3ecb9f51df
In Ideal() method of String intrinsics nodes look for TypeAryPtr::CHARS memory slice if memory is MergeMem. Do not unroll a loop with String intrinsics code. Reviewed-by: never
2874 lines
105 KiB
C++
2874 lines
105 KiB
C++
/*
|
|
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/connode.hpp"
|
|
#include "opto/divnode.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/mulnode.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "opto/subnode.hpp"
|
|
|
|
//------------------------------is_loop_exit-----------------------------------
|
|
// Given an IfNode, return the loop-exiting projection or NULL if both
|
|
// arms remain in the loop.
|
|
Node *IdealLoopTree::is_loop_exit(Node *iff) const {
|
|
if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
|
|
PhaseIdealLoop *phase = _phase;
|
|
// Test is an IfNode, has 2 projections. If BOTH are in the loop
|
|
// we need loop unswitching instead of peeling.
|
|
if( !is_member(phase->get_loop( iff->raw_out(0) )) )
|
|
return iff->raw_out(0);
|
|
if( !is_member(phase->get_loop( iff->raw_out(1) )) )
|
|
return iff->raw_out(1);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
|
|
|
|
//------------------------------record_for_igvn----------------------------
|
|
// Put loop body on igvn work list
|
|
void IdealLoopTree::record_for_igvn() {
|
|
for( uint i = 0; i < _body.size(); i++ ) {
|
|
Node *n = _body.at(i);
|
|
_phase->_igvn._worklist.push(n);
|
|
}
|
|
}
|
|
|
|
//------------------------------compute_profile_trip_cnt----------------------------
|
|
// Compute loop trip count from profile data as
|
|
// (backedge_count + loop_exit_count) / loop_exit_count
|
|
void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
|
|
if (!_head->is_CountedLoop()) {
|
|
return;
|
|
}
|
|
CountedLoopNode* head = _head->as_CountedLoop();
|
|
if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
|
|
return; // Already computed
|
|
}
|
|
float trip_cnt = (float)max_jint; // default is big
|
|
|
|
Node* back = head->in(LoopNode::LoopBackControl);
|
|
while (back != head) {
|
|
if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
|
|
back->in(0) &&
|
|
back->in(0)->is_If() &&
|
|
back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
|
|
back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
|
|
break;
|
|
}
|
|
back = phase->idom(back);
|
|
}
|
|
if (back != head) {
|
|
assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
|
|
back->in(0), "if-projection exists");
|
|
IfNode* back_if = back->in(0)->as_If();
|
|
float loop_back_cnt = back_if->_fcnt * back_if->_prob;
|
|
|
|
// Now compute a loop exit count
|
|
float loop_exit_cnt = 0.0f;
|
|
for( uint i = 0; i < _body.size(); i++ ) {
|
|
Node *n = _body[i];
|
|
if( n->is_If() ) {
|
|
IfNode *iff = n->as_If();
|
|
if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
|
|
Node *exit = is_loop_exit(iff);
|
|
if( exit ) {
|
|
float exit_prob = iff->_prob;
|
|
if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
|
|
if (exit_prob > PROB_MIN) {
|
|
float exit_cnt = iff->_fcnt * exit_prob;
|
|
loop_exit_cnt += exit_cnt;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (loop_exit_cnt > 0.0f) {
|
|
trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
|
|
} else {
|
|
// No exit count so use
|
|
trip_cnt = loop_back_cnt;
|
|
}
|
|
}
|
|
#ifndef PRODUCT
|
|
if (TraceProfileTripCount) {
|
|
tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n", head->_idx, trip_cnt);
|
|
}
|
|
#endif
|
|
head->set_profile_trip_cnt(trip_cnt);
|
|
}
|
|
|
|
//---------------------is_invariant_addition-----------------------------
|
|
// Return nonzero index of invariant operand for an Add or Sub
|
|
// of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
|
|
int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
|
|
int op = n->Opcode();
|
|
if (op == Op_AddI || op == Op_SubI) {
|
|
bool in1_invar = this->is_invariant(n->in(1));
|
|
bool in2_invar = this->is_invariant(n->in(2));
|
|
if (in1_invar && !in2_invar) return 1;
|
|
if (!in1_invar && in2_invar) return 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
//---------------------reassociate_add_sub-----------------------------
|
|
// Reassociate invariant add and subtract expressions:
|
|
//
|
|
// inv1 + (x + inv2) => ( inv1 + inv2) + x
|
|
// (x + inv2) + inv1 => ( inv1 + inv2) + x
|
|
// inv1 + (x - inv2) => ( inv1 - inv2) + x
|
|
// inv1 - (inv2 - x) => ( inv1 - inv2) + x
|
|
// (x + inv2) - inv1 => (-inv1 + inv2) + x
|
|
// (x - inv2) + inv1 => ( inv1 - inv2) + x
|
|
// (x - inv2) - inv1 => (-inv1 - inv2) + x
|
|
// inv1 + (inv2 - x) => ( inv1 + inv2) - x
|
|
// inv1 - (x - inv2) => ( inv1 + inv2) - x
|
|
// (inv2 - x) + inv1 => ( inv1 + inv2) - x
|
|
// (inv2 - x) - inv1 => (-inv1 + inv2) - x
|
|
// inv1 - (x + inv2) => ( inv1 - inv2) - x
|
|
//
|
|
Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
|
|
if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
|
|
if (is_invariant(n1)) return NULL;
|
|
int inv1_idx = is_invariant_addition(n1, phase);
|
|
if (!inv1_idx) return NULL;
|
|
// Don't mess with add of constant (igvn moves them to expression tree root.)
|
|
if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
|
|
Node* inv1 = n1->in(inv1_idx);
|
|
Node* n2 = n1->in(3 - inv1_idx);
|
|
int inv2_idx = is_invariant_addition(n2, phase);
|
|
if (!inv2_idx) return NULL;
|
|
Node* x = n2->in(3 - inv2_idx);
|
|
Node* inv2 = n2->in(inv2_idx);
|
|
|
|
bool neg_x = n2->is_Sub() && inv2_idx == 1;
|
|
bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
|
|
bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
|
|
if (n1->is_Sub() && inv1_idx == 1) {
|
|
neg_x = !neg_x;
|
|
neg_inv2 = !neg_inv2;
|
|
}
|
|
Node* inv1_c = phase->get_ctrl(inv1);
|
|
Node* inv2_c = phase->get_ctrl(inv2);
|
|
Node* n_inv1;
|
|
if (neg_inv1) {
|
|
Node *zero = phase->_igvn.intcon(0);
|
|
phase->set_ctrl(zero, phase->C->root());
|
|
n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
|
|
phase->register_new_node(n_inv1, inv1_c);
|
|
} else {
|
|
n_inv1 = inv1;
|
|
}
|
|
Node* inv;
|
|
if (neg_inv2) {
|
|
inv = new (phase->C, 3) SubINode(n_inv1, inv2);
|
|
} else {
|
|
inv = new (phase->C, 3) AddINode(n_inv1, inv2);
|
|
}
|
|
phase->register_new_node(inv, phase->get_early_ctrl(inv));
|
|
|
|
Node* addx;
|
|
if (neg_x) {
|
|
addx = new (phase->C, 3) SubINode(inv, x);
|
|
} else {
|
|
addx = new (phase->C, 3) AddINode(x, inv);
|
|
}
|
|
phase->register_new_node(addx, phase->get_ctrl(x));
|
|
phase->_igvn.replace_node(n1, addx);
|
|
assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
|
|
_body.yank(n1);
|
|
return addx;
|
|
}
|
|
|
|
//---------------------reassociate_invariants-----------------------------
|
|
// Reassociate invariant expressions:
|
|
void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
|
|
for (int i = _body.size() - 1; i >= 0; i--) {
|
|
Node *n = _body.at(i);
|
|
for (int j = 0; j < 5; j++) {
|
|
Node* nn = reassociate_add_sub(n, phase);
|
|
if (nn == NULL) break;
|
|
n = nn; // again
|
|
};
|
|
}
|
|
}
|
|
|
|
//------------------------------policy_peeling---------------------------------
|
|
// Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
|
|
// make some loop-invariant test (usually a null-check) happen before the loop.
|
|
bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
|
|
Node *test = ((IdealLoopTree*)this)->tail();
|
|
int body_size = ((IdealLoopTree*)this)->_body.size();
|
|
int uniq = phase->C->unique();
|
|
// Peeling does loop cloning which can result in O(N^2) node construction
|
|
if( body_size > 255 /* Prevent overflow for large body_size */
|
|
|| (body_size * body_size + uniq > MaxNodeLimit) ) {
|
|
return false; // too large to safely clone
|
|
}
|
|
while( test != _head ) { // Scan till run off top of loop
|
|
if( test->is_If() ) { // Test?
|
|
Node *ctrl = phase->get_ctrl(test->in(1));
|
|
if (ctrl->is_top())
|
|
return false; // Found dead test on live IF? No peeling!
|
|
// Standard IF only has one input value to check for loop invariance
|
|
assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
|
|
// Condition is not a member of this loop?
|
|
if( !is_member(phase->get_loop(ctrl)) &&
|
|
is_loop_exit(test) )
|
|
return true; // Found reason to peel!
|
|
}
|
|
// Walk up dominators to loop _head looking for test which is
|
|
// executed on every path thru loop.
|
|
test = phase->idom(test);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//------------------------------peeled_dom_test_elim---------------------------
|
|
// If we got the effect of peeling, either by actually peeling or by making
|
|
// a pre-loop which must execute at least once, we can remove all
|
|
// loop-invariant dominated tests in the main body.
|
|
void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
|
|
bool progress = true;
|
|
while( progress ) {
|
|
progress = false; // Reset for next iteration
|
|
Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
|
|
Node *test = prev->in(0);
|
|
while( test != loop->_head ) { // Scan till run off top of loop
|
|
|
|
int p_op = prev->Opcode();
|
|
if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
|
|
test->is_If() && // Test?
|
|
!test->in(1)->is_Con() && // And not already obvious?
|
|
// Condition is not a member of this loop?
|
|
!loop->is_member(get_loop(get_ctrl(test->in(1))))){
|
|
// Walk loop body looking for instances of this test
|
|
for( uint i = 0; i < loop->_body.size(); i++ ) {
|
|
Node *n = loop->_body.at(i);
|
|
if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
|
|
// IfNode was dominated by version in peeled loop body
|
|
progress = true;
|
|
dominated_by( old_new[prev->_idx], n );
|
|
}
|
|
}
|
|
}
|
|
prev = test;
|
|
test = idom(test);
|
|
} // End of scan tests in loop
|
|
|
|
} // End of while( progress )
|
|
}
|
|
|
|
//------------------------------do_peeling-------------------------------------
|
|
// Peel the first iteration of the given loop.
|
|
// Step 1: Clone the loop body. The clone becomes the peeled iteration.
|
|
// The pre-loop illegally has 2 control users (old & new loops).
|
|
// Step 2: Make the old-loop fall-in edges point to the peeled iteration.
|
|
// Do this by making the old-loop fall-in edges act as if they came
|
|
// around the loopback from the prior iteration (follow the old-loop
|
|
// backedges) and then map to the new peeled iteration. This leaves
|
|
// the pre-loop with only 1 user (the new peeled iteration), but the
|
|
// peeled-loop backedge has 2 users.
|
|
// Step 3: Cut the backedge on the clone (so its not a loop) and remove the
|
|
// extra backedge user.
|
|
void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
|
|
|
|
C->set_major_progress();
|
|
// Peeling a 'main' loop in a pre/main/post situation obfuscates the
|
|
// 'pre' loop from the main and the 'pre' can no longer have it's
|
|
// iterations adjusted. Therefore, we need to declare this loop as
|
|
// no longer a 'main' loop; it will need new pre and post loops before
|
|
// we can do further RCE.
|
|
#ifndef PRODUCT
|
|
if (TraceLoopOpts) {
|
|
tty->print("Peel ");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
Node *h = loop->_head;
|
|
if (h->is_CountedLoop()) {
|
|
CountedLoopNode *cl = h->as_CountedLoop();
|
|
assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
|
|
cl->set_trip_count(cl->trip_count() - 1);
|
|
if (cl->is_main_loop()) {
|
|
cl->set_normal_loop();
|
|
#ifndef PRODUCT
|
|
if (PrintOpto && VerifyLoopOptimizations) {
|
|
tty->print("Peeling a 'main' loop; resetting to 'normal' ");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Step 1: Clone the loop body. The clone becomes the peeled iteration.
|
|
// The pre-loop illegally has 2 control users (old & new loops).
|
|
clone_loop( loop, old_new, dom_depth(loop->_head) );
|
|
|
|
|
|
// Step 2: Make the old-loop fall-in edges point to the peeled iteration.
|
|
// Do this by making the old-loop fall-in edges act as if they came
|
|
// around the loopback from the prior iteration (follow the old-loop
|
|
// backedges) and then map to the new peeled iteration. This leaves
|
|
// the pre-loop with only 1 user (the new peeled iteration), but the
|
|
// peeled-loop backedge has 2 users.
|
|
for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
|
|
Node* old = loop->_head->fast_out(j);
|
|
if( old->in(0) == loop->_head && old->req() == 3 &&
|
|
(old->is_Loop() || old->is_Phi()) ) {
|
|
Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
|
|
if( !new_exit_value ) // Backedge value is ALSO loop invariant?
|
|
// Then loop body backedge value remains the same.
|
|
new_exit_value = old->in(LoopNode::LoopBackControl);
|
|
_igvn.hash_delete(old);
|
|
old->set_req(LoopNode::EntryControl, new_exit_value);
|
|
}
|
|
}
|
|
|
|
|
|
// Step 3: Cut the backedge on the clone (so its not a loop) and remove the
|
|
// extra backedge user.
|
|
Node *nnn = old_new[loop->_head->_idx];
|
|
_igvn.hash_delete(nnn);
|
|
nnn->set_req(LoopNode::LoopBackControl, C->top());
|
|
for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
|
|
Node* use = nnn->fast_out(j2);
|
|
if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
|
|
_igvn.hash_delete(use);
|
|
use->set_req(LoopNode::LoopBackControl, C->top());
|
|
}
|
|
}
|
|
|
|
|
|
// Step 4: Correct dom-depth info. Set to loop-head depth.
|
|
int dd = dom_depth(loop->_head);
|
|
set_idom(loop->_head, loop->_head->in(1), dd);
|
|
for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
|
|
Node *old = loop->_body.at(j3);
|
|
Node *nnn = old_new[old->_idx];
|
|
if (!has_ctrl(nnn))
|
|
set_idom(nnn, idom(nnn), dd-1);
|
|
// While we're at it, remove any SafePoints from the peeled code
|
|
if( old->Opcode() == Op_SafePoint ) {
|
|
Node *nnn = old_new[old->_idx];
|
|
lazy_replace(nnn,nnn->in(TypeFunc::Control));
|
|
}
|
|
}
|
|
|
|
// Now force out all loop-invariant dominating tests. The optimizer
|
|
// finds some, but we _know_ they are all useless.
|
|
peeled_dom_test_elim(loop,old_new);
|
|
|
|
loop->record_for_igvn();
|
|
}
|
|
|
|
//------------------------------policy_maximally_unroll------------------------
|
|
// Return exact loop trip count, or 0 if not maximally unrolling
|
|
bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
|
|
CountedLoopNode *cl = _head->as_CountedLoop();
|
|
assert(cl->is_normal_loop(), "");
|
|
|
|
Node *init_n = cl->init_trip();
|
|
Node *limit_n = cl->limit();
|
|
|
|
// Non-constant bounds
|
|
if (init_n == NULL || !init_n->is_Con() ||
|
|
limit_n == NULL || !limit_n->is_Con() ||
|
|
// protect against stride not being a constant
|
|
!cl->stride_is_con()) {
|
|
return false;
|
|
}
|
|
int init = init_n->get_int();
|
|
int limit = limit_n->get_int();
|
|
int span = limit - init;
|
|
int stride = cl->stride_con();
|
|
|
|
if (init >= limit || stride > span) {
|
|
// return a false (no maximally unroll) and the regular unroll/peel
|
|
// route will make a small mess which CCP will fold away.
|
|
return false;
|
|
}
|
|
uint trip_count = span/stride; // trip_count can be greater than 2 Gig.
|
|
assert( (int)trip_count*stride == span, "must divide evenly" );
|
|
|
|
// Real policy: if we maximally unroll, does it get too big?
|
|
// Allow the unrolled mess to get larger than standard loop
|
|
// size. After all, it will no longer be a loop.
|
|
uint body_size = _body.size();
|
|
uint unroll_limit = (uint)LoopUnrollLimit * 4;
|
|
assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
|
|
cl->set_trip_count(trip_count);
|
|
if (trip_count > unroll_limit || body_size > unroll_limit) {
|
|
return false;
|
|
}
|
|
|
|
// Do not unroll a loop with String intrinsics code.
|
|
// String intrinsics are large and have loops.
|
|
for (uint k = 0; k < _body.size(); k++) {
|
|
Node* n = _body.at(k);
|
|
switch (n->Opcode()) {
|
|
case Op_StrComp:
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOf:
|
|
case Op_AryEq: {
|
|
return false;
|
|
}
|
|
} // switch
|
|
}
|
|
|
|
if (body_size <= unroll_limit) {
|
|
uint new_body_size = body_size * trip_count;
|
|
if (new_body_size <= unroll_limit &&
|
|
body_size == new_body_size / trip_count &&
|
|
// Unrolling can result in a large amount of node construction
|
|
new_body_size < MaxNodeLimit - phase->C->unique()) {
|
|
return true; // maximally unroll
|
|
}
|
|
}
|
|
|
|
return false; // Do not maximally unroll
|
|
}
|
|
|
|
|
|
//------------------------------policy_unroll----------------------------------
|
|
// Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
|
|
// the loop is a CountedLoop and the body is small enough.
|
|
bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
|
|
|
|
CountedLoopNode *cl = _head->as_CountedLoop();
|
|
assert(cl->is_normal_loop() || cl->is_main_loop(), "");
|
|
|
|
// protect against stride not being a constant
|
|
if (!cl->stride_is_con()) return false;
|
|
|
|
// protect against over-unrolling
|
|
if (cl->trip_count() <= 1) return false;
|
|
|
|
int future_unroll_ct = cl->unrolled_count() * 2;
|
|
|
|
// Don't unroll if the next round of unrolling would push us
|
|
// over the expected trip count of the loop. One is subtracted
|
|
// from the expected trip count because the pre-loop normally
|
|
// executes 1 iteration.
|
|
if (UnrollLimitForProfileCheck > 0 &&
|
|
cl->profile_trip_cnt() != COUNT_UNKNOWN &&
|
|
future_unroll_ct > UnrollLimitForProfileCheck &&
|
|
(float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
|
|
return false;
|
|
}
|
|
|
|
// When unroll count is greater than LoopUnrollMin, don't unroll if:
|
|
// the residual iterations are more than 10% of the trip count
|
|
// and rounds of "unroll,optimize" are not making significant progress
|
|
// Progress defined as current size less than 20% larger than previous size.
|
|
if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
|
|
future_unroll_ct > LoopUnrollMin &&
|
|
(future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
|
|
1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
|
|
return false;
|
|
}
|
|
|
|
Node *init_n = cl->init_trip();
|
|
Node *limit_n = cl->limit();
|
|
// Non-constant bounds.
|
|
// Protect against over-unrolling when init or/and limit are not constant
|
|
// (so that trip_count's init value is maxint) but iv range is known.
|
|
if (init_n == NULL || !init_n->is_Con() ||
|
|
limit_n == NULL || !limit_n->is_Con()) {
|
|
Node* phi = cl->phi();
|
|
if (phi != NULL) {
|
|
assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
|
|
const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
|
|
int next_stride = cl->stride_con() * 2; // stride after this unroll
|
|
if (next_stride > 0) {
|
|
if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
|
|
iv_type->_lo + next_stride > iv_type->_hi) {
|
|
return false; // over-unrolling
|
|
}
|
|
} else if (next_stride < 0) {
|
|
if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
|
|
iv_type->_hi + next_stride < iv_type->_lo) {
|
|
return false; // over-unrolling
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Adjust body_size to determine if we unroll or not
|
|
uint body_size = _body.size();
|
|
// Key test to unroll CaffeineMark's Logic test
|
|
int xors_in_loop = 0;
|
|
// Also count ModL, DivL and MulL which expand mightly
|
|
for (uint k = 0; k < _body.size(); k++) {
|
|
Node* n = _body.at(k);
|
|
switch (n->Opcode()) {
|
|
case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
|
|
case Op_ModL: body_size += 30; break;
|
|
case Op_DivL: body_size += 30; break;
|
|
case Op_MulL: body_size += 10; break;
|
|
case Op_StrComp:
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOf:
|
|
case Op_AryEq: {
|
|
// Do not unroll a loop with String intrinsics code.
|
|
// String intrinsics are large and have loops.
|
|
return false;
|
|
}
|
|
} // switch
|
|
}
|
|
|
|
// Check for being too big
|
|
if (body_size > (uint)LoopUnrollLimit) {
|
|
if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
|
|
// Normal case: loop too big
|
|
return false;
|
|
}
|
|
|
|
// Check for stride being a small enough constant
|
|
if (abs(cl->stride_con()) > (1<<3)) return false;
|
|
|
|
// Unroll once! (Each trip will soon do double iterations)
|
|
return true;
|
|
}
|
|
|
|
//------------------------------policy_align-----------------------------------
|
|
// Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
|
|
// expression that does the alignment. Note that only one array base can be
|
|
// aligned in a loop (unless the VM guarantees mutual alignment). Note that
|
|
// if we vectorize short memory ops into longer memory ops, we may want to
|
|
// increase alignment.
|
|
bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
|
|
return false;
|
|
}
|
|
|
|
//------------------------------policy_range_check-----------------------------
|
|
// Return TRUE or FALSE if the loop should be range-check-eliminated.
|
|
// Actually we do iteration-splitting, a more powerful form of RCE.
|
|
bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
|
|
if( !RangeCheckElimination ) return false;
|
|
|
|
CountedLoopNode *cl = _head->as_CountedLoop();
|
|
// If we unrolled with no intention of doing RCE and we later
|
|
// changed our minds, we got no pre-loop. Either we need to
|
|
// make a new pre-loop, or we gotta disallow RCE.
|
|
if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
|
|
Node *trip_counter = cl->phi();
|
|
|
|
// Check loop body for tests of trip-counter plus loop-invariant vs
|
|
// loop-invariant.
|
|
for( uint i = 0; i < _body.size(); i++ ) {
|
|
Node *iff = _body[i];
|
|
if( iff->Opcode() == Op_If ) { // Test?
|
|
|
|
// Comparing trip+off vs limit
|
|
Node *bol = iff->in(1);
|
|
if( bol->req() != 2 ) continue; // dead constant test
|
|
if (!bol->is_Bool()) {
|
|
assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
|
|
continue;
|
|
}
|
|
Node *cmp = bol->in(1);
|
|
|
|
Node *rc_exp = cmp->in(1);
|
|
Node *limit = cmp->in(2);
|
|
|
|
Node *limit_c = phase->get_ctrl(limit);
|
|
if( limit_c == phase->C->top() )
|
|
return false; // Found dead test on live IF? No RCE!
|
|
if( is_member(phase->get_loop(limit_c) ) ) {
|
|
// Compare might have operands swapped; commute them
|
|
rc_exp = cmp->in(2);
|
|
limit = cmp->in(1);
|
|
limit_c = phase->get_ctrl(limit);
|
|
if( is_member(phase->get_loop(limit_c) ) )
|
|
continue; // Both inputs are loop varying; cannot RCE
|
|
}
|
|
|
|
if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
|
|
continue;
|
|
}
|
|
// Yeah! Found a test like 'trip+off vs limit'
|
|
// Test is an IfNode, has 2 projections. If BOTH are in the loop
|
|
// we need loop unswitching instead of iteration splitting.
|
|
if( is_loop_exit(iff) )
|
|
return true; // Found reason to split iterations
|
|
} // End of is IF
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//------------------------------policy_peel_only-------------------------------
|
|
// Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful
|
|
// for unrolling loops with NO array accesses.
|
|
bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
|
|
|
|
for( uint i = 0; i < _body.size(); i++ )
|
|
if( _body[i]->is_Mem() )
|
|
return false;
|
|
|
|
// No memory accesses at all!
|
|
return true;
|
|
}
|
|
|
|
//------------------------------clone_up_backedge_goo--------------------------
|
|
// If Node n lives in the back_ctrl block and cannot float, we clone a private
|
|
// version of n in preheader_ctrl block and return that, otherwise return n.
|
|
Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
|
|
if( get_ctrl(n) != back_ctrl ) return n;
|
|
|
|
Node *x = NULL; // If required, a clone of 'n'
|
|
// Check for 'n' being pinned in the backedge.
|
|
if( n->in(0) && n->in(0) == back_ctrl ) {
|
|
x = n->clone(); // Clone a copy of 'n' to preheader
|
|
x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
|
|
}
|
|
|
|
// Recursive fixup any other input edges into x.
|
|
// If there are no changes we can just return 'n', otherwise
|
|
// we need to clone a private copy and change it.
|
|
for( uint i = 1; i < n->req(); i++ ) {
|
|
Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
|
|
if( g != n->in(i) ) {
|
|
if( !x )
|
|
x = n->clone();
|
|
x->set_req(i, g);
|
|
}
|
|
}
|
|
if( x ) { // x can legally float to pre-header location
|
|
register_new_node( x, preheader_ctrl );
|
|
return x;
|
|
} else { // raise n to cover LCA of uses
|
|
set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
|
|
}
|
|
return n;
|
|
}
|
|
|
|
//------------------------------insert_pre_post_loops--------------------------
|
|
// Insert pre and post loops. If peel_only is set, the pre-loop can not have
|
|
// more iterations added. It acts as a 'peel' only, no lower-bound RCE, no
|
|
// alignment. Useful to unroll loops that do no array accesses.
|
|
void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
|
|
|
|
#ifndef PRODUCT
|
|
if (TraceLoopOpts) {
|
|
if (peel_only)
|
|
tty->print("PeelMainPost ");
|
|
else
|
|
tty->print("PreMainPost ");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
C->set_major_progress();
|
|
|
|
// Find common pieces of the loop being guarded with pre & post loops
|
|
CountedLoopNode *main_head = loop->_head->as_CountedLoop();
|
|
assert( main_head->is_normal_loop(), "" );
|
|
CountedLoopEndNode *main_end = main_head->loopexit();
|
|
assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
|
|
uint dd_main_head = dom_depth(main_head);
|
|
uint max = main_head->outcnt();
|
|
|
|
Node *pre_header= main_head->in(LoopNode::EntryControl);
|
|
Node *init = main_head->init_trip();
|
|
Node *incr = main_end ->incr();
|
|
Node *limit = main_end ->limit();
|
|
Node *stride = main_end ->stride();
|
|
Node *cmp = main_end ->cmp_node();
|
|
BoolTest::mask b_test = main_end->test_trip();
|
|
|
|
// Need only 1 user of 'bol' because I will be hacking the loop bounds.
|
|
Node *bol = main_end->in(CountedLoopEndNode::TestValue);
|
|
if( bol->outcnt() != 1 ) {
|
|
bol = bol->clone();
|
|
register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
|
|
_igvn.hash_delete(main_end);
|
|
main_end->set_req(CountedLoopEndNode::TestValue, bol);
|
|
}
|
|
// Need only 1 user of 'cmp' because I will be hacking the loop bounds.
|
|
if( cmp->outcnt() != 1 ) {
|
|
cmp = cmp->clone();
|
|
register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
|
|
_igvn.hash_delete(bol);
|
|
bol->set_req(1, cmp);
|
|
}
|
|
|
|
//------------------------------
|
|
// Step A: Create Post-Loop.
|
|
Node* main_exit = main_end->proj_out(false);
|
|
assert( main_exit->Opcode() == Op_IfFalse, "" );
|
|
int dd_main_exit = dom_depth(main_exit);
|
|
|
|
// Step A1: Clone the loop body. The clone becomes the post-loop. The main
|
|
// loop pre-header illegally has 2 control users (old & new loops).
|
|
clone_loop( loop, old_new, dd_main_exit );
|
|
assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
|
|
CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
|
|
post_head->set_post_loop(main_head);
|
|
|
|
// Reduce the post-loop trip count.
|
|
CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
|
|
post_end->_prob = PROB_FAIR;
|
|
|
|
// Build the main-loop normal exit.
|
|
IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
|
|
_igvn.register_new_node_with_optimizer( new_main_exit );
|
|
set_idom(new_main_exit, main_end, dd_main_exit );
|
|
set_loop(new_main_exit, loop->_parent);
|
|
|
|
// Step A2: Build a zero-trip guard for the post-loop. After leaving the
|
|
// main-loop, the post-loop may not execute at all. We 'opaque' the incr
|
|
// (the main-loop trip-counter exit value) because we will be changing
|
|
// the exit value (via unrolling) so we cannot constant-fold away the zero
|
|
// trip guard until all unrolling is done.
|
|
Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
|
|
Node *zer_cmp = new (C, 3) CmpINode( zer_opaq, limit );
|
|
Node *zer_bol = new (C, 2) BoolNode( zer_cmp, b_test );
|
|
register_new_node( zer_opaq, new_main_exit );
|
|
register_new_node( zer_cmp , new_main_exit );
|
|
register_new_node( zer_bol , new_main_exit );
|
|
|
|
// Build the IfNode
|
|
IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
|
|
_igvn.register_new_node_with_optimizer( zer_iff );
|
|
set_idom(zer_iff, new_main_exit, dd_main_exit);
|
|
set_loop(zer_iff, loop->_parent);
|
|
|
|
// Plug in the false-path, taken if we need to skip post-loop
|
|
_igvn.hash_delete( main_exit );
|
|
main_exit->set_req(0, zer_iff);
|
|
_igvn._worklist.push(main_exit);
|
|
set_idom(main_exit, zer_iff, dd_main_exit);
|
|
set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
|
|
// Make the true-path, must enter the post loop
|
|
Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
|
|
_igvn.register_new_node_with_optimizer( zer_taken );
|
|
set_idom(zer_taken, zer_iff, dd_main_exit);
|
|
set_loop(zer_taken, loop->_parent);
|
|
// Plug in the true path
|
|
_igvn.hash_delete( post_head );
|
|
post_head->set_req(LoopNode::EntryControl, zer_taken);
|
|
set_idom(post_head, zer_taken, dd_main_exit);
|
|
|
|
// Step A3: Make the fall-in values to the post-loop come from the
|
|
// fall-out values of the main-loop.
|
|
for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
|
|
Node* main_phi = main_head->fast_out(i);
|
|
if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
|
|
Node *post_phi = old_new[main_phi->_idx];
|
|
Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
|
|
post_head->init_control(),
|
|
main_phi->in(LoopNode::LoopBackControl));
|
|
_igvn.hash_delete(post_phi);
|
|
post_phi->set_req( LoopNode::EntryControl, fallmain );
|
|
}
|
|
}
|
|
|
|
// Update local caches for next stanza
|
|
main_exit = new_main_exit;
|
|
|
|
|
|
//------------------------------
|
|
// Step B: Create Pre-Loop.
|
|
|
|
// Step B1: Clone the loop body. The clone becomes the pre-loop. The main
|
|
// loop pre-header illegally has 2 control users (old & new loops).
|
|
clone_loop( loop, old_new, dd_main_head );
|
|
CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop();
|
|
CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
|
|
pre_head->set_pre_loop(main_head);
|
|
Node *pre_incr = old_new[incr->_idx];
|
|
|
|
// Reduce the pre-loop trip count.
|
|
pre_end->_prob = PROB_FAIR;
|
|
|
|
// Find the pre-loop normal exit.
|
|
Node* pre_exit = pre_end->proj_out(false);
|
|
assert( pre_exit->Opcode() == Op_IfFalse, "" );
|
|
IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
|
|
_igvn.register_new_node_with_optimizer( new_pre_exit );
|
|
set_idom(new_pre_exit, pre_end, dd_main_head);
|
|
set_loop(new_pre_exit, loop->_parent);
|
|
|
|
// Step B2: Build a zero-trip guard for the main-loop. After leaving the
|
|
// pre-loop, the main-loop may not execute at all. Later in life this
|
|
// zero-trip guard will become the minimum-trip guard when we unroll
|
|
// the main-loop.
|
|
Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
|
|
Node *min_cmp = new (C, 3) CmpINode( pre_incr, min_opaq );
|
|
Node *min_bol = new (C, 2) BoolNode( min_cmp, b_test );
|
|
register_new_node( min_opaq, new_pre_exit );
|
|
register_new_node( min_cmp , new_pre_exit );
|
|
register_new_node( min_bol , new_pre_exit );
|
|
|
|
// Build the IfNode (assume the main-loop is executed always).
|
|
IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
|
|
_igvn.register_new_node_with_optimizer( min_iff );
|
|
set_idom(min_iff, new_pre_exit, dd_main_head);
|
|
set_loop(min_iff, loop->_parent);
|
|
|
|
// Plug in the false-path, taken if we need to skip main-loop
|
|
_igvn.hash_delete( pre_exit );
|
|
pre_exit->set_req(0, min_iff);
|
|
set_idom(pre_exit, min_iff, dd_main_head);
|
|
set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
|
|
// Make the true-path, must enter the main loop
|
|
Node *min_taken = new (C, 1) IfTrueNode( min_iff );
|
|
_igvn.register_new_node_with_optimizer( min_taken );
|
|
set_idom(min_taken, min_iff, dd_main_head);
|
|
set_loop(min_taken, loop->_parent);
|
|
// Plug in the true path
|
|
_igvn.hash_delete( main_head );
|
|
main_head->set_req(LoopNode::EntryControl, min_taken);
|
|
set_idom(main_head, min_taken, dd_main_head);
|
|
|
|
// Step B3: Make the fall-in values to the main-loop come from the
|
|
// fall-out values of the pre-loop.
|
|
for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
|
|
Node* main_phi = main_head->fast_out(i2);
|
|
if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
|
|
Node *pre_phi = old_new[main_phi->_idx];
|
|
Node *fallpre = clone_up_backedge_goo(pre_head->back_control(),
|
|
main_head->init_control(),
|
|
pre_phi->in(LoopNode::LoopBackControl));
|
|
_igvn.hash_delete(main_phi);
|
|
main_phi->set_req( LoopNode::EntryControl, fallpre );
|
|
}
|
|
}
|
|
|
|
// Step B4: Shorten the pre-loop to run only 1 iteration (for now).
|
|
// RCE and alignment may change this later.
|
|
Node *cmp_end = pre_end->cmp_node();
|
|
assert( cmp_end->in(2) == limit, "" );
|
|
Node *pre_limit = new (C, 3) AddINode( init, stride );
|
|
|
|
// Save the original loop limit in this Opaque1 node for
|
|
// use by range check elimination.
|
|
Node *pre_opaq = new (C, 3) Opaque1Node(C, pre_limit, limit);
|
|
|
|
register_new_node( pre_limit, pre_head->in(0) );
|
|
register_new_node( pre_opaq , pre_head->in(0) );
|
|
|
|
// Since no other users of pre-loop compare, I can hack limit directly
|
|
assert( cmp_end->outcnt() == 1, "no other users" );
|
|
_igvn.hash_delete(cmp_end);
|
|
cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
|
|
|
|
// Special case for not-equal loop bounds:
|
|
// Change pre loop test, main loop test, and the
|
|
// main loop guard test to use lt or gt depending on stride
|
|
// direction:
|
|
// positive stride use <
|
|
// negative stride use >
|
|
|
|
if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
|
|
|
|
BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
|
|
// Modify pre loop end condition
|
|
Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
|
|
BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
|
|
register_new_node( new_bol0, pre_head->in(0) );
|
|
_igvn.hash_delete(pre_end);
|
|
pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
|
|
// Modify main loop guard condition
|
|
assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
|
|
BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
|
|
register_new_node( new_bol1, new_pre_exit );
|
|
_igvn.hash_delete(min_iff);
|
|
min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
|
|
// Modify main loop end condition
|
|
BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
|
|
BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
|
|
register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
|
|
_igvn.hash_delete(main_end);
|
|
main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
|
|
}
|
|
|
|
// Flag main loop
|
|
main_head->set_main_loop();
|
|
if( peel_only ) main_head->set_main_no_pre_loop();
|
|
|
|
// It's difficult to be precise about the trip-counts
|
|
// for the pre/post loops. They are usually very short,
|
|
// so guess that 4 trips is a reasonable value.
|
|
post_head->set_profile_trip_cnt(4.0);
|
|
pre_head->set_profile_trip_cnt(4.0);
|
|
|
|
// Now force out all loop-invariant dominating tests. The optimizer
|
|
// finds some, but we _know_ they are all useless.
|
|
peeled_dom_test_elim(loop,old_new);
|
|
}
|
|
|
|
//------------------------------is_invariant-----------------------------
|
|
// Return true if n is invariant
|
|
bool IdealLoopTree::is_invariant(Node* n) const {
|
|
Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
|
|
if (n_c->is_top()) return false;
|
|
return !is_member(_phase->get_loop(n_c));
|
|
}
|
|
|
|
|
|
//------------------------------do_unroll--------------------------------------
|
|
// Unroll the loop body one step - make each trip do 2 iterations.
|
|
void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
|
|
assert(LoopUnrollLimit, "");
|
|
CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
|
|
CountedLoopEndNode *loop_end = loop_head->loopexit();
|
|
assert(loop_end, "");
|
|
#ifndef PRODUCT
|
|
if (PrintOpto && VerifyLoopOptimizations) {
|
|
tty->print("Unrolling ");
|
|
loop->dump_head();
|
|
} else if (TraceLoopOpts) {
|
|
tty->print("Unroll %d ", loop_head->unrolled_count()*2);
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
|
|
// Remember loop node count before unrolling to detect
|
|
// if rounds of unroll,optimize are making progress
|
|
loop_head->set_node_count_before_unroll(loop->_body.size());
|
|
|
|
Node *ctrl = loop_head->in(LoopNode::EntryControl);
|
|
Node *limit = loop_head->limit();
|
|
Node *init = loop_head->init_trip();
|
|
Node *stride = loop_head->stride();
|
|
|
|
Node *opaq = NULL;
|
|
if( adjust_min_trip ) { // If not maximally unrolling, need adjustment
|
|
assert( loop_head->is_main_loop(), "" );
|
|
assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
|
|
Node *iff = ctrl->in(0);
|
|
assert( iff->Opcode() == Op_If, "" );
|
|
Node *bol = iff->in(1);
|
|
assert( bol->Opcode() == Op_Bool, "" );
|
|
Node *cmp = bol->in(1);
|
|
assert( cmp->Opcode() == Op_CmpI, "" );
|
|
opaq = cmp->in(2);
|
|
// Occasionally it's possible for a pre-loop Opaque1 node to be
|
|
// optimized away and then another round of loop opts attempted.
|
|
// We can not optimize this particular loop in that case.
|
|
if( opaq->Opcode() != Op_Opaque1 )
|
|
return; // Cannot find pre-loop! Bail out!
|
|
}
|
|
|
|
C->set_major_progress();
|
|
|
|
// Adjust max trip count. The trip count is intentionally rounded
|
|
// down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
|
|
// the main, unrolled, part of the loop will never execute as it is protected
|
|
// by the min-trip test. See bug 4834191 for a case where we over-unrolled
|
|
// and later determined that part of the unrolled loop was dead.
|
|
loop_head->set_trip_count(loop_head->trip_count() / 2);
|
|
|
|
// Double the count of original iterations in the unrolled loop body.
|
|
loop_head->double_unrolled_count();
|
|
|
|
// -----------
|
|
// Step 2: Cut back the trip counter for an unroll amount of 2.
|
|
// Loop will normally trip (limit - init)/stride_con. Since it's a
|
|
// CountedLoop this is exact (stride divides limit-init exactly).
|
|
// We are going to double the loop body, so we want to knock off any
|
|
// odd iteration: (trip_cnt & ~1). Then back compute a new limit.
|
|
Node *span = new (C, 3) SubINode( limit, init );
|
|
register_new_node( span, ctrl );
|
|
Node *trip = new (C, 3) DivINode( 0, span, stride );
|
|
register_new_node( trip, ctrl );
|
|
Node *mtwo = _igvn.intcon(-2);
|
|
set_ctrl(mtwo, C->root());
|
|
Node *rond = new (C, 3) AndINode( trip, mtwo );
|
|
register_new_node( rond, ctrl );
|
|
Node *spn2 = new (C, 3) MulINode( rond, stride );
|
|
register_new_node( spn2, ctrl );
|
|
Node *lim2 = new (C, 3) AddINode( spn2, init );
|
|
register_new_node( lim2, ctrl );
|
|
|
|
// Hammer in the new limit
|
|
Node *ctrl2 = loop_end->in(0);
|
|
Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
|
|
register_new_node( cmp2, ctrl2 );
|
|
Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
|
|
register_new_node( bol2, ctrl2 );
|
|
_igvn.hash_delete(loop_end);
|
|
loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
|
|
|
|
// Step 3: Find the min-trip test guaranteed before a 'main' loop.
|
|
// Make it a 1-trip test (means at least 2 trips).
|
|
if( adjust_min_trip ) {
|
|
// Guard test uses an 'opaque' node which is not shared. Hence I
|
|
// can edit it's inputs directly. Hammer in the new limit for the
|
|
// minimum-trip guard.
|
|
assert( opaq->outcnt() == 1, "" );
|
|
_igvn.hash_delete(opaq);
|
|
opaq->set_req(1, lim2);
|
|
}
|
|
|
|
// ---------
|
|
// Step 4: Clone the loop body. Move it inside the loop. This loop body
|
|
// represents the odd iterations; since the loop trips an even number of
|
|
// times its backedge is never taken. Kill the backedge.
|
|
uint dd = dom_depth(loop_head);
|
|
clone_loop( loop, old_new, dd );
|
|
|
|
// Make backedges of the clone equal to backedges of the original.
|
|
// Make the fall-in from the original come from the fall-out of the clone.
|
|
for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
|
|
Node* phi = loop_head->fast_out(j);
|
|
if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
|
|
Node *newphi = old_new[phi->_idx];
|
|
_igvn.hash_delete( phi );
|
|
_igvn.hash_delete( newphi );
|
|
|
|
phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl));
|
|
newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl));
|
|
phi ->set_req(LoopNode::LoopBackControl, C->top());
|
|
}
|
|
}
|
|
Node *clone_head = old_new[loop_head->_idx];
|
|
_igvn.hash_delete( clone_head );
|
|
loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl));
|
|
clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
|
|
loop_head ->set_req(LoopNode::LoopBackControl, C->top());
|
|
loop->_head = clone_head; // New loop header
|
|
|
|
set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd);
|
|
set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
|
|
|
|
// Kill the clone's backedge
|
|
Node *newcle = old_new[loop_end->_idx];
|
|
_igvn.hash_delete( newcle );
|
|
Node *one = _igvn.intcon(1);
|
|
set_ctrl(one, C->root());
|
|
newcle->set_req(1, one);
|
|
// Force clone into same loop body
|
|
uint max = loop->_body.size();
|
|
for( uint k = 0; k < max; k++ ) {
|
|
Node *old = loop->_body.at(k);
|
|
Node *nnn = old_new[old->_idx];
|
|
loop->_body.push(nnn);
|
|
if (!has_ctrl(old))
|
|
set_loop(nnn, loop);
|
|
}
|
|
|
|
loop->record_for_igvn();
|
|
}
|
|
|
|
//------------------------------do_maximally_unroll----------------------------
|
|
|
|
void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
|
|
CountedLoopNode *cl = loop->_head->as_CountedLoop();
|
|
assert(cl->trip_count() > 0, "");
|
|
#ifndef PRODUCT
|
|
if (TraceLoopOpts) {
|
|
tty->print("MaxUnroll %d ", cl->trip_count());
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
|
|
// If loop is tripping an odd number of times, peel odd iteration
|
|
if ((cl->trip_count() & 1) == 1) {
|
|
do_peeling(loop, old_new);
|
|
}
|
|
|
|
// Now its tripping an even number of times remaining. Double loop body.
|
|
// Do not adjust pre-guards; they are not needed and do not exist.
|
|
if (cl->trip_count() > 0) {
|
|
do_unroll(loop, old_new, false);
|
|
}
|
|
}
|
|
|
|
//------------------------------dominates_backedge---------------------------------
|
|
// Returns true if ctrl is executed on every complete iteration
|
|
bool IdealLoopTree::dominates_backedge(Node* ctrl) {
|
|
assert(ctrl->is_CFG(), "must be control");
|
|
Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
|
|
return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
|
|
}
|
|
|
|
//------------------------------add_constraint---------------------------------
|
|
// Constrain the main loop iterations so the condition:
|
|
// scale_con * I + offset < limit
|
|
// always holds true. That is, either increase the number of iterations in
|
|
// the pre-loop or the post-loop until the condition holds true in the main
|
|
// loop. Stride, scale, offset and limit are all loop invariant. Further,
|
|
// stride and scale are constants (offset and limit often are).
|
|
void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
|
|
|
|
// Compute "I :: (limit-offset)/scale_con"
|
|
Node *con = new (C, 3) SubINode( limit, offset );
|
|
register_new_node( con, pre_ctrl );
|
|
Node *scale = _igvn.intcon(scale_con);
|
|
set_ctrl(scale, C->root());
|
|
Node *X = new (C, 3) DivINode( 0, con, scale );
|
|
register_new_node( X, pre_ctrl );
|
|
|
|
// For positive stride, the pre-loop limit always uses a MAX function
|
|
// and the main loop a MIN function. For negative stride these are
|
|
// reversed.
|
|
|
|
// Also for positive stride*scale the affine function is increasing, so the
|
|
// pre-loop must check for underflow and the post-loop for overflow.
|
|
// Negative stride*scale reverses this; pre-loop checks for overflow and
|
|
// post-loop for underflow.
|
|
if( stride_con*scale_con > 0 ) {
|
|
// Compute I < (limit-offset)/scale_con
|
|
// Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
|
|
*main_limit = (stride_con > 0)
|
|
? (Node*)(new (C, 3) MinINode( *main_limit, X ))
|
|
: (Node*)(new (C, 3) MaxINode( *main_limit, X ));
|
|
register_new_node( *main_limit, pre_ctrl );
|
|
|
|
} else {
|
|
// Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
|
|
// Add the negation of the main-loop constraint to the pre-loop.
|
|
// See footnote [++] below for a derivation of the limit expression.
|
|
Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
|
|
set_ctrl(incr, C->root());
|
|
Node *adj = new (C, 3) AddINode( X, incr );
|
|
register_new_node( adj, pre_ctrl );
|
|
*pre_limit = (scale_con > 0)
|
|
? (Node*)new (C, 3) MinINode( *pre_limit, adj )
|
|
: (Node*)new (C, 3) MaxINode( *pre_limit, adj );
|
|
register_new_node( *pre_limit, pre_ctrl );
|
|
|
|
// [++] Here's the algebra that justifies the pre-loop limit expression:
|
|
//
|
|
// NOT( scale_con * I + offset < limit )
|
|
// ==
|
|
// scale_con * I + offset >= limit
|
|
// ==
|
|
// SGN(scale_con) * I >= (limit-offset)/|scale_con|
|
|
// ==
|
|
// (limit-offset)/|scale_con| <= I * SGN(scale_con)
|
|
// ==
|
|
// (limit-offset)/|scale_con|-1 < I * SGN(scale_con)
|
|
// ==
|
|
// ( if (scale_con > 0) /*common case*/
|
|
// (limit-offset)/scale_con - 1 < I
|
|
// else
|
|
// (limit-offset)/scale_con + 1 > I
|
|
// )
|
|
// ( if (scale_con > 0) /*common case*/
|
|
// (limit-offset)/scale_con + SGN(-scale_con) < I
|
|
// else
|
|
// (limit-offset)/scale_con + SGN(-scale_con) > I
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------is_scaled_iv---------------------------------
|
|
// Return true if exp is a constant times an induction var
|
|
bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
|
|
if (exp == iv) {
|
|
if (p_scale != NULL) {
|
|
*p_scale = 1;
|
|
}
|
|
return true;
|
|
}
|
|
int opc = exp->Opcode();
|
|
if (opc == Op_MulI) {
|
|
if (exp->in(1) == iv && exp->in(2)->is_Con()) {
|
|
if (p_scale != NULL) {
|
|
*p_scale = exp->in(2)->get_int();
|
|
}
|
|
return true;
|
|
}
|
|
if (exp->in(2) == iv && exp->in(1)->is_Con()) {
|
|
if (p_scale != NULL) {
|
|
*p_scale = exp->in(1)->get_int();
|
|
}
|
|
return true;
|
|
}
|
|
} else if (opc == Op_LShiftI) {
|
|
if (exp->in(1) == iv && exp->in(2)->is_Con()) {
|
|
if (p_scale != NULL) {
|
|
*p_scale = 1 << exp->in(2)->get_int();
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//-----------------------------is_scaled_iv_plus_offset------------------------------
|
|
// Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
|
|
bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
|
|
if (is_scaled_iv(exp, iv, p_scale)) {
|
|
if (p_offset != NULL) {
|
|
Node *zero = _igvn.intcon(0);
|
|
set_ctrl(zero, C->root());
|
|
*p_offset = zero;
|
|
}
|
|
return true;
|
|
}
|
|
int opc = exp->Opcode();
|
|
if (opc == Op_AddI) {
|
|
if (is_scaled_iv(exp->in(1), iv, p_scale)) {
|
|
if (p_offset != NULL) {
|
|
*p_offset = exp->in(2);
|
|
}
|
|
return true;
|
|
}
|
|
if (exp->in(2)->is_Con()) {
|
|
Node* offset2 = NULL;
|
|
if (depth < 2 &&
|
|
is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
|
|
p_offset != NULL ? &offset2 : NULL, depth+1)) {
|
|
if (p_offset != NULL) {
|
|
Node *ctrl_off2 = get_ctrl(offset2);
|
|
Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
|
|
register_new_node(offset, ctrl_off2);
|
|
*p_offset = offset;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
} else if (opc == Op_SubI) {
|
|
if (is_scaled_iv(exp->in(1), iv, p_scale)) {
|
|
if (p_offset != NULL) {
|
|
Node *zero = _igvn.intcon(0);
|
|
set_ctrl(zero, C->root());
|
|
Node *ctrl_off = get_ctrl(exp->in(2));
|
|
Node* offset = new (C, 3) SubINode(zero, exp->in(2));
|
|
register_new_node(offset, ctrl_off);
|
|
*p_offset = offset;
|
|
}
|
|
return true;
|
|
}
|
|
if (is_scaled_iv(exp->in(2), iv, p_scale)) {
|
|
if (p_offset != NULL) {
|
|
*p_scale *= -1;
|
|
*p_offset = exp->in(1);
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//------------------------------do_range_check---------------------------------
|
|
// Eliminate range-checks and other trip-counter vs loop-invariant tests.
|
|
void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
|
|
#ifndef PRODUCT
|
|
if (PrintOpto && VerifyLoopOptimizations) {
|
|
tty->print("Range Check Elimination ");
|
|
loop->dump_head();
|
|
} else if (TraceLoopOpts) {
|
|
tty->print("RangeCheck ");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
assert(RangeCheckElimination, "");
|
|
CountedLoopNode *cl = loop->_head->as_CountedLoop();
|
|
assert(cl->is_main_loop(), "");
|
|
|
|
// protect against stride not being a constant
|
|
if (!cl->stride_is_con())
|
|
return;
|
|
|
|
// Find the trip counter; we are iteration splitting based on it
|
|
Node *trip_counter = cl->phi();
|
|
// Find the main loop limit; we will trim it's iterations
|
|
// to not ever trip end tests
|
|
Node *main_limit = cl->limit();
|
|
|
|
// Need to find the main-loop zero-trip guard
|
|
Node *ctrl = cl->in(LoopNode::EntryControl);
|
|
assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
|
|
Node *iffm = ctrl->in(0);
|
|
assert(iffm->Opcode() == Op_If, "");
|
|
Node *bolzm = iffm->in(1);
|
|
assert(bolzm->Opcode() == Op_Bool, "");
|
|
Node *cmpzm = bolzm->in(1);
|
|
assert(cmpzm->is_Cmp(), "");
|
|
Node *opqzm = cmpzm->in(2);
|
|
// Can not optimize a loop if pre-loop Opaque1 node is optimized
|
|
// away and then another round of loop opts attempted.
|
|
if (opqzm->Opcode() != Op_Opaque1)
|
|
return;
|
|
assert(opqzm->in(1) == main_limit, "do not understand situation");
|
|
|
|
// Find the pre-loop limit; we will expand it's iterations to
|
|
// not ever trip low tests.
|
|
Node *p_f = iffm->in(0);
|
|
assert(p_f->Opcode() == Op_IfFalse, "");
|
|
CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
|
|
assert(pre_end->loopnode()->is_pre_loop(), "");
|
|
Node *pre_opaq1 = pre_end->limit();
|
|
// Occasionally it's possible for a pre-loop Opaque1 node to be
|
|
// optimized away and then another round of loop opts attempted.
|
|
// We can not optimize this particular loop in that case.
|
|
if (pre_opaq1->Opcode() != Op_Opaque1)
|
|
return;
|
|
Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
|
|
Node *pre_limit = pre_opaq->in(1);
|
|
|
|
// Where do we put new limit calculations
|
|
Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
|
|
|
|
// Ensure the original loop limit is available from the
|
|
// pre-loop Opaque1 node.
|
|
Node *orig_limit = pre_opaq->original_loop_limit();
|
|
if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
|
|
return;
|
|
|
|
// Must know if its a count-up or count-down loop
|
|
|
|
int stride_con = cl->stride_con();
|
|
Node *zero = _igvn.intcon(0);
|
|
Node *one = _igvn.intcon(1);
|
|
set_ctrl(zero, C->root());
|
|
set_ctrl(one, C->root());
|
|
|
|
// Range checks that do not dominate the loop backedge (ie.
|
|
// conditionally executed) can lengthen the pre loop limit beyond
|
|
// the original loop limit. To prevent this, the pre limit is
|
|
// (for stride > 0) MINed with the original loop limit (MAXed
|
|
// stride < 0) when some range_check (rc) is conditionally
|
|
// executed.
|
|
bool conditional_rc = false;
|
|
|
|
// Check loop body for tests of trip-counter plus loop-invariant vs
|
|
// loop-invariant.
|
|
for( uint i = 0; i < loop->_body.size(); i++ ) {
|
|
Node *iff = loop->_body[i];
|
|
if( iff->Opcode() == Op_If ) { // Test?
|
|
|
|
// Test is an IfNode, has 2 projections. If BOTH are in the loop
|
|
// we need loop unswitching instead of iteration splitting.
|
|
Node *exit = loop->is_loop_exit(iff);
|
|
if( !exit ) continue;
|
|
int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
|
|
|
|
// Get boolean condition to test
|
|
Node *i1 = iff->in(1);
|
|
if( !i1->is_Bool() ) continue;
|
|
BoolNode *bol = i1->as_Bool();
|
|
BoolTest b_test = bol->_test;
|
|
// Flip sense of test if exit condition is flipped
|
|
if( flip )
|
|
b_test = b_test.negate();
|
|
|
|
// Get compare
|
|
Node *cmp = bol->in(1);
|
|
|
|
// Look for trip_counter + offset vs limit
|
|
Node *rc_exp = cmp->in(1);
|
|
Node *limit = cmp->in(2);
|
|
jint scale_con= 1; // Assume trip counter not scaled
|
|
|
|
Node *limit_c = get_ctrl(limit);
|
|
if( loop->is_member(get_loop(limit_c) ) ) {
|
|
// Compare might have operands swapped; commute them
|
|
b_test = b_test.commute();
|
|
rc_exp = cmp->in(2);
|
|
limit = cmp->in(1);
|
|
limit_c = get_ctrl(limit);
|
|
if( loop->is_member(get_loop(limit_c) ) )
|
|
continue; // Both inputs are loop varying; cannot RCE
|
|
}
|
|
// Here we know 'limit' is loop invariant
|
|
|
|
// 'limit' maybe pinned below the zero trip test (probably from a
|
|
// previous round of rce), in which case, it can't be used in the
|
|
// zero trip test expression which must occur before the zero test's if.
|
|
if( limit_c == ctrl ) {
|
|
continue; // Don't rce this check but continue looking for other candidates.
|
|
}
|
|
|
|
// Check for scaled induction variable plus an offset
|
|
Node *offset = NULL;
|
|
|
|
if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
|
|
continue;
|
|
}
|
|
|
|
Node *offset_c = get_ctrl(offset);
|
|
if( loop->is_member( get_loop(offset_c) ) )
|
|
continue; // Offset is not really loop invariant
|
|
// Here we know 'offset' is loop invariant.
|
|
|
|
// As above for the 'limit', the 'offset' maybe pinned below the
|
|
// zero trip test.
|
|
if( offset_c == ctrl ) {
|
|
continue; // Don't rce this check but continue looking for other candidates.
|
|
}
|
|
|
|
// At this point we have the expression as:
|
|
// scale_con * trip_counter + offset :: limit
|
|
// where scale_con, offset and limit are loop invariant. Trip_counter
|
|
// monotonically increases by stride_con, a constant. Both (or either)
|
|
// stride_con and scale_con can be negative which will flip about the
|
|
// sense of the test.
|
|
|
|
// Adjust pre and main loop limits to guard the correct iteration set
|
|
if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
|
|
if( b_test._test == BoolTest::lt ) { // Range checks always use lt
|
|
// The overflow limit: scale*I+offset < limit
|
|
add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
|
|
// The underflow limit: 0 <= scale*I+offset.
|
|
// Some math yields: -scale*I-(offset+1) < 0
|
|
Node *plus_one = new (C, 3) AddINode( offset, one );
|
|
register_new_node( plus_one, pre_ctrl );
|
|
Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
|
|
register_new_node( neg_offset, pre_ctrl );
|
|
add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
|
|
if (!conditional_rc) {
|
|
conditional_rc = !loop->dominates_backedge(iff);
|
|
}
|
|
} else {
|
|
#ifndef PRODUCT
|
|
if( PrintOpto )
|
|
tty->print_cr("missed RCE opportunity");
|
|
#endif
|
|
continue; // In release mode, ignore it
|
|
}
|
|
} else { // Otherwise work on normal compares
|
|
switch( b_test._test ) {
|
|
case BoolTest::ge: // Convert X >= Y to -X <= -Y
|
|
scale_con = -scale_con;
|
|
offset = new (C, 3) SubINode( zero, offset );
|
|
register_new_node( offset, pre_ctrl );
|
|
limit = new (C, 3) SubINode( zero, limit );
|
|
register_new_node( limit, pre_ctrl );
|
|
// Fall into LE case
|
|
case BoolTest::le: // Convert X <= Y to X < Y+1
|
|
limit = new (C, 3) AddINode( limit, one );
|
|
register_new_node( limit, pre_ctrl );
|
|
// Fall into LT case
|
|
case BoolTest::lt:
|
|
add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
|
|
if (!conditional_rc) {
|
|
conditional_rc = !loop->dominates_backedge(iff);
|
|
}
|
|
break;
|
|
default:
|
|
#ifndef PRODUCT
|
|
if( PrintOpto )
|
|
tty->print_cr("missed RCE opportunity");
|
|
#endif
|
|
continue; // Unhandled case
|
|
}
|
|
}
|
|
|
|
// Kill the eliminated test
|
|
C->set_major_progress();
|
|
Node *kill_con = _igvn.intcon( 1-flip );
|
|
set_ctrl(kill_con, C->root());
|
|
_igvn.hash_delete(iff);
|
|
iff->set_req(1, kill_con);
|
|
_igvn._worklist.push(iff);
|
|
// Find surviving projection
|
|
assert(iff->is_If(), "");
|
|
ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
|
|
// Find loads off the surviving projection; remove their control edge
|
|
for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
|
|
Node* cd = dp->fast_out(i); // Control-dependent node
|
|
if( cd->is_Load() ) { // Loads can now float around in the loop
|
|
_igvn.hash_delete(cd);
|
|
// Allow the load to float around in the loop, or before it
|
|
// but NOT before the pre-loop.
|
|
cd->set_req(0, ctrl); // ctrl, not NULL
|
|
_igvn._worklist.push(cd);
|
|
--i;
|
|
--imax;
|
|
}
|
|
}
|
|
|
|
} // End of is IF
|
|
|
|
}
|
|
|
|
// Update loop limits
|
|
if (conditional_rc) {
|
|
pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
|
|
: (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
|
|
register_new_node(pre_limit, pre_ctrl);
|
|
}
|
|
_igvn.hash_delete(pre_opaq);
|
|
pre_opaq->set_req(1, pre_limit);
|
|
|
|
// Note:: we are making the main loop limit no longer precise;
|
|
// need to round up based on stride.
|
|
if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
|
|
// "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
|
|
// Hopefully, compiler will optimize for powers of 2.
|
|
Node *ctrl = get_ctrl(main_limit);
|
|
Node *stride = cl->stride();
|
|
Node *init = cl->init_trip();
|
|
Node *span = new (C, 3) SubINode(main_limit,init);
|
|
register_new_node(span,ctrl);
|
|
Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
|
|
Node *add = new (C, 3) AddINode(span,rndup);
|
|
register_new_node(add,ctrl);
|
|
Node *div = new (C, 3) DivINode(0,add,stride);
|
|
register_new_node(div,ctrl);
|
|
Node *mul = new (C, 3) MulINode(div,stride);
|
|
register_new_node(mul,ctrl);
|
|
Node *newlim = new (C, 3) AddINode(mul,init);
|
|
register_new_node(newlim,ctrl);
|
|
main_limit = newlim;
|
|
}
|
|
|
|
Node *main_cle = cl->loopexit();
|
|
Node *main_bol = main_cle->in(1);
|
|
// Hacking loop bounds; need private copies of exit test
|
|
if( main_bol->outcnt() > 1 ) {// BoolNode shared?
|
|
_igvn.hash_delete(main_cle);
|
|
main_bol = main_bol->clone();// Clone a private BoolNode
|
|
register_new_node( main_bol, main_cle->in(0) );
|
|
main_cle->set_req(1,main_bol);
|
|
}
|
|
Node *main_cmp = main_bol->in(1);
|
|
if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
|
|
_igvn.hash_delete(main_bol);
|
|
main_cmp = main_cmp->clone();// Clone a private CmpNode
|
|
register_new_node( main_cmp, main_cle->in(0) );
|
|
main_bol->set_req(1,main_cmp);
|
|
}
|
|
// Hack the now-private loop bounds
|
|
_igvn.hash_delete(main_cmp);
|
|
main_cmp->set_req(2, main_limit);
|
|
_igvn._worklist.push(main_cmp);
|
|
// The OpaqueNode is unshared by design
|
|
_igvn.hash_delete(opqzm);
|
|
assert( opqzm->outcnt() == 1, "cannot hack shared node" );
|
|
opqzm->set_req(1,main_limit);
|
|
_igvn._worklist.push(opqzm);
|
|
}
|
|
|
|
//------------------------------DCE_loop_body----------------------------------
|
|
// Remove simplistic dead code from loop body
|
|
void IdealLoopTree::DCE_loop_body() {
|
|
for( uint i = 0; i < _body.size(); i++ )
|
|
if( _body.at(i)->outcnt() == 0 )
|
|
_body.map( i--, _body.pop() );
|
|
}
|
|
|
|
|
|
//------------------------------adjust_loop_exit_prob--------------------------
|
|
// Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
|
|
// Replace with a 1-in-10 exit guess.
|
|
void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
|
|
Node *test = tail();
|
|
while( test != _head ) {
|
|
uint top = test->Opcode();
|
|
if( top == Op_IfTrue || top == Op_IfFalse ) {
|
|
int test_con = ((ProjNode*)test)->_con;
|
|
assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
|
|
IfNode *iff = test->in(0)->as_If();
|
|
if( iff->outcnt() == 2 ) { // Ignore dead tests
|
|
Node *bol = iff->in(1);
|
|
if( bol && bol->req() > 1 && bol->in(1) &&
|
|
((bol->in(1)->Opcode() == Op_StorePConditional ) ||
|
|
(bol->in(1)->Opcode() == Op_StoreIConditional ) ||
|
|
(bol->in(1)->Opcode() == Op_StoreLConditional ) ||
|
|
(bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
|
|
(bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
|
|
(bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
|
|
(bol->in(1)->Opcode() == Op_CompareAndSwapN )))
|
|
return; // Allocation loops RARELY take backedge
|
|
// Find the OTHER exit path from the IF
|
|
Node* ex = iff->proj_out(1-test_con);
|
|
float p = iff->_prob;
|
|
if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
|
|
if( top == Op_IfTrue ) {
|
|
if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
|
|
iff->_prob = PROB_STATIC_FREQUENT;
|
|
}
|
|
} else {
|
|
if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
|
|
iff->_prob = PROB_STATIC_INFREQUENT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
test = phase->idom(test);
|
|
}
|
|
}
|
|
|
|
|
|
//------------------------------policy_do_remove_empty_loop--------------------
|
|
// Micro-benchmark spamming. Policy is to always remove empty loops.
|
|
// The 'DO' part is to replace the trip counter with the value it will
|
|
// have on the last iteration. This will break the loop.
|
|
bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
|
|
// Minimum size must be empty loop
|
|
if (_body.size() > 7/*number of nodes in an empty loop*/)
|
|
return false;
|
|
|
|
if (!_head->is_CountedLoop())
|
|
return false; // Dead loop
|
|
CountedLoopNode *cl = _head->as_CountedLoop();
|
|
if (!cl->loopexit())
|
|
return false; // Malformed loop
|
|
if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
|
|
return false; // Infinite loop
|
|
|
|
#ifdef ASSERT
|
|
// Ensure only one phi which is the iv.
|
|
Node* iv = NULL;
|
|
for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
|
|
Node* n = cl->fast_out(i);
|
|
if (n->Opcode() == Op_Phi) {
|
|
assert(iv == NULL, "Too many phis" );
|
|
iv = n;
|
|
}
|
|
}
|
|
assert(iv == cl->phi(), "Wrong phi" );
|
|
#endif
|
|
|
|
// main and post loops have explicitly created zero trip guard
|
|
bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
|
|
if (needs_guard) {
|
|
// Check for an obvious zero trip guard.
|
|
Node* inctrl = cl->in(LoopNode::EntryControl);
|
|
if (inctrl->Opcode() == Op_IfTrue) {
|
|
// The test should look like just the backedge of a CountedLoop
|
|
Node* iff = inctrl->in(0);
|
|
if (iff->is_If()) {
|
|
Node* bol = iff->in(1);
|
|
if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
|
|
Node* cmp = bol->in(1);
|
|
if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
|
|
needs_guard = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintOpto) {
|
|
tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
|
|
this->dump_head();
|
|
} else if (TraceLoopOpts) {
|
|
tty->print("Empty with%s zero trip guard ", needs_guard ? "out" : "");
|
|
this->dump_head();
|
|
}
|
|
#endif
|
|
|
|
if (needs_guard) {
|
|
// Peel the loop to ensure there's a zero trip guard
|
|
Node_List old_new;
|
|
phase->do_peeling(this, old_new);
|
|
}
|
|
|
|
// Replace the phi at loop head with the final value of the last
|
|
// iteration. Then the CountedLoopEnd will collapse (backedge never
|
|
// taken) and all loop-invariant uses of the exit values will be correct.
|
|
Node *phi = cl->phi();
|
|
Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
|
|
phase->register_new_node(final,cl->in(LoopNode::EntryControl));
|
|
phase->_igvn.replace_node(phi,final);
|
|
phase->C->set_major_progress();
|
|
return true;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------iteration_split_impl---------------------------
|
|
bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
|
|
// Check and remove empty loops (spam micro-benchmarks)
|
|
if( policy_do_remove_empty_loop(phase) )
|
|
return true; // Here we removed an empty loop
|
|
|
|
bool should_peel = policy_peeling(phase); // Should we peel?
|
|
|
|
bool should_unswitch = policy_unswitching(phase);
|
|
|
|
// Non-counted loops may be peeled; exactly 1 iteration is peeled.
|
|
// This removes loop-invariant tests (usually null checks).
|
|
if( !_head->is_CountedLoop() ) { // Non-counted loop
|
|
if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
|
|
// Partial peel succeeded so terminate this round of loop opts
|
|
return false;
|
|
}
|
|
if( should_peel ) { // Should we peel?
|
|
#ifndef PRODUCT
|
|
if (PrintOpto) tty->print_cr("should_peel");
|
|
#endif
|
|
phase->do_peeling(this,old_new);
|
|
} else if( should_unswitch ) {
|
|
phase->do_unswitching(this, old_new);
|
|
}
|
|
return true;
|
|
}
|
|
CountedLoopNode *cl = _head->as_CountedLoop();
|
|
|
|
if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
|
|
|
|
// Do nothing special to pre- and post- loops
|
|
if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
|
|
|
|
// Compute loop trip count from profile data
|
|
compute_profile_trip_cnt(phase);
|
|
|
|
// Before attempting fancy unrolling, RCE or alignment, see if we want
|
|
// to completely unroll this loop or do loop unswitching.
|
|
if( cl->is_normal_loop() ) {
|
|
if (should_unswitch) {
|
|
phase->do_unswitching(this, old_new);
|
|
return true;
|
|
}
|
|
bool should_maximally_unroll = policy_maximally_unroll(phase);
|
|
if( should_maximally_unroll ) {
|
|
// Here we did some unrolling and peeling. Eventually we will
|
|
// completely unroll this loop and it will no longer be a loop.
|
|
phase->do_maximally_unroll(this,old_new);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
// Counted loops may be peeled, may need some iterations run up
|
|
// front for RCE, and may want to align loop refs to a cache
|
|
// line. Thus we clone a full loop up front whose trip count is
|
|
// at least 1 (if peeling), but may be several more.
|
|
|
|
// The main loop will start cache-line aligned with at least 1
|
|
// iteration of the unrolled body (zero-trip test required) and
|
|
// will have some range checks removed.
|
|
|
|
// A post-loop will finish any odd iterations (leftover after
|
|
// unrolling), plus any needed for RCE purposes.
|
|
|
|
bool should_unroll = policy_unroll(phase);
|
|
|
|
bool should_rce = policy_range_check(phase);
|
|
|
|
bool should_align = policy_align(phase);
|
|
|
|
// If not RCE'ing (iteration splitting) or Aligning, then we do not
|
|
// need a pre-loop. We may still need to peel an initial iteration but
|
|
// we will not be needing an unknown number of pre-iterations.
|
|
//
|
|
// Basically, if may_rce_align reports FALSE first time through,
|
|
// we will not be able to later do RCE or Aligning on this loop.
|
|
bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
|
|
|
|
// If we have any of these conditions (RCE, alignment, unrolling) met, then
|
|
// we switch to the pre-/main-/post-loop model. This model also covers
|
|
// peeling.
|
|
if( should_rce || should_align || should_unroll ) {
|
|
if( cl->is_normal_loop() ) // Convert to 'pre/main/post' loops
|
|
phase->insert_pre_post_loops(this,old_new, !may_rce_align);
|
|
|
|
// Adjust the pre- and main-loop limits to let the pre and post loops run
|
|
// with full checks, but the main-loop with no checks. Remove said
|
|
// checks from the main body.
|
|
if( should_rce )
|
|
phase->do_range_check(this,old_new);
|
|
|
|
// Double loop body for unrolling. Adjust the minimum-trip test (will do
|
|
// twice as many iterations as before) and the main body limit (only do
|
|
// an even number of trips). If we are peeling, we might enable some RCE
|
|
// and we'd rather unroll the post-RCE'd loop SO... do not unroll if
|
|
// peeling.
|
|
if( should_unroll && !should_peel )
|
|
phase->do_unroll(this,old_new, true);
|
|
|
|
// Adjust the pre-loop limits to align the main body
|
|
// iterations.
|
|
if( should_align )
|
|
Unimplemented();
|
|
|
|
} else { // Else we have an unchanged counted loop
|
|
if( should_peel ) // Might want to peel but do nothing else
|
|
phase->do_peeling(this,old_new);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
//------------------------------iteration_split--------------------------------
|
|
bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
|
|
// Recursively iteration split nested loops
|
|
if (_child && !_child->iteration_split(phase, old_new))
|
|
return false;
|
|
|
|
// Clean out prior deadwood
|
|
DCE_loop_body();
|
|
|
|
|
|
// Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
|
|
// Replace with a 1-in-10 exit guess.
|
|
if (_parent /*not the root loop*/ &&
|
|
!_irreducible &&
|
|
// Also ignore the occasional dead backedge
|
|
!tail()->is_top()) {
|
|
adjust_loop_exit_prob(phase);
|
|
}
|
|
|
|
// Gate unrolling, RCE and peeling efforts.
|
|
if (!_child && // If not an inner loop, do not split
|
|
!_irreducible &&
|
|
_allow_optimizations &&
|
|
!tail()->is_top()) { // Also ignore the occasional dead backedge
|
|
if (!_has_call) {
|
|
if (!iteration_split_impl(phase, old_new)) {
|
|
return false;
|
|
}
|
|
} else if (policy_unswitching(phase)) {
|
|
phase->do_unswitching(this, old_new);
|
|
}
|
|
}
|
|
|
|
// Minor offset re-organization to remove loop-fallout uses of
|
|
// trip counter when there was no major reshaping.
|
|
phase->reorg_offsets(this);
|
|
|
|
if (_next && !_next->iteration_split(phase, old_new))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
//-------------------------------is_uncommon_trap_proj----------------------------
|
|
// Return true if proj is the form of "proj->[region->..]call_uct"
|
|
bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, Deoptimization::DeoptReason reason) {
|
|
int path_limit = 10;
|
|
assert(proj, "invalid argument");
|
|
Node* out = proj;
|
|
for (int ct = 0; ct < path_limit; ct++) {
|
|
out = out->unique_ctrl_out();
|
|
if (out == NULL || out->is_Root() || out->is_Start())
|
|
return false;
|
|
if (out->is_CallStaticJava()) {
|
|
int req = out->as_CallStaticJava()->uncommon_trap_request();
|
|
if (req != 0) {
|
|
Deoptimization::DeoptReason trap_reason = Deoptimization::trap_request_reason(req);
|
|
if (trap_reason == reason || reason == Deoptimization::Reason_none) {
|
|
return true;
|
|
}
|
|
}
|
|
return false; // don't do further after call
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//-------------------------------is_uncommon_trap_if_pattern-------------------------
|
|
// Return true for "if(test)-> proj -> ...
|
|
// |
|
|
// V
|
|
// other_proj->[region->..]call_uct"
|
|
//
|
|
// "must_reason_predicate" means the uct reason must be Reason_predicate
|
|
bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, Deoptimization::DeoptReason reason) {
|
|
Node *in0 = proj->in(0);
|
|
if (!in0->is_If()) return false;
|
|
// Variation of a dead If node.
|
|
if (in0->outcnt() < 2) return false;
|
|
IfNode* iff = in0->as_If();
|
|
|
|
// we need "If(Conv2B(Opaque1(...)))" pattern for reason_predicate
|
|
if (reason != Deoptimization::Reason_none) {
|
|
if (iff->in(1)->Opcode() != Op_Conv2B ||
|
|
iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
|
|
return is_uncommon_trap_proj(other_proj, reason);
|
|
}
|
|
|
|
//-------------------------------register_control-------------------------
|
|
void PhaseIdealLoop::register_control(Node* n, IdealLoopTree *loop, Node* pred) {
|
|
assert(n->is_CFG(), "must be control node");
|
|
_igvn.register_new_node_with_optimizer(n);
|
|
loop->_body.push(n);
|
|
set_loop(n, loop);
|
|
// When called from beautify_loops() idom is not constructed yet.
|
|
if (_idom != NULL) {
|
|
set_idom(n, pred, dom_depth(pred));
|
|
}
|
|
}
|
|
|
|
//------------------------------create_new_if_for_predicate------------------------
|
|
// create a new if above the uct_if_pattern for the predicate to be promoted.
|
|
//
|
|
// before after
|
|
// ---------- ----------
|
|
// ctrl ctrl
|
|
// | |
|
|
// | |
|
|
// v v
|
|
// iff new_iff
|
|
// / \ / \
|
|
// / \ / \
|
|
// v v v v
|
|
// uncommon_proj cont_proj if_uct if_cont
|
|
// \ | | | |
|
|
// \ | | | |
|
|
// v v v | v
|
|
// rgn loop | iff
|
|
// | | / \
|
|
// | | / \
|
|
// v | v v
|
|
// uncommon_trap | uncommon_proj cont_proj
|
|
// \ \ | |
|
|
// \ \ | |
|
|
// v v v v
|
|
// rgn loop
|
|
// |
|
|
// |
|
|
// v
|
|
// uncommon_trap
|
|
//
|
|
//
|
|
// We will create a region to guard the uct call if there is no one there.
|
|
// The true projecttion (if_cont) of the new_iff is returned.
|
|
// This code is also used to clone predicates to clonned loops.
|
|
ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
|
|
Deoptimization::DeoptReason reason) {
|
|
assert(is_uncommon_trap_if_pattern(cont_proj, reason), "must be a uct if pattern!");
|
|
IfNode* iff = cont_proj->in(0)->as_If();
|
|
|
|
ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
|
|
Node *rgn = uncommon_proj->unique_ctrl_out();
|
|
assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
|
|
|
|
if (!rgn->is_Region()) { // create a region to guard the call
|
|
assert(rgn->is_Call(), "must be call uct");
|
|
CallNode* call = rgn->as_Call();
|
|
IdealLoopTree* loop = get_loop(call);
|
|
rgn = new (C, 1) RegionNode(1);
|
|
rgn->add_req(uncommon_proj);
|
|
register_control(rgn, loop, uncommon_proj);
|
|
_igvn.hash_delete(call);
|
|
call->set_req(0, rgn);
|
|
// When called from beautify_loops() idom is not constructed yet.
|
|
if (_idom != NULL) {
|
|
set_idom(call, rgn, dom_depth(rgn));
|
|
}
|
|
}
|
|
|
|
Node* entry = iff->in(0);
|
|
if (new_entry != NULL) {
|
|
// Clonning the predicate to new location.
|
|
entry = new_entry;
|
|
}
|
|
// Create new_iff
|
|
IdealLoopTree* lp = get_loop(entry);
|
|
IfNode *new_iff = new (C, 2) IfNode(entry, NULL, iff->_prob, iff->_fcnt);
|
|
register_control(new_iff, lp, entry);
|
|
Node *if_cont = new (C, 1) IfTrueNode(new_iff);
|
|
Node *if_uct = new (C, 1) IfFalseNode(new_iff);
|
|
if (cont_proj->is_IfFalse()) {
|
|
// Swap
|
|
Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
|
|
}
|
|
register_control(if_cont, lp, new_iff);
|
|
register_control(if_uct, get_loop(rgn), new_iff);
|
|
|
|
// if_uct to rgn
|
|
_igvn.hash_delete(rgn);
|
|
rgn->add_req(if_uct);
|
|
// When called from beautify_loops() idom is not constructed yet.
|
|
if (_idom != NULL) {
|
|
Node* ridom = idom(rgn);
|
|
Node* nrdom = dom_lca(ridom, new_iff);
|
|
set_idom(rgn, nrdom, dom_depth(rgn));
|
|
}
|
|
// rgn must have no phis
|
|
assert(!rgn->as_Region()->has_phi(), "region must have no phis");
|
|
|
|
if (new_entry == NULL) {
|
|
// Attach if_cont to iff
|
|
_igvn.hash_delete(iff);
|
|
iff->set_req(0, if_cont);
|
|
if (_idom != NULL) {
|
|
set_idom(iff, if_cont, dom_depth(iff));
|
|
}
|
|
}
|
|
return if_cont->as_Proj();
|
|
}
|
|
|
|
//--------------------------find_predicate_insertion_point-------------------
|
|
// Find a good location to insert a predicate
|
|
ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason) {
|
|
if (start_c == NULL || !start_c->is_Proj())
|
|
return NULL;
|
|
if (is_uncommon_trap_if_pattern(start_c->as_Proj(), reason)) {
|
|
return start_c->as_Proj();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//--------------------------find_predicate------------------------------------
|
|
// Find a predicate
|
|
Node* PhaseIdealLoop::find_predicate(Node* entry) {
|
|
Node* predicate = NULL;
|
|
if (UseLoopPredicate) {
|
|
predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
|
|
if (predicate != NULL) { // right pattern that can be used by loop predication
|
|
assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
|
|
return entry;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//------------------------------Invariance-----------------------------------
|
|
// Helper class for loop_predication_impl to compute invariance on the fly and
|
|
// clone invariants.
|
|
class Invariance : public StackObj {
|
|
VectorSet _visited, _invariant;
|
|
Node_Stack _stack;
|
|
VectorSet _clone_visited;
|
|
Node_List _old_new; // map of old to new (clone)
|
|
IdealLoopTree* _lpt;
|
|
PhaseIdealLoop* _phase;
|
|
|
|
// Helper function to set up the invariance for invariance computation
|
|
// If n is a known invariant, set up directly. Otherwise, look up the
|
|
// the possibility to push n onto the stack for further processing.
|
|
void visit(Node* use, Node* n) {
|
|
if (_lpt->is_invariant(n)) { // known invariant
|
|
_invariant.set(n->_idx);
|
|
} else if (!n->is_CFG()) {
|
|
Node *n_ctrl = _phase->ctrl_or_self(n);
|
|
Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
|
|
if (_phase->is_dominator(n_ctrl, u_ctrl)) {
|
|
_stack.push(n, n->in(0) == NULL ? 1 : 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute invariance for "the_node" and (possibly) all its inputs recursively
|
|
// on the fly
|
|
void compute_invariance(Node* n) {
|
|
assert(_visited.test(n->_idx), "must be");
|
|
visit(n, n);
|
|
while (_stack.is_nonempty()) {
|
|
Node* n = _stack.node();
|
|
uint idx = _stack.index();
|
|
if (idx == n->req()) { // all inputs are processed
|
|
_stack.pop();
|
|
// n is invariant if it's inputs are all invariant
|
|
bool all_inputs_invariant = true;
|
|
for (uint i = 0; i < n->req(); i++) {
|
|
Node* in = n->in(i);
|
|
if (in == NULL) continue;
|
|
assert(_visited.test(in->_idx), "must have visited input");
|
|
if (!_invariant.test(in->_idx)) { // bad guy
|
|
all_inputs_invariant = false;
|
|
break;
|
|
}
|
|
}
|
|
if (all_inputs_invariant) {
|
|
_invariant.set(n->_idx); // I am a invariant too
|
|
}
|
|
} else { // process next input
|
|
_stack.set_index(idx + 1);
|
|
Node* m = n->in(idx);
|
|
if (m != NULL && !_visited.test_set(m->_idx)) {
|
|
visit(n, m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Helper function to set up _old_new map for clone_nodes.
|
|
// If n is a known invariant, set up directly ("clone" of n == n).
|
|
// Otherwise, push n onto the stack for real cloning.
|
|
void clone_visit(Node* n) {
|
|
assert(_invariant.test(n->_idx), "must be invariant");
|
|
if (_lpt->is_invariant(n)) { // known invariant
|
|
_old_new.map(n->_idx, n);
|
|
} else{ // to be cloned
|
|
assert (!n->is_CFG(), "should not see CFG here");
|
|
_stack.push(n, n->in(0) == NULL ? 1 : 0);
|
|
}
|
|
}
|
|
|
|
// Clone "n" and (possibly) all its inputs recursively
|
|
void clone_nodes(Node* n, Node* ctrl) {
|
|
clone_visit(n);
|
|
while (_stack.is_nonempty()) {
|
|
Node* n = _stack.node();
|
|
uint idx = _stack.index();
|
|
if (idx == n->req()) { // all inputs processed, clone n!
|
|
_stack.pop();
|
|
// clone invariant node
|
|
Node* n_cl = n->clone();
|
|
_old_new.map(n->_idx, n_cl);
|
|
_phase->register_new_node(n_cl, ctrl);
|
|
for (uint i = 0; i < n->req(); i++) {
|
|
Node* in = n_cl->in(i);
|
|
if (in == NULL) continue;
|
|
n_cl->set_req(i, _old_new[in->_idx]);
|
|
}
|
|
} else { // process next input
|
|
_stack.set_index(idx + 1);
|
|
Node* m = n->in(idx);
|
|
if (m != NULL && !_clone_visited.test_set(m->_idx)) {
|
|
clone_visit(m); // visit the input
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
Invariance(Arena* area, IdealLoopTree* lpt) :
|
|
_lpt(lpt), _phase(lpt->_phase),
|
|
_visited(area), _invariant(area), _stack(area, 10 /* guess */),
|
|
_clone_visited(area), _old_new(area)
|
|
{}
|
|
|
|
// Map old to n for invariance computation and clone
|
|
void map_ctrl(Node* old, Node* n) {
|
|
assert(old->is_CFG() && n->is_CFG(), "must be");
|
|
_old_new.map(old->_idx, n); // "clone" of old is n
|
|
_invariant.set(old->_idx); // old is invariant
|
|
_clone_visited.set(old->_idx);
|
|
}
|
|
|
|
// Driver function to compute invariance
|
|
bool is_invariant(Node* n) {
|
|
if (!_visited.test_set(n->_idx))
|
|
compute_invariance(n);
|
|
return (_invariant.test(n->_idx) != 0);
|
|
}
|
|
|
|
// Driver function to clone invariant
|
|
Node* clone(Node* n, Node* ctrl) {
|
|
assert(ctrl->is_CFG(), "must be");
|
|
assert(_invariant.test(n->_idx), "must be an invariant");
|
|
if (!_clone_visited.test(n->_idx))
|
|
clone_nodes(n, ctrl);
|
|
return _old_new[n->_idx];
|
|
}
|
|
};
|
|
|
|
//------------------------------is_range_check_if -----------------------------------
|
|
// Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
|
|
// Note: this function is particularly designed for loop predication. We require load_range
|
|
// and offset to be loop invariant computed on the fly by "invar"
|
|
bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
|
|
if (!is_loop_exit(iff)) {
|
|
return false;
|
|
}
|
|
if (!iff->in(1)->is_Bool()) {
|
|
return false;
|
|
}
|
|
const BoolNode *bol = iff->in(1)->as_Bool();
|
|
if (bol->_test._test != BoolTest::lt) {
|
|
return false;
|
|
}
|
|
if (!bol->in(1)->is_Cmp()) {
|
|
return false;
|
|
}
|
|
const CmpNode *cmp = bol->in(1)->as_Cmp();
|
|
if (cmp->Opcode() != Op_CmpU ) {
|
|
return false;
|
|
}
|
|
Node* range = cmp->in(2);
|
|
if (range->Opcode() != Op_LoadRange) {
|
|
const TypeInt* tint = phase->_igvn.type(range)->isa_int();
|
|
if (!OptimizeFill || tint == NULL || tint->empty() || tint->_lo < 0) {
|
|
// Allow predication on positive values that aren't LoadRanges.
|
|
// This allows optimization of loops where the length of the
|
|
// array is a known value and doesn't need to be loaded back
|
|
// from the array.
|
|
return false;
|
|
}
|
|
}
|
|
if (!invar.is_invariant(range)) {
|
|
return false;
|
|
}
|
|
Node *iv = _head->as_CountedLoop()->phi();
|
|
int scale = 0;
|
|
Node *offset = NULL;
|
|
if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
|
|
return false;
|
|
}
|
|
if(offset && !invar.is_invariant(offset)) { // offset must be invariant
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//------------------------------rc_predicate-----------------------------------
|
|
// Create a range check predicate
|
|
//
|
|
// for (i = init; i < limit; i += stride) {
|
|
// a[scale*i+offset]
|
|
// }
|
|
//
|
|
// Compute max(scale*i + offset) for init <= i < limit and build the predicate
|
|
// as "max(scale*i + offset) u< a.length".
|
|
//
|
|
// There are two cases for max(scale*i + offset):
|
|
// (1) stride*scale > 0
|
|
// max(scale*i + offset) = scale*(limit-stride) + offset
|
|
// (2) stride*scale < 0
|
|
// max(scale*i + offset) = scale*init + offset
|
|
BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
|
|
int scale, Node* offset,
|
|
Node* init, Node* limit, Node* stride,
|
|
Node* range, bool upper) {
|
|
DEBUG_ONLY(ttyLocker ttyl);
|
|
if (TraceLoopPredicate) tty->print("rc_predicate ");
|
|
|
|
Node* max_idx_expr = init;
|
|
int stride_con = stride->get_int();
|
|
if ((stride_con > 0) == (scale > 0) == upper) {
|
|
max_idx_expr = new (C, 3) SubINode(limit, stride);
|
|
register_new_node(max_idx_expr, ctrl);
|
|
if (TraceLoopPredicate) tty->print("(limit - stride) ");
|
|
} else {
|
|
if (TraceLoopPredicate) tty->print("init ");
|
|
}
|
|
|
|
if (scale != 1) {
|
|
ConNode* con_scale = _igvn.intcon(scale);
|
|
max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
|
|
register_new_node(max_idx_expr, ctrl);
|
|
if (TraceLoopPredicate) tty->print("* %d ", scale);
|
|
}
|
|
|
|
if (offset && (!offset->is_Con() || offset->get_int() != 0)){
|
|
max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
|
|
register_new_node(max_idx_expr, ctrl);
|
|
if (TraceLoopPredicate)
|
|
if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
|
|
else tty->print("+ offset ");
|
|
}
|
|
|
|
CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
|
|
register_new_node(cmp, ctrl);
|
|
BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
|
|
register_new_node(bol, ctrl);
|
|
|
|
if (TraceLoopPredicate) tty->print_cr("<u range");
|
|
return bol;
|
|
}
|
|
|
|
//------------------------------ loop_predication_impl--------------------------
|
|
// Insert loop predicates for null checks and range checks
|
|
bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
|
|
if (!UseLoopPredicate) return false;
|
|
|
|
if (!loop->_head->is_Loop()) {
|
|
// Could be a simple region when irreducible loops are present.
|
|
return false;
|
|
}
|
|
|
|
if (loop->_head->unique_ctrl_out()->Opcode() == Op_NeverBranch) {
|
|
// do nothing for infinite loops
|
|
return false;
|
|
}
|
|
|
|
CountedLoopNode *cl = NULL;
|
|
if (loop->_head->is_CountedLoop()) {
|
|
cl = loop->_head->as_CountedLoop();
|
|
// do nothing for iteration-splitted loops
|
|
if (!cl->is_normal_loop()) return false;
|
|
}
|
|
|
|
LoopNode *lpn = loop->_head->as_Loop();
|
|
Node* entry = lpn->in(LoopNode::EntryControl);
|
|
|
|
ProjNode *predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
|
|
if (!predicate_proj) {
|
|
#ifndef PRODUCT
|
|
if (TraceLoopPredicate) {
|
|
tty->print("missing predicate:");
|
|
loop->dump_head();
|
|
lpn->dump(1);
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
ConNode* zero = _igvn.intcon(0);
|
|
set_ctrl(zero, C->root());
|
|
|
|
ResourceArea *area = Thread::current()->resource_area();
|
|
Invariance invar(area, loop);
|
|
|
|
// Create list of if-projs such that a newer proj dominates all older
|
|
// projs in the list, and they all dominate loop->tail()
|
|
Node_List if_proj_list(area);
|
|
LoopNode *head = loop->_head->as_Loop();
|
|
Node *current_proj = loop->tail(); //start from tail
|
|
while ( current_proj != head ) {
|
|
if (loop == get_loop(current_proj) && // still in the loop ?
|
|
current_proj->is_Proj() && // is a projection ?
|
|
current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
|
|
if_proj_list.push(current_proj);
|
|
}
|
|
current_proj = idom(current_proj);
|
|
}
|
|
|
|
bool hoisted = false; // true if at least one proj is promoted
|
|
while (if_proj_list.size() > 0) {
|
|
// Following are changed to nonnull when a predicate can be hoisted
|
|
ProjNode* new_predicate_proj = NULL;
|
|
|
|
ProjNode* proj = if_proj_list.pop()->as_Proj();
|
|
IfNode* iff = proj->in(0)->as_If();
|
|
|
|
if (!is_uncommon_trap_if_pattern(proj, Deoptimization::Reason_none)) {
|
|
if (loop->is_loop_exit(iff)) {
|
|
// stop processing the remaining projs in the list because the execution of them
|
|
// depends on the condition of "iff" (iff->in(1)).
|
|
break;
|
|
} else {
|
|
// Both arms are inside the loop. There are two cases:
|
|
// (1) there is one backward branch. In this case, any remaining proj
|
|
// in the if_proj list post-dominates "iff". So, the condition of "iff"
|
|
// does not determine the execution the remining projs directly, and we
|
|
// can safely continue.
|
|
// (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
|
|
// does not dominate loop->tail(), so it can not be in the if_proj list.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
Node* test = iff->in(1);
|
|
if (!test->is_Bool()){ //Conv2B, ...
|
|
continue;
|
|
}
|
|
BoolNode* bol = test->as_Bool();
|
|
if (invar.is_invariant(bol)) {
|
|
// Invariant test
|
|
new_predicate_proj = create_new_if_for_predicate(predicate_proj, NULL,
|
|
Deoptimization::Reason_predicate);
|
|
Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
|
|
BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
|
|
|
|
// Negate test if necessary
|
|
bool negated = false;
|
|
if (proj->_con != predicate_proj->_con) {
|
|
new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
|
|
register_new_node(new_predicate_bol, ctrl);
|
|
negated = true;
|
|
}
|
|
IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
|
|
_igvn.hash_delete(new_predicate_iff);
|
|
new_predicate_iff->set_req(1, new_predicate_bol);
|
|
#ifndef PRODUCT
|
|
if (TraceLoopPredicate) {
|
|
tty->print("Predicate invariant if%s: %d ", negated ? " negated" : "", new_predicate_iff->_idx);
|
|
loop->dump_head();
|
|
} else if (TraceLoopOpts) {
|
|
tty->print("Predicate IC ");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
} else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
|
|
assert(proj->_con == predicate_proj->_con, "must match");
|
|
|
|
// Range check for counted loops
|
|
const Node* cmp = bol->in(1)->as_Cmp();
|
|
Node* idx = cmp->in(1);
|
|
assert(!invar.is_invariant(idx), "index is variant");
|
|
assert(cmp->in(2)->Opcode() == Op_LoadRange || OptimizeFill, "must be");
|
|
Node* rng = cmp->in(2);
|
|
assert(invar.is_invariant(rng), "range must be invariant");
|
|
int scale = 1;
|
|
Node* offset = zero;
|
|
bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
|
|
assert(ok, "must be index expression");
|
|
|
|
Node* init = cl->init_trip();
|
|
Node* limit = cl->limit();
|
|
Node* stride = cl->stride();
|
|
|
|
// Build if's for the upper and lower bound tests. The
|
|
// lower_bound test will dominate the upper bound test and all
|
|
// cloned or created nodes will use the lower bound test as
|
|
// their declared control.
|
|
ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
|
|
ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
|
|
assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
|
|
Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
|
|
|
|
// Perform cloning to keep Invariance state correct since the
|
|
// late schedule will place invariant things in the loop.
|
|
rng = invar.clone(rng, ctrl);
|
|
if (offset && offset != zero) {
|
|
assert(invar.is_invariant(offset), "offset must be loop invariant");
|
|
offset = invar.clone(offset, ctrl);
|
|
}
|
|
|
|
// Test the lower bound
|
|
Node* lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, false);
|
|
IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
|
|
_igvn.hash_delete(lower_bound_iff);
|
|
lower_bound_iff->set_req(1, lower_bound_bol);
|
|
if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
|
|
|
|
// Test the upper bound
|
|
Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, true);
|
|
IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
|
|
_igvn.hash_delete(upper_bound_iff);
|
|
upper_bound_iff->set_req(1, upper_bound_bol);
|
|
if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
|
|
|
|
// Fall through into rest of the clean up code which will move
|
|
// any dependent nodes onto the upper bound test.
|
|
new_predicate_proj = upper_bound_proj;
|
|
|
|
#ifndef PRODUCT
|
|
if (TraceLoopOpts && !TraceLoopPredicate) {
|
|
tty->print("Predicate RC ");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
} else {
|
|
// Loop variant check (for example, range check in non-counted loop)
|
|
// with uncommon trap.
|
|
continue;
|
|
}
|
|
assert(new_predicate_proj != NULL, "sanity");
|
|
// Success - attach condition (new_predicate_bol) to predicate if
|
|
invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
|
|
|
|
// Eliminate the old If in the loop body
|
|
dominated_by( new_predicate_proj, iff, proj->_con != new_predicate_proj->_con );
|
|
|
|
hoisted = true;
|
|
C->set_major_progress();
|
|
} // end while
|
|
|
|
#ifndef PRODUCT
|
|
// report that the loop predication has been actually performed
|
|
// for this loop
|
|
if (TraceLoopPredicate && hoisted) {
|
|
tty->print("Loop Predication Performed:");
|
|
loop->dump_head();
|
|
}
|
|
#endif
|
|
|
|
return hoisted;
|
|
}
|
|
|
|
//------------------------------loop_predication--------------------------------
|
|
// driver routine for loop predication optimization
|
|
bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
|
|
bool hoisted = false;
|
|
// Recursively promote predicates
|
|
if ( _child ) {
|
|
hoisted = _child->loop_predication( phase);
|
|
}
|
|
|
|
// self
|
|
if (!_irreducible && !tail()->is_top()) {
|
|
hoisted |= phase->loop_predication_impl(this);
|
|
}
|
|
|
|
if ( _next ) { //sibling
|
|
hoisted |= _next->loop_predication( phase);
|
|
}
|
|
|
|
return hoisted;
|
|
}
|
|
|
|
|
|
// Process all the loops in the loop tree and replace any fill
|
|
// patterns with an intrisc version.
|
|
bool PhaseIdealLoop::do_intrinsify_fill() {
|
|
bool changed = false;
|
|
for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
|
|
IdealLoopTree* lpt = iter.current();
|
|
changed |= intrinsify_fill(lpt);
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
|
|
// Examine an inner loop looking for a a single store of an invariant
|
|
// value in a unit stride loop,
|
|
bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
|
|
Node*& shift, Node*& con) {
|
|
const char* msg = NULL;
|
|
Node* msg_node = NULL;
|
|
|
|
store_value = NULL;
|
|
con = NULL;
|
|
shift = NULL;
|
|
|
|
// Process the loop looking for stores. If there are multiple
|
|
// stores or extra control flow give at this point.
|
|
CountedLoopNode* head = lpt->_head->as_CountedLoop();
|
|
for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
|
|
Node* n = lpt->_body.at(i);
|
|
if (n->outcnt() == 0) continue; // Ignore dead
|
|
if (n->is_Store()) {
|
|
if (store != NULL) {
|
|
msg = "multiple stores";
|
|
break;
|
|
}
|
|
int opc = n->Opcode();
|
|
if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
|
|
msg = "oop fills not handled";
|
|
break;
|
|
}
|
|
Node* value = n->in(MemNode::ValueIn);
|
|
if (!lpt->is_invariant(value)) {
|
|
msg = "variant store value";
|
|
} else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
|
|
msg = "not array address";
|
|
}
|
|
store = n;
|
|
store_value = value;
|
|
} else if (n->is_If() && n != head->loopexit()) {
|
|
msg = "extra control flow";
|
|
msg_node = n;
|
|
}
|
|
}
|
|
|
|
if (store == NULL) {
|
|
// No store in loop
|
|
return false;
|
|
}
|
|
|
|
if (msg == NULL && head->stride_con() != 1) {
|
|
// could handle negative strides too
|
|
if (head->stride_con() < 0) {
|
|
msg = "negative stride";
|
|
} else {
|
|
msg = "non-unit stride";
|
|
}
|
|
}
|
|
|
|
if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
|
|
msg = "can't handle store address";
|
|
msg_node = store->in(MemNode::Address);
|
|
}
|
|
|
|
if (msg == NULL &&
|
|
(!store->in(MemNode::Memory)->is_Phi() ||
|
|
store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
|
|
msg = "store memory isn't proper phi";
|
|
msg_node = store->in(MemNode::Memory);
|
|
}
|
|
|
|
// Make sure there is an appropriate fill routine
|
|
BasicType t = store->as_Mem()->memory_type();
|
|
const char* fill_name;
|
|
if (msg == NULL &&
|
|
StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
|
|
msg = "unsupported store";
|
|
msg_node = store;
|
|
}
|
|
|
|
if (msg != NULL) {
|
|
#ifndef PRODUCT
|
|
if (TraceOptimizeFill) {
|
|
tty->print_cr("not fill intrinsic candidate: %s", msg);
|
|
if (msg_node != NULL) msg_node->dump();
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// Make sure the address expression can be handled. It should be
|
|
// head->phi * elsize + con. head->phi might have a ConvI2L.
|
|
Node* elements[4];
|
|
Node* conv = NULL;
|
|
bool found_index = false;
|
|
int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
|
|
for (int e = 0; e < count; e++) {
|
|
Node* n = elements[e];
|
|
if (n->is_Con() && con == NULL) {
|
|
con = n;
|
|
} else if (n->Opcode() == Op_LShiftX && shift == NULL) {
|
|
Node* value = n->in(1);
|
|
#ifdef _LP64
|
|
if (value->Opcode() == Op_ConvI2L) {
|
|
conv = value;
|
|
value = value->in(1);
|
|
}
|
|
#endif
|
|
if (value != head->phi()) {
|
|
msg = "unhandled shift in address";
|
|
} else {
|
|
found_index = true;
|
|
shift = n;
|
|
assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
|
|
}
|
|
} else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
|
|
if (n->in(1) == head->phi()) {
|
|
found_index = true;
|
|
conv = n;
|
|
} else {
|
|
msg = "unhandled input to ConvI2L";
|
|
}
|
|
} else if (n == head->phi()) {
|
|
// no shift, check below for allowed cases
|
|
found_index = true;
|
|
} else {
|
|
msg = "unhandled node in address";
|
|
msg_node = n;
|
|
}
|
|
}
|
|
|
|
if (count == -1) {
|
|
msg = "malformed address expression";
|
|
msg_node = store;
|
|
}
|
|
|
|
if (!found_index) {
|
|
msg = "missing use of index";
|
|
}
|
|
|
|
// byte sized items won't have a shift
|
|
if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
|
|
msg = "can't find shift";
|
|
msg_node = store;
|
|
}
|
|
|
|
if (msg != NULL) {
|
|
#ifndef PRODUCT
|
|
if (TraceOptimizeFill) {
|
|
tty->print_cr("not fill intrinsic: %s", msg);
|
|
if (msg_node != NULL) msg_node->dump();
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
// No make sure all the other nodes in the loop can be handled
|
|
VectorSet ok(Thread::current()->resource_area());
|
|
|
|
// store related values are ok
|
|
ok.set(store->_idx);
|
|
ok.set(store->in(MemNode::Memory)->_idx);
|
|
|
|
// Loop structure is ok
|
|
ok.set(head->_idx);
|
|
ok.set(head->loopexit()->_idx);
|
|
ok.set(head->phi()->_idx);
|
|
ok.set(head->incr()->_idx);
|
|
ok.set(head->loopexit()->cmp_node()->_idx);
|
|
ok.set(head->loopexit()->in(1)->_idx);
|
|
|
|
// Address elements are ok
|
|
if (con) ok.set(con->_idx);
|
|
if (shift) ok.set(shift->_idx);
|
|
if (conv) ok.set(conv->_idx);
|
|
|
|
for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
|
|
Node* n = lpt->_body.at(i);
|
|
if (n->outcnt() == 0) continue; // Ignore dead
|
|
if (ok.test(n->_idx)) continue;
|
|
// Backedge projection is ok
|
|
if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
|
|
if (!n->is_AddP()) {
|
|
msg = "unhandled node";
|
|
msg_node = n;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Make sure no unexpected values are used outside the loop
|
|
for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
|
|
Node* n = lpt->_body.at(i);
|
|
// These values can be replaced with other nodes if they are used
|
|
// outside the loop.
|
|
if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
|
|
for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
|
|
Node* use = iter.get();
|
|
if (!lpt->_body.contains(use)) {
|
|
msg = "node is used outside loop";
|
|
// lpt->_body.dump();
|
|
msg_node = n;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
if (TraceOptimizeFill) {
|
|
if (msg != NULL) {
|
|
tty->print_cr("no fill intrinsic: %s", msg);
|
|
if (msg_node != NULL) msg_node->dump();
|
|
} else {
|
|
tty->print_cr("fill intrinsic for:");
|
|
}
|
|
store->dump();
|
|
if (Verbose) {
|
|
lpt->_body.dump();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return msg == NULL;
|
|
}
|
|
|
|
|
|
|
|
bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
|
|
// Only for counted inner loops
|
|
if (!lpt->is_counted() || !lpt->is_inner()) {
|
|
return false;
|
|
}
|
|
|
|
// Must have constant stride
|
|
CountedLoopNode* head = lpt->_head->as_CountedLoop();
|
|
if (!head->stride_is_con() || !head->is_normal_loop()) {
|
|
return false;
|
|
}
|
|
|
|
// Check that the body only contains a store of a loop invariant
|
|
// value that is indexed by the loop phi.
|
|
Node* store = NULL;
|
|
Node* store_value = NULL;
|
|
Node* shift = NULL;
|
|
Node* offset = NULL;
|
|
if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
|
|
return false;
|
|
}
|
|
|
|
// Now replace the whole loop body by a call to a fill routine that
|
|
// covers the same region as the loop.
|
|
Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
|
|
|
|
// Build an expression for the beginning of the copy region
|
|
Node* index = head->init_trip();
|
|
#ifdef _LP64
|
|
index = new (C, 2) ConvI2LNode(index);
|
|
_igvn.register_new_node_with_optimizer(index);
|
|
#endif
|
|
if (shift != NULL) {
|
|
// byte arrays don't require a shift but others do.
|
|
index = new (C, 3) LShiftXNode(index, shift->in(2));
|
|
_igvn.register_new_node_with_optimizer(index);
|
|
}
|
|
index = new (C, 4) AddPNode(base, base, index);
|
|
_igvn.register_new_node_with_optimizer(index);
|
|
Node* from = new (C, 4) AddPNode(base, index, offset);
|
|
_igvn.register_new_node_with_optimizer(from);
|
|
// Compute the number of elements to copy
|
|
Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
|
|
_igvn.register_new_node_with_optimizer(len);
|
|
|
|
BasicType t = store->as_Mem()->memory_type();
|
|
bool aligned = false;
|
|
if (offset != NULL && head->init_trip()->is_Con()) {
|
|
int element_size = type2aelembytes(t);
|
|
aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
|
|
}
|
|
|
|
// Build a call to the fill routine
|
|
const char* fill_name;
|
|
address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
|
|
assert(fill != NULL, "what?");
|
|
|
|
// Convert float/double to int/long for fill routines
|
|
if (t == T_FLOAT) {
|
|
store_value = new (C, 2) MoveF2INode(store_value);
|
|
_igvn.register_new_node_with_optimizer(store_value);
|
|
} else if (t == T_DOUBLE) {
|
|
store_value = new (C, 2) MoveD2LNode(store_value);
|
|
_igvn.register_new_node_with_optimizer(store_value);
|
|
}
|
|
|
|
Node* mem_phi = store->in(MemNode::Memory);
|
|
Node* result_ctrl;
|
|
Node* result_mem;
|
|
const TypeFunc* call_type = OptoRuntime::array_fill_Type();
|
|
int size = call_type->domain()->cnt();
|
|
CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
|
|
fill_name, TypeAryPtr::get_array_body_type(t));
|
|
call->init_req(TypeFunc::Parms+0, from);
|
|
call->init_req(TypeFunc::Parms+1, store_value);
|
|
#ifdef _LP64
|
|
len = new (C, 2) ConvI2LNode(len);
|
|
_igvn.register_new_node_with_optimizer(len);
|
|
#endif
|
|
call->init_req(TypeFunc::Parms+2, len);
|
|
#ifdef _LP64
|
|
call->init_req(TypeFunc::Parms+3, C->top());
|
|
#endif
|
|
call->init_req( TypeFunc::Control, head->init_control());
|
|
call->init_req( TypeFunc::I_O , C->top() ) ; // does no i/o
|
|
call->init_req( TypeFunc::Memory , mem_phi->in(LoopNode::EntryControl) );
|
|
call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
|
|
call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
|
|
_igvn.register_new_node_with_optimizer(call);
|
|
result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
|
|
_igvn.register_new_node_with_optimizer(result_ctrl);
|
|
result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
|
|
_igvn.register_new_node_with_optimizer(result_mem);
|
|
|
|
// If this fill is tightly coupled to an allocation and overwrites
|
|
// the whole body, allow it to take over the zeroing.
|
|
AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
|
|
if (alloc != NULL && alloc->is_AllocateArray()) {
|
|
Node* length = alloc->as_AllocateArray()->Ideal_length();
|
|
if (head->limit() == length &&
|
|
head->init_trip() == _igvn.intcon(0)) {
|
|
if (TraceOptimizeFill) {
|
|
tty->print_cr("Eliminated zeroing in allocation");
|
|
}
|
|
alloc->maybe_set_complete(&_igvn);
|
|
} else {
|
|
#ifdef ASSERT
|
|
if (TraceOptimizeFill) {
|
|
tty->print_cr("filling array but bounds don't match");
|
|
alloc->dump();
|
|
head->init_trip()->dump();
|
|
head->limit()->dump();
|
|
length->dump();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// Redirect the old control and memory edges that are outside the loop.
|
|
Node* exit = head->loopexit()->proj_out(0);
|
|
// Sometimes the memory phi of the head is used as the outgoing
|
|
// state of the loop. It's safe in this case to replace it with the
|
|
// result_mem.
|
|
_igvn.replace_node(store->in(MemNode::Memory), result_mem);
|
|
_igvn.replace_node(exit, result_ctrl);
|
|
_igvn.replace_node(store, result_mem);
|
|
// Any uses the increment outside of the loop become the loop limit.
|
|
_igvn.replace_node(head->incr(), head->limit());
|
|
|
|
// Disconnect the head from the loop.
|
|
for (uint i = 0; i < lpt->_body.size(); i++) {
|
|
Node* n = lpt->_body.at(i);
|
|
_igvn.replace_node(n, C->top());
|
|
}
|
|
|
|
return true;
|
|
}
|