareTo(l);
int cmpU = u != null ? bd.compareTo(u) : -1;
if ((Double.doubleToLongBits(n) & 1) != 0) {
if (cmpL <= 0 || cmpU >= 0) {
fail(val, n);
}
} else {
if (cmpL < 0 || cmpU > 0) {
fail(val, n);
}
}
}
private static void check(String val, double expected) {
double n = Double.parseDouble(val);
if (n != expected)
fail(val, n);
check(val);
}
private static void rudimentaryTest() {
check(new String(""+Double.MIN_VALUE), Double.MIN_VALUE);
check(new String(""+Double.MAX_VALUE), Double.MAX_VALUE);
check("10", (double) 10.0);
check("10.0", (double) 10.0);
check("10.01", (double) 10.01);
check("-10", (double) -10.0);
check("-10.00", (double) -10.0);
check("-10.01", (double) -10.01);
}
static String badStrings[] = {
"",
"+",
"-",
"+e",
"-e",
"+e170",
"-e170",
// Make sure intermediate white space is not deleted.
"1234 e10",
"-1234 e10",
// Control characters in the interior of a string are not legal
"1\u0007e1",
"1e\u00071",
// NaN and infinity can't have trailing type suffices or exponents
"NaNf",
"NaNF",
"NaNd",
"NaND",
"-NaNf",
"-NaNF",
"-NaNd",
"-NaND",
"+NaNf",
"+NaNF",
"+NaNd",
"+NaND",
"Infinityf",
"InfinityF",
"Infinityd",
"InfinityD",
"-Infinityf",
"-InfinityF",
"-Infinityd",
"-InfinityD",
"+Infinityf",
"+InfinityF",
"+Infinityd",
"+InfinityD",
"NaNe10",
"-NaNe10",
"+NaNe10",
"Infinitye10",
"-Infinitye10",
"+Infinitye10",
// Non-ASCII digits are not recognized
"\u0661e\u0661", // 1e1 in Arabic-Indic digits
"\u06F1e\u06F1", // 1e1 in Extended Arabic-Indic digits
"\u0967e\u0967", // 1e1 in Devanagari digits
// JCK test lex03592m3
".",
// JCK test lex03592m4
"e42",
// JCK test lex03592m5
".e42",
// JCK test lex03592m6
"d",
// JCK test lex03592m7
".d",
// JCK test lex03592m8
"e42d",
// JCK test lex03592m9
".e42d",
// JCK test lex03593m10
"1A01.01125e-10d",
// JCK test lex03593m11
"2;3.01125e-10d",
// JCK test lex03593m12
"1_34.01125e-10d",
// JCK test lex03593m14
"202..01125e-10d",
// JCK test lex03593m15
"202,01125e-10d",
// JCK test lex03593m16
"202.03b4e-10d",
// JCK test lex03593m18
"202.06_3e-10d",
// JCK test lex03593m20
"202.01125e-f0d",
// JCK test lex03593m21
"202.01125e_3d",
// JCK test lex03593m22
"202.01125e -5d",
// JCK test lex03593m24
"202.01125e-10r",
// JCK test lex03593m25
"202.01125e-10ff",
// JCK test lex03593m26
"1234L.01",
// JCK test lex03593m27
"12ee-2",
// JCK test lex03593m28
"12e-2.2.2",
// JCK test lex03593m29
"12.01e+",
// JCK test lex03593m30
"12.01E",
// Bad hexadecimal-style strings
// Two leading zeros
"00x1.0p1",
// Must have hex specifier
"1.0p1",
"00010p1",
"deadbeefp1",
// Need an explicit fully-formed exponent
"0x1.0p",
"0x1.0",
// Exponent must be in decimal
"0x1.0pa",
"0x1.0pf",
// Exponent separated by "p"
"0x1.0e22",
"0x1.0e22",
// Need a signifcand
"0xp22"
};
static String goodStrings[] = {
"NaN",
"+NaN",
"-NaN",
"Infinity",
"+Infinity",
"-Infinity",
"1.1e-23f",
".1e-23f",
"1e-23",
"1f",
"0",
"-0",
"+0",
"00",
"00",
"-00",
"+00",
"0000000000",
"-0000000000",
"+0000000000",
"1",
"2",
"1234",
"-1234",
"+1234",
"2147483647", // Integer.MAX_VALUE
"2147483648",
"-2147483648", // Integer.MIN_VALUE
"-2147483649",
"16777215",
"16777216", // 2^24
"16777217",
"-16777215",
"-16777216", // -2^24
"-16777217",
"9007199254740991",
"9007199254740992", // 2^53
"9007199254740993",
"-9007199254740991",
"-9007199254740992", // -2^53
"-9007199254740993",
"9223372036854775807",
"9223372036854775808", // Long.MAX_VALUE
"9223372036854775809",
"-9223372036854775808",
"-9223372036854775809", // Long.MIN_VALUE
"-9223372036854775810",
// Culled from JCK test lex03591m1
"54.07140d",
"7.01e-324d",
"2147483647.01d",
"1.2147483647f",
"000000000000000000000000001.F",
"1.00000000000000000000000000e-2F",
// Culled from JCK test lex03592m2
"2.",
".0909",
"122112217090.0",
"7090e-5",
"2.E-20",
".0909e42",
"122112217090.0E+100",
"7090f",
"2.F",
".0909d",
"122112217090.0D",
"7090e-5f",
"2.E-20F",
".0909e42d",
"122112217090.0E+100D",
// Culled from JCK test lex03594m31 -- unicode escapes
"\u0035\u0031\u0034\u0039\u0032\u0033\u0036\u0037\u0038\u0030.1102E-209D",
"1290873\u002E12301e100",
"1.1E-10\u0066",
// Culled from JCK test lex03595m1
"0.0E-10",
"1E10",
// Culled from JCK test lex03691m1
"0.f",
"1f",
"0.F",
"1F",
"0.12d",
"1e-0d",
"12.e+1D",
"0e-0D",
"12.e+01",
"1e-01",
// Good hex strings
// Vary capitalization of separators.
"0x1p1",
"0X1p1",
"0x1P1",
"0X1P1",
"0x1p1f",
"0X1p1f",
"0x1P1f",
"0X1P1f",
"0x1p1F",
"0X1p1F",
"0x1P1F",
"0X1P1F",
"0x1p1d",
"0X1p1d",
"0x1P1d",
"0X1P1d",
"0x1p1D",
"0X1p1D",
"0x1P1D",
"0X1P1D",
"-0x1p1",
"-0X1p1",
"-0x1P1",
"-0X1P1",
"-0x1p1f",
"-0X1p1f",
"-0x1P1f",
"-0X1P1f",
"-0x1p1F",
"-0X1p1F",
"-0x1P1F",
"-0X1P1F",
"-0x1p1d",
"-0X1p1d",
"-0x1P1d",
"-0X1P1d",
"-0x1p1D",
"-0X1p1D",
"-0x1P1D",
"-0X1P1D",
"0x1p-1",
"0X1p-1",
"0x1P-1",
"0X1P-1",
"0x1p-1f",
"0X1p-1f",
"0x1P-1f",
"0X1P-1f",
"0x1p-1F",
"0X1p-1F",
"0x1P-1F",
"0X1P-1F",
"0x1p-1d",
"0X1p-1d",
"0x1P-1d",
"0X1P-1d",
"0x1p-1D",
"0X1p-1D",
"0x1P-1D",
"0X1P-1D",
"-0x1p-1",
"-0X1p-1",
"-0x1P-1",
"-0X1P-1",
"-0x1p-1f",
"-0X1p-1f",
"-0x1P-1f",
"-0X1P-1f",
"-0x1p-1F",
"-0X1p-1F",
"-0x1P-1F",
"-0X1P-1F",
"-0x1p-1d",
"-0X1p-1d",
"-0x1P-1d",
"-0X1P-1d",
"-0x1p-1D",
"-0X1p-1D",
"-0x1P-1D",
"-0X1P-1D",
// Try different significand combinations
"0xap1",
"0xbp1",
"0xcp1",
"0xdp1",
"0xep1",
"0xfp1",
"0x1p1",
"0x.1p1",
"0x1.1p1",
"0x001p23",
"0x00.1p1",
"0x001.1p1",
"0x100p1",
"0x.100p1",
"0x1.100p1",
"0x00100p1",
"0x00.100p1",
"0x001.100p1",
// Limits
"1.7976931348623157E308", // Double.MAX_VALUE
"4.9e-324", // Double.MIN_VALUE
"2.2250738585072014e-308", // Double.MIN_NORMAL
"2.2250738585072012e-308", // near Double.MIN_NORMAL
"1.7976931348623158e+308", // near MAX_VALUE + ulp(MAX_VALUE)/2
"1.7976931348623159e+308", // near MAX_VALUE + ulp(MAX_VALUE)
"2.4703282292062329e-324", // above MIN_VALUE/2
"2.4703282292062327e-324", // MIN_VALUE/2
"2.4703282292062325e-324", // below MIN_VALUE/2
// 1e308 with leading zeros
"0.0000000000001e321",
"00.000000000000000001e326",
"00000.000000000000000001e326",
"000.0000000000000000001e327",
"0.00000000000000000001e328",
};
static String paddedBadStrings[];
static String paddedGoodStrings[];
static {
String pad = " \t\n\r\f\u0001\u000b\u001f";
paddedBadStrings = new String[badStrings.length];
for(int i = 0 ; i < badStrings.length; i++)
paddedBadStrings[i] = pad + badStrings[i] + pad;
paddedGoodStrings = new String[goodStrings.length];
for(int i = 0 ; i < goodStrings.length; i++)
paddedGoodStrings[i] = pad + goodStrings[i] + pad;
}
/*
* Throws an exception if <code>Input</code> is
* <code>exceptionalInput</code> and {@link Double.parseDouble
* parseDouble} does <em>not</em> throw an exception or if
* <code>Input</code> is not <code>exceptionalInput</code> and
* <code>parseDouble</code> throws an exception. This method does
* not attempt to test whether the string is converted to the
* proper value; just whether the input is accepted appropriately
* or not.
*/
private static void testParsing(String [] input,
boolean exceptionalInput) {
for (String s : input) {
try {
Double.parseDouble(s);
check(s);
} catch (NumberFormatException e) {
if (!exceptionalInput) {
throw new RuntimeException("Double.parseDouble rejected " +
"good string `" + s +
"'.");
}
continue;
}
if (exceptionalInput) {
throw new RuntimeException("Double.parseDouble accepted " +
"bad string `" + s +
"'.");
}
}
}
/*
* Throws an exception if <code>Input</code> is
* <code>exceptionalInput</code> and the regular expression
* matches one of the strings or if <code>Input</code> is not
* <code>exceptionalInput</code> and the regular expression fails
* to match an input string.
*/
private static void testRegex(String [] input, boolean exceptionalInput) {
/*
* The regex below is taken from the JavaDoc for
* Double.valueOf.
*/
final String Digits = "(\\p{Digit}+)";
final String HexDigits = "(\\p{XDigit}+)";
// an exponent is 'e' or 'E' followed by an optionally
// signed decimal integer.
final String Exp = "[eE][+-]?"+Digits;
final String fpRegex =
("[\\x00-\\x20]*"+ // Optional leading "whitespace"
"[+-]?(" + // Optional sign character
"NaN|" + // "NaN" string
"Infinity|" + // "Infinity" string
// A floating-point string representing a finite positive
// number without a leading sign has at most five basic pieces:
// Digits . Digits ExponentPart FloatTypeSuffix
//
// Since this method allows integer-only strings as input
// in addition to strings of floating-point literals, the
// two sub-patterns below are simplifications of the grammar
// productions from the Java Language Specification, 2nd
// edition, section 3.10.2.
// A decimal floating-point string representing a finite positive
// number without a leading sign has at most five basic pieces:
// Digits . Digits ExponentPart FloatTypeSuffix
//
// Since this method allows integer-only strings as input
// in addition to strings of floating-point literals, the
// two sub-patterns below are simplifications of the grammar
// productions from the Java Language Specification, 2nd
// edition, section 3.10.2.
// Digits ._opt Digits_opt ExponentPart_opt FloatTypeSuffix_opt
"(((("+Digits+"(\\.)?("+Digits+"?)("+Exp+")?)|"+
// . Digits ExponentPart_opt FloatTypeSuffix_opt
"(\\.("+Digits+")("+Exp+")?))|"+
// Hexadecimal strings
"((" +
// 0[xX] HexDigits ._opt BinaryExponent FloatTypeSuffix_opt
"(0[xX]" + HexDigits + "(\\.)?)|" +
// 0[xX] HexDigits_opt . HexDigits BinaryExponent FloatTypeSuffix_opt
"(0[xX]" + HexDigits + "?(\\.)" + HexDigits + ")" +
")[pP][+-]?" + Digits + "))" +
"[fFdD]?))" +
"[\\x00-\\x20]*");// Optional trailing "whitespace"
Pattern fpPattern = Pattern.compile(fpRegex);
for(int i = 0; i < input.length; i++) {
Matcher m = fpPattern.matcher(input[i]);
if (m.matches() != ! exceptionalInput) {
throw new RuntimeException("Regular expression " +
(exceptionalInput?
"accepted bad":
"rejected good") +
" string `" +
input[i] + "'.");
}
}
}
/**
* For each subnormal power of two, test at boundaries of
* region that should convert to that value.
*/
private static void testSubnormalPowers() {
boolean failed = false;
BigDecimal TWO = BigDecimal.valueOf(2);
// An ulp is the same for all subnormal values
BigDecimal ulp_BD = new BigDecimal(Double.MIN_VALUE);
// Test subnormal powers of two (except Double.MIN_VALUE)
for(int i = -1073; i <= -1022; i++) {
double d = Math.scalb(1.0, i);
/*
* The region [d - ulp/2, d + ulp/2] should round to d.
*/
BigDecimal d_BD = new BigDecimal(d);
BigDecimal lowerBound = d_BD.subtract(ulp_BD.divide(TWO));
BigDecimal upperBound = d_BD.add(ulp_BD.divide(TWO));
double convertedLowerBound = Double.parseDouble(lowerBound.toString());
double convertedUpperBound = Double.parseDouble(upperBound.toString());
if (convertedLowerBound != d) {
failed = true;
System.out.printf("2^%d lowerBound converts as %a %s%n",
i, convertedLowerBound, lowerBound);
}
if (convertedUpperBound != d) {
failed = true;
System.out.printf("2^%d upperBound converts as %a %s%n",
i, convertedUpperBound, upperBound);
}
}
/*
* Double.MIN_VALUE
* The region ]0.5*Double.MIN_VALUE, 1.5*Double.MIN_VALUE[ should round to Double.MIN_VALUE .
*/
BigDecimal minValue = new BigDecimal(Double.MIN_VALUE);
if (Double.parseDouble(minValue.multiply(new BigDecimal(0.5)).toString()) != 0.0) {
failed = true;
System.out.printf("0.5*MIN_VALUE doesn't convert 0%n");
}
if (Double.parseDouble(minValue.multiply(new BigDecimal(0.50000000001)).toString()) != Double.MIN_VALUE) {
failed = true;
System.out.printf("0.50000000001*MIN_VALUE doesn't convert to MIN_VALUE%n");
}
if (Double.parseDouble(minValue.multiply(new BigDecimal(1.49999999999)).toString()) != Double.MIN_VALUE) {
failed = true;
System.out.printf("1.49999999999*MIN_VALUE doesn't convert to MIN_VALUE%n");
}
if (Double.parseDouble(minValue.multiply(new BigDecimal(1.5)).toString()) != 2*Double.MIN_VALUE) {
failed = true;
System.out.printf("1.5*MIN_VALUE doesn't convert to 2*MIN_VALUE%n");
}
if (failed)
throw new RuntimeException("Inconsistent conversion");
}
/**
* For each power of two, test at boundaries of
* region that should convert to that value.
*/
private static void testPowers() {
for(int i = -1074; i <= +1023; i++) {
double d = Math.scalb(1.0, i);
BigDecimal d_BD = new BigDecimal(d);
BigDecimal lowerBound = d_BD.subtract(new BigDecimal(Math.ulp(Math.nextUp(-d))).multiply(HALF));
BigDecimal upperBound = d_BD.add(new BigDecimal(Math.ulp(d)).multiply(HALF));
check(lowerBound.toString());
check(upperBound.toString());
}
check(new BigDecimal(Double.MAX_VALUE).add(new BigDecimal(Math.ulp(Double.MAX_VALUE)).multiply(HALF)).toString());
}
private static void testStrictness() {
final double expected = 0x0.0000008000000p-1022;
// final double expected = 0x0.0000008000001p-1022;
boolean failed = false;
double conversion = 0.0;
double sum = 0.0; // Prevent conversion from being optimized away
//2^-1047 + 2^-1075 rounds to 2^-1047
String decimal = "6.631236871469758276785396630275967243399099947355303144249971758736286630139265439618068200788048744105960420552601852889715006376325666595539603330361800519107591783233358492337208057849499360899425128640718856616503093444922854759159988160304439909868291973931426625698663157749836252274523485312442358651207051292453083278116143932569727918709786004497872322193856150225415211997283078496319412124640111777216148110752815101775295719811974338451936095907419622417538473679495148632480391435931767981122396703443803335529756003353209830071832230689201383015598792184172909927924176339315507402234836120730914783168400715462440053817592702766213559042115986763819482654128770595766806872783349146967171293949598850675682115696218943412532098591327667236328125E-316";
for(int i = 0; i <= 12_000; i++) {
conversion = Double.parseDouble(decimal);
sum += conversion;
if (conversion != expected) {
failed = true;
System.out.printf("Iteration %d converts as %a%n",
i, conversion);
}
}
System.out.println("Sum = " + sum);
if (failed)
throw new RuntimeException("Inconsistent conversion");
}
public static void main(String[] args) throws Exception {
rudimentaryTest();
testParsing(goodStrings, false);
testParsing(paddedGoodStrings, false);
testParsing(badStrings, true);
testParsing(paddedBadStrings, true);
testRegex(goodStrings, false);
testRegex(paddedGoodStrings, false);
testRegex(badStrings, true);
testRegex(paddedBadStrings, true);
testSubnormalPowers();
testPowers();
testStrictness();
}
}