cc8715d844
Reviewed-by: redestad, kbarrett
723 lines
24 KiB
C++
723 lines
24 KiB
C++
/*
|
|
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "utilities/bitMap.inline.hpp"
|
|
#include "utilities/copy.hpp"
|
|
#include "utilities/debug.hpp"
|
|
#include "utilities/population_count.hpp"
|
|
|
|
STATIC_ASSERT(sizeof(BitMap::bm_word_t) == BytesPerWord); // "Implementation assumption."
|
|
|
|
typedef BitMap::bm_word_t bm_word_t;
|
|
typedef BitMap::idx_t idx_t;
|
|
|
|
class ResourceBitMapAllocator : StackObj {
|
|
public:
|
|
bm_word_t* allocate(idx_t size_in_words) const {
|
|
return NEW_RESOURCE_ARRAY(bm_word_t, size_in_words);
|
|
}
|
|
void free(bm_word_t* map, idx_t size_in_words) const {
|
|
// Don't free resource allocated arrays.
|
|
}
|
|
};
|
|
|
|
class CHeapBitMapAllocator : StackObj {
|
|
MEMFLAGS _flags;
|
|
|
|
public:
|
|
CHeapBitMapAllocator(MEMFLAGS flags) : _flags(flags) {}
|
|
bm_word_t* allocate(size_t size_in_words) const {
|
|
return ArrayAllocator<bm_word_t>::allocate(size_in_words, _flags);
|
|
}
|
|
void free(bm_word_t* map, idx_t size_in_words) const {
|
|
ArrayAllocator<bm_word_t>::free(map, size_in_words);
|
|
}
|
|
};
|
|
|
|
class ArenaBitMapAllocator : StackObj {
|
|
Arena* _arena;
|
|
|
|
public:
|
|
ArenaBitMapAllocator(Arena* arena) : _arena(arena) {}
|
|
bm_word_t* allocate(idx_t size_in_words) const {
|
|
return (bm_word_t*)_arena->Amalloc(size_in_words * BytesPerWord);
|
|
}
|
|
void free(bm_word_t* map, idx_t size_in_words) const {
|
|
// ArenaBitMaps currently don't free memory.
|
|
}
|
|
};
|
|
|
|
template <class Allocator>
|
|
BitMap::bm_word_t* BitMap::reallocate(const Allocator& allocator, bm_word_t* old_map, idx_t old_size_in_bits, idx_t new_size_in_bits, bool clear) {
|
|
size_t old_size_in_words = calc_size_in_words(old_size_in_bits);
|
|
size_t new_size_in_words = calc_size_in_words(new_size_in_bits);
|
|
|
|
bm_word_t* map = NULL;
|
|
|
|
if (new_size_in_words > 0) {
|
|
map = allocator.allocate(new_size_in_words);
|
|
|
|
if (old_map != NULL) {
|
|
Copy::disjoint_words((HeapWord*)old_map, (HeapWord*) map,
|
|
MIN2(old_size_in_words, new_size_in_words));
|
|
}
|
|
|
|
if (clear && new_size_in_words > old_size_in_words) {
|
|
clear_range_of_words(map, old_size_in_words, new_size_in_words);
|
|
}
|
|
}
|
|
|
|
if (old_map != NULL) {
|
|
allocator.free(old_map, old_size_in_words);
|
|
}
|
|
|
|
return map;
|
|
}
|
|
|
|
template <class Allocator>
|
|
bm_word_t* BitMap::allocate(const Allocator& allocator, idx_t size_in_bits, bool clear) {
|
|
// Reuse reallocate to ensure that the new memory is cleared.
|
|
return reallocate(allocator, NULL, 0, size_in_bits, clear);
|
|
}
|
|
|
|
template <class Allocator>
|
|
void BitMap::free(const Allocator& allocator, bm_word_t* map, idx_t size_in_bits) {
|
|
bm_word_t* ret = reallocate(allocator, map, size_in_bits, 0);
|
|
assert(ret == NULL, "Reallocate shouldn't have allocated");
|
|
}
|
|
|
|
template <class Allocator>
|
|
void BitMap::resize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) {
|
|
bm_word_t* new_map = reallocate(allocator, map(), size(), new_size_in_bits, clear);
|
|
|
|
update(new_map, new_size_in_bits);
|
|
}
|
|
|
|
template <class Allocator>
|
|
void BitMap::initialize(const Allocator& allocator, idx_t size_in_bits, bool clear) {
|
|
assert(map() == NULL, "precondition");
|
|
assert(size() == 0, "precondition");
|
|
|
|
resize(allocator, size_in_bits, clear);
|
|
}
|
|
|
|
template <class Allocator>
|
|
void BitMap::reinitialize(const Allocator& allocator, idx_t new_size_in_bits, bool clear) {
|
|
// Remove previous bits - no need to clear
|
|
resize(allocator, 0, false /* clear */);
|
|
|
|
initialize(allocator, new_size_in_bits, clear);
|
|
}
|
|
|
|
ResourceBitMap::ResourceBitMap(idx_t size_in_bits, bool clear)
|
|
: BitMap(allocate(ResourceBitMapAllocator(), size_in_bits, clear), size_in_bits) {
|
|
}
|
|
|
|
void ResourceBitMap::resize(idx_t new_size_in_bits) {
|
|
BitMap::resize(ResourceBitMapAllocator(), new_size_in_bits, true /* clear */);
|
|
}
|
|
|
|
void ResourceBitMap::initialize(idx_t size_in_bits) {
|
|
BitMap::initialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */);
|
|
}
|
|
|
|
void ResourceBitMap::reinitialize(idx_t size_in_bits) {
|
|
BitMap::reinitialize(ResourceBitMapAllocator(), size_in_bits, true /* clear */);
|
|
}
|
|
|
|
ArenaBitMap::ArenaBitMap(Arena* arena, idx_t size_in_bits)
|
|
: BitMap(allocate(ArenaBitMapAllocator(arena), size_in_bits), size_in_bits) {
|
|
}
|
|
|
|
CHeapBitMap::CHeapBitMap(idx_t size_in_bits, MEMFLAGS flags, bool clear)
|
|
: BitMap(allocate(CHeapBitMapAllocator(flags), size_in_bits, clear), size_in_bits), _flags(flags) {
|
|
}
|
|
|
|
CHeapBitMap::~CHeapBitMap() {
|
|
free(CHeapBitMapAllocator(_flags), map(), size());
|
|
}
|
|
|
|
void CHeapBitMap::resize(idx_t new_size_in_bits, bool clear) {
|
|
BitMap::resize(CHeapBitMapAllocator(_flags), new_size_in_bits, clear);
|
|
}
|
|
|
|
void CHeapBitMap::initialize(idx_t size_in_bits, bool clear) {
|
|
BitMap::initialize(CHeapBitMapAllocator(_flags), size_in_bits, clear);
|
|
}
|
|
|
|
void CHeapBitMap::reinitialize(idx_t size_in_bits, bool clear) {
|
|
BitMap::reinitialize(CHeapBitMapAllocator(_flags), size_in_bits, clear);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
void BitMap::verify_size(idx_t size_in_bits) {
|
|
assert(size_in_bits <= max_size_in_bits(),
|
|
"out of bounds: " SIZE_FORMAT, size_in_bits);
|
|
}
|
|
|
|
void BitMap::verify_index(idx_t bit) const {
|
|
assert(bit < _size,
|
|
"BitMap index out of bounds: " SIZE_FORMAT " >= " SIZE_FORMAT,
|
|
bit, _size);
|
|
}
|
|
|
|
void BitMap::verify_limit(idx_t bit) const {
|
|
assert(bit <= _size,
|
|
"BitMap limit out of bounds: " SIZE_FORMAT " > " SIZE_FORMAT,
|
|
bit, _size);
|
|
}
|
|
|
|
void BitMap::verify_range(idx_t beg, idx_t end) const {
|
|
assert(beg <= end,
|
|
"BitMap range error: " SIZE_FORMAT " > " SIZE_FORMAT, beg, end);
|
|
verify_limit(end);
|
|
}
|
|
#endif // #ifdef ASSERT
|
|
|
|
void BitMap::pretouch() {
|
|
os::pretouch_memory(word_addr(0), word_addr(size()));
|
|
}
|
|
|
|
void BitMap::set_range_within_word(idx_t beg, idx_t end) {
|
|
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
if (beg != end) {
|
|
bm_word_t mask = inverted_bit_mask_for_range(beg, end);
|
|
*word_addr(beg) |= ~mask;
|
|
}
|
|
}
|
|
|
|
void BitMap::clear_range_within_word(idx_t beg, idx_t end) {
|
|
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
if (beg != end) {
|
|
bm_word_t mask = inverted_bit_mask_for_range(beg, end);
|
|
*word_addr(beg) &= mask;
|
|
}
|
|
}
|
|
|
|
void BitMap::par_put_range_within_word(idx_t beg, idx_t end, bool value) {
|
|
assert(value == 0 || value == 1, "0 for clear, 1 for set");
|
|
// With a valid range (beg <= end), this test ensures that end != 0, as
|
|
// required by inverted_bit_mask_for_range. Also avoids an unnecessary write.
|
|
if (beg != end) {
|
|
bm_word_t* pw = word_addr(beg);
|
|
bm_word_t w = *pw;
|
|
bm_word_t mr = inverted_bit_mask_for_range(beg, end);
|
|
bm_word_t nw = value ? (w | ~mr) : (w & mr);
|
|
while (true) {
|
|
bm_word_t res = Atomic::cmpxchg(pw, w, nw);
|
|
if (res == w) break;
|
|
w = res;
|
|
nw = value ? (w | ~mr) : (w & mr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BitMap::set_range(idx_t beg, idx_t end) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = to_words_align_up(beg);
|
|
idx_t end_full_word = to_words_align_down(end);
|
|
|
|
if (beg_full_word < end_full_word) {
|
|
// The range includes at least one full word.
|
|
set_range_within_word(beg, bit_index(beg_full_word));
|
|
set_range_of_words(beg_full_word, end_full_word);
|
|
set_range_within_word(bit_index(end_full_word), end);
|
|
} else {
|
|
// The range spans at most 2 partial words.
|
|
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
set_range_within_word(beg, boundary);
|
|
set_range_within_word(boundary, end);
|
|
}
|
|
}
|
|
|
|
void BitMap::clear_range(idx_t beg, idx_t end) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = to_words_align_up(beg);
|
|
idx_t end_full_word = to_words_align_down(end);
|
|
|
|
if (beg_full_word < end_full_word) {
|
|
// The range includes at least one full word.
|
|
clear_range_within_word(beg, bit_index(beg_full_word));
|
|
clear_range_of_words(beg_full_word, end_full_word);
|
|
clear_range_within_word(bit_index(end_full_word), end);
|
|
} else {
|
|
// The range spans at most 2 partial words.
|
|
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
clear_range_within_word(beg, boundary);
|
|
clear_range_within_word(boundary, end);
|
|
}
|
|
}
|
|
|
|
bool BitMap::is_small_range_of_words(idx_t beg_full_word, idx_t end_full_word) {
|
|
// There is little point to call large version on small ranges.
|
|
// Need to check carefully, keeping potential idx_t over/underflow in mind,
|
|
// because beg_full_word > end_full_word can occur when beg and end are in
|
|
// the same word.
|
|
// The threshold should be at least one word.
|
|
STATIC_ASSERT(small_range_words >= 1);
|
|
return beg_full_word + small_range_words >= end_full_word;
|
|
}
|
|
|
|
void BitMap::set_large_range(idx_t beg, idx_t end) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = to_words_align_up(beg);
|
|
idx_t end_full_word = to_words_align_down(end);
|
|
|
|
if (is_small_range_of_words(beg_full_word, end_full_word)) {
|
|
set_range(beg, end);
|
|
return;
|
|
}
|
|
|
|
// The range includes at least one full word.
|
|
set_range_within_word(beg, bit_index(beg_full_word));
|
|
set_large_range_of_words(beg_full_word, end_full_word);
|
|
set_range_within_word(bit_index(end_full_word), end);
|
|
}
|
|
|
|
void BitMap::clear_large_range(idx_t beg, idx_t end) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = to_words_align_up(beg);
|
|
idx_t end_full_word = to_words_align_down(end);
|
|
|
|
if (is_small_range_of_words(beg_full_word, end_full_word)) {
|
|
clear_range(beg, end);
|
|
return;
|
|
}
|
|
|
|
// The range includes at least one full word.
|
|
clear_range_within_word(beg, bit_index(beg_full_word));
|
|
clear_large_range_of_words(beg_full_word, end_full_word);
|
|
clear_range_within_word(bit_index(end_full_word), end);
|
|
}
|
|
|
|
void BitMap::at_put(idx_t offset, bool value) {
|
|
if (value) {
|
|
set_bit(offset);
|
|
} else {
|
|
clear_bit(offset);
|
|
}
|
|
}
|
|
|
|
// Return true to indicate that this thread changed
|
|
// the bit, false to indicate that someone else did.
|
|
// In either case, the requested bit is in the
|
|
// requested state some time during the period that
|
|
// this thread is executing this call. More importantly,
|
|
// if no other thread is executing an action to
|
|
// change the requested bit to a state other than
|
|
// the one that this thread is trying to set it to,
|
|
// then the the bit is in the expected state
|
|
// at exit from this method. However, rather than
|
|
// make such a strong assertion here, based on
|
|
// assuming such constrained use (which though true
|
|
// today, could change in the future to service some
|
|
// funky parallel algorithm), we encourage callers
|
|
// to do such verification, as and when appropriate.
|
|
bool BitMap::par_at_put(idx_t bit, bool value) {
|
|
return value ? par_set_bit(bit) : par_clear_bit(bit);
|
|
}
|
|
|
|
void BitMap::at_put_range(idx_t start_offset, idx_t end_offset, bool value) {
|
|
if (value) {
|
|
set_range(start_offset, end_offset);
|
|
} else {
|
|
clear_range(start_offset, end_offset);
|
|
}
|
|
}
|
|
|
|
void BitMap::par_at_put_range(idx_t beg, idx_t end, bool value) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = to_words_align_up(beg);
|
|
idx_t end_full_word = to_words_align_down(end);
|
|
|
|
if (beg_full_word < end_full_word) {
|
|
// The range includes at least one full word.
|
|
par_put_range_within_word(beg, bit_index(beg_full_word), value);
|
|
if (value) {
|
|
set_range_of_words(beg_full_word, end_full_word);
|
|
} else {
|
|
clear_range_of_words(beg_full_word, end_full_word);
|
|
}
|
|
par_put_range_within_word(bit_index(end_full_word), end, value);
|
|
} else {
|
|
// The range spans at most 2 partial words.
|
|
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
par_put_range_within_word(beg, boundary, value);
|
|
par_put_range_within_word(boundary, end, value);
|
|
}
|
|
|
|
}
|
|
|
|
void BitMap::at_put_large_range(idx_t beg, idx_t end, bool value) {
|
|
if (value) {
|
|
set_large_range(beg, end);
|
|
} else {
|
|
clear_large_range(beg, end);
|
|
}
|
|
}
|
|
|
|
void BitMap::par_at_put_large_range(idx_t beg, idx_t end, bool value) {
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = to_words_align_up(beg);
|
|
idx_t end_full_word = to_words_align_down(end);
|
|
|
|
if (is_small_range_of_words(beg_full_word, end_full_word)) {
|
|
par_at_put_range(beg, end, value);
|
|
return;
|
|
}
|
|
|
|
// The range includes at least one full word.
|
|
par_put_range_within_word(beg, bit_index(beg_full_word), value);
|
|
if (value) {
|
|
set_large_range_of_words(beg_full_word, end_full_word);
|
|
} else {
|
|
clear_large_range_of_words(beg_full_word, end_full_word);
|
|
}
|
|
par_put_range_within_word(bit_index(end_full_word), end, value);
|
|
}
|
|
|
|
inline bm_word_t tail_mask(idx_t tail_bits) {
|
|
assert(tail_bits != 0, "precondition"); // Works, but shouldn't be called.
|
|
assert(tail_bits < (idx_t)BitsPerWord, "precondition");
|
|
return (bm_word_t(1) << tail_bits) - 1;
|
|
}
|
|
|
|
// Get the low tail_bits of value, which is the last partial word of a map.
|
|
inline bm_word_t tail_of_map(bm_word_t value, idx_t tail_bits) {
|
|
return value & tail_mask(tail_bits);
|
|
}
|
|
|
|
// Compute the new last word of a map with a non-aligned length.
|
|
// new_value has the new trailing bits of the map in the low tail_bits.
|
|
// old_value is the last word of the map, including bits beyond the end.
|
|
// Returns old_value with the low tail_bits replaced by the corresponding
|
|
// bits in new_value.
|
|
inline bm_word_t merge_tail_of_map(bm_word_t new_value,
|
|
bm_word_t old_value,
|
|
idx_t tail_bits) {
|
|
bm_word_t mask = tail_mask(tail_bits);
|
|
return (new_value & mask) | (old_value & ~mask);
|
|
}
|
|
|
|
bool BitMap::contains(const BitMap& other) const {
|
|
assert(size() == other.size(), "must have same size");
|
|
const bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
// false if other bitmap has bits set which are clear in this bitmap.
|
|
if ((~dest_map[index] & other_map[index]) != 0) return false;
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
// true unless there is a partial-word tail in which the other
|
|
// bitmap has bits set which are clear in this bitmap.
|
|
return (rest == 0) || tail_of_map(~dest_map[limit] & other_map[limit], rest) == 0;
|
|
}
|
|
|
|
bool BitMap::intersects(const BitMap& other) const {
|
|
assert(size() == other.size(), "must have same size");
|
|
const bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
if ((dest_map[index] & other_map[index]) != 0) return true;
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
// false unless there is a partial-word tail with non-empty intersection.
|
|
return (rest > 0) && tail_of_map(dest_map[limit] & other_map[limit], rest) != 0;
|
|
}
|
|
|
|
void BitMap::set_union(const BitMap& other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
dest_map[index] |= other_map[index];
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
if (rest > 0) {
|
|
bm_word_t orig = dest_map[limit];
|
|
dest_map[limit] = merge_tail_of_map(orig | other_map[limit], orig, rest);
|
|
}
|
|
}
|
|
|
|
void BitMap::set_difference(const BitMap& other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
dest_map[index] &= ~other_map[index];
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
if (rest > 0) {
|
|
bm_word_t orig = dest_map[limit];
|
|
dest_map[limit] = merge_tail_of_map(orig & ~other_map[limit], orig, rest);
|
|
}
|
|
}
|
|
|
|
void BitMap::set_intersection(const BitMap& other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
dest_map[index] &= other_map[index];
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
if (rest > 0) {
|
|
bm_word_t orig = dest_map[limit];
|
|
dest_map[limit] = merge_tail_of_map(orig & other_map[limit], orig, rest);
|
|
}
|
|
}
|
|
|
|
bool BitMap::set_union_with_result(const BitMap& other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bool changed = false;
|
|
bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
bm_word_t orig = dest_map[index];
|
|
bm_word_t temp = orig | other_map[index];
|
|
changed = changed || (temp != orig);
|
|
dest_map[index] = temp;
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
if (rest > 0) {
|
|
bm_word_t orig = dest_map[limit];
|
|
bm_word_t temp = merge_tail_of_map(orig | other_map[limit], orig, rest);
|
|
changed = changed || (temp != orig);
|
|
dest_map[limit] = temp;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
bool BitMap::set_difference_with_result(const BitMap& other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bool changed = false;
|
|
bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
bm_word_t orig = dest_map[index];
|
|
bm_word_t temp = orig & ~other_map[index];
|
|
changed = changed || (temp != orig);
|
|
dest_map[index] = temp;
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
if (rest > 0) {
|
|
bm_word_t orig = dest_map[limit];
|
|
bm_word_t temp = merge_tail_of_map(orig & ~other_map[limit], orig, rest);
|
|
changed = changed || (temp != orig);
|
|
dest_map[limit] = temp;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
bool BitMap::set_intersection_with_result(const BitMap& other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bool changed = false;
|
|
bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
bm_word_t orig = dest_map[index];
|
|
bm_word_t temp = orig & other_map[index];
|
|
changed = changed || (temp != orig);
|
|
dest_map[index] = temp;
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
if (rest > 0) {
|
|
bm_word_t orig = dest_map[limit];
|
|
bm_word_t temp = merge_tail_of_map(orig & other_map[limit], orig, rest);
|
|
changed = changed || (temp != orig);
|
|
dest_map[limit] = temp;
|
|
}
|
|
return changed;
|
|
}
|
|
|
|
void BitMap::set_from(const BitMap& other) {
|
|
assert(size() == other.size(), "must have same size");
|
|
bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t copy_words = to_words_align_down(size());
|
|
Copy::disjoint_words((HeapWord*)other_map, (HeapWord*)dest_map, copy_words);
|
|
idx_t rest = bit_in_word(size());
|
|
if (rest > 0) {
|
|
dest_map[copy_words] = merge_tail_of_map(other_map[copy_words],
|
|
dest_map[copy_words],
|
|
rest);
|
|
}
|
|
}
|
|
|
|
bool BitMap::is_same(const BitMap& other) const {
|
|
assert(size() == other.size(), "must have same size");
|
|
const bm_word_t* dest_map = map();
|
|
const bm_word_t* other_map = other.map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
if (dest_map[index] != other_map[index]) return false;
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
return (rest == 0) || (tail_of_map(dest_map[limit] ^ other_map[limit], rest) == 0);
|
|
}
|
|
|
|
bool BitMap::is_full() const {
|
|
const bm_word_t* words = map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
if (~words[index] != 0) return false;
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
return (rest == 0) || (tail_of_map(~words[limit], rest) == 0);
|
|
}
|
|
|
|
bool BitMap::is_empty() const {
|
|
const bm_word_t* words = map();
|
|
idx_t limit = to_words_align_down(size());
|
|
for (idx_t index = 0; index < limit; ++index) {
|
|
if (words[index] != 0) return false;
|
|
}
|
|
idx_t rest = bit_in_word(size());
|
|
return (rest == 0) || (tail_of_map(words[limit], rest) == 0);
|
|
}
|
|
|
|
void BitMap::clear_large() {
|
|
clear_large_range_of_words(0, size_in_words());
|
|
}
|
|
|
|
// Note that if the closure itself modifies the bitmap
|
|
// then modifications in and to the left of the _bit_ being
|
|
// currently sampled will not be seen. Note also that the
|
|
// interval [leftOffset, rightOffset) is right open.
|
|
bool BitMap::iterate(BitMapClosure* blk, idx_t leftOffset, idx_t rightOffset) {
|
|
verify_range(leftOffset, rightOffset);
|
|
|
|
idx_t startIndex = to_words_align_down(leftOffset);
|
|
idx_t endIndex = to_words_align_up(rightOffset);
|
|
for (idx_t index = startIndex, offset = leftOffset;
|
|
offset < rightOffset && index < endIndex;
|
|
offset = (++index) << LogBitsPerWord) {
|
|
idx_t rest = map(index) >> (offset & (BitsPerWord - 1));
|
|
for (; offset < rightOffset && rest != 0; offset++) {
|
|
if (rest & 1) {
|
|
if (!blk->do_bit(offset)) return false;
|
|
// resample at each closure application
|
|
// (see, for instance, CMS bug 4525989)
|
|
rest = map(index) >> (offset & (BitsPerWord -1));
|
|
}
|
|
rest = rest >> 1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
BitMap::idx_t BitMap::count_one_bits_in_range_of_words(idx_t beg_full_word, idx_t end_full_word) const {
|
|
idx_t sum = 0;
|
|
for (idx_t i = beg_full_word; i < end_full_word; i++) {
|
|
bm_word_t w = map()[i];
|
|
sum += population_count(w);
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
BitMap::idx_t BitMap::count_one_bits_within_word(idx_t beg, idx_t end) const {
|
|
if (beg != end) {
|
|
assert(end > beg, "must be");
|
|
bm_word_t mask = ~inverted_bit_mask_for_range(beg, end);
|
|
bm_word_t w = *word_addr(beg);
|
|
w &= mask;
|
|
return population_count(w);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
BitMap::idx_t BitMap::count_one_bits() const {
|
|
return count_one_bits_in_range_of_words(0, size_in_words());
|
|
}
|
|
|
|
// Returns the number of bits set within [beg, end).
|
|
BitMap::idx_t BitMap::count_one_bits(idx_t beg, idx_t end) const {
|
|
|
|
verify_range(beg, end);
|
|
|
|
idx_t beg_full_word = to_words_align_up(beg);
|
|
idx_t end_full_word = to_words_align_down(end);
|
|
|
|
idx_t sum = 0;
|
|
|
|
if (beg_full_word < end_full_word) {
|
|
// The range includes at least one full word.
|
|
sum += count_one_bits_within_word(beg, bit_index(beg_full_word));
|
|
sum += count_one_bits_in_range_of_words(beg_full_word, end_full_word);
|
|
sum += count_one_bits_within_word(bit_index(end_full_word), end);
|
|
} else {
|
|
// The range spans at most 2 partial words.
|
|
idx_t boundary = MIN2(bit_index(beg_full_word), end);
|
|
sum += count_one_bits_within_word(beg, boundary);
|
|
sum += count_one_bits_within_word(boundary, end);
|
|
}
|
|
|
|
assert(sum <= (beg - end), "must be");
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
void BitMap::print_on_error(outputStream* st, const char* prefix) const {
|
|
st->print_cr("%s[" PTR_FORMAT ", " PTR_FORMAT ")",
|
|
prefix, p2i(map()), p2i((char*)map() + (size() >> LogBitsPerByte)));
|
|
}
|
|
|
|
void BitMap::write_to(bm_word_t* buffer, size_t buffer_size_in_bytes) const {
|
|
assert(buffer_size_in_bytes == size_in_bytes(), "must be");
|
|
memcpy(buffer, _map, size_in_bytes());
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void BitMap::print_on(outputStream* st) const {
|
|
tty->print("Bitmap(" SIZE_FORMAT "):", size());
|
|
for (idx_t index = 0; index < size(); index++) {
|
|
tty->print("%c", at(index) ? '1' : '0');
|
|
}
|
|
tty->cr();
|
|
}
|
|
|
|
#endif
|