4171ca786e
Enables cross building of a c2 VM. Support masking of shift counts when the processor architecture mandates it. Reviewed-by: kvn, never
2096 lines
77 KiB
C++
2096 lines
77 KiB
C++
/*
|
|
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "compiler/oopMap.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/block.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/chaitin.hpp"
|
|
#include "opto/coalesce.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/idealGraphPrinter.hpp"
|
|
#include "opto/indexSet.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
|
|
//=============================================================================
|
|
|
|
#ifndef PRODUCT
|
|
void LRG::dump( ) const {
|
|
ttyLocker ttyl;
|
|
tty->print("%d ",num_regs());
|
|
_mask.dump();
|
|
if( _msize_valid ) {
|
|
if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
|
|
else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
|
|
} else {
|
|
tty->print(", #?(%d) ",_mask.Size());
|
|
}
|
|
|
|
tty->print("EffDeg: ");
|
|
if( _degree_valid ) tty->print( "%d ", _eff_degree );
|
|
else tty->print("? ");
|
|
|
|
if( is_multidef() ) {
|
|
tty->print("MultiDef ");
|
|
if (_defs != NULL) {
|
|
tty->print("(");
|
|
for (int i = 0; i < _defs->length(); i++) {
|
|
tty->print("N%d ", _defs->at(i)->_idx);
|
|
}
|
|
tty->print(") ");
|
|
}
|
|
}
|
|
else if( _def == 0 ) tty->print("Dead ");
|
|
else tty->print("Def: N%d ",_def->_idx);
|
|
|
|
tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
|
|
// Flags
|
|
if( _is_oop ) tty->print("Oop ");
|
|
if( _is_float ) tty->print("Float ");
|
|
if( _was_spilled1 ) tty->print("Spilled ");
|
|
if( _was_spilled2 ) tty->print("Spilled2 ");
|
|
if( _direct_conflict ) tty->print("Direct_conflict ");
|
|
if( _fat_proj ) tty->print("Fat ");
|
|
if( _was_lo ) tty->print("Lo ");
|
|
if( _has_copy ) tty->print("Copy ");
|
|
if( _at_risk ) tty->print("Risk ");
|
|
|
|
if( _must_spill ) tty->print("Must_spill ");
|
|
if( _is_bound ) tty->print("Bound ");
|
|
if( _msize_valid ) {
|
|
if( _degree_valid && lo_degree() ) tty->print("Trivial ");
|
|
}
|
|
|
|
tty->cr();
|
|
}
|
|
#endif
|
|
|
|
//------------------------------score------------------------------------------
|
|
// Compute score from cost and area. Low score is best to spill.
|
|
static double raw_score( double cost, double area ) {
|
|
return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
|
|
}
|
|
|
|
double LRG::score() const {
|
|
// Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
|
|
// Bigger area lowers score, encourages spilling this live range.
|
|
// Bigger cost raise score, prevents spilling this live range.
|
|
// (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
|
|
// to turn a divide by a constant into a multiply by the reciprical).
|
|
double score = raw_score( _cost, _area);
|
|
|
|
// Account for area. Basically, LRGs covering large areas are better
|
|
// to spill because more other LRGs get freed up.
|
|
if( _area == 0.0 ) // No area? Then no progress to spill
|
|
return 1e35;
|
|
|
|
if( _was_spilled2 ) // If spilled once before, we are unlikely
|
|
return score + 1e30; // to make progress again.
|
|
|
|
if( _cost >= _area*3.0 ) // Tiny area relative to cost
|
|
return score + 1e17; // Probably no progress to spill
|
|
|
|
if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
|
|
return score + 1e10; // Likely no progress to spill
|
|
|
|
return score;
|
|
}
|
|
|
|
//------------------------------LRG_List---------------------------------------
|
|
LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
|
|
memset( _lidxs, 0, sizeof(uint)*max );
|
|
}
|
|
|
|
void LRG_List::extend( uint nidx, uint lidx ) {
|
|
_nesting.check();
|
|
if( nidx >= _max ) {
|
|
uint size = 16;
|
|
while( size <= nidx ) size <<=1;
|
|
_lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
|
|
_max = size;
|
|
}
|
|
while( _cnt <= nidx )
|
|
_lidxs[_cnt++] = 0;
|
|
_lidxs[nidx] = lidx;
|
|
}
|
|
|
|
#define NUMBUCKS 3
|
|
|
|
//------------------------------Chaitin----------------------------------------
|
|
PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
|
|
: PhaseRegAlloc(unique, cfg, matcher,
|
|
#ifndef PRODUCT
|
|
print_chaitin_statistics
|
|
#else
|
|
NULL
|
|
#endif
|
|
),
|
|
_names(unique), _uf_map(unique),
|
|
_maxlrg(0), _live(0),
|
|
_spilled_once(Thread::current()->resource_area()),
|
|
_spilled_twice(Thread::current()->resource_area()),
|
|
_lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
|
|
_oldphi(unique)
|
|
#ifndef PRODUCT
|
|
, _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
|
|
#endif
|
|
{
|
|
NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
|
|
|
|
_high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq);
|
|
|
|
uint i,j;
|
|
// Build a list of basic blocks, sorted by frequency
|
|
_blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
|
|
// Experiment with sorting strategies to speed compilation
|
|
double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
|
|
Block **buckets[NUMBUCKS]; // Array of buckets
|
|
uint buckcnt[NUMBUCKS]; // Array of bucket counters
|
|
double buckval[NUMBUCKS]; // Array of bucket value cutoffs
|
|
for( i = 0; i < NUMBUCKS; i++ ) {
|
|
buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
|
|
buckcnt[i] = 0;
|
|
// Bump by three orders of magnitude each time
|
|
cutoff *= 0.001;
|
|
buckval[i] = cutoff;
|
|
for( j = 0; j < _cfg._num_blocks; j++ ) {
|
|
buckets[i][j] = NULL;
|
|
}
|
|
}
|
|
// Sort blocks into buckets
|
|
for( i = 0; i < _cfg._num_blocks; i++ ) {
|
|
for( j = 0; j < NUMBUCKS; j++ ) {
|
|
if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
|
|
// Assign block to end of list for appropriate bucket
|
|
buckets[j][buckcnt[j]++] = _cfg._blocks[i];
|
|
break; // kick out of inner loop
|
|
}
|
|
}
|
|
}
|
|
// Dump buckets into final block array
|
|
uint blkcnt = 0;
|
|
for( i = 0; i < NUMBUCKS; i++ ) {
|
|
for( j = 0; j < buckcnt[i]; j++ ) {
|
|
_blks[blkcnt++] = buckets[i][j];
|
|
}
|
|
}
|
|
|
|
assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
|
|
}
|
|
|
|
void PhaseChaitin::Register_Allocate() {
|
|
|
|
// Above the OLD FP (and in registers) are the incoming arguments. Stack
|
|
// slots in this area are called "arg_slots". Above the NEW FP (and in
|
|
// registers) is the outgoing argument area; above that is the spill/temp
|
|
// area. These are all "frame_slots". Arg_slots start at the zero
|
|
// stack_slots and count up to the known arg_size. Frame_slots start at
|
|
// the stack_slot #arg_size and go up. After allocation I map stack
|
|
// slots to actual offsets. Stack-slots in the arg_slot area are biased
|
|
// by the frame_size; stack-slots in the frame_slot area are biased by 0.
|
|
|
|
_trip_cnt = 0;
|
|
_alternate = 0;
|
|
_matcher._allocation_started = true;
|
|
|
|
ResourceArea live_arena; // Arena for liveness & IFG info
|
|
ResourceMark rm(&live_arena);
|
|
|
|
// Need live-ness for the IFG; need the IFG for coalescing. If the
|
|
// liveness is JUST for coalescing, then I can get some mileage by renaming
|
|
// all copy-related live ranges low and then using the max copy-related
|
|
// live range as a cut-off for LIVE and the IFG. In other words, I can
|
|
// build a subset of LIVE and IFG just for copies.
|
|
PhaseLive live(_cfg,_names,&live_arena);
|
|
|
|
// Need IFG for coalescing and coloring
|
|
PhaseIFG ifg( &live_arena );
|
|
_ifg = &ifg;
|
|
|
|
if (C->unique() > _names.Size()) _names.extend(C->unique()-1, 0);
|
|
|
|
// Come out of SSA world to the Named world. Assign (virtual) registers to
|
|
// Nodes. Use the same register for all inputs and the output of PhiNodes
|
|
// - effectively ending SSA form. This requires either coalescing live
|
|
// ranges or inserting copies. For the moment, we insert "virtual copies"
|
|
// - we pretend there is a copy prior to each Phi in predecessor blocks.
|
|
// We will attempt to coalesce such "virtual copies" before we manifest
|
|
// them for real.
|
|
de_ssa();
|
|
|
|
#ifdef ASSERT
|
|
// Veify the graph before RA.
|
|
verify(&live_arena);
|
|
#endif
|
|
|
|
{
|
|
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
|
|
_live = NULL; // Mark live as being not available
|
|
rm.reset_to_mark(); // Reclaim working storage
|
|
IndexSet::reset_memory(C, &live_arena);
|
|
ifg.init(_maxlrg); // Empty IFG
|
|
gather_lrg_masks( false ); // Collect LRG masks
|
|
live.compute( _maxlrg ); // Compute liveness
|
|
_live = &live; // Mark LIVE as being available
|
|
}
|
|
|
|
// Base pointers are currently "used" by instructions which define new
|
|
// derived pointers. This makes base pointers live up to the where the
|
|
// derived pointer is made, but not beyond. Really, they need to be live
|
|
// across any GC point where the derived value is live. So this code looks
|
|
// at all the GC points, and "stretches" the live range of any base pointer
|
|
// to the GC point.
|
|
if( stretch_base_pointer_live_ranges(&live_arena) ) {
|
|
NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
|
|
// Since some live range stretched, I need to recompute live
|
|
_live = NULL;
|
|
rm.reset_to_mark(); // Reclaim working storage
|
|
IndexSet::reset_memory(C, &live_arena);
|
|
ifg.init(_maxlrg);
|
|
gather_lrg_masks( false );
|
|
live.compute( _maxlrg );
|
|
_live = &live;
|
|
}
|
|
// Create the interference graph using virtual copies
|
|
build_ifg_virtual( ); // Include stack slots this time
|
|
|
|
// Aggressive (but pessimistic) copy coalescing.
|
|
// This pass works on virtual copies. Any virtual copies which are not
|
|
// coalesced get manifested as actual copies
|
|
{
|
|
// The IFG is/was triangular. I am 'squaring it up' so Union can run
|
|
// faster. Union requires a 'for all' operation which is slow on the
|
|
// triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
|
|
// meaning I can visit all the Nodes neighbors less than a Node in time
|
|
// O(# of neighbors), but I have to visit all the Nodes greater than a
|
|
// given Node and search them for an instance, i.e., time O(#MaxLRG)).
|
|
_ifg->SquareUp();
|
|
|
|
PhaseAggressiveCoalesce coalesce( *this );
|
|
coalesce.coalesce_driver( );
|
|
// Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do
|
|
// not match the Phi itself, insert a copy.
|
|
coalesce.insert_copies(_matcher);
|
|
}
|
|
|
|
// After aggressive coalesce, attempt a first cut at coloring.
|
|
// To color, we need the IFG and for that we need LIVE.
|
|
{
|
|
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
|
|
_live = NULL;
|
|
rm.reset_to_mark(); // Reclaim working storage
|
|
IndexSet::reset_memory(C, &live_arena);
|
|
ifg.init(_maxlrg);
|
|
gather_lrg_masks( true );
|
|
live.compute( _maxlrg );
|
|
_live = &live;
|
|
}
|
|
|
|
// Build physical interference graph
|
|
uint must_spill = 0;
|
|
must_spill = build_ifg_physical( &live_arena );
|
|
// If we have a guaranteed spill, might as well spill now
|
|
if( must_spill ) {
|
|
if( !_maxlrg ) return;
|
|
// Bail out if unique gets too large (ie - unique > MaxNodeLimit)
|
|
C->check_node_count(10*must_spill, "out of nodes before split");
|
|
if (C->failing()) return;
|
|
_maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere
|
|
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
|
|
// or we failed to split
|
|
C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
|
|
if (C->failing()) return;
|
|
|
|
NOT_PRODUCT( C->verify_graph_edges(); )
|
|
|
|
compact(); // Compact LRGs; return new lower max lrg
|
|
|
|
{
|
|
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
|
|
_live = NULL;
|
|
rm.reset_to_mark(); // Reclaim working storage
|
|
IndexSet::reset_memory(C, &live_arena);
|
|
ifg.init(_maxlrg); // Build a new interference graph
|
|
gather_lrg_masks( true ); // Collect intersect mask
|
|
live.compute( _maxlrg ); // Compute LIVE
|
|
_live = &live;
|
|
}
|
|
build_ifg_physical( &live_arena );
|
|
_ifg->SquareUp();
|
|
_ifg->Compute_Effective_Degree();
|
|
// Only do conservative coalescing if requested
|
|
if( OptoCoalesce ) {
|
|
// Conservative (and pessimistic) copy coalescing of those spills
|
|
PhaseConservativeCoalesce coalesce( *this );
|
|
// If max live ranges greater than cutoff, don't color the stack.
|
|
// This cutoff can be larger than below since it is only done once.
|
|
coalesce.coalesce_driver( );
|
|
}
|
|
compress_uf_map_for_nodes();
|
|
|
|
#ifdef ASSERT
|
|
verify(&live_arena, true);
|
|
#endif
|
|
} else {
|
|
ifg.SquareUp();
|
|
ifg.Compute_Effective_Degree();
|
|
#ifdef ASSERT
|
|
set_was_low();
|
|
#endif
|
|
}
|
|
|
|
// Prepare for Simplify & Select
|
|
cache_lrg_info(); // Count degree of LRGs
|
|
|
|
// Simplify the InterFerence Graph by removing LRGs of low degree.
|
|
// LRGs of low degree are trivially colorable.
|
|
Simplify();
|
|
|
|
// Select colors by re-inserting LRGs back into the IFG in reverse order.
|
|
// Return whether or not something spills.
|
|
uint spills = Select( );
|
|
|
|
// If we spill, split and recycle the entire thing
|
|
while( spills ) {
|
|
if( _trip_cnt++ > 24 ) {
|
|
DEBUG_ONLY( dump_for_spill_split_recycle(); )
|
|
if( _trip_cnt > 27 ) {
|
|
C->record_method_not_compilable("failed spill-split-recycle sanity check");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if( !_maxlrg ) return;
|
|
_maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere
|
|
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
|
|
C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
|
|
if (C->failing()) return;
|
|
|
|
compact(); // Compact LRGs; return new lower max lrg
|
|
|
|
// Nuke the live-ness and interference graph and LiveRanGe info
|
|
{
|
|
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
|
|
_live = NULL;
|
|
rm.reset_to_mark(); // Reclaim working storage
|
|
IndexSet::reset_memory(C, &live_arena);
|
|
ifg.init(_maxlrg);
|
|
|
|
// Create LiveRanGe array.
|
|
// Intersect register masks for all USEs and DEFs
|
|
gather_lrg_masks( true );
|
|
live.compute( _maxlrg );
|
|
_live = &live;
|
|
}
|
|
must_spill = build_ifg_physical( &live_arena );
|
|
_ifg->SquareUp();
|
|
_ifg->Compute_Effective_Degree();
|
|
|
|
// Only do conservative coalescing if requested
|
|
if( OptoCoalesce ) {
|
|
// Conservative (and pessimistic) copy coalescing
|
|
PhaseConservativeCoalesce coalesce( *this );
|
|
// Check for few live ranges determines how aggressive coalesce is.
|
|
coalesce.coalesce_driver( );
|
|
}
|
|
compress_uf_map_for_nodes();
|
|
#ifdef ASSERT
|
|
verify(&live_arena, true);
|
|
#endif
|
|
cache_lrg_info(); // Count degree of LRGs
|
|
|
|
// Simplify the InterFerence Graph by removing LRGs of low degree.
|
|
// LRGs of low degree are trivially colorable.
|
|
Simplify();
|
|
|
|
// Select colors by re-inserting LRGs back into the IFG in reverse order.
|
|
// Return whether or not something spills.
|
|
spills = Select( );
|
|
}
|
|
|
|
// Count number of Simplify-Select trips per coloring success.
|
|
_allocator_attempts += _trip_cnt + 1;
|
|
_allocator_successes += 1;
|
|
|
|
// Peephole remove copies
|
|
post_allocate_copy_removal();
|
|
|
|
#ifdef ASSERT
|
|
// Veify the graph after RA.
|
|
verify(&live_arena);
|
|
#endif
|
|
|
|
// max_reg is past the largest *register* used.
|
|
// Convert that to a frame_slot number.
|
|
if( _max_reg <= _matcher._new_SP )
|
|
_framesize = C->out_preserve_stack_slots();
|
|
else _framesize = _max_reg -_matcher._new_SP;
|
|
assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
|
|
|
|
// This frame must preserve the required fp alignment
|
|
_framesize = round_to(_framesize, Matcher::stack_alignment_in_slots());
|
|
assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
|
|
#ifndef PRODUCT
|
|
_total_framesize += _framesize;
|
|
if( (int)_framesize > _max_framesize )
|
|
_max_framesize = _framesize;
|
|
#endif
|
|
|
|
// Convert CISC spills
|
|
fixup_spills();
|
|
|
|
// Log regalloc results
|
|
CompileLog* log = Compile::current()->log();
|
|
if (log != NULL) {
|
|
log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
|
|
}
|
|
|
|
if (C->failing()) return;
|
|
|
|
NOT_PRODUCT( C->verify_graph_edges(); )
|
|
|
|
// Move important info out of the live_arena to longer lasting storage.
|
|
alloc_node_regs(_names.Size());
|
|
for( uint i=0; i < _names.Size(); i++ ) {
|
|
if( _names[i] ) { // Live range associated with Node?
|
|
LRG &lrg = lrgs( _names[i] );
|
|
if( lrg.num_regs() == 1 ) {
|
|
_node_regs[i].set1( lrg.reg() );
|
|
} else { // Must be a register-pair
|
|
if( !lrg._fat_proj ) { // Must be aligned adjacent register pair
|
|
// Live ranges record the highest register in their mask.
|
|
// We want the low register for the AD file writer's convenience.
|
|
_node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
|
|
} else { // Misaligned; extract 2 bits
|
|
OptoReg::Name hi = lrg.reg(); // Get hi register
|
|
lrg.Remove(hi); // Yank from mask
|
|
int lo = lrg.mask().find_first_elem(); // Find lo
|
|
_node_regs[i].set_pair( hi, lo );
|
|
}
|
|
}
|
|
if( lrg._is_oop ) _node_oops.set(i);
|
|
} else {
|
|
_node_regs[i].set_bad();
|
|
}
|
|
}
|
|
|
|
// Done!
|
|
_live = NULL;
|
|
_ifg = NULL;
|
|
C->set_indexSet_arena(NULL); // ResourceArea is at end of scope
|
|
}
|
|
|
|
//------------------------------de_ssa-----------------------------------------
|
|
void PhaseChaitin::de_ssa() {
|
|
// Set initial Names for all Nodes. Most Nodes get the virtual register
|
|
// number. A few get the ZERO live range number. These do not
|
|
// get allocated, but instead rely on correct scheduling to ensure that
|
|
// only one instance is simultaneously live at a time.
|
|
uint lr_counter = 1;
|
|
for( uint i = 0; i < _cfg._num_blocks; i++ ) {
|
|
Block *b = _cfg._blocks[i];
|
|
uint cnt = b->_nodes.size();
|
|
|
|
// Handle all the normal Nodes in the block
|
|
for( uint j = 0; j < cnt; j++ ) {
|
|
Node *n = b->_nodes[j];
|
|
// Pre-color to the zero live range, or pick virtual register
|
|
const RegMask &rm = n->out_RegMask();
|
|
_names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
|
|
}
|
|
}
|
|
// Reset the Union-Find mapping to be identity
|
|
reset_uf_map(lr_counter);
|
|
}
|
|
|
|
|
|
//------------------------------gather_lrg_masks-------------------------------
|
|
// Gather LiveRanGe information, including register masks. Modification of
|
|
// cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
|
|
void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
|
|
|
|
// Nail down the frame pointer live range
|
|
uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
|
|
lrgs(fp_lrg)._cost += 1e12; // Cost is infinite
|
|
|
|
// For all blocks
|
|
for( uint i = 0; i < _cfg._num_blocks; i++ ) {
|
|
Block *b = _cfg._blocks[i];
|
|
|
|
// For all instructions
|
|
for( uint j = 1; j < b->_nodes.size(); j++ ) {
|
|
Node *n = b->_nodes[j];
|
|
uint input_edge_start =1; // Skip control most nodes
|
|
if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
|
|
uint idx = n->is_Copy();
|
|
|
|
// Get virtual register number, same as LiveRanGe index
|
|
uint vreg = n2lidx(n);
|
|
LRG &lrg = lrgs(vreg);
|
|
if( vreg ) { // No vreg means un-allocable (e.g. memory)
|
|
|
|
// Collect has-copy bit
|
|
if( idx ) {
|
|
lrg._has_copy = 1;
|
|
uint clidx = n2lidx(n->in(idx));
|
|
LRG ©_src = lrgs(clidx);
|
|
copy_src._has_copy = 1;
|
|
}
|
|
|
|
// Check for float-vs-int live range (used in register-pressure
|
|
// calculations)
|
|
const Type *n_type = n->bottom_type();
|
|
if( n_type->is_floatingpoint() )
|
|
lrg._is_float = 1;
|
|
|
|
// Check for twice prior spilling. Once prior spilling might have
|
|
// spilled 'soft', 2nd prior spill should have spilled 'hard' and
|
|
// further spilling is unlikely to make progress.
|
|
if( _spilled_once.test(n->_idx) ) {
|
|
lrg._was_spilled1 = 1;
|
|
if( _spilled_twice.test(n->_idx) )
|
|
lrg._was_spilled2 = 1;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_spilling() && lrg._def != NULL) {
|
|
// collect defs for MultiDef printing
|
|
if (lrg._defs == NULL) {
|
|
lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL);
|
|
lrg._defs->append(lrg._def);
|
|
}
|
|
lrg._defs->append(n);
|
|
}
|
|
#endif
|
|
|
|
// Check for a single def LRG; these can spill nicely
|
|
// via rematerialization. Flag as NULL for no def found
|
|
// yet, or 'n' for single def or -1 for many defs.
|
|
lrg._def = lrg._def ? NodeSentinel : n;
|
|
|
|
// Limit result register mask to acceptable registers
|
|
const RegMask &rm = n->out_RegMask();
|
|
lrg.AND( rm );
|
|
// Check for bound register masks
|
|
const RegMask &lrgmask = lrg.mask();
|
|
if( lrgmask.is_bound1() || lrgmask.is_bound2() )
|
|
lrg._is_bound = 1;
|
|
|
|
// Check for maximum frequency value
|
|
if( lrg._maxfreq < b->_freq )
|
|
lrg._maxfreq = b->_freq;
|
|
|
|
int ireg = n->ideal_reg();
|
|
assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
|
|
"oops must be in Op_RegP's" );
|
|
// Check for oop-iness, or long/double
|
|
// Check for multi-kill projection
|
|
switch( ireg ) {
|
|
case MachProjNode::fat_proj:
|
|
// Fat projections have size equal to number of registers killed
|
|
lrg.set_num_regs(rm.Size());
|
|
lrg.set_reg_pressure(lrg.num_regs());
|
|
lrg._fat_proj = 1;
|
|
lrg._is_bound = 1;
|
|
break;
|
|
case Op_RegP:
|
|
#ifdef _LP64
|
|
lrg.set_num_regs(2); // Size is 2 stack words
|
|
#else
|
|
lrg.set_num_regs(1); // Size is 1 stack word
|
|
#endif
|
|
// Register pressure is tracked relative to the maximum values
|
|
// suggested for that platform, INTPRESSURE and FLOATPRESSURE,
|
|
// and relative to other types which compete for the same regs.
|
|
//
|
|
// The following table contains suggested values based on the
|
|
// architectures as defined in each .ad file.
|
|
// INTPRESSURE and FLOATPRESSURE may be tuned differently for
|
|
// compile-speed or performance.
|
|
// Note1:
|
|
// SPARC and SPARCV9 reg_pressures are at 2 instead of 1
|
|
// since .ad registers are defined as high and low halves.
|
|
// These reg_pressure values remain compatible with the code
|
|
// in is_high_pressure() which relates get_invalid_mask_size(),
|
|
// Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
|
|
// Note2:
|
|
// SPARC -d32 has 24 registers available for integral values,
|
|
// but only 10 of these are safe for 64-bit longs.
|
|
// Using set_reg_pressure(2) for both int and long means
|
|
// the allocator will believe it can fit 26 longs into
|
|
// registers. Using 2 for longs and 1 for ints means the
|
|
// allocator will attempt to put 52 integers into registers.
|
|
// The settings below limit this problem to methods with
|
|
// many long values which are being run on 32-bit SPARC.
|
|
//
|
|
// ------------------- reg_pressure --------------------
|
|
// Each entry is reg_pressure_per_value,number_of_regs
|
|
// RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE
|
|
// IA32 2 1 1 1 1 6 6
|
|
// IA64 1 1 1 1 1 50 41
|
|
// SPARC 2 2 2 2 2 48 (24) 52 (26)
|
|
// SPARCV9 2 2 2 2 2 48 (24) 52 (26)
|
|
// AMD64 1 1 1 1 1 14 15
|
|
// -----------------------------------------------------
|
|
#if defined(SPARC)
|
|
lrg.set_reg_pressure(2); // use for v9 as well
|
|
#else
|
|
lrg.set_reg_pressure(1); // normally one value per register
|
|
#endif
|
|
if( n_type->isa_oop_ptr() ) {
|
|
lrg._is_oop = 1;
|
|
}
|
|
break;
|
|
case Op_RegL: // Check for long or double
|
|
case Op_RegD:
|
|
lrg.set_num_regs(2);
|
|
// Define platform specific register pressure
|
|
#if defined(SPARC) || defined(ARM)
|
|
lrg.set_reg_pressure(2);
|
|
#elif defined(IA32)
|
|
if( ireg == Op_RegL ) {
|
|
lrg.set_reg_pressure(2);
|
|
} else {
|
|
lrg.set_reg_pressure(1);
|
|
}
|
|
#else
|
|
lrg.set_reg_pressure(1); // normally one value per register
|
|
#endif
|
|
// If this def of a double forces a mis-aligned double,
|
|
// flag as '_fat_proj' - really flag as allowing misalignment
|
|
// AND changes how we count interferences. A mis-aligned
|
|
// double can interfere with TWO aligned pairs, or effectively
|
|
// FOUR registers!
|
|
if( rm.is_misaligned_Pair() ) {
|
|
lrg._fat_proj = 1;
|
|
lrg._is_bound = 1;
|
|
}
|
|
break;
|
|
case Op_RegF:
|
|
case Op_RegI:
|
|
case Op_RegN:
|
|
case Op_RegFlags:
|
|
case 0: // not an ideal register
|
|
lrg.set_num_regs(1);
|
|
#ifdef SPARC
|
|
lrg.set_reg_pressure(2);
|
|
#else
|
|
lrg.set_reg_pressure(1);
|
|
#endif
|
|
break;
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// Now do the same for inputs
|
|
uint cnt = n->req();
|
|
// Setup for CISC SPILLING
|
|
uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
|
|
if( UseCISCSpill && after_aggressive ) {
|
|
inp = n->cisc_operand();
|
|
if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
|
|
// Convert operand number to edge index number
|
|
inp = n->as_Mach()->operand_index(inp);
|
|
}
|
|
// Prepare register mask for each input
|
|
for( uint k = input_edge_start; k < cnt; k++ ) {
|
|
uint vreg = n2lidx(n->in(k));
|
|
if( !vreg ) continue;
|
|
|
|
// If this instruction is CISC Spillable, add the flags
|
|
// bit to its appropriate input
|
|
if( UseCISCSpill && after_aggressive && inp == k ) {
|
|
#ifndef PRODUCT
|
|
if( TraceCISCSpill ) {
|
|
tty->print(" use_cisc_RegMask: ");
|
|
n->dump();
|
|
}
|
|
#endif
|
|
n->as_Mach()->use_cisc_RegMask();
|
|
}
|
|
|
|
LRG &lrg = lrgs(vreg);
|
|
// // Testing for floating point code shape
|
|
// Node *test = n->in(k);
|
|
// if( test->is_Mach() ) {
|
|
// MachNode *m = test->as_Mach();
|
|
// int op = m->ideal_Opcode();
|
|
// if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
|
|
// int zzz = 1;
|
|
// }
|
|
// }
|
|
|
|
// Limit result register mask to acceptable registers.
|
|
// Do not limit registers from uncommon uses before
|
|
// AggressiveCoalesce. This effectively pre-virtual-splits
|
|
// around uncommon uses of common defs.
|
|
const RegMask &rm = n->in_RegMask(k);
|
|
if( !after_aggressive &&
|
|
_cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
|
|
// Since we are BEFORE aggressive coalesce, leave the register
|
|
// mask untrimmed by the call. This encourages more coalescing.
|
|
// Later, AFTER aggressive, this live range will have to spill
|
|
// but the spiller handles slow-path calls very nicely.
|
|
} else {
|
|
lrg.AND( rm );
|
|
}
|
|
// Check for bound register masks
|
|
const RegMask &lrgmask = lrg.mask();
|
|
if( lrgmask.is_bound1() || lrgmask.is_bound2() )
|
|
lrg._is_bound = 1;
|
|
// If this use of a double forces a mis-aligned double,
|
|
// flag as '_fat_proj' - really flag as allowing misalignment
|
|
// AND changes how we count interferences. A mis-aligned
|
|
// double can interfere with TWO aligned pairs, or effectively
|
|
// FOUR registers!
|
|
if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
|
|
lrg._fat_proj = 1;
|
|
lrg._is_bound = 1;
|
|
}
|
|
// if the LRG is an unaligned pair, we will have to spill
|
|
// so clear the LRG's register mask if it is not already spilled
|
|
if ( !n->is_SpillCopy() &&
|
|
(lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) &&
|
|
lrgmask.is_misaligned_Pair()) {
|
|
lrg.Clear();
|
|
}
|
|
|
|
// Check for maximum frequency value
|
|
if( lrg._maxfreq < b->_freq )
|
|
lrg._maxfreq = b->_freq;
|
|
|
|
} // End for all allocated inputs
|
|
} // end for all instructions
|
|
} // end for all blocks
|
|
|
|
// Final per-liverange setup
|
|
for( uint i2=0; i2<_maxlrg; i2++ ) {
|
|
LRG &lrg = lrgs(i2);
|
|
if( lrg.num_regs() == 2 && !lrg._fat_proj )
|
|
lrg.ClearToPairs();
|
|
lrg.compute_set_mask_size();
|
|
if( lrg.not_free() ) { // Handle case where we lose from the start
|
|
lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
|
|
lrg._direct_conflict = 1;
|
|
}
|
|
lrg.set_degree(0); // no neighbors in IFG yet
|
|
}
|
|
}
|
|
|
|
//------------------------------set_was_low------------------------------------
|
|
// Set the was-lo-degree bit. Conservative coalescing should not change the
|
|
// colorability of the graph. If any live range was of low-degree before
|
|
// coalescing, it should Simplify. This call sets the was-lo-degree bit.
|
|
// The bit is checked in Simplify.
|
|
void PhaseChaitin::set_was_low() {
|
|
#ifdef ASSERT
|
|
for( uint i = 1; i < _maxlrg; i++ ) {
|
|
int size = lrgs(i).num_regs();
|
|
uint old_was_lo = lrgs(i)._was_lo;
|
|
lrgs(i)._was_lo = 0;
|
|
if( lrgs(i).lo_degree() ) {
|
|
lrgs(i)._was_lo = 1; // Trivially of low degree
|
|
} else { // Else check the Brigg's assertion
|
|
// Brigg's observation is that the lo-degree neighbors of a
|
|
// hi-degree live range will not interfere with the color choices
|
|
// of said hi-degree live range. The Simplify reverse-stack-coloring
|
|
// order takes care of the details. Hence you do not have to count
|
|
// low-degree neighbors when determining if this guy colors.
|
|
int briggs_degree = 0;
|
|
IndexSet *s = _ifg->neighbors(i);
|
|
IndexSetIterator elements(s);
|
|
uint lidx;
|
|
while((lidx = elements.next()) != 0) {
|
|
if( !lrgs(lidx).lo_degree() )
|
|
briggs_degree += MAX2(size,lrgs(lidx).num_regs());
|
|
}
|
|
if( briggs_degree < lrgs(i).degrees_of_freedom() )
|
|
lrgs(i)._was_lo = 1; // Low degree via the briggs assertion
|
|
}
|
|
assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#define REGISTER_CONSTRAINED 16
|
|
|
|
//------------------------------cache_lrg_info---------------------------------
|
|
// Compute cost/area ratio, in case we spill. Build the lo-degree list.
|
|
void PhaseChaitin::cache_lrg_info( ) {
|
|
|
|
for( uint i = 1; i < _maxlrg; i++ ) {
|
|
LRG &lrg = lrgs(i);
|
|
|
|
// Check for being of low degree: means we can be trivially colored.
|
|
// Low degree, dead or must-spill guys just get to simplify right away
|
|
if( lrg.lo_degree() ||
|
|
!lrg.alive() ||
|
|
lrg._must_spill ) {
|
|
// Split low degree list into those guys that must get a
|
|
// register and those that can go to register or stack.
|
|
// The idea is LRGs that can go register or stack color first when
|
|
// they have a good chance of getting a register. The register-only
|
|
// lo-degree live ranges always get a register.
|
|
OptoReg::Name hi_reg = lrg.mask().find_last_elem();
|
|
if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
|
|
lrg._next = _lo_stk_degree;
|
|
_lo_stk_degree = i;
|
|
} else {
|
|
lrg._next = _lo_degree;
|
|
_lo_degree = i;
|
|
}
|
|
} else { // Else high degree
|
|
lrgs(_hi_degree)._prev = i;
|
|
lrg._next = _hi_degree;
|
|
lrg._prev = 0;
|
|
_hi_degree = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------Pre-Simplify-----------------------------------
|
|
// Simplify the IFG by removing LRGs of low degree that have NO copies
|
|
void PhaseChaitin::Pre_Simplify( ) {
|
|
|
|
// Warm up the lo-degree no-copy list
|
|
int lo_no_copy = 0;
|
|
for( uint i = 1; i < _maxlrg; i++ ) {
|
|
if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
|
|
!lrgs(i).alive() ||
|
|
lrgs(i)._must_spill ) {
|
|
lrgs(i)._next = lo_no_copy;
|
|
lo_no_copy = i;
|
|
}
|
|
}
|
|
|
|
while( lo_no_copy ) {
|
|
uint lo = lo_no_copy;
|
|
lo_no_copy = lrgs(lo)._next;
|
|
int size = lrgs(lo).num_regs();
|
|
|
|
// Put the simplified guy on the simplified list.
|
|
lrgs(lo)._next = _simplified;
|
|
_simplified = lo;
|
|
|
|
// Yank this guy from the IFG.
|
|
IndexSet *adj = _ifg->remove_node( lo );
|
|
|
|
// If any neighbors' degrees fall below their number of
|
|
// allowed registers, then put that neighbor on the low degree
|
|
// list. Note that 'degree' can only fall and 'numregs' is
|
|
// unchanged by this action. Thus the two are equal at most once,
|
|
// so LRGs hit the lo-degree worklists at most once.
|
|
IndexSetIterator elements(adj);
|
|
uint neighbor;
|
|
while ((neighbor = elements.next()) != 0) {
|
|
LRG *n = &lrgs(neighbor);
|
|
assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
|
|
|
|
// Check for just becoming of-low-degree
|
|
if( n->just_lo_degree() && !n->_has_copy ) {
|
|
assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
|
|
// Put on lo-degree list
|
|
n->_next = lo_no_copy;
|
|
lo_no_copy = neighbor;
|
|
}
|
|
}
|
|
} // End of while lo-degree no_copy worklist not empty
|
|
|
|
// No more lo-degree no-copy live ranges to simplify
|
|
}
|
|
|
|
//------------------------------Simplify---------------------------------------
|
|
// Simplify the IFG by removing LRGs of low degree.
|
|
void PhaseChaitin::Simplify( ) {
|
|
|
|
while( 1 ) { // Repeat till simplified it all
|
|
// May want to explore simplifying lo_degree before _lo_stk_degree.
|
|
// This might result in more spills coloring into registers during
|
|
// Select().
|
|
while( _lo_degree || _lo_stk_degree ) {
|
|
// If possible, pull from lo_stk first
|
|
uint lo;
|
|
if( _lo_degree ) {
|
|
lo = _lo_degree;
|
|
_lo_degree = lrgs(lo)._next;
|
|
} else {
|
|
lo = _lo_stk_degree;
|
|
_lo_stk_degree = lrgs(lo)._next;
|
|
}
|
|
|
|
// Put the simplified guy on the simplified list.
|
|
lrgs(lo)._next = _simplified;
|
|
_simplified = lo;
|
|
// If this guy is "at risk" then mark his current neighbors
|
|
if( lrgs(lo)._at_risk ) {
|
|
IndexSetIterator elements(_ifg->neighbors(lo));
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
lrgs(datum)._risk_bias = lo;
|
|
}
|
|
}
|
|
|
|
// Yank this guy from the IFG.
|
|
IndexSet *adj = _ifg->remove_node( lo );
|
|
|
|
// If any neighbors' degrees fall below their number of
|
|
// allowed registers, then put that neighbor on the low degree
|
|
// list. Note that 'degree' can only fall and 'numregs' is
|
|
// unchanged by this action. Thus the two are equal at most once,
|
|
// so LRGs hit the lo-degree worklist at most once.
|
|
IndexSetIterator elements(adj);
|
|
uint neighbor;
|
|
while ((neighbor = elements.next()) != 0) {
|
|
LRG *n = &lrgs(neighbor);
|
|
#ifdef ASSERT
|
|
if( VerifyOpto || VerifyRegisterAllocator ) {
|
|
assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
|
|
}
|
|
#endif
|
|
|
|
// Check for just becoming of-low-degree just counting registers.
|
|
// _must_spill live ranges are already on the low degree list.
|
|
if( n->just_lo_degree() && !n->_must_spill ) {
|
|
assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
|
|
// Pull from hi-degree list
|
|
uint prev = n->_prev;
|
|
uint next = n->_next;
|
|
if( prev ) lrgs(prev)._next = next;
|
|
else _hi_degree = next;
|
|
lrgs(next)._prev = prev;
|
|
n->_next = _lo_degree;
|
|
_lo_degree = neighbor;
|
|
}
|
|
}
|
|
} // End of while lo-degree/lo_stk_degree worklist not empty
|
|
|
|
// Check for got everything: is hi-degree list empty?
|
|
if( !_hi_degree ) break;
|
|
|
|
// Time to pick a potential spill guy
|
|
uint lo_score = _hi_degree;
|
|
double score = lrgs(lo_score).score();
|
|
double area = lrgs(lo_score)._area;
|
|
double cost = lrgs(lo_score)._cost;
|
|
bool bound = lrgs(lo_score)._is_bound;
|
|
|
|
// Find cheapest guy
|
|
debug_only( int lo_no_simplify=0; );
|
|
for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
|
|
assert( !(*_ifg->_yanked)[i], "" );
|
|
// It's just vaguely possible to move hi-degree to lo-degree without
|
|
// going through a just-lo-degree stage: If you remove a double from
|
|
// a float live range it's degree will drop by 2 and you can skip the
|
|
// just-lo-degree stage. It's very rare (shows up after 5000+ methods
|
|
// in -Xcomp of Java2Demo). So just choose this guy to simplify next.
|
|
if( lrgs(i).lo_degree() ) {
|
|
lo_score = i;
|
|
break;
|
|
}
|
|
debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
|
|
double iscore = lrgs(i).score();
|
|
double iarea = lrgs(i)._area;
|
|
double icost = lrgs(i)._cost;
|
|
bool ibound = lrgs(i)._is_bound;
|
|
|
|
// Compare cost/area of i vs cost/area of lo_score. Smaller cost/area
|
|
// wins. Ties happen because all live ranges in question have spilled
|
|
// a few times before and the spill-score adds a huge number which
|
|
// washes out the low order bits. We are choosing the lesser of 2
|
|
// evils; in this case pick largest area to spill.
|
|
// Ties also happen when live ranges are defined and used only inside
|
|
// one block. In which case their area is 0 and score set to max.
|
|
// In such case choose bound live range over unbound to free registers
|
|
// or with smaller cost to spill.
|
|
if( iscore < score ||
|
|
(iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ||
|
|
(iscore == score && iarea == area &&
|
|
( (ibound && !bound) || ibound == bound && (icost < cost) )) ) {
|
|
lo_score = i;
|
|
score = iscore;
|
|
area = iarea;
|
|
cost = icost;
|
|
bound = ibound;
|
|
}
|
|
}
|
|
LRG *lo_lrg = &lrgs(lo_score);
|
|
// The live range we choose for spilling is either hi-degree, or very
|
|
// rarely it can be low-degree. If we choose a hi-degree live range
|
|
// there better not be any lo-degree choices.
|
|
assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
|
|
|
|
// Pull from hi-degree list
|
|
uint prev = lo_lrg->_prev;
|
|
uint next = lo_lrg->_next;
|
|
if( prev ) lrgs(prev)._next = next;
|
|
else _hi_degree = next;
|
|
lrgs(next)._prev = prev;
|
|
// Jam him on the lo-degree list, despite his high degree.
|
|
// Maybe he'll get a color, and maybe he'll spill.
|
|
// Only Select() will know.
|
|
lrgs(lo_score)._at_risk = true;
|
|
_lo_degree = lo_score;
|
|
lo_lrg->_next = 0;
|
|
|
|
} // End of while not simplified everything
|
|
|
|
}
|
|
|
|
//------------------------------bias_color-------------------------------------
|
|
// Choose a color using the biasing heuristic
|
|
OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
|
|
|
|
// Check for "at_risk" LRG's
|
|
uint risk_lrg = Find(lrg._risk_bias);
|
|
if( risk_lrg != 0 ) {
|
|
// Walk the colored neighbors of the "at_risk" candidate
|
|
// Choose a color which is both legal and already taken by a neighbor
|
|
// of the "at_risk" candidate in order to improve the chances of the
|
|
// "at_risk" candidate of coloring
|
|
IndexSetIterator elements(_ifg->neighbors(risk_lrg));
|
|
uint datum;
|
|
while ((datum = elements.next()) != 0) {
|
|
OptoReg::Name reg = lrgs(datum).reg();
|
|
// If this LRG's register is legal for us, choose it
|
|
if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
|
|
lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
|
|
(lrg.num_regs()==1 || // either size 1
|
|
(reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs)
|
|
return reg;
|
|
}
|
|
}
|
|
|
|
uint copy_lrg = Find(lrg._copy_bias);
|
|
if( copy_lrg != 0 ) {
|
|
// If he has a color,
|
|
if( !(*(_ifg->_yanked))[copy_lrg] ) {
|
|
OptoReg::Name reg = lrgs(copy_lrg).reg();
|
|
// And it is legal for you,
|
|
if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
|
|
lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
|
|
(lrg.num_regs()==1 || // either size 1
|
|
(reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs)
|
|
return reg;
|
|
} else if( chunk == 0 ) {
|
|
// Choose a color which is legal for him
|
|
RegMask tempmask = lrg.mask();
|
|
tempmask.AND(lrgs(copy_lrg).mask());
|
|
OptoReg::Name reg;
|
|
if( lrg.num_regs() == 1 ) {
|
|
reg = tempmask.find_first_elem();
|
|
} else {
|
|
tempmask.ClearToPairs();
|
|
reg = tempmask.find_first_pair();
|
|
}
|
|
if( OptoReg::is_valid(reg) )
|
|
return reg;
|
|
}
|
|
}
|
|
|
|
// If no bias info exists, just go with the register selection ordering
|
|
if( lrg.num_regs() == 2 ) {
|
|
// Find an aligned pair
|
|
return OptoReg::add(lrg.mask().find_first_pair(),chunk);
|
|
}
|
|
|
|
// CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate
|
|
// copy removal to remove many more copies, by preventing a just-assigned
|
|
// register from being repeatedly assigned.
|
|
OptoReg::Name reg = lrg.mask().find_first_elem();
|
|
if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
|
|
// This 'Remove; find; Insert' idiom is an expensive way to find the
|
|
// SECOND element in the mask.
|
|
lrg.Remove(reg);
|
|
OptoReg::Name reg2 = lrg.mask().find_first_elem();
|
|
lrg.Insert(reg);
|
|
if( OptoReg::is_reg(reg2))
|
|
reg = reg2;
|
|
}
|
|
return OptoReg::add( reg, chunk );
|
|
}
|
|
|
|
//------------------------------choose_color-----------------------------------
|
|
// Choose a color in the current chunk
|
|
OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
|
|
assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
|
|
assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
|
|
|
|
if( lrg.num_regs() == 1 || // Common Case
|
|
!lrg._fat_proj ) // Aligned+adjacent pairs ok
|
|
// Use a heuristic to "bias" the color choice
|
|
return bias_color(lrg, chunk);
|
|
|
|
assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
|
|
|
|
// Fat-proj case or misaligned double argument.
|
|
assert(lrg.compute_mask_size() == lrg.num_regs() ||
|
|
lrg.num_regs() == 2,"fat projs exactly color" );
|
|
assert( !chunk, "always color in 1st chunk" );
|
|
// Return the highest element in the set.
|
|
return lrg.mask().find_last_elem();
|
|
}
|
|
|
|
//------------------------------Select-----------------------------------------
|
|
// Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted
|
|
// in reverse order of removal. As long as nothing of hi-degree was yanked,
|
|
// everything going back is guaranteed a color. Select that color. If some
|
|
// hi-degree LRG cannot get a color then we record that we must spill.
|
|
uint PhaseChaitin::Select( ) {
|
|
uint spill_reg = LRG::SPILL_REG;
|
|
_max_reg = OptoReg::Name(0); // Past max register used
|
|
while( _simplified ) {
|
|
// Pull next LRG from the simplified list - in reverse order of removal
|
|
uint lidx = _simplified;
|
|
LRG *lrg = &lrgs(lidx);
|
|
_simplified = lrg->_next;
|
|
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_spilling()) {
|
|
ttyLocker ttyl;
|
|
tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
|
|
lrg->degrees_of_freedom());
|
|
lrg->dump();
|
|
}
|
|
#endif
|
|
|
|
// Re-insert into the IFG
|
|
_ifg->re_insert(lidx);
|
|
if( !lrg->alive() ) continue;
|
|
// capture allstackedness flag before mask is hacked
|
|
const int is_allstack = lrg->mask().is_AllStack();
|
|
|
|
// Yeah, yeah, yeah, I know, I know. I can refactor this
|
|
// to avoid the GOTO, although the refactored code will not
|
|
// be much clearer. We arrive here IFF we have a stack-based
|
|
// live range that cannot color in the current chunk, and it
|
|
// has to move into the next free stack chunk.
|
|
int chunk = 0; // Current chunk is first chunk
|
|
retry_next_chunk:
|
|
|
|
// Remove neighbor colors
|
|
IndexSet *s = _ifg->neighbors(lidx);
|
|
|
|
debug_only(RegMask orig_mask = lrg->mask();)
|
|
IndexSetIterator elements(s);
|
|
uint neighbor;
|
|
while ((neighbor = elements.next()) != 0) {
|
|
// Note that neighbor might be a spill_reg. In this case, exclusion
|
|
// of its color will be a no-op, since the spill_reg chunk is in outer
|
|
// space. Also, if neighbor is in a different chunk, this exclusion
|
|
// will be a no-op. (Later on, if lrg runs out of possible colors in
|
|
// its chunk, a new chunk of color may be tried, in which case
|
|
// examination of neighbors is started again, at retry_next_chunk.)
|
|
LRG &nlrg = lrgs(neighbor);
|
|
OptoReg::Name nreg = nlrg.reg();
|
|
// Only subtract masks in the same chunk
|
|
if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
|
|
#ifndef PRODUCT
|
|
uint size = lrg->mask().Size();
|
|
RegMask rm = lrg->mask();
|
|
#endif
|
|
lrg->SUBTRACT(nlrg.mask());
|
|
#ifndef PRODUCT
|
|
if (trace_spilling() && lrg->mask().Size() != size) {
|
|
ttyLocker ttyl;
|
|
tty->print("L%d ", lidx);
|
|
rm.dump();
|
|
tty->print(" intersected L%d ", neighbor);
|
|
nlrg.mask().dump();
|
|
tty->print(" removed ");
|
|
rm.SUBTRACT(lrg->mask());
|
|
rm.dump();
|
|
tty->print(" leaving ");
|
|
lrg->mask().dump();
|
|
tty->cr();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
//assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
|
|
// Aligned pairs need aligned masks
|
|
if( lrg->num_regs() == 2 && !lrg->_fat_proj )
|
|
lrg->ClearToPairs();
|
|
|
|
// Check if a color is available and if so pick the color
|
|
OptoReg::Name reg = choose_color( *lrg, chunk );
|
|
#ifdef SPARC
|
|
debug_only(lrg->compute_set_mask_size());
|
|
assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
|
|
#endif
|
|
|
|
//---------------
|
|
// If we fail to color and the AllStack flag is set, trigger
|
|
// a chunk-rollover event
|
|
if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
|
|
// Bump register mask up to next stack chunk
|
|
chunk += RegMask::CHUNK_SIZE;
|
|
lrg->Set_All();
|
|
|
|
goto retry_next_chunk;
|
|
}
|
|
|
|
//---------------
|
|
// Did we get a color?
|
|
else if( OptoReg::is_valid(reg)) {
|
|
#ifndef PRODUCT
|
|
RegMask avail_rm = lrg->mask();
|
|
#endif
|
|
|
|
// Record selected register
|
|
lrg->set_reg(reg);
|
|
|
|
if( reg >= _max_reg ) // Compute max register limit
|
|
_max_reg = OptoReg::add(reg,1);
|
|
// Fold reg back into normal space
|
|
reg = OptoReg::add(reg,-chunk);
|
|
|
|
// If the live range is not bound, then we actually had some choices
|
|
// to make. In this case, the mask has more bits in it than the colors
|
|
// chosen. Restrict the mask to just what was picked.
|
|
if( lrg->num_regs() == 1 ) { // Size 1 live range
|
|
lrg->Clear(); // Clear the mask
|
|
lrg->Insert(reg); // Set regmask to match selected reg
|
|
lrg->set_mask_size(1);
|
|
} else if( !lrg->_fat_proj ) {
|
|
// For pairs, also insert the low bit of the pair
|
|
assert( lrg->num_regs() == 2, "unbound fatproj???" );
|
|
lrg->Clear(); // Clear the mask
|
|
lrg->Insert(reg); // Set regmask to match selected reg
|
|
lrg->Insert(OptoReg::add(reg,-1));
|
|
lrg->set_mask_size(2);
|
|
} else { // Else fatproj
|
|
// mask must be equal to fatproj bits, by definition
|
|
}
|
|
#ifndef PRODUCT
|
|
if (trace_spilling()) {
|
|
ttyLocker ttyl;
|
|
tty->print("L%d selected ", lidx);
|
|
lrg->mask().dump();
|
|
tty->print(" from ");
|
|
avail_rm.dump();
|
|
tty->cr();
|
|
}
|
|
#endif
|
|
// Note that reg is the highest-numbered register in the newly-bound mask.
|
|
} // end color available case
|
|
|
|
//---------------
|
|
// Live range is live and no colors available
|
|
else {
|
|
assert( lrg->alive(), "" );
|
|
assert( !lrg->_fat_proj || lrg->is_multidef() ||
|
|
lrg->_def->outcnt() > 0, "fat_proj cannot spill");
|
|
assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
|
|
|
|
// Assign the special spillreg register
|
|
lrg->set_reg(OptoReg::Name(spill_reg++));
|
|
// Do not empty the regmask; leave mask_size lying around
|
|
// for use during Spilling
|
|
#ifndef PRODUCT
|
|
if( trace_spilling() ) {
|
|
ttyLocker ttyl;
|
|
tty->print("L%d spilling with neighbors: ", lidx);
|
|
s->dump();
|
|
debug_only(tty->print(" original mask: "));
|
|
debug_only(orig_mask.dump());
|
|
dump_lrg(lidx);
|
|
}
|
|
#endif
|
|
} // end spill case
|
|
|
|
}
|
|
|
|
return spill_reg-LRG::SPILL_REG; // Return number of spills
|
|
}
|
|
|
|
|
|
//------------------------------copy_was_spilled-------------------------------
|
|
// Copy 'was_spilled'-edness from the source Node to the dst Node.
|
|
void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
|
|
if( _spilled_once.test(src->_idx) ) {
|
|
_spilled_once.set(dst->_idx);
|
|
lrgs(Find(dst))._was_spilled1 = 1;
|
|
if( _spilled_twice.test(src->_idx) ) {
|
|
_spilled_twice.set(dst->_idx);
|
|
lrgs(Find(dst))._was_spilled2 = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------set_was_spilled--------------------------------
|
|
// Set the 'spilled_once' or 'spilled_twice' flag on a node.
|
|
void PhaseChaitin::set_was_spilled( Node *n ) {
|
|
if( _spilled_once.test_set(n->_idx) )
|
|
_spilled_twice.set(n->_idx);
|
|
}
|
|
|
|
//------------------------------fixup_spills-----------------------------------
|
|
// Convert Ideal spill instructions into proper FramePtr + offset Loads and
|
|
// Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are.
|
|
void PhaseChaitin::fixup_spills() {
|
|
// This function does only cisc spill work.
|
|
if( !UseCISCSpill ) return;
|
|
|
|
NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
|
|
|
|
// Grab the Frame Pointer
|
|
Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
|
|
|
|
// For all blocks
|
|
for( uint i = 0; i < _cfg._num_blocks; i++ ) {
|
|
Block *b = _cfg._blocks[i];
|
|
|
|
// For all instructions in block
|
|
uint last_inst = b->end_idx();
|
|
for( uint j = 1; j <= last_inst; j++ ) {
|
|
Node *n = b->_nodes[j];
|
|
|
|
// Dead instruction???
|
|
assert( n->outcnt() != 0 ||// Nothing dead after post alloc
|
|
C->top() == n || // Or the random TOP node
|
|
n->is_Proj(), // Or a fat-proj kill node
|
|
"No dead instructions after post-alloc" );
|
|
|
|
int inp = n->cisc_operand();
|
|
if( inp != AdlcVMDeps::Not_cisc_spillable ) {
|
|
// Convert operand number to edge index number
|
|
MachNode *mach = n->as_Mach();
|
|
inp = mach->operand_index(inp);
|
|
Node *src = n->in(inp); // Value to load or store
|
|
LRG &lrg_cisc = lrgs( Find_const(src) );
|
|
OptoReg::Name src_reg = lrg_cisc.reg();
|
|
// Doubles record the HIGH register of an adjacent pair.
|
|
src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
|
|
if( OptoReg::is_stack(src_reg) ) { // If input is on stack
|
|
// This is a CISC Spill, get stack offset and construct new node
|
|
#ifndef PRODUCT
|
|
if( TraceCISCSpill ) {
|
|
tty->print(" reg-instr: ");
|
|
n->dump();
|
|
}
|
|
#endif
|
|
int stk_offset = reg2offset(src_reg);
|
|
// Bailout if we might exceed node limit when spilling this instruction
|
|
C->check_node_count(0, "out of nodes fixing spills");
|
|
if (C->failing()) return;
|
|
// Transform node
|
|
MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
|
|
cisc->set_req(inp,fp); // Base register is frame pointer
|
|
if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
|
|
assert( cisc->oper_input_base() == 2, "Only adding one edge");
|
|
cisc->ins_req(1,src); // Requires a memory edge
|
|
}
|
|
b->_nodes.map(j,cisc); // Insert into basic block
|
|
n->subsume_by(cisc); // Correct graph
|
|
//
|
|
++_used_cisc_instructions;
|
|
#ifndef PRODUCT
|
|
if( TraceCISCSpill ) {
|
|
tty->print(" cisc-instr: ");
|
|
cisc->dump();
|
|
}
|
|
#endif
|
|
} else {
|
|
#ifndef PRODUCT
|
|
if( TraceCISCSpill ) {
|
|
tty->print(" using reg-instr: ");
|
|
n->dump();
|
|
}
|
|
#endif
|
|
++_unused_cisc_instructions; // input can be on stack
|
|
}
|
|
}
|
|
|
|
} // End of for all instructions
|
|
|
|
} // End of for all blocks
|
|
}
|
|
|
|
//------------------------------find_base_for_derived--------------------------
|
|
// Helper to stretch above; recursively discover the base Node for a
|
|
// given derived Node. Easy for AddP-related machine nodes, but needs
|
|
// to be recursive for derived Phis.
|
|
Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
|
|
// See if already computed; if so return it
|
|
if( derived_base_map[derived->_idx] )
|
|
return derived_base_map[derived->_idx];
|
|
|
|
// See if this happens to be a base.
|
|
// NOTE: we use TypePtr instead of TypeOopPtr because we can have
|
|
// pointers derived from NULL! These are always along paths that
|
|
// can't happen at run-time but the optimizer cannot deduce it so
|
|
// we have to handle it gracefully.
|
|
assert(!derived->bottom_type()->isa_narrowoop() ||
|
|
derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
|
|
const TypePtr *tj = derived->bottom_type()->isa_ptr();
|
|
// If its an OOP with a non-zero offset, then it is derived.
|
|
if( tj == NULL || tj->_offset == 0 ) {
|
|
derived_base_map[derived->_idx] = derived;
|
|
return derived;
|
|
}
|
|
// Derived is NULL+offset? Base is NULL!
|
|
if( derived->is_Con() ) {
|
|
Node *base = _matcher.mach_null();
|
|
assert(base != NULL, "sanity");
|
|
if (base->in(0) == NULL) {
|
|
// Initialize it once and make it shared:
|
|
// set control to _root and place it into Start block
|
|
// (where top() node is placed).
|
|
base->init_req(0, _cfg._root);
|
|
Block *startb = _cfg._bbs[C->top()->_idx];
|
|
startb->_nodes.insert(startb->find_node(C->top()), base );
|
|
_cfg._bbs.map( base->_idx, startb );
|
|
assert (n2lidx(base) == 0, "should not have LRG yet");
|
|
}
|
|
if (n2lidx(base) == 0) {
|
|
new_lrg(base, maxlrg++);
|
|
}
|
|
assert(base->in(0) == _cfg._root &&
|
|
_cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared");
|
|
derived_base_map[derived->_idx] = base;
|
|
return base;
|
|
}
|
|
|
|
// Check for AddP-related opcodes
|
|
if( !derived->is_Phi() ) {
|
|
assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
|
|
Node *base = derived->in(AddPNode::Base);
|
|
derived_base_map[derived->_idx] = base;
|
|
return base;
|
|
}
|
|
|
|
// Recursively find bases for Phis.
|
|
// First check to see if we can avoid a base Phi here.
|
|
Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
|
|
uint i;
|
|
for( i = 2; i < derived->req(); i++ )
|
|
if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
|
|
break;
|
|
// Went to the end without finding any different bases?
|
|
if( i == derived->req() ) { // No need for a base Phi here
|
|
derived_base_map[derived->_idx] = base;
|
|
return base;
|
|
}
|
|
|
|
// Now we see we need a base-Phi here to merge the bases
|
|
const Type *t = base->bottom_type();
|
|
base = new (C, derived->req()) PhiNode( derived->in(0), t );
|
|
for( i = 1; i < derived->req(); i++ ) {
|
|
base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
|
|
t = t->meet(base->in(i)->bottom_type());
|
|
}
|
|
base->as_Phi()->set_type(t);
|
|
|
|
// Search the current block for an existing base-Phi
|
|
Block *b = _cfg._bbs[derived->_idx];
|
|
for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
|
|
Node *phi = b->_nodes[i];
|
|
if( !phi->is_Phi() ) { // Found end of Phis with no match?
|
|
b->_nodes.insert( i, base ); // Must insert created Phi here as base
|
|
_cfg._bbs.map( base->_idx, b );
|
|
new_lrg(base,maxlrg++);
|
|
break;
|
|
}
|
|
// See if Phi matches.
|
|
uint j;
|
|
for( j = 1; j < base->req(); j++ )
|
|
if( phi->in(j) != base->in(j) &&
|
|
!(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
|
|
break;
|
|
if( j == base->req() ) { // All inputs match?
|
|
base = phi; // Then use existing 'phi' and drop 'base'
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// Cache info for later passes
|
|
derived_base_map[derived->_idx] = base;
|
|
return base;
|
|
}
|
|
|
|
|
|
//------------------------------stretch_base_pointer_live_ranges---------------
|
|
// At each Safepoint, insert extra debug edges for each pair of derived value/
|
|
// base pointer that is live across the Safepoint for oopmap building. The
|
|
// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
|
|
// required edge set.
|
|
bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
|
|
int must_recompute_live = false;
|
|
uint maxlrg = _maxlrg;
|
|
Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
|
|
memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
|
|
|
|
// For all blocks in RPO do...
|
|
for( uint i=0; i<_cfg._num_blocks; i++ ) {
|
|
Block *b = _cfg._blocks[i];
|
|
// Note use of deep-copy constructor. I cannot hammer the original
|
|
// liveout bits, because they are needed by the following coalesce pass.
|
|
IndexSet liveout(_live->live(b));
|
|
|
|
for( uint j = b->end_idx() + 1; j > 1; j-- ) {
|
|
Node *n = b->_nodes[j-1];
|
|
|
|
// Pre-split compares of loop-phis. Loop-phis form a cycle we would
|
|
// like to see in the same register. Compare uses the loop-phi and so
|
|
// extends its live range BUT cannot be part of the cycle. If this
|
|
// extended live range overlaps with the update of the loop-phi value
|
|
// we need both alive at the same time -- which requires at least 1
|
|
// copy. But because Intel has only 2-address registers we end up with
|
|
// at least 2 copies, one before the loop-phi update instruction and
|
|
// one after. Instead we split the input to the compare just after the
|
|
// phi.
|
|
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
|
|
Node *phi = n->in(1);
|
|
if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
|
|
Block *phi_block = _cfg._bbs[phi->_idx];
|
|
if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
|
|
const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
|
|
Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
|
|
insert_proj( phi_block, 1, spill, maxlrg++ );
|
|
n->set_req(1,spill);
|
|
must_recompute_live = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get value being defined
|
|
uint lidx = n2lidx(n);
|
|
if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
|
|
// Remove from live-out set
|
|
liveout.remove(lidx);
|
|
|
|
// Copies do not define a new value and so do not interfere.
|
|
// Remove the copies source from the liveout set before interfering.
|
|
uint idx = n->is_Copy();
|
|
if( idx ) liveout.remove( n2lidx(n->in(idx)) );
|
|
}
|
|
|
|
// Found a safepoint?
|
|
JVMState *jvms = n->jvms();
|
|
if( jvms ) {
|
|
// Now scan for a live derived pointer
|
|
IndexSetIterator elements(&liveout);
|
|
uint neighbor;
|
|
while ((neighbor = elements.next()) != 0) {
|
|
// Find reaching DEF for base and derived values
|
|
// This works because we are still in SSA during this call.
|
|
Node *derived = lrgs(neighbor)._def;
|
|
const TypePtr *tj = derived->bottom_type()->isa_ptr();
|
|
assert(!derived->bottom_type()->isa_narrowoop() ||
|
|
derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity");
|
|
// If its an OOP with a non-zero offset, then it is derived.
|
|
if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
|
|
Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
|
|
assert( base->_idx < _names.Size(), "" );
|
|
// Add reaching DEFs of derived pointer and base pointer as a
|
|
// pair of inputs
|
|
n->add_req( derived );
|
|
n->add_req( base );
|
|
|
|
// See if the base pointer is already live to this point.
|
|
// Since I'm working on the SSA form, live-ness amounts to
|
|
// reaching def's. So if I find the base's live range then
|
|
// I know the base's def reaches here.
|
|
if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
|
|
!liveout.member( n2lidx(base) ) ) && // not live) AND
|
|
(n2lidx(base) > 0) && // not a constant
|
|
_cfg._bbs[base->_idx] != b ) { // base not def'd in blk)
|
|
// Base pointer is not currently live. Since I stretched
|
|
// the base pointer to here and it crosses basic-block
|
|
// boundaries, the global live info is now incorrect.
|
|
// Recompute live.
|
|
must_recompute_live = true;
|
|
} // End of if base pointer is not live to debug info
|
|
}
|
|
} // End of scan all live data for derived ptrs crossing GC point
|
|
} // End of if found a GC point
|
|
|
|
// Make all inputs live
|
|
if( !n->is_Phi() ) { // Phi function uses come from prior block
|
|
for( uint k = 1; k < n->req(); k++ ) {
|
|
uint lidx = n2lidx(n->in(k));
|
|
if( lidx < _maxlrg )
|
|
liveout.insert( lidx );
|
|
}
|
|
}
|
|
|
|
} // End of forall instructions in block
|
|
liveout.clear(); // Free the memory used by liveout.
|
|
|
|
} // End of forall blocks
|
|
_maxlrg = maxlrg;
|
|
|
|
// If I created a new live range I need to recompute live
|
|
if( maxlrg != _ifg->_maxlrg )
|
|
must_recompute_live = true;
|
|
|
|
return must_recompute_live != 0;
|
|
}
|
|
|
|
|
|
//------------------------------add_reference----------------------------------
|
|
// Extend the node to LRG mapping
|
|
void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
|
|
_names.extend( node->_idx, n2lidx(old_node) );
|
|
}
|
|
|
|
//------------------------------dump-------------------------------------------
|
|
#ifndef PRODUCT
|
|
void PhaseChaitin::dump( const Node *n ) const {
|
|
uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
|
|
tty->print("L%d",r);
|
|
if( r && n->Opcode() != Op_Phi ) {
|
|
if( _node_regs ) { // Got a post-allocation copy of allocation?
|
|
tty->print("[");
|
|
OptoReg::Name second = get_reg_second(n);
|
|
if( OptoReg::is_valid(second) ) {
|
|
if( OptoReg::is_reg(second) )
|
|
tty->print("%s:",Matcher::regName[second]);
|
|
else
|
|
tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
|
|
}
|
|
OptoReg::Name first = get_reg_first(n);
|
|
if( OptoReg::is_reg(first) )
|
|
tty->print("%s]",Matcher::regName[first]);
|
|
else
|
|
tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
|
|
} else
|
|
n->out_RegMask().dump();
|
|
}
|
|
tty->print("/N%d\t",n->_idx);
|
|
tty->print("%s === ", n->Name());
|
|
uint k;
|
|
for( k = 0; k < n->req(); k++) {
|
|
Node *m = n->in(k);
|
|
if( !m ) tty->print("_ ");
|
|
else {
|
|
uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
|
|
tty->print("L%d",r);
|
|
// Data MultiNode's can have projections with no real registers.
|
|
// Don't die while dumping them.
|
|
int op = n->Opcode();
|
|
if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
|
|
if( _node_regs ) {
|
|
tty->print("[");
|
|
OptoReg::Name second = get_reg_second(n->in(k));
|
|
if( OptoReg::is_valid(second) ) {
|
|
if( OptoReg::is_reg(second) )
|
|
tty->print("%s:",Matcher::regName[second]);
|
|
else
|
|
tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
|
|
reg2offset_unchecked(second));
|
|
}
|
|
OptoReg::Name first = get_reg_first(n->in(k));
|
|
if( OptoReg::is_reg(first) )
|
|
tty->print("%s]",Matcher::regName[first]);
|
|
else
|
|
tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
|
|
reg2offset_unchecked(first));
|
|
} else
|
|
n->in_RegMask(k).dump();
|
|
}
|
|
tty->print("/N%d ",m->_idx);
|
|
}
|
|
}
|
|
if( k < n->len() && n->in(k) ) tty->print("| ");
|
|
for( ; k < n->len(); k++ ) {
|
|
Node *m = n->in(k);
|
|
if( !m ) break;
|
|
uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
|
|
tty->print("L%d",r);
|
|
tty->print("/N%d ",m->_idx);
|
|
}
|
|
if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
|
|
else n->dump_spec(tty);
|
|
if( _spilled_once.test(n->_idx ) ) {
|
|
tty->print(" Spill_1");
|
|
if( _spilled_twice.test(n->_idx ) )
|
|
tty->print(" Spill_2");
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
|
|
void PhaseChaitin::dump( const Block * b ) const {
|
|
b->dump_head( &_cfg._bbs );
|
|
|
|
// For all instructions
|
|
for( uint j = 0; j < b->_nodes.size(); j++ )
|
|
dump(b->_nodes[j]);
|
|
// Print live-out info at end of block
|
|
if( _live ) {
|
|
tty->print("Liveout: ");
|
|
IndexSet *live = _live->live(b);
|
|
IndexSetIterator elements(live);
|
|
tty->print("{");
|
|
uint i;
|
|
while ((i = elements.next()) != 0) {
|
|
tty->print("L%d ", Find_const(i));
|
|
}
|
|
tty->print_cr("}");
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
|
|
void PhaseChaitin::dump() const {
|
|
tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n",
|
|
_matcher._new_SP, _framesize );
|
|
|
|
// For all blocks
|
|
for( uint i = 0; i < _cfg._num_blocks; i++ )
|
|
dump(_cfg._blocks[i]);
|
|
// End of per-block dump
|
|
tty->print("\n");
|
|
|
|
if (!_ifg) {
|
|
tty->print("(No IFG.)\n");
|
|
return;
|
|
}
|
|
|
|
// Dump LRG array
|
|
tty->print("--- Live RanGe Array ---\n");
|
|
for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
|
|
tty->print("L%d: ",i2);
|
|
if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
|
|
else tty->print_cr("new LRG");
|
|
}
|
|
tty->print_cr("");
|
|
|
|
// Dump lo-degree list
|
|
tty->print("Lo degree: ");
|
|
for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
|
|
tty->print("L%d ",i3);
|
|
tty->print_cr("");
|
|
|
|
// Dump lo-stk-degree list
|
|
tty->print("Lo stk degree: ");
|
|
for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
|
|
tty->print("L%d ",i4);
|
|
tty->print_cr("");
|
|
|
|
// Dump lo-degree list
|
|
tty->print("Hi degree: ");
|
|
for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
|
|
tty->print("L%d ",i5);
|
|
tty->print_cr("");
|
|
}
|
|
|
|
//------------------------------dump_degree_lists------------------------------
|
|
void PhaseChaitin::dump_degree_lists() const {
|
|
// Dump lo-degree list
|
|
tty->print("Lo degree: ");
|
|
for( uint i = _lo_degree; i; i = lrgs(i)._next )
|
|
tty->print("L%d ",i);
|
|
tty->print_cr("");
|
|
|
|
// Dump lo-stk-degree list
|
|
tty->print("Lo stk degree: ");
|
|
for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
|
|
tty->print("L%d ",i2);
|
|
tty->print_cr("");
|
|
|
|
// Dump lo-degree list
|
|
tty->print("Hi degree: ");
|
|
for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
|
|
tty->print("L%d ",i3);
|
|
tty->print_cr("");
|
|
}
|
|
|
|
//------------------------------dump_simplified--------------------------------
|
|
void PhaseChaitin::dump_simplified() const {
|
|
tty->print("Simplified: ");
|
|
for( uint i = _simplified; i; i = lrgs(i)._next )
|
|
tty->print("L%d ",i);
|
|
tty->print_cr("");
|
|
}
|
|
|
|
static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
|
|
if ((int)reg < 0)
|
|
sprintf(buf, "<OptoReg::%d>", (int)reg);
|
|
else if (OptoReg::is_reg(reg))
|
|
strcpy(buf, Matcher::regName[reg]);
|
|
else
|
|
sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
|
|
pc->reg2offset(reg));
|
|
return buf+strlen(buf);
|
|
}
|
|
|
|
//------------------------------dump_register----------------------------------
|
|
// Dump a register name into a buffer. Be intelligent if we get called
|
|
// before allocation is complete.
|
|
char *PhaseChaitin::dump_register( const Node *n, char *buf ) const {
|
|
if( !this ) { // Not got anything?
|
|
sprintf(buf,"N%d",n->_idx); // Then use Node index
|
|
} else if( _node_regs ) {
|
|
// Post allocation, use direct mappings, no LRG info available
|
|
print_reg( get_reg_first(n), this, buf );
|
|
} else {
|
|
uint lidx = Find_const(n); // Grab LRG number
|
|
if( !_ifg ) {
|
|
sprintf(buf,"L%d",lidx); // No register binding yet
|
|
} else if( !lidx ) { // Special, not allocated value
|
|
strcpy(buf,"Special");
|
|
} else if( (lrgs(lidx).num_regs() == 1)
|
|
? !lrgs(lidx).mask().is_bound1()
|
|
: !lrgs(lidx).mask().is_bound2() ) {
|
|
sprintf(buf,"L%d",lidx); // No register binding yet
|
|
} else { // Hah! We have a bound machine register
|
|
print_reg( lrgs(lidx).reg(), this, buf );
|
|
}
|
|
}
|
|
return buf+strlen(buf);
|
|
}
|
|
|
|
//----------------------dump_for_spill_split_recycle--------------------------
|
|
void PhaseChaitin::dump_for_spill_split_recycle() const {
|
|
if( WizardMode && (PrintCompilation || PrintOpto) ) {
|
|
// Display which live ranges need to be split and the allocator's state
|
|
tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
|
|
for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
|
|
if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
|
|
tty->print("L%d: ", bidx);
|
|
lrgs(bidx).dump();
|
|
}
|
|
}
|
|
tty->cr();
|
|
dump();
|
|
}
|
|
}
|
|
|
|
//------------------------------dump_frame------------------------------------
|
|
void PhaseChaitin::dump_frame() const {
|
|
const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
|
|
const TypeTuple *domain = C->tf()->domain();
|
|
const int argcnt = domain->cnt() - TypeFunc::Parms;
|
|
|
|
// Incoming arguments in registers dump
|
|
for( int k = 0; k < argcnt; k++ ) {
|
|
OptoReg::Name parmreg = _matcher._parm_regs[k].first();
|
|
if( OptoReg::is_reg(parmreg)) {
|
|
const char *reg_name = OptoReg::regname(parmreg);
|
|
tty->print("#r%3.3d %s", parmreg, reg_name);
|
|
parmreg = _matcher._parm_regs[k].second();
|
|
if( OptoReg::is_reg(parmreg)) {
|
|
tty->print(":%s", OptoReg::regname(parmreg));
|
|
}
|
|
tty->print(" : parm %d: ", k);
|
|
domain->field_at(k + TypeFunc::Parms)->dump();
|
|
tty->print_cr("");
|
|
}
|
|
}
|
|
|
|
// Check for un-owned padding above incoming args
|
|
OptoReg::Name reg = _matcher._new_SP;
|
|
if( reg > _matcher._in_arg_limit ) {
|
|
reg = OptoReg::add(reg, -1);
|
|
tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
|
|
}
|
|
|
|
// Incoming argument area dump
|
|
OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
|
|
while( reg > begin_in_arg ) {
|
|
reg = OptoReg::add(reg, -1);
|
|
tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
|
|
int j;
|
|
for( j = 0; j < argcnt; j++) {
|
|
if( _matcher._parm_regs[j].first() == reg ||
|
|
_matcher._parm_regs[j].second() == reg ) {
|
|
tty->print("parm %d: ",j);
|
|
domain->field_at(j + TypeFunc::Parms)->dump();
|
|
tty->print_cr("");
|
|
break;
|
|
}
|
|
}
|
|
if( j >= argcnt )
|
|
tty->print_cr("HOLE, owned by SELF");
|
|
}
|
|
|
|
// Old outgoing preserve area
|
|
while( reg > _matcher._old_SP ) {
|
|
reg = OptoReg::add(reg, -1);
|
|
tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
|
|
}
|
|
|
|
// Old SP
|
|
tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
|
|
reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
|
|
|
|
// Preserve area dump
|
|
reg = OptoReg::add(reg, -1);
|
|
while( OptoReg::is_stack(reg)) {
|
|
tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
|
|
if( _matcher.return_addr() == reg )
|
|
tty->print_cr("return address");
|
|
else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
|
|
VerifyStackAtCalls )
|
|
tty->print_cr("0xBADB100D +VerifyStackAtCalls");
|
|
else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
|
|
tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
|
|
else
|
|
tty->print_cr("pad2, in_preserve");
|
|
reg = OptoReg::add(reg, -1);
|
|
}
|
|
|
|
// Spill area dump
|
|
reg = OptoReg::add(_matcher._new_SP, _framesize );
|
|
while( reg > _matcher._out_arg_limit ) {
|
|
reg = OptoReg::add(reg, -1);
|
|
tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
|
|
}
|
|
|
|
// Outgoing argument area dump
|
|
while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
|
|
reg = OptoReg::add(reg, -1);
|
|
tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
|
|
}
|
|
|
|
// Outgoing new preserve area
|
|
while( reg > _matcher._new_SP ) {
|
|
reg = OptoReg::add(reg, -1);
|
|
tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
|
|
}
|
|
tty->print_cr("#");
|
|
}
|
|
|
|
//------------------------------dump_bb----------------------------------------
|
|
void PhaseChaitin::dump_bb( uint pre_order ) const {
|
|
tty->print_cr("---dump of B%d---",pre_order);
|
|
for( uint i = 0; i < _cfg._num_blocks; i++ ) {
|
|
Block *b = _cfg._blocks[i];
|
|
if( b->_pre_order == pre_order )
|
|
dump(b);
|
|
}
|
|
}
|
|
|
|
//------------------------------dump_lrg---------------------------------------
|
|
void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const {
|
|
tty->print_cr("---dump of L%d---",lidx);
|
|
|
|
if( _ifg ) {
|
|
if( lidx >= _maxlrg ) {
|
|
tty->print("Attempt to print live range index beyond max live range.\n");
|
|
return;
|
|
}
|
|
tty->print("L%d: ",lidx);
|
|
if( lidx < _ifg->_maxlrg ) lrgs(lidx).dump( );
|
|
else tty->print_cr("new LRG");
|
|
}
|
|
if( _ifg && lidx < _ifg->_maxlrg) {
|
|
tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
|
|
_ifg->neighbors(lidx)->dump();
|
|
tty->cr();
|
|
}
|
|
// For all blocks
|
|
for( uint i = 0; i < _cfg._num_blocks; i++ ) {
|
|
Block *b = _cfg._blocks[i];
|
|
int dump_once = 0;
|
|
|
|
// For all instructions
|
|
for( uint j = 0; j < b->_nodes.size(); j++ ) {
|
|
Node *n = b->_nodes[j];
|
|
if( Find_const(n) == lidx ) {
|
|
if( !dump_once++ ) {
|
|
tty->cr();
|
|
b->dump_head( &_cfg._bbs );
|
|
}
|
|
dump(n);
|
|
continue;
|
|
}
|
|
if (!defs_only) {
|
|
uint cnt = n->req();
|
|
for( uint k = 1; k < cnt; k++ ) {
|
|
Node *m = n->in(k);
|
|
if (!m) continue; // be robust in the dumper
|
|
if( Find_const(m) == lidx ) {
|
|
if( !dump_once++ ) {
|
|
tty->cr();
|
|
b->dump_head( &_cfg._bbs );
|
|
}
|
|
dump(n);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // End of per-block dump
|
|
tty->cr();
|
|
}
|
|
#endif // not PRODUCT
|
|
|
|
//------------------------------print_chaitin_statistics-------------------------------
|
|
int PhaseChaitin::_final_loads = 0;
|
|
int PhaseChaitin::_final_stores = 0;
|
|
int PhaseChaitin::_final_memoves= 0;
|
|
int PhaseChaitin::_final_copies = 0;
|
|
double PhaseChaitin::_final_load_cost = 0;
|
|
double PhaseChaitin::_final_store_cost = 0;
|
|
double PhaseChaitin::_final_memove_cost= 0;
|
|
double PhaseChaitin::_final_copy_cost = 0;
|
|
int PhaseChaitin::_conserv_coalesce = 0;
|
|
int PhaseChaitin::_conserv_coalesce_pair = 0;
|
|
int PhaseChaitin::_conserv_coalesce_trie = 0;
|
|
int PhaseChaitin::_conserv_coalesce_quad = 0;
|
|
int PhaseChaitin::_post_alloc = 0;
|
|
int PhaseChaitin::_lost_opp_pp_coalesce = 0;
|
|
int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
|
|
int PhaseChaitin::_used_cisc_instructions = 0;
|
|
int PhaseChaitin::_unused_cisc_instructions = 0;
|
|
int PhaseChaitin::_allocator_attempts = 0;
|
|
int PhaseChaitin::_allocator_successes = 0;
|
|
|
|
#ifndef PRODUCT
|
|
uint PhaseChaitin::_high_pressure = 0;
|
|
uint PhaseChaitin::_low_pressure = 0;
|
|
|
|
void PhaseChaitin::print_chaitin_statistics() {
|
|
tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
|
|
tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
|
|
tty->print_cr("Adjusted spill cost = %7.0f.",
|
|
_final_load_cost*4.0 + _final_store_cost * 2.0 +
|
|
_final_copy_cost*1.0 + _final_memove_cost*12.0);
|
|
tty->print("Conservatively coalesced %d copies, %d pairs",
|
|
_conserv_coalesce, _conserv_coalesce_pair);
|
|
if( _conserv_coalesce_trie || _conserv_coalesce_quad )
|
|
tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
|
|
tty->print_cr(", %d post alloc.", _post_alloc);
|
|
if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
|
|
tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
|
|
_lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
|
|
if( _used_cisc_instructions || _unused_cisc_instructions )
|
|
tty->print_cr("Used cisc instruction %d, remained in register %d",
|
|
_used_cisc_instructions, _unused_cisc_instructions);
|
|
if( _allocator_successes != 0 )
|
|
tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
|
|
tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
|
|
}
|
|
#endif // not PRODUCT
|