3e603a776e
Reviewed-by: adinn, clanger, simonis
630 lines
23 KiB
C++
630 lines
23 KiB
C++
/*
|
|
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2018 SAP SE. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
// no precompiled headers
|
|
#include "jvm.h"
|
|
#include "asm/assembler.inline.hpp"
|
|
#include "classfile/classLoader.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "nativeInst_ppc.hpp"
|
|
#include "os_share_linux.hpp"
|
|
#include "prims/jniFastGetField.hpp"
|
|
#include "prims/jvm_misc.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/extendedPC.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/osThread.hpp"
|
|
#include "runtime/safepointMechanism.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/stubRoutines.hpp"
|
|
#include "runtime/thread.inline.hpp"
|
|
#include "runtime/timer.hpp"
|
|
#include "utilities/debug.hpp"
|
|
#include "utilities/events.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
|
|
// put OS-includes here
|
|
# include <sys/types.h>
|
|
# include <sys/mman.h>
|
|
# include <pthread.h>
|
|
# include <signal.h>
|
|
# include <errno.h>
|
|
# include <dlfcn.h>
|
|
# include <stdlib.h>
|
|
# include <stdio.h>
|
|
# include <unistd.h>
|
|
# include <sys/resource.h>
|
|
# include <pthread.h>
|
|
# include <sys/stat.h>
|
|
# include <sys/time.h>
|
|
# include <sys/utsname.h>
|
|
# include <sys/socket.h>
|
|
# include <sys/wait.h>
|
|
# include <pwd.h>
|
|
# include <poll.h>
|
|
# include <ucontext.h>
|
|
|
|
|
|
address os::current_stack_pointer() {
|
|
intptr_t* csp;
|
|
|
|
// inline assembly `mr regno(csp), R1_SP':
|
|
__asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
|
|
|
|
return (address) csp;
|
|
}
|
|
|
|
char* os::non_memory_address_word() {
|
|
// Must never look like an address returned by reserve_memory,
|
|
// even in its subfields (as defined by the CPU immediate fields,
|
|
// if the CPU splits constants across multiple instructions).
|
|
|
|
return (char*) -1;
|
|
}
|
|
|
|
void os::initialize_thread(Thread *thread) { }
|
|
|
|
// Frame information (pc, sp, fp) retrieved via ucontext
|
|
// always looks like a C-frame according to the frame
|
|
// conventions in frame_ppc64.hpp.
|
|
address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
|
|
// On powerpc64, ucontext_t is not selfcontained but contains
|
|
// a pointer to an optional substructure (mcontext_t.regs) containing the volatile
|
|
// registers - NIP, among others.
|
|
// This substructure may or may not be there depending where uc came from:
|
|
// - if uc was handed over as the argument to a sigaction handler, a pointer to the
|
|
// substructure was provided by the kernel when calling the signal handler, and
|
|
// regs->nip can be accessed.
|
|
// - if uc was filled by getcontext(), it is undefined - getcontext() does not fill
|
|
// it because the volatile registers are not needed to make setcontext() work.
|
|
// Hopefully it was zero'd out beforehand.
|
|
guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_get_pc in sigaction context");
|
|
return (address)uc->uc_mcontext.regs->nip;
|
|
}
|
|
|
|
// modify PC in ucontext.
|
|
// Note: Only use this for an ucontext handed down to a signal handler. See comment
|
|
// in ucontext_get_pc.
|
|
void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
|
|
guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_set_pc in sigaction context");
|
|
uc->uc_mcontext.regs->nip = (unsigned long)pc;
|
|
}
|
|
|
|
static address ucontext_get_lr(const ucontext_t * uc) {
|
|
return (address)uc->uc_mcontext.regs->link;
|
|
}
|
|
|
|
intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
|
|
return (intptr_t*)uc->uc_mcontext.regs->gpr[1/*REG_SP*/];
|
|
}
|
|
|
|
intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
|
|
return NULL;
|
|
}
|
|
|
|
ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
|
|
intptr_t** ret_sp, intptr_t** ret_fp) {
|
|
|
|
ExtendedPC epc;
|
|
const ucontext_t* uc = (const ucontext_t*)ucVoid;
|
|
|
|
if (uc != NULL) {
|
|
epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
|
|
if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
|
|
if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
|
|
} else {
|
|
// construct empty ExtendedPC for return value checking
|
|
epc = ExtendedPC(NULL);
|
|
if (ret_sp) *ret_sp = (intptr_t *)NULL;
|
|
if (ret_fp) *ret_fp = (intptr_t *)NULL;
|
|
}
|
|
|
|
return epc;
|
|
}
|
|
|
|
frame os::fetch_frame_from_context(const void* ucVoid) {
|
|
intptr_t* sp;
|
|
intptr_t* fp;
|
|
ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
|
|
return frame(sp, epc.pc());
|
|
}
|
|
|
|
bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
|
|
address pc = (address) os::Linux::ucontext_get_pc(uc);
|
|
if (Interpreter::contains(pc)) {
|
|
// Interpreter performs stack banging after the fixed frame header has
|
|
// been generated while the compilers perform it before. To maintain
|
|
// semantic consistency between interpreted and compiled frames, the
|
|
// method returns the Java sender of the current frame.
|
|
*fr = os::fetch_frame_from_context(uc);
|
|
if (!fr->is_first_java_frame()) {
|
|
assert(fr->safe_for_sender(thread), "Safety check");
|
|
*fr = fr->java_sender();
|
|
}
|
|
} else {
|
|
// More complex code with compiled code.
|
|
assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
|
|
CodeBlob* cb = CodeCache::find_blob(pc);
|
|
if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
|
|
// Not sure where the pc points to, fallback to default
|
|
// stack overflow handling. In compiled code, we bang before
|
|
// the frame is complete.
|
|
return false;
|
|
} else {
|
|
intptr_t* sp = os::Linux::ucontext_get_sp(uc);
|
|
address lr = ucontext_get_lr(uc);
|
|
*fr = frame(sp, lr);
|
|
if (!fr->is_java_frame()) {
|
|
assert(fr->safe_for_sender(thread), "Safety check");
|
|
assert(!fr->is_first_frame(), "Safety check");
|
|
*fr = fr->java_sender();
|
|
}
|
|
}
|
|
}
|
|
assert(fr->is_java_frame(), "Safety check");
|
|
return true;
|
|
}
|
|
|
|
frame os::get_sender_for_C_frame(frame* fr) {
|
|
if (*fr->sp() == 0) {
|
|
// fr is the last C frame
|
|
return frame(NULL, NULL);
|
|
}
|
|
return frame(fr->sender_sp(), fr->sender_pc());
|
|
}
|
|
|
|
|
|
frame os::current_frame() {
|
|
intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
|
|
// hack.
|
|
frame topframe(csp, (address)0x8);
|
|
// Return sender of sender of current topframe which hopefully
|
|
// both have pc != NULL.
|
|
frame tmp = os::get_sender_for_C_frame(&topframe);
|
|
return os::get_sender_for_C_frame(&tmp);
|
|
}
|
|
|
|
// Utility functions
|
|
|
|
extern "C" JNIEXPORT int
|
|
JVM_handle_linux_signal(int sig,
|
|
siginfo_t* info,
|
|
void* ucVoid,
|
|
int abort_if_unrecognized) {
|
|
ucontext_t* uc = (ucontext_t*) ucVoid;
|
|
|
|
Thread* t = Thread::current_or_null_safe();
|
|
|
|
SignalHandlerMark shm(t);
|
|
|
|
// Note: it's not uncommon that JNI code uses signal/sigset to install
|
|
// then restore certain signal handler (e.g. to temporarily block SIGPIPE,
|
|
// or have a SIGILL handler when detecting CPU type). When that happens,
|
|
// JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
|
|
// avoid unnecessary crash when libjsig is not preloaded, try handle signals
|
|
// that do not require siginfo/ucontext first.
|
|
|
|
if (sig == SIGPIPE) {
|
|
if (os::Linux::chained_handler(sig, info, ucVoid)) {
|
|
return true;
|
|
} else {
|
|
// Ignoring SIGPIPE - see bugs 4229104
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Make the signal handler transaction-aware by checking the existence of a
|
|
// second (transactional) context with MSR TS bits active. If the signal is
|
|
// caught during a transaction, then just return to the HTM abort handler.
|
|
// Please refer to Linux kernel document powerpc/transactional_memory.txt,
|
|
// section "Signals".
|
|
if (uc && uc->uc_link) {
|
|
ucontext_t* second_uc = uc->uc_link;
|
|
|
|
// MSR TS bits are 29 and 30 (Power ISA, v2.07B, Book III-S, pp. 857-858,
|
|
// 3.2.1 "Machine State Register"), however note that ISA notation for bit
|
|
// numbering is MSB 0, so for normal bit numbering (LSB 0) they come to be
|
|
// bits 33 and 34. It's not related to endianness, just a notation matter.
|
|
if (second_uc->uc_mcontext.regs->msr & 0x600000000) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("caught signal in transaction, "
|
|
"ignoring to jump to abort handler");
|
|
}
|
|
// Return control to the HTM abort handler.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
#ifdef CAN_SHOW_REGISTERS_ON_ASSERT
|
|
if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
|
|
handle_assert_poison_fault(ucVoid, info->si_addr);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
JavaThread* thread = NULL;
|
|
VMThread* vmthread = NULL;
|
|
if (os::Linux::signal_handlers_are_installed) {
|
|
if (t != NULL) {
|
|
if(t->is_Java_thread()) {
|
|
thread = (JavaThread*)t;
|
|
} else if(t->is_VM_thread()) {
|
|
vmthread = (VMThread *)t;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Moved SafeFetch32 handling outside thread!=NULL conditional block to make
|
|
// it work if no associated JavaThread object exists.
|
|
if (uc) {
|
|
address const pc = os::Linux::ucontext_get_pc(uc);
|
|
if (pc && StubRoutines::is_safefetch_fault(pc)) {
|
|
os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// decide if this trap can be handled by a stub
|
|
address stub = NULL;
|
|
address pc = NULL;
|
|
|
|
//%note os_trap_1
|
|
if (info != NULL && uc != NULL && thread != NULL) {
|
|
pc = (address) os::Linux::ucontext_get_pc(uc);
|
|
|
|
// Handle ALL stack overflow variations here
|
|
if (sig == SIGSEGV) {
|
|
// Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see
|
|
// comment below). Use get_stack_bang_address instead of si_addr.
|
|
address addr = ((NativeInstruction*)pc)->get_stack_bang_address(uc);
|
|
|
|
// Check if fault address is within thread stack.
|
|
if (thread->on_local_stack(addr)) {
|
|
// stack overflow
|
|
if (thread->in_stack_yellow_reserved_zone(addr)) {
|
|
if (thread->thread_state() == _thread_in_Java) {
|
|
if (thread->in_stack_reserved_zone(addr)) {
|
|
frame fr;
|
|
if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
|
|
assert(fr.is_java_frame(), "Must be a Javac frame");
|
|
frame activation =
|
|
SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
|
|
if (activation.sp() != NULL) {
|
|
thread->disable_stack_reserved_zone();
|
|
if (activation.is_interpreted_frame()) {
|
|
thread->set_reserved_stack_activation((address)activation.fp());
|
|
} else {
|
|
thread->set_reserved_stack_activation((address)activation.unextended_sp());
|
|
}
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
// Throw a stack overflow exception.
|
|
// Guard pages will be reenabled while unwinding the stack.
|
|
thread->disable_stack_yellow_reserved_zone();
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
|
|
} else {
|
|
// Thread was in the vm or native code. Return and try to finish.
|
|
thread->disable_stack_yellow_reserved_zone();
|
|
return 1;
|
|
}
|
|
} else if (thread->in_stack_red_zone(addr)) {
|
|
// Fatal red zone violation. Disable the guard pages and fall through
|
|
// to handle_unexpected_exception way down below.
|
|
thread->disable_stack_red_zone();
|
|
tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
|
|
|
|
// This is a likely cause, but hard to verify. Let's just print
|
|
// it as a hint.
|
|
tty->print_raw_cr("Please check if any of your loaded .so files has "
|
|
"enabled executable stack (see man page execstack(8))");
|
|
} else {
|
|
// Accessing stack address below sp may cause SEGV if current
|
|
// thread has MAP_GROWSDOWN stack. This should only happen when
|
|
// current thread was created by user code with MAP_GROWSDOWN flag
|
|
// and then attached to VM. See notes in os_linux.cpp.
|
|
if (thread->osthread()->expanding_stack() == 0) {
|
|
thread->osthread()->set_expanding_stack();
|
|
if (os::Linux::manually_expand_stack(thread, addr)) {
|
|
thread->osthread()->clear_expanding_stack();
|
|
return 1;
|
|
}
|
|
thread->osthread()->clear_expanding_stack();
|
|
} else {
|
|
fatal("recursive segv. expanding stack.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (thread->thread_state() == _thread_in_Java) {
|
|
// Java thread running in Java code => find exception handler if any
|
|
// a fault inside compiled code, the interpreter, or a stub
|
|
|
|
// A VM-related SIGILL may only occur if we are not in the zero page.
|
|
// On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
|
|
// in the zero page, because it is filled with 0x0. We ignore
|
|
// explicit SIGILLs in the zero page.
|
|
if (sig == SIGILL && (pc < (address) 0x200)) {
|
|
if (TraceTraps) {
|
|
tty->print_raw_cr("SIGILL happened inside zero page.");
|
|
}
|
|
goto report_and_die;
|
|
}
|
|
|
|
CodeBlob *cb = NULL;
|
|
// Handle signal from NativeJump::patch_verified_entry().
|
|
if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
|
|
(!TrapBasedNotEntrantChecks && sig == SIGILL && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
|
|
}
|
|
stub = SharedRuntime::get_handle_wrong_method_stub();
|
|
}
|
|
|
|
else if (sig == ((SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? SIGTRAP : SIGSEGV) &&
|
|
// A linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults
|
|
// in 64bit mode (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6),
|
|
// especially when we try to read from the safepoint polling page. So the check
|
|
// (address)info->si_addr == os::get_standard_polling_page()
|
|
// doesn't work for us. We use:
|
|
((NativeInstruction*)pc)->is_safepoint_poll() &&
|
|
CodeCache::contains((void*) pc) &&
|
|
((cb = CodeCache::find_blob(pc)) != NULL) &&
|
|
cb->is_compiled()) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (%s)", p2i(pc),
|
|
(SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? "SIGTRAP" : "SIGSEGV");
|
|
}
|
|
stub = SharedRuntime::get_poll_stub(pc);
|
|
}
|
|
|
|
// SIGTRAP-based ic miss check in compiled code.
|
|
else if (sig == SIGTRAP && TrapBasedICMissChecks &&
|
|
nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
|
|
}
|
|
stub = SharedRuntime::get_ic_miss_stub();
|
|
}
|
|
|
|
// SIGTRAP-based implicit null check in compiled code.
|
|
else if (sig == SIGTRAP && TrapBasedNullChecks &&
|
|
nativeInstruction_at(pc)->is_sigtrap_null_check()) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
|
|
}
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
|
|
}
|
|
|
|
// SIGSEGV-based implicit null check in compiled code.
|
|
else if (sig == SIGSEGV && ImplicitNullChecks &&
|
|
CodeCache::contains((void*) pc) &&
|
|
!MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
|
|
}
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
|
|
}
|
|
|
|
#ifdef COMPILER2
|
|
// SIGTRAP-based implicit range check in compiled code.
|
|
else if (sig == SIGTRAP && TrapBasedRangeChecks &&
|
|
nativeInstruction_at(pc)->is_sigtrap_range_check()) {
|
|
if (TraceTraps) {
|
|
tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
|
|
}
|
|
stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
|
|
}
|
|
#endif
|
|
else if (sig == SIGBUS) {
|
|
// BugId 4454115: A read from a MappedByteBuffer can fault here if the
|
|
// underlying file has been truncated. Do not crash the VM in such a case.
|
|
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
|
|
CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
|
|
if (nm != NULL && nm->has_unsafe_access()) {
|
|
address next_pc = pc + 4;
|
|
next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
|
|
os::Linux::ucontext_set_pc(uc, next_pc);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
else { // thread->thread_state() != _thread_in_Java
|
|
if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
|
|
// SIGILL must be caused by VM_Version::determine_features().
|
|
*(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
|
|
// flushing of icache is not necessary.
|
|
stub = pc + 4; // continue with next instruction.
|
|
}
|
|
else if (thread->thread_state() == _thread_in_vm &&
|
|
sig == SIGBUS && thread->doing_unsafe_access()) {
|
|
address next_pc = pc + 4;
|
|
next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
|
|
os::Linux::ucontext_set_pc(uc, pc + 4);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check to see if we caught the safepoint code in the
|
|
// process of write protecting the memory serialization page.
|
|
// It write enables the page immediately after protecting it
|
|
// so we can just return to retry the write.
|
|
if ((sig == SIGSEGV) &&
|
|
// Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see comment above).
|
|
// Use is_memory_serialization instead of si_addr.
|
|
((NativeInstruction*)pc)->is_memory_serialization(thread, ucVoid)) {
|
|
// Synchronization problem in the pseudo memory barrier code (bug id 6546278)
|
|
// Block current thread until the memory serialize page permission restored.
|
|
os::block_on_serialize_page_trap();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (stub != NULL) {
|
|
// Save all thread context in case we need to restore it.
|
|
if (thread != NULL) thread->set_saved_exception_pc(pc);
|
|
os::Linux::ucontext_set_pc(uc, stub);
|
|
return true;
|
|
}
|
|
|
|
// signal-chaining
|
|
if (os::Linux::chained_handler(sig, info, ucVoid)) {
|
|
return true;
|
|
}
|
|
|
|
if (!abort_if_unrecognized) {
|
|
// caller wants another chance, so give it to him
|
|
return false;
|
|
}
|
|
|
|
if (pc == NULL && uc != NULL) {
|
|
pc = os::Linux::ucontext_get_pc(uc);
|
|
}
|
|
|
|
report_and_die:
|
|
// unmask current signal
|
|
sigset_t newset;
|
|
sigemptyset(&newset);
|
|
sigaddset(&newset, sig);
|
|
sigprocmask(SIG_UNBLOCK, &newset, NULL);
|
|
|
|
VMError::report_and_die(t, sig, pc, info, ucVoid);
|
|
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
|
|
void os::Linux::init_thread_fpu_state(void) {
|
|
// Disable FP exceptions.
|
|
__asm__ __volatile__ ("mtfsfi 6,0");
|
|
}
|
|
|
|
int os::Linux::get_fpu_control_word(void) {
|
|
// x86 has problems with FPU precision after pthread_cond_timedwait().
|
|
// nothing to do on ppc64.
|
|
return 0;
|
|
}
|
|
|
|
void os::Linux::set_fpu_control_word(int fpu_control) {
|
|
// x86 has problems with FPU precision after pthread_cond_timedwait().
|
|
// nothing to do on ppc64.
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// thread stack
|
|
|
|
// Minimum usable stack sizes required to get to user code. Space for
|
|
// HotSpot guard pages is added later.
|
|
size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
|
|
size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
|
|
size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
|
|
|
|
// Return default stack size for thr_type.
|
|
size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
|
|
// Default stack size (compiler thread needs larger stack).
|
|
size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
|
|
return s;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////
|
|
// helper functions for fatal error handler
|
|
|
|
void os::print_context(outputStream *st, const void *context) {
|
|
if (context == NULL) return;
|
|
|
|
const ucontext_t* uc = (const ucontext_t*)context;
|
|
|
|
st->print_cr("Registers:");
|
|
st->print("pc =" INTPTR_FORMAT " ", uc->uc_mcontext.regs->nip);
|
|
st->print("lr =" INTPTR_FORMAT " ", uc->uc_mcontext.regs->link);
|
|
st->print("ctr=" INTPTR_FORMAT " ", uc->uc_mcontext.regs->ctr);
|
|
st->cr();
|
|
for (int i = 0; i < 32; i++) {
|
|
st->print("r%-2d=" INTPTR_FORMAT " ", i, uc->uc_mcontext.regs->gpr[i]);
|
|
if (i % 3 == 2) st->cr();
|
|
}
|
|
st->cr();
|
|
st->cr();
|
|
|
|
intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
|
|
st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
|
|
print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
|
|
st->cr();
|
|
|
|
// Note: it may be unsafe to inspect memory near pc. For example, pc may
|
|
// point to garbage if entry point in an nmethod is corrupted. Leave
|
|
// this at the end, and hope for the best.
|
|
address pc = os::Linux::ucontext_get_pc(uc);
|
|
st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
|
|
print_hex_dump(st, pc - 64, pc + 64, /*instrsize=*/4);
|
|
st->cr();
|
|
}
|
|
|
|
void os::print_register_info(outputStream *st, const void *context) {
|
|
if (context == NULL) return;
|
|
|
|
const ucontext_t *uc = (const ucontext_t*)context;
|
|
|
|
st->print_cr("Register to memory mapping:");
|
|
st->cr();
|
|
|
|
// this is only for the "general purpose" registers
|
|
for (int i = 0; i < 32; i++) {
|
|
st->print("r%-2d=", i);
|
|
print_location(st, uc->uc_mcontext.regs->gpr[i]);
|
|
}
|
|
st->cr();
|
|
}
|
|
|
|
extern "C" {
|
|
int SpinPause() {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void os::verify_stack_alignment() {
|
|
assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
|
|
}
|
|
#endif
|
|
|
|
int os::extra_bang_size_in_bytes() {
|
|
// PPC does not require the additional stack bang.
|
|
return 0;
|
|
}
|