08855df46a
Reviewed-by: vlivanov, erikj, mseledtsov, gthornbr
162 lines
5.8 KiB
Java
162 lines
5.8 KiB
Java
/*
|
|
* Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
package nsk.share.locks;
|
|
|
|
import java.util.*;
|
|
import nsk.share.TestBug;
|
|
import nsk.share.Wicket;
|
|
|
|
/*
|
|
* Class used to create deadlocked threads. It is possible create 2 or more deadlocked thread, also
|
|
* is is possible to specify resource of which type should lock each deadlocked thread
|
|
*/
|
|
public class DeadlockMaker {
|
|
// create deadlock with 2 threads
|
|
// lockType1 and lockType2 - type of locking resources used for deadlock creation
|
|
public static DeadlockedThread[] createDeadlockedThreads(LockType lockType1, LockType lockType2) {
|
|
DeadlockedThread[] resultThreads = new DeadlockedThread[2];
|
|
|
|
Wicket step1 = new Wicket();
|
|
Wicket step2 = new Wicket();
|
|
|
|
Wicket readyWicket = new Wicket(2);
|
|
|
|
DeadlockLocker locker1 = createLocker(lockType1, step1, step2, readyWicket);
|
|
DeadlockLocker locker2 = createLocker(lockType2, step2, step1, readyWicket);
|
|
locker1.setInner(locker2);
|
|
locker2.setInner(locker1);
|
|
|
|
resultThreads[0] = new DeadlockedThread(locker1);
|
|
resultThreads[1] = new DeadlockedThread(locker2);
|
|
|
|
resultThreads[0].start();
|
|
resultThreads[1].start();
|
|
|
|
readyWicket.waitFor();
|
|
|
|
// additional check to be sure that all threads really blocked
|
|
waitForDeadlock(resultThreads);
|
|
|
|
return resultThreads;
|
|
}
|
|
|
|
// create deadlock with several threads
|
|
// locksTypes - type of locking resources used for deadlock creation
|
|
public static DeadlockedThread[] createDeadlockedThreads(List<LockType> locksTypes) {
|
|
if (locksTypes.size() < 2) {
|
|
throw new IllegalArgumentException("Need at least 2 threads for deadlock");
|
|
}
|
|
|
|
int threadsNumber = locksTypes.size();
|
|
|
|
DeadlockedThread[] resultThreads = new DeadlockedThread[threadsNumber];
|
|
|
|
Wicket readyWicket = new Wicket(threadsNumber);
|
|
|
|
DeadlockLocker deadlockLockers[] = new DeadlockLocker[threadsNumber];
|
|
Wicket stepWickets[] = new Wicket[threadsNumber];
|
|
|
|
for (int i = 0; i < threadsNumber; i++)
|
|
stepWickets[i] = new Wicket();
|
|
|
|
int index1 = 0;
|
|
int index2 = 1;
|
|
for (int i = 0; i < threadsNumber; i++) {
|
|
Wicket step1 = stepWickets[index1];
|
|
Wicket step2 = stepWickets[index2];
|
|
|
|
deadlockLockers[i] = createLocker(locksTypes.get(i), step1, step2, readyWicket);
|
|
|
|
if (i > 0)
|
|
deadlockLockers[i - 1].setInner(deadlockLockers[i]);
|
|
|
|
index1 = (index1 + 1) % threadsNumber;
|
|
index2 = (index2 + 1) % threadsNumber;
|
|
}
|
|
deadlockLockers[threadsNumber - 1].setInner(deadlockLockers[0]);
|
|
|
|
for (int i = 0; i < threadsNumber; i++) {
|
|
resultThreads[i] = new DeadlockedThread(deadlockLockers[i]);
|
|
resultThreads[i].start();
|
|
}
|
|
|
|
readyWicket.waitFor();
|
|
|
|
// additional check to be sure that all threads really blocked
|
|
waitForDeadlock(resultThreads);
|
|
|
|
return resultThreads;
|
|
}
|
|
|
|
/*
|
|
* Wait when thread state will change to be sure that deadlock is really created
|
|
*/
|
|
static private void waitForDeadlock(DeadlockedThread[] threads) {
|
|
Set<Thread.State> targetStates = new HashSet<Thread.State>();
|
|
|
|
// thread is waiting for a monitor lock to enter a synchronized block/method
|
|
targetStates.add(Thread.State.BLOCKED);
|
|
|
|
// thread calls LockSupport.park
|
|
targetStates.add(Thread.State.WAITING);
|
|
|
|
// thread calls LockSupport.parkNanos or LockSupport.parkUntil
|
|
targetStates.add(Thread.State.TIMED_WAITING);
|
|
|
|
for (Thread thread : threads) {
|
|
while (!targetStates.contains(thread.getState())) {
|
|
sleep(100);
|
|
}
|
|
}
|
|
}
|
|
|
|
static private void sleep(long millis) {
|
|
try {
|
|
Thread.sleep(millis);
|
|
} catch (InterruptedException e) {
|
|
System.out.println("Unexpected exception: " + e);
|
|
e.printStackTrace(System.out);
|
|
|
|
TestBug testBugException = new TestBug("Unexpected exception was throw: " + e);
|
|
testBugException.initCause(e);
|
|
throw testBugException;
|
|
}
|
|
}
|
|
|
|
// create locker with given type
|
|
public static DeadlockLocker createLocker(LockType type, Wicket step1, Wicket step2, Wicket readyWicket) {
|
|
switch (type) {
|
|
case SYNCHRONIZED_METHOD:
|
|
return new SynchronizedMethodLocker(step1, step2, readyWicket);
|
|
case SYNCHRONIZED_BLOCK:
|
|
return new SynchronizedBlockLocker(step1, step2, readyWicket);
|
|
case REENTRANT_LOCK:
|
|
return new ReentrantLockLocker(step1, step2, readyWicket);
|
|
case JNI_LOCK:
|
|
return new JNIMonitorLocker(step1, step2, readyWicket);
|
|
}
|
|
|
|
throw new IllegalArgumentException("Unsupported lock type: " + type);
|
|
}
|
|
}
|