c496c05376
Reviewed-by: coleenp
1760 lines
78 KiB
C++
1760 lines
78 KiB
C++
/*
|
|
* Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
|
|
#define CPU_X86_VM_MACROASSEMBLER_X86_HPP
|
|
|
|
#include "asm/assembler.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "runtime/rtmLocking.hpp"
|
|
|
|
// MacroAssembler extends Assembler by frequently used macros.
|
|
//
|
|
// Instructions for which a 'better' code sequence exists depending
|
|
// on arguments should also go in here.
|
|
|
|
class MacroAssembler: public Assembler {
|
|
friend class LIR_Assembler;
|
|
friend class Runtime1; // as_Address()
|
|
|
|
protected:
|
|
|
|
Address as_Address(AddressLiteral adr);
|
|
Address as_Address(ArrayAddress adr);
|
|
|
|
// Support for VM calls
|
|
//
|
|
// This is the base routine called by the different versions of call_VM_leaf. The interpreter
|
|
// may customize this version by overriding it for its purposes (e.g., to save/restore
|
|
// additional registers when doing a VM call).
|
|
|
|
virtual void call_VM_leaf_base(
|
|
address entry_point, // the entry point
|
|
int number_of_arguments // the number of arguments to pop after the call
|
|
);
|
|
|
|
// This is the base routine called by the different versions of call_VM. The interpreter
|
|
// may customize this version by overriding it for its purposes (e.g., to save/restore
|
|
// additional registers when doing a VM call).
|
|
//
|
|
// If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
|
|
// returns the register which contains the thread upon return. If a thread register has been
|
|
// specified, the return value will correspond to that register. If no last_java_sp is specified
|
|
// (noreg) than rsp will be used instead.
|
|
virtual void call_VM_base( // returns the register containing the thread upon return
|
|
Register oop_result, // where an oop-result ends up if any; use noreg otherwise
|
|
Register java_thread, // the thread if computed before ; use noreg otherwise
|
|
Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
|
|
address entry_point, // the entry point
|
|
int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
|
|
bool check_exceptions // whether to check for pending exceptions after return
|
|
);
|
|
|
|
void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
|
|
|
|
// helpers for FPU flag access
|
|
// tmp is a temporary register, if none is available use noreg
|
|
void save_rax (Register tmp);
|
|
void restore_rax(Register tmp);
|
|
|
|
public:
|
|
MacroAssembler(CodeBuffer* code) : Assembler(code) {}
|
|
|
|
// These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
|
|
// The implementation is only non-empty for the InterpreterMacroAssembler,
|
|
// as only the interpreter handles PopFrame and ForceEarlyReturn requests.
|
|
virtual void check_and_handle_popframe(Register java_thread);
|
|
virtual void check_and_handle_earlyret(Register java_thread);
|
|
|
|
// Support for NULL-checks
|
|
//
|
|
// Generates code that causes a NULL OS exception if the content of reg is NULL.
|
|
// If the accessed location is M[reg + offset] and the offset is known, provide the
|
|
// offset. No explicit code generation is needed if the offset is within a certain
|
|
// range (0 <= offset <= page_size).
|
|
|
|
void null_check(Register reg, int offset = -1);
|
|
static bool needs_explicit_null_check(intptr_t offset);
|
|
|
|
// Required platform-specific helpers for Label::patch_instructions.
|
|
// They _shadow_ the declarations in AbstractAssembler, which are undefined.
|
|
void pd_patch_instruction(address branch, address target) {
|
|
unsigned char op = branch[0];
|
|
assert(op == 0xE8 /* call */ ||
|
|
op == 0xE9 /* jmp */ ||
|
|
op == 0xEB /* short jmp */ ||
|
|
(op & 0xF0) == 0x70 /* short jcc */ ||
|
|
op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
|
|
op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
|
|
"Invalid opcode at patch point");
|
|
|
|
if (op == 0xEB || (op & 0xF0) == 0x70) {
|
|
// short offset operators (jmp and jcc)
|
|
char* disp = (char*) &branch[1];
|
|
int imm8 = target - (address) &disp[1];
|
|
guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
|
|
*disp = imm8;
|
|
} else {
|
|
int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
|
|
int imm32 = target - (address) &disp[1];
|
|
*disp = imm32;
|
|
}
|
|
}
|
|
|
|
// The following 4 methods return the offset of the appropriate move instruction
|
|
|
|
// Support for fast byte/short loading with zero extension (depending on particular CPU)
|
|
int load_unsigned_byte(Register dst, Address src);
|
|
int load_unsigned_short(Register dst, Address src);
|
|
|
|
// Support for fast byte/short loading with sign extension (depending on particular CPU)
|
|
int load_signed_byte(Register dst, Address src);
|
|
int load_signed_short(Register dst, Address src);
|
|
|
|
// Support for sign-extension (hi:lo = extend_sign(lo))
|
|
void extend_sign(Register hi, Register lo);
|
|
|
|
// Load and store values by size and signed-ness
|
|
void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
|
|
void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
|
|
|
|
// Support for inc/dec with optimal instruction selection depending on value
|
|
|
|
void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
|
|
void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
|
|
|
|
void decrementl(Address dst, int value = 1);
|
|
void decrementl(Register reg, int value = 1);
|
|
|
|
void decrementq(Register reg, int value = 1);
|
|
void decrementq(Address dst, int value = 1);
|
|
|
|
void incrementl(Address dst, int value = 1);
|
|
void incrementl(Register reg, int value = 1);
|
|
|
|
void incrementq(Register reg, int value = 1);
|
|
void incrementq(Address dst, int value = 1);
|
|
|
|
// special instructions for EVEX
|
|
void setvectmask(Register dst, Register src);
|
|
void restorevectmask();
|
|
|
|
// Support optimal SSE move instructions.
|
|
void movflt(XMMRegister dst, XMMRegister src) {
|
|
if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
|
|
else { movss (dst, src); return; }
|
|
}
|
|
void movflt(XMMRegister dst, Address src) { movss(dst, src); }
|
|
void movflt(XMMRegister dst, AddressLiteral src);
|
|
void movflt(Address dst, XMMRegister src) { movss(dst, src); }
|
|
|
|
void movdbl(XMMRegister dst, XMMRegister src) {
|
|
if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
|
|
else { movsd (dst, src); return; }
|
|
}
|
|
|
|
void movdbl(XMMRegister dst, AddressLiteral src);
|
|
|
|
void movdbl(XMMRegister dst, Address src) {
|
|
if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
|
|
else { movlpd(dst, src); return; }
|
|
}
|
|
void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
|
|
|
|
void incrementl(AddressLiteral dst);
|
|
void incrementl(ArrayAddress dst);
|
|
|
|
void incrementq(AddressLiteral dst);
|
|
|
|
// Alignment
|
|
void align(int modulus);
|
|
void align(int modulus, int target);
|
|
|
|
// A 5 byte nop that is safe for patching (see patch_verified_entry)
|
|
void fat_nop();
|
|
|
|
// Stack frame creation/removal
|
|
void enter();
|
|
void leave();
|
|
|
|
// Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
|
|
// The pointer will be loaded into the thread register.
|
|
void get_thread(Register thread);
|
|
|
|
|
|
// Support for VM calls
|
|
//
|
|
// It is imperative that all calls into the VM are handled via the call_VM macros.
|
|
// They make sure that the stack linkage is setup correctly. call_VM's correspond
|
|
// to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
|
|
|
|
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions = true);
|
|
|
|
// Overloadings with last_Java_sp
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
int number_of_arguments = 0,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, bool
|
|
check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2,
|
|
bool check_exceptions = true);
|
|
void call_VM(Register oop_result,
|
|
Register last_java_sp,
|
|
address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3,
|
|
bool check_exceptions = true);
|
|
|
|
void get_vm_result (Register oop_result, Register thread);
|
|
void get_vm_result_2(Register metadata_result, Register thread);
|
|
|
|
// These always tightly bind to MacroAssembler::call_VM_base
|
|
// bypassing the virtual implementation
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
|
|
void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
|
|
|
|
void call_VM_leaf0(address entry_point);
|
|
void call_VM_leaf(address entry_point,
|
|
int number_of_arguments = 0);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1, Register arg_2);
|
|
void call_VM_leaf(address entry_point,
|
|
Register arg_1, Register arg_2, Register arg_3);
|
|
|
|
// These always tightly bind to MacroAssembler::call_VM_leaf_base
|
|
// bypassing the virtual implementation
|
|
void super_call_VM_leaf(address entry_point);
|
|
void super_call_VM_leaf(address entry_point, Register arg_1);
|
|
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
|
|
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
|
|
void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
|
|
|
|
// last Java Frame (fills frame anchor)
|
|
void set_last_Java_frame(Register thread,
|
|
Register last_java_sp,
|
|
Register last_java_fp,
|
|
address last_java_pc);
|
|
|
|
// thread in the default location (r15_thread on 64bit)
|
|
void set_last_Java_frame(Register last_java_sp,
|
|
Register last_java_fp,
|
|
address last_java_pc);
|
|
|
|
void reset_last_Java_frame(Register thread, bool clear_fp);
|
|
|
|
// thread in the default location (r15_thread on 64bit)
|
|
void reset_last_Java_frame(bool clear_fp);
|
|
|
|
// Stores
|
|
void store_check(Register obj); // store check for obj - register is destroyed afterwards
|
|
void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
|
|
|
|
void resolve_jobject(Register value, Register thread, Register tmp);
|
|
void clear_jweak_tag(Register possibly_jweak);
|
|
|
|
#if INCLUDE_ALL_GCS
|
|
|
|
void g1_write_barrier_pre(Register obj,
|
|
Register pre_val,
|
|
Register thread,
|
|
Register tmp,
|
|
bool tosca_live,
|
|
bool expand_call);
|
|
|
|
void g1_write_barrier_post(Register store_addr,
|
|
Register new_val,
|
|
Register thread,
|
|
Register tmp,
|
|
Register tmp2);
|
|
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
// C 'boolean' to Java boolean: x == 0 ? 0 : 1
|
|
void c2bool(Register x);
|
|
|
|
// C++ bool manipulation
|
|
|
|
void movbool(Register dst, Address src);
|
|
void movbool(Address dst, bool boolconst);
|
|
void movbool(Address dst, Register src);
|
|
void testbool(Register dst);
|
|
|
|
void resolve_oop_handle(Register result);
|
|
void load_mirror(Register mirror, Register method);
|
|
|
|
// oop manipulations
|
|
void load_klass(Register dst, Register src);
|
|
void store_klass(Register dst, Register src);
|
|
|
|
void load_heap_oop(Register dst, Address src);
|
|
void load_heap_oop_not_null(Register dst, Address src);
|
|
void store_heap_oop(Address dst, Register src);
|
|
void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
|
|
|
|
// Used for storing NULL. All other oop constants should be
|
|
// stored using routines that take a jobject.
|
|
void store_heap_oop_null(Address dst);
|
|
|
|
void load_prototype_header(Register dst, Register src);
|
|
|
|
#ifdef _LP64
|
|
void store_klass_gap(Register dst, Register src);
|
|
|
|
// This dummy is to prevent a call to store_heap_oop from
|
|
// converting a zero (like NULL) into a Register by giving
|
|
// the compiler two choices it can't resolve
|
|
|
|
void store_heap_oop(Address dst, void* dummy);
|
|
|
|
void encode_heap_oop(Register r);
|
|
void decode_heap_oop(Register r);
|
|
void encode_heap_oop_not_null(Register r);
|
|
void decode_heap_oop_not_null(Register r);
|
|
void encode_heap_oop_not_null(Register dst, Register src);
|
|
void decode_heap_oop_not_null(Register dst, Register src);
|
|
|
|
void set_narrow_oop(Register dst, jobject obj);
|
|
void set_narrow_oop(Address dst, jobject obj);
|
|
void cmp_narrow_oop(Register dst, jobject obj);
|
|
void cmp_narrow_oop(Address dst, jobject obj);
|
|
|
|
void encode_klass_not_null(Register r);
|
|
void decode_klass_not_null(Register r);
|
|
void encode_klass_not_null(Register dst, Register src);
|
|
void decode_klass_not_null(Register dst, Register src);
|
|
void set_narrow_klass(Register dst, Klass* k);
|
|
void set_narrow_klass(Address dst, Klass* k);
|
|
void cmp_narrow_klass(Register dst, Klass* k);
|
|
void cmp_narrow_klass(Address dst, Klass* k);
|
|
|
|
// Returns the byte size of the instructions generated by decode_klass_not_null()
|
|
// when compressed klass pointers are being used.
|
|
static int instr_size_for_decode_klass_not_null();
|
|
|
|
// if heap base register is used - reinit it with the correct value
|
|
void reinit_heapbase();
|
|
|
|
DEBUG_ONLY(void verify_heapbase(const char* msg);)
|
|
|
|
#endif // _LP64
|
|
|
|
// Int division/remainder for Java
|
|
// (as idivl, but checks for special case as described in JVM spec.)
|
|
// returns idivl instruction offset for implicit exception handling
|
|
int corrected_idivl(Register reg);
|
|
|
|
// Long division/remainder for Java
|
|
// (as idivq, but checks for special case as described in JVM spec.)
|
|
// returns idivq instruction offset for implicit exception handling
|
|
int corrected_idivq(Register reg);
|
|
|
|
void int3();
|
|
|
|
// Long operation macros for a 32bit cpu
|
|
// Long negation for Java
|
|
void lneg(Register hi, Register lo);
|
|
|
|
// Long multiplication for Java
|
|
// (destroys contents of eax, ebx, ecx and edx)
|
|
void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
|
|
|
|
// Long shifts for Java
|
|
// (semantics as described in JVM spec.)
|
|
void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f)
|
|
void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f)
|
|
|
|
// Long compare for Java
|
|
// (semantics as described in JVM spec.)
|
|
void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
|
|
|
|
|
|
// misc
|
|
|
|
// Sign extension
|
|
void sign_extend_short(Register reg);
|
|
void sign_extend_byte(Register reg);
|
|
|
|
// Division by power of 2, rounding towards 0
|
|
void division_with_shift(Register reg, int shift_value);
|
|
|
|
// Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
|
|
//
|
|
// CF (corresponds to C0) if x < y
|
|
// PF (corresponds to C2) if unordered
|
|
// ZF (corresponds to C3) if x = y
|
|
//
|
|
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
|
|
// tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
|
|
void fcmp(Register tmp);
|
|
// Variant of the above which allows y to be further down the stack
|
|
// and which only pops x and y if specified. If pop_right is
|
|
// specified then pop_left must also be specified.
|
|
void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
|
|
|
|
// Floating-point comparison for Java
|
|
// Compares the top-most stack entries on the FPU stack and stores the result in dst.
|
|
// The arguments are in reversed order on the stack (i.e., top of stack is first argument).
|
|
// (semantics as described in JVM spec.)
|
|
void fcmp2int(Register dst, bool unordered_is_less);
|
|
// Variant of the above which allows y to be further down the stack
|
|
// and which only pops x and y if specified. If pop_right is
|
|
// specified then pop_left must also be specified.
|
|
void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
|
|
|
|
// Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
|
|
// tmp is a temporary register, if none is available use noreg
|
|
void fremr(Register tmp);
|
|
|
|
// dst = c = a * b + c
|
|
void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
|
|
void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
|
|
|
|
void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
|
|
void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
|
|
void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
|
|
void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
|
|
|
|
|
|
// same as fcmp2int, but using SSE2
|
|
void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
|
|
void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
|
|
|
|
// branch to L if FPU flag C2 is set/not set
|
|
// tmp is a temporary register, if none is available use noreg
|
|
void jC2 (Register tmp, Label& L);
|
|
void jnC2(Register tmp, Label& L);
|
|
|
|
// Pop ST (ffree & fincstp combined)
|
|
void fpop();
|
|
|
|
// Load float value from 'address'. If UseSSE >= 1, the value is loaded into
|
|
// register xmm0. Otherwise, the value is loaded onto the FPU stack.
|
|
void load_float(Address src);
|
|
|
|
// Store float value to 'address'. If UseSSE >= 1, the value is stored
|
|
// from register xmm0. Otherwise, the value is stored from the FPU stack.
|
|
void store_float(Address dst);
|
|
|
|
// Load double value from 'address'. If UseSSE >= 2, the value is loaded into
|
|
// register xmm0. Otherwise, the value is loaded onto the FPU stack.
|
|
void load_double(Address src);
|
|
|
|
// Store double value to 'address'. If UseSSE >= 2, the value is stored
|
|
// from register xmm0. Otherwise, the value is stored from the FPU stack.
|
|
void store_double(Address dst);
|
|
|
|
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
|
|
void push_fTOS();
|
|
|
|
// pops double TOS element from CPU stack and pushes on FPU stack
|
|
void pop_fTOS();
|
|
|
|
void empty_FPU_stack();
|
|
|
|
void push_IU_state();
|
|
void pop_IU_state();
|
|
|
|
void push_FPU_state();
|
|
void pop_FPU_state();
|
|
|
|
void push_CPU_state();
|
|
void pop_CPU_state();
|
|
|
|
// Round up to a power of two
|
|
void round_to(Register reg, int modulus);
|
|
|
|
// Callee saved registers handling
|
|
void push_callee_saved_registers();
|
|
void pop_callee_saved_registers();
|
|
|
|
// allocation
|
|
void eden_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
);
|
|
void tlab_allocate(
|
|
Register obj, // result: pointer to object after successful allocation
|
|
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
|
|
int con_size_in_bytes, // object size in bytes if known at compile time
|
|
Register t1, // temp register
|
|
Register t2, // temp register
|
|
Label& slow_case // continuation point if fast allocation fails
|
|
);
|
|
Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
|
|
void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
|
|
|
|
void incr_allocated_bytes(Register thread,
|
|
Register var_size_in_bytes, int con_size_in_bytes,
|
|
Register t1 = noreg);
|
|
|
|
// interface method calling
|
|
void lookup_interface_method(Register recv_klass,
|
|
Register intf_klass,
|
|
RegisterOrConstant itable_index,
|
|
Register method_result,
|
|
Register scan_temp,
|
|
Label& no_such_interface,
|
|
bool return_method = true);
|
|
|
|
// virtual method calling
|
|
void lookup_virtual_method(Register recv_klass,
|
|
RegisterOrConstant vtable_index,
|
|
Register method_result);
|
|
|
|
// Test sub_klass against super_klass, with fast and slow paths.
|
|
|
|
// The fast path produces a tri-state answer: yes / no / maybe-slow.
|
|
// One of the three labels can be NULL, meaning take the fall-through.
|
|
// If super_check_offset is -1, the value is loaded up from super_klass.
|
|
// No registers are killed, except temp_reg.
|
|
void check_klass_subtype_fast_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
Label* L_slow_path,
|
|
RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
|
|
|
|
// The rest of the type check; must be wired to a corresponding fast path.
|
|
// It does not repeat the fast path logic, so don't use it standalone.
|
|
// The temp_reg and temp2_reg can be noreg, if no temps are available.
|
|
// Updates the sub's secondary super cache as necessary.
|
|
// If set_cond_codes, condition codes will be Z on success, NZ on failure.
|
|
void check_klass_subtype_slow_path(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Register temp2_reg,
|
|
Label* L_success,
|
|
Label* L_failure,
|
|
bool set_cond_codes = false);
|
|
|
|
// Simplified, combined version, good for typical uses.
|
|
// Falls through on failure.
|
|
void check_klass_subtype(Register sub_klass,
|
|
Register super_klass,
|
|
Register temp_reg,
|
|
Label& L_success);
|
|
|
|
// method handles (JSR 292)
|
|
Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
|
|
|
|
//----
|
|
void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
|
|
|
|
// Debugging
|
|
|
|
// only if +VerifyOops
|
|
// TODO: Make these macros with file and line like sparc version!
|
|
void verify_oop(Register reg, const char* s = "broken oop");
|
|
void verify_oop_addr(Address addr, const char * s = "broken oop addr");
|
|
|
|
// TODO: verify method and klass metadata (compare against vptr?)
|
|
void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
|
|
void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
|
|
|
|
#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
|
|
#define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
|
|
|
|
// only if +VerifyFPU
|
|
void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
|
|
|
|
// Verify or restore cpu control state after JNI call
|
|
void restore_cpu_control_state_after_jni();
|
|
|
|
// prints msg, dumps registers and stops execution
|
|
void stop(const char* msg);
|
|
|
|
// prints msg and continues
|
|
void warn(const char* msg);
|
|
|
|
// dumps registers and other state
|
|
void print_state();
|
|
|
|
static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
|
|
static void debug64(char* msg, int64_t pc, int64_t regs[]);
|
|
static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
|
|
static void print_state64(int64_t pc, int64_t regs[]);
|
|
|
|
void os_breakpoint();
|
|
|
|
void untested() { stop("untested"); }
|
|
|
|
void unimplemented(const char* what = "");
|
|
|
|
void should_not_reach_here() { stop("should not reach here"); }
|
|
|
|
void print_CPU_state();
|
|
|
|
// Stack overflow checking
|
|
void bang_stack_with_offset(int offset) {
|
|
// stack grows down, caller passes positive offset
|
|
assert(offset > 0, "must bang with negative offset");
|
|
movl(Address(rsp, (-offset)), rax);
|
|
}
|
|
|
|
// Writes to stack successive pages until offset reached to check for
|
|
// stack overflow + shadow pages. Also, clobbers tmp
|
|
void bang_stack_size(Register size, Register tmp);
|
|
|
|
// Check for reserved stack access in method being exited (for JIT)
|
|
void reserved_stack_check();
|
|
|
|
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
|
|
Register tmp,
|
|
int offset);
|
|
|
|
// Support for serializing memory accesses between threads
|
|
void serialize_memory(Register thread, Register tmp);
|
|
|
|
#ifdef _LP64
|
|
void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
|
|
#else
|
|
void safepoint_poll(Label& slow_path);
|
|
#endif
|
|
|
|
void verify_tlab();
|
|
|
|
// Biased locking support
|
|
// lock_reg and obj_reg must be loaded up with the appropriate values.
|
|
// swap_reg must be rax, and is killed.
|
|
// tmp_reg is optional. If it is supplied (i.e., != noreg) it will
|
|
// be killed; if not supplied, push/pop will be used internally to
|
|
// allocate a temporary (inefficient, avoid if possible).
|
|
// Optional slow case is for implementations (interpreter and C1) which branch to
|
|
// slow case directly. Leaves condition codes set for C2's Fast_Lock node.
|
|
// Returns offset of first potentially-faulting instruction for null
|
|
// check info (currently consumed only by C1). If
|
|
// swap_reg_contains_mark is true then returns -1 as it is assumed
|
|
// the calling code has already passed any potential faults.
|
|
int biased_locking_enter(Register lock_reg, Register obj_reg,
|
|
Register swap_reg, Register tmp_reg,
|
|
bool swap_reg_contains_mark,
|
|
Label& done, Label* slow_case = NULL,
|
|
BiasedLockingCounters* counters = NULL);
|
|
void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
|
|
#ifdef COMPILER2
|
|
// Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
|
|
// See full desription in macroAssembler_x86.cpp.
|
|
void fast_lock(Register obj, Register box, Register tmp,
|
|
Register scr, Register cx1, Register cx2,
|
|
BiasedLockingCounters* counters,
|
|
RTMLockingCounters* rtm_counters,
|
|
RTMLockingCounters* stack_rtm_counters,
|
|
Metadata* method_data,
|
|
bool use_rtm, bool profile_rtm);
|
|
void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
|
|
#if INCLUDE_RTM_OPT
|
|
void rtm_counters_update(Register abort_status, Register rtm_counters);
|
|
void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
|
|
void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
|
|
RTMLockingCounters* rtm_counters,
|
|
Metadata* method_data);
|
|
void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
|
|
RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
|
|
void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
|
|
void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
|
|
void rtm_stack_locking(Register obj, Register tmp, Register scr,
|
|
Register retry_on_abort_count,
|
|
RTMLockingCounters* stack_rtm_counters,
|
|
Metadata* method_data, bool profile_rtm,
|
|
Label& DONE_LABEL, Label& IsInflated);
|
|
void rtm_inflated_locking(Register obj, Register box, Register tmp,
|
|
Register scr, Register retry_on_busy_count,
|
|
Register retry_on_abort_count,
|
|
RTMLockingCounters* rtm_counters,
|
|
Metadata* method_data, bool profile_rtm,
|
|
Label& DONE_LABEL);
|
|
#endif
|
|
#endif
|
|
|
|
Condition negate_condition(Condition cond);
|
|
|
|
// Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
|
|
// operands. In general the names are modified to avoid hiding the instruction in Assembler
|
|
// so that we don't need to implement all the varieties in the Assembler with trivial wrappers
|
|
// here in MacroAssembler. The major exception to this rule is call
|
|
|
|
// Arithmetics
|
|
|
|
|
|
void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
|
|
void addptr(Address dst, Register src);
|
|
|
|
void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
|
|
void addptr(Register dst, int32_t src);
|
|
void addptr(Register dst, Register src);
|
|
void addptr(Register dst, RegisterOrConstant src) {
|
|
if (src.is_constant()) addptr(dst, (int) src.as_constant());
|
|
else addptr(dst, src.as_register());
|
|
}
|
|
|
|
void andptr(Register dst, int32_t src);
|
|
void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
|
|
|
|
void cmp8(AddressLiteral src1, int imm);
|
|
|
|
// renamed to drag out the casting of address to int32_t/intptr_t
|
|
void cmp32(Register src1, int32_t imm);
|
|
|
|
void cmp32(AddressLiteral src1, int32_t imm);
|
|
// compare reg - mem, or reg - &mem
|
|
void cmp32(Register src1, AddressLiteral src2);
|
|
|
|
void cmp32(Register src1, Address src2);
|
|
|
|
#ifndef _LP64
|
|
void cmpklass(Address dst, Metadata* obj);
|
|
void cmpklass(Register dst, Metadata* obj);
|
|
void cmpoop(Address dst, jobject obj);
|
|
#endif // _LP64
|
|
|
|
void cmpoop(Register src1, Register src2);
|
|
void cmpoop(Register src1, Address src2);
|
|
void cmpoop(Register dst, jobject obj);
|
|
|
|
// NOTE src2 must be the lval. This is NOT an mem-mem compare
|
|
void cmpptr(Address src1, AddressLiteral src2);
|
|
|
|
void cmpptr(Register src1, AddressLiteral src2);
|
|
|
|
void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
// void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
|
|
void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
|
|
|
|
// cmp64 to avoild hiding cmpq
|
|
void cmp64(Register src1, AddressLiteral src);
|
|
|
|
void cmpxchgptr(Register reg, Address adr);
|
|
|
|
void locked_cmpxchgptr(Register reg, AddressLiteral adr);
|
|
|
|
|
|
void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
|
|
void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
|
|
|
|
|
|
void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
|
|
|
|
void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
|
|
|
|
void shlptr(Register dst, int32_t shift);
|
|
void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
|
|
|
|
void shrptr(Register dst, int32_t shift);
|
|
void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
|
|
|
|
void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
|
|
void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
|
|
|
|
void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
|
|
|
|
void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
|
|
void subptr(Register dst, int32_t src);
|
|
// Force generation of a 4 byte immediate value even if it fits into 8bit
|
|
void subptr_imm32(Register dst, int32_t src);
|
|
void subptr(Register dst, Register src);
|
|
void subptr(Register dst, RegisterOrConstant src) {
|
|
if (src.is_constant()) subptr(dst, (int) src.as_constant());
|
|
else subptr(dst, src.as_register());
|
|
}
|
|
|
|
void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
|
|
void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
|
|
|
|
void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
|
|
void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
|
|
|
|
void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
|
|
|
|
|
|
|
|
// Helper functions for statistics gathering.
|
|
// Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
|
|
void cond_inc32(Condition cond, AddressLiteral counter_addr);
|
|
// Unconditional atomic increment.
|
|
void atomic_incl(Address counter_addr);
|
|
void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
|
|
#ifdef _LP64
|
|
void atomic_incq(Address counter_addr);
|
|
void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
|
|
#endif
|
|
void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
|
|
void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
|
|
|
|
void lea(Register dst, AddressLiteral adr);
|
|
void lea(Address dst, AddressLiteral adr);
|
|
void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
|
|
|
|
void leal32(Register dst, Address src) { leal(dst, src); }
|
|
|
|
// Import other testl() methods from the parent class or else
|
|
// they will be hidden by the following overriding declaration.
|
|
using Assembler::testl;
|
|
void testl(Register dst, AddressLiteral src);
|
|
|
|
void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
|
|
void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
|
|
void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
|
|
void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
|
|
|
|
void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
|
|
void testptr(Register src1, Register src2);
|
|
|
|
void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
|
|
void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
|
|
|
|
// Calls
|
|
|
|
void call(Label& L, relocInfo::relocType rtype);
|
|
void call(Register entry);
|
|
|
|
// NOTE: this call transfers to the effective address of entry NOT
|
|
// the address contained by entry. This is because this is more natural
|
|
// for jumps/calls.
|
|
void call(AddressLiteral entry);
|
|
|
|
// Emit the CompiledIC call idiom
|
|
void ic_call(address entry, jint method_index = 0);
|
|
|
|
// Jumps
|
|
|
|
// NOTE: these jumps tranfer to the effective address of dst NOT
|
|
// the address contained by dst. This is because this is more natural
|
|
// for jumps/calls.
|
|
void jump(AddressLiteral dst);
|
|
void jump_cc(Condition cc, AddressLiteral dst);
|
|
|
|
// 32bit can do a case table jump in one instruction but we no longer allow the base
|
|
// to be installed in the Address class. This jump will tranfers to the address
|
|
// contained in the location described by entry (not the address of entry)
|
|
void jump(ArrayAddress entry);
|
|
|
|
// Floating
|
|
|
|
void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
|
|
void andpd(XMMRegister dst, AddressLiteral src);
|
|
void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
|
|
|
|
void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
|
|
void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
|
|
void andps(XMMRegister dst, AddressLiteral src);
|
|
|
|
void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
|
|
void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
|
|
void comiss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
|
|
void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
|
|
void comisd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void fadd_s(Address src) { Assembler::fadd_s(src); }
|
|
void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
|
|
|
|
void fldcw(Address src) { Assembler::fldcw(src); }
|
|
void fldcw(AddressLiteral src);
|
|
|
|
void fld_s(int index) { Assembler::fld_s(index); }
|
|
void fld_s(Address src) { Assembler::fld_s(src); }
|
|
void fld_s(AddressLiteral src);
|
|
|
|
void fld_d(Address src) { Assembler::fld_d(src); }
|
|
void fld_d(AddressLiteral src);
|
|
|
|
void fld_x(Address src) { Assembler::fld_x(src); }
|
|
void fld_x(AddressLiteral src);
|
|
|
|
void fmul_s(Address src) { Assembler::fmul_s(src); }
|
|
void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
|
|
|
|
void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
|
|
void ldmxcsr(AddressLiteral src);
|
|
|
|
#ifdef _LP64
|
|
private:
|
|
void sha256_AVX2_one_round_compute(
|
|
Register reg_old_h,
|
|
Register reg_a,
|
|
Register reg_b,
|
|
Register reg_c,
|
|
Register reg_d,
|
|
Register reg_e,
|
|
Register reg_f,
|
|
Register reg_g,
|
|
Register reg_h,
|
|
int iter);
|
|
void sha256_AVX2_four_rounds_compute_first(int start);
|
|
void sha256_AVX2_four_rounds_compute_last(int start);
|
|
void sha256_AVX2_one_round_and_sched(
|
|
XMMRegister xmm_0, /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
|
|
XMMRegister xmm_1, /* ymm5 */ /* full cycle is 16 iterations */
|
|
XMMRegister xmm_2, /* ymm6 */
|
|
XMMRegister xmm_3, /* ymm7 */
|
|
Register reg_a, /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
|
|
Register reg_b, /* ebx */ /* full cycle is 8 iterations */
|
|
Register reg_c, /* edi */
|
|
Register reg_d, /* esi */
|
|
Register reg_e, /* r8d */
|
|
Register reg_f, /* r9d */
|
|
Register reg_g, /* r10d */
|
|
Register reg_h, /* r11d */
|
|
int iter);
|
|
|
|
void addm(int disp, Register r1, Register r2);
|
|
|
|
public:
|
|
void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
|
|
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
|
|
Register buf, Register state, Register ofs, Register limit, Register rsp,
|
|
bool multi_block, XMMRegister shuf_mask);
|
|
#endif
|
|
|
|
#ifdef _LP64
|
|
private:
|
|
void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
|
|
Register e, Register f, Register g, Register h, int iteration);
|
|
|
|
void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register a, Register b, Register c, Register d, Register e, Register f,
|
|
Register g, Register h, int iteration);
|
|
|
|
void addmq(int disp, Register r1, Register r2);
|
|
public:
|
|
void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
|
|
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
|
|
Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
|
|
XMMRegister shuf_mask);
|
|
#endif
|
|
|
|
void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
|
|
XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
|
|
Register buf, Register state, Register ofs, Register limit, Register rsp,
|
|
bool multi_block);
|
|
|
|
#ifdef _LP64
|
|
void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
|
|
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
|
|
Register buf, Register state, Register ofs, Register limit, Register rsp,
|
|
bool multi_block, XMMRegister shuf_mask);
|
|
#else
|
|
void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
|
|
XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
|
|
Register buf, Register state, Register ofs, Register limit, Register rsp,
|
|
bool multi_block);
|
|
#endif
|
|
|
|
void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register tmp);
|
|
|
|
#ifdef _LP64
|
|
void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
|
|
|
|
void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register r11);
|
|
|
|
void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
|
|
XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
|
|
Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
|
|
|
|
void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
|
|
Register tmp3, Register tmp4);
|
|
|
|
void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register tmp1,
|
|
Register tmp2, Register tmp3, Register tmp4);
|
|
void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register tmp1,
|
|
Register tmp2, Register tmp3, Register tmp4);
|
|
#else
|
|
void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register tmp1);
|
|
|
|
void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register tmp);
|
|
|
|
void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
|
|
XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
|
|
Register rdx, Register tmp);
|
|
|
|
void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rbx, Register rdx);
|
|
|
|
void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register tmp);
|
|
|
|
void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
|
|
Register edx, Register ebx, Register esi, Register edi,
|
|
Register ebp, Register esp);
|
|
|
|
void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
|
|
Register esi, Register edi, Register ebp, Register esp);
|
|
|
|
void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
|
|
Register edx, Register ebx, Register esi, Register edi,
|
|
Register ebp, Register esp);
|
|
|
|
void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
|
|
XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
|
|
Register rax, Register rcx, Register rdx, Register tmp);
|
|
#endif
|
|
|
|
void increase_precision();
|
|
void restore_precision();
|
|
|
|
private:
|
|
|
|
// these are private because users should be doing movflt/movdbl
|
|
|
|
void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); }
|
|
void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
|
|
void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); }
|
|
void movss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); }
|
|
void movlpd(XMMRegister dst, AddressLiteral src);
|
|
|
|
public:
|
|
|
|
void addsd(XMMRegister dst, XMMRegister src) { Assembler::addsd(dst, src); }
|
|
void addsd(XMMRegister dst, Address src) { Assembler::addsd(dst, src); }
|
|
void addsd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void addss(XMMRegister dst, XMMRegister src) { Assembler::addss(dst, src); }
|
|
void addss(XMMRegister dst, Address src) { Assembler::addss(dst, src); }
|
|
void addss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void addpd(XMMRegister dst, XMMRegister src) { Assembler::addpd(dst, src); }
|
|
void addpd(XMMRegister dst, Address src) { Assembler::addpd(dst, src); }
|
|
void addpd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void divsd(XMMRegister dst, XMMRegister src) { Assembler::divsd(dst, src); }
|
|
void divsd(XMMRegister dst, Address src) { Assembler::divsd(dst, src); }
|
|
void divsd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void divss(XMMRegister dst, XMMRegister src) { Assembler::divss(dst, src); }
|
|
void divss(XMMRegister dst, Address src) { Assembler::divss(dst, src); }
|
|
void divss(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Move Unaligned Double Quadword
|
|
void movdqu(Address dst, XMMRegister src);
|
|
void movdqu(XMMRegister dst, Address src);
|
|
void movdqu(XMMRegister dst, XMMRegister src);
|
|
void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
|
|
// AVX Unaligned forms
|
|
void vmovdqu(Address dst, XMMRegister src);
|
|
void vmovdqu(XMMRegister dst, Address src);
|
|
void vmovdqu(XMMRegister dst, XMMRegister src);
|
|
void vmovdqu(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Move Aligned Double Quadword
|
|
void movdqa(XMMRegister dst, Address src) { Assembler::movdqa(dst, src); }
|
|
void movdqa(XMMRegister dst, XMMRegister src) { Assembler::movdqa(dst, src); }
|
|
void movdqa(XMMRegister dst, AddressLiteral src);
|
|
|
|
void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
|
|
void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); }
|
|
void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); }
|
|
void movsd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void mulpd(XMMRegister dst, XMMRegister src) { Assembler::mulpd(dst, src); }
|
|
void mulpd(XMMRegister dst, Address src) { Assembler::mulpd(dst, src); }
|
|
void mulpd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void mulsd(XMMRegister dst, XMMRegister src) { Assembler::mulsd(dst, src); }
|
|
void mulsd(XMMRegister dst, Address src) { Assembler::mulsd(dst, src); }
|
|
void mulsd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void mulss(XMMRegister dst, XMMRegister src) { Assembler::mulss(dst, src); }
|
|
void mulss(XMMRegister dst, Address src) { Assembler::mulss(dst, src); }
|
|
void mulss(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Carry-Less Multiplication Quadword
|
|
void pclmulldq(XMMRegister dst, XMMRegister src) {
|
|
// 0x00 - multiply lower 64 bits [0:63]
|
|
Assembler::pclmulqdq(dst, src, 0x00);
|
|
}
|
|
void pclmulhdq(XMMRegister dst, XMMRegister src) {
|
|
// 0x11 - multiply upper 64 bits [64:127]
|
|
Assembler::pclmulqdq(dst, src, 0x11);
|
|
}
|
|
|
|
void pcmpeqb(XMMRegister dst, XMMRegister src);
|
|
void pcmpeqw(XMMRegister dst, XMMRegister src);
|
|
|
|
void pcmpestri(XMMRegister dst, Address src, int imm8);
|
|
void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
|
|
|
|
void pmovzxbw(XMMRegister dst, XMMRegister src);
|
|
void pmovzxbw(XMMRegister dst, Address src);
|
|
|
|
void pmovmskb(Register dst, XMMRegister src);
|
|
|
|
void ptest(XMMRegister dst, XMMRegister src);
|
|
|
|
void sqrtsd(XMMRegister dst, XMMRegister src) { Assembler::sqrtsd(dst, src); }
|
|
void sqrtsd(XMMRegister dst, Address src) { Assembler::sqrtsd(dst, src); }
|
|
void sqrtsd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void sqrtss(XMMRegister dst, XMMRegister src) { Assembler::sqrtss(dst, src); }
|
|
void sqrtss(XMMRegister dst, Address src) { Assembler::sqrtss(dst, src); }
|
|
void sqrtss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void subsd(XMMRegister dst, XMMRegister src) { Assembler::subsd(dst, src); }
|
|
void subsd(XMMRegister dst, Address src) { Assembler::subsd(dst, src); }
|
|
void subsd(XMMRegister dst, AddressLiteral src);
|
|
|
|
void subss(XMMRegister dst, XMMRegister src) { Assembler::subss(dst, src); }
|
|
void subss(XMMRegister dst, Address src) { Assembler::subss(dst, src); }
|
|
void subss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
|
|
void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
|
|
void ucomiss(XMMRegister dst, AddressLiteral src);
|
|
|
|
void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
|
|
void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
|
|
void ucomisd(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
|
|
void xorpd(XMMRegister dst, XMMRegister src);
|
|
void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); }
|
|
void xorpd(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
|
|
void xorps(XMMRegister dst, XMMRegister src);
|
|
void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); }
|
|
void xorps(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Shuffle Bytes
|
|
void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
|
|
void pshufb(XMMRegister dst, Address src) { Assembler::pshufb(dst, src); }
|
|
void pshufb(XMMRegister dst, AddressLiteral src);
|
|
// AVX 3-operands instructions
|
|
|
|
void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
|
|
void vaddsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddsd(dst, nds, src); }
|
|
void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
|
|
void vaddss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vaddss(dst, nds, src); }
|
|
void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
|
|
void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
|
|
|
|
void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
|
void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
|
|
|
|
void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
|
void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
|
|
|
|
void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
|
|
void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
|
|
void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
|
|
|
|
void vpbroadcastw(XMMRegister dst, XMMRegister src);
|
|
|
|
void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
|
void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
|
|
|
void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
|
|
void vpmovmskb(Register dst, XMMRegister src);
|
|
|
|
void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
|
void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
|
|
|
|
void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
|
void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
|
|
|
|
void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
|
|
void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
|
|
|
|
void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
|
|
void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
|
|
|
|
void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
|
|
void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
|
|
|
|
void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
|
|
void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
|
|
|
|
void vptest(XMMRegister dst, XMMRegister src);
|
|
|
|
void punpcklbw(XMMRegister dst, XMMRegister src);
|
|
void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
|
|
|
|
void pshufd(XMMRegister dst, Address src, int mode);
|
|
void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
|
|
|
|
void pshuflw(XMMRegister dst, XMMRegister src, int mode);
|
|
void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
|
|
|
|
void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
|
|
void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
|
|
void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
|
|
|
|
void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
|
|
void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
|
|
void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
|
|
|
|
void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
|
|
void vdivsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivsd(dst, nds, src); }
|
|
void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
|
|
void vdivss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vdivss(dst, nds, src); }
|
|
void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
|
|
void vmulsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulsd(dst, nds, src); }
|
|
void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
|
|
void vmulss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vmulss(dst, nds, src); }
|
|
void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
|
|
void vsubsd(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubsd(dst, nds, src); }
|
|
void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
|
|
void vsubss(XMMRegister dst, XMMRegister nds, Address src) { Assembler::vsubss(dst, nds, src); }
|
|
void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
|
|
|
|
// AVX Vector instructions
|
|
|
|
void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
|
|
void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
|
|
void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
|
|
|
|
void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
|
|
void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
|
|
void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
|
|
|
|
void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
|
|
if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
|
|
Assembler::vpxor(dst, nds, src, vector_len);
|
|
else
|
|
Assembler::vxorpd(dst, nds, src, vector_len);
|
|
}
|
|
void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
|
|
if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
|
|
Assembler::vpxor(dst, nds, src, vector_len);
|
|
else
|
|
Assembler::vxorpd(dst, nds, src, vector_len);
|
|
}
|
|
|
|
// Simple version for AVX2 256bit vectors
|
|
void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
|
|
void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
|
|
|
|
void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vinserti32x4(dst, dst, src, imm8);
|
|
} else if (UseAVX > 1) {
|
|
// vinserti128 is available only in AVX2
|
|
Assembler::vinserti128(dst, nds, src, imm8);
|
|
} else {
|
|
Assembler::vinsertf128(dst, nds, src, imm8);
|
|
}
|
|
}
|
|
|
|
void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vinserti32x4(dst, dst, src, imm8);
|
|
} else if (UseAVX > 1) {
|
|
// vinserti128 is available only in AVX2
|
|
Assembler::vinserti128(dst, nds, src, imm8);
|
|
} else {
|
|
Assembler::vinsertf128(dst, nds, src, imm8);
|
|
}
|
|
}
|
|
|
|
void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vextracti32x4(dst, src, imm8);
|
|
} else if (UseAVX > 1) {
|
|
// vextracti128 is available only in AVX2
|
|
Assembler::vextracti128(dst, src, imm8);
|
|
} else {
|
|
Assembler::vextractf128(dst, src, imm8);
|
|
}
|
|
}
|
|
|
|
void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vextracti32x4(dst, src, imm8);
|
|
} else if (UseAVX > 1) {
|
|
// vextracti128 is available only in AVX2
|
|
Assembler::vextracti128(dst, src, imm8);
|
|
} else {
|
|
Assembler::vextractf128(dst, src, imm8);
|
|
}
|
|
}
|
|
|
|
// 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
|
|
void vinserti128_high(XMMRegister dst, XMMRegister src) {
|
|
vinserti128(dst, dst, src, 1);
|
|
}
|
|
void vinserti128_high(XMMRegister dst, Address src) {
|
|
vinserti128(dst, dst, src, 1);
|
|
}
|
|
void vextracti128_high(XMMRegister dst, XMMRegister src) {
|
|
vextracti128(dst, src, 1);
|
|
}
|
|
void vextracti128_high(Address dst, XMMRegister src) {
|
|
vextracti128(dst, src, 1);
|
|
}
|
|
|
|
void vinsertf128_high(XMMRegister dst, XMMRegister src) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vinsertf32x4(dst, dst, src, 1);
|
|
} else {
|
|
Assembler::vinsertf128(dst, dst, src, 1);
|
|
}
|
|
}
|
|
|
|
void vinsertf128_high(XMMRegister dst, Address src) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vinsertf32x4(dst, dst, src, 1);
|
|
} else {
|
|
Assembler::vinsertf128(dst, dst, src, 1);
|
|
}
|
|
}
|
|
|
|
void vextractf128_high(XMMRegister dst, XMMRegister src) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vextractf32x4(dst, src, 1);
|
|
} else {
|
|
Assembler::vextractf128(dst, src, 1);
|
|
}
|
|
}
|
|
|
|
void vextractf128_high(Address dst, XMMRegister src) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vextractf32x4(dst, src, 1);
|
|
} else {
|
|
Assembler::vextractf128(dst, src, 1);
|
|
}
|
|
}
|
|
|
|
// 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
|
|
void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
|
|
Assembler::vinserti64x4(dst, dst, src, 1);
|
|
}
|
|
void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
|
|
Assembler::vinsertf64x4(dst, dst, src, 1);
|
|
}
|
|
void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
|
|
Assembler::vextracti64x4(dst, src, 1);
|
|
}
|
|
void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
|
|
Assembler::vextractf64x4(dst, src, 1);
|
|
}
|
|
void vextractf64x4_high(Address dst, XMMRegister src) {
|
|
Assembler::vextractf64x4(dst, src, 1);
|
|
}
|
|
void vinsertf64x4_high(XMMRegister dst, Address src) {
|
|
Assembler::vinsertf64x4(dst, dst, src, 1);
|
|
}
|
|
|
|
// 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
|
|
void vinserti128_low(XMMRegister dst, XMMRegister src) {
|
|
vinserti128(dst, dst, src, 0);
|
|
}
|
|
void vinserti128_low(XMMRegister dst, Address src) {
|
|
vinserti128(dst, dst, src, 0);
|
|
}
|
|
void vextracti128_low(XMMRegister dst, XMMRegister src) {
|
|
vextracti128(dst, src, 0);
|
|
}
|
|
void vextracti128_low(Address dst, XMMRegister src) {
|
|
vextracti128(dst, src, 0);
|
|
}
|
|
|
|
void vinsertf128_low(XMMRegister dst, XMMRegister src) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vinsertf32x4(dst, dst, src, 0);
|
|
} else {
|
|
Assembler::vinsertf128(dst, dst, src, 0);
|
|
}
|
|
}
|
|
|
|
void vinsertf128_low(XMMRegister dst, Address src) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vinsertf32x4(dst, dst, src, 0);
|
|
} else {
|
|
Assembler::vinsertf128(dst, dst, src, 0);
|
|
}
|
|
}
|
|
|
|
void vextractf128_low(XMMRegister dst, XMMRegister src) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vextractf32x4(dst, src, 0);
|
|
} else {
|
|
Assembler::vextractf128(dst, src, 0);
|
|
}
|
|
}
|
|
|
|
void vextractf128_low(Address dst, XMMRegister src) {
|
|
if (UseAVX > 2) {
|
|
Assembler::vextractf32x4(dst, src, 0);
|
|
} else {
|
|
Assembler::vextractf128(dst, src, 0);
|
|
}
|
|
}
|
|
|
|
// 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
|
|
void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
|
|
Assembler::vinserti64x4(dst, dst, src, 0);
|
|
}
|
|
void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
|
|
Assembler::vinsertf64x4(dst, dst, src, 0);
|
|
}
|
|
void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
|
|
Assembler::vextracti64x4(dst, src, 0);
|
|
}
|
|
void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
|
|
Assembler::vextractf64x4(dst, src, 0);
|
|
}
|
|
void vextractf64x4_low(Address dst, XMMRegister src) {
|
|
Assembler::vextractf64x4(dst, src, 0);
|
|
}
|
|
void vinsertf64x4_low(XMMRegister dst, Address src) {
|
|
Assembler::vinsertf64x4(dst, dst, src, 0);
|
|
}
|
|
|
|
// Carry-Less Multiplication Quadword
|
|
void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
|
|
// 0x00 - multiply lower 64 bits [0:63]
|
|
Assembler::vpclmulqdq(dst, nds, src, 0x00);
|
|
}
|
|
void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
|
|
// 0x11 - multiply upper 64 bits [64:127]
|
|
Assembler::vpclmulqdq(dst, nds, src, 0x11);
|
|
}
|
|
|
|
// Data
|
|
|
|
void cmov32( Condition cc, Register dst, Address src);
|
|
void cmov32( Condition cc, Register dst, Register src);
|
|
|
|
void cmov( Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
|
|
|
|
void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
|
|
void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
|
|
|
|
void movoop(Register dst, jobject obj);
|
|
void movoop(Address dst, jobject obj);
|
|
|
|
void mov_metadata(Register dst, Metadata* obj);
|
|
void mov_metadata(Address dst, Metadata* obj);
|
|
|
|
void movptr(ArrayAddress dst, Register src);
|
|
// can this do an lea?
|
|
void movptr(Register dst, ArrayAddress src);
|
|
|
|
void movptr(Register dst, Address src);
|
|
|
|
#ifdef _LP64
|
|
void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
|
|
#else
|
|
void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
|
|
#endif
|
|
|
|
void movptr(Register dst, intptr_t src);
|
|
void movptr(Register dst, Register src);
|
|
void movptr(Address dst, intptr_t src);
|
|
|
|
void movptr(Address dst, Register src);
|
|
|
|
void movptr(Register dst, RegisterOrConstant src) {
|
|
if (src.is_constant()) movptr(dst, src.as_constant());
|
|
else movptr(dst, src.as_register());
|
|
}
|
|
|
|
#ifdef _LP64
|
|
// Generally the next two are only used for moving NULL
|
|
// Although there are situations in initializing the mark word where
|
|
// they could be used. They are dangerous.
|
|
|
|
// They only exist on LP64 so that int32_t and intptr_t are not the same
|
|
// and we have ambiguous declarations.
|
|
|
|
void movptr(Address dst, int32_t imm32);
|
|
void movptr(Register dst, int32_t imm32);
|
|
#endif // _LP64
|
|
|
|
// to avoid hiding movl
|
|
void mov32(AddressLiteral dst, Register src);
|
|
void mov32(Register dst, AddressLiteral src);
|
|
|
|
// to avoid hiding movb
|
|
void movbyte(ArrayAddress dst, int src);
|
|
|
|
// Import other mov() methods from the parent class or else
|
|
// they will be hidden by the following overriding declaration.
|
|
using Assembler::movdl;
|
|
using Assembler::movq;
|
|
void movdl(XMMRegister dst, AddressLiteral src);
|
|
void movq(XMMRegister dst, AddressLiteral src);
|
|
|
|
// Can push value or effective address
|
|
void pushptr(AddressLiteral src);
|
|
|
|
void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
|
|
void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
|
|
|
|
void pushoop(jobject obj);
|
|
void pushklass(Metadata* obj);
|
|
|
|
// sign extend as need a l to ptr sized element
|
|
void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
|
|
void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
|
|
|
|
// C2 compiled method's prolog code.
|
|
void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
|
|
|
|
// clear memory of size 'cnt' qwords, starting at 'base';
|
|
// if 'is_large' is set, do not try to produce short loop
|
|
void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
|
|
|
|
#ifdef COMPILER2
|
|
void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
|
|
XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
|
|
|
|
// IndexOf strings.
|
|
// Small strings are loaded through stack if they cross page boundary.
|
|
void string_indexof(Register str1, Register str2,
|
|
Register cnt1, Register cnt2,
|
|
int int_cnt2, Register result,
|
|
XMMRegister vec, Register tmp,
|
|
int ae);
|
|
|
|
// IndexOf for constant substrings with size >= 8 elements
|
|
// which don't need to be loaded through stack.
|
|
void string_indexofC8(Register str1, Register str2,
|
|
Register cnt1, Register cnt2,
|
|
int int_cnt2, Register result,
|
|
XMMRegister vec, Register tmp,
|
|
int ae);
|
|
|
|
// Smallest code: we don't need to load through stack,
|
|
// check string tail.
|
|
|
|
// helper function for string_compare
|
|
void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
|
|
Address::ScaleFactor scale, Address::ScaleFactor scale1,
|
|
Address::ScaleFactor scale2, Register index, int ae);
|
|
// Compare strings.
|
|
void string_compare(Register str1, Register str2,
|
|
Register cnt1, Register cnt2, Register result,
|
|
XMMRegister vec1, int ae);
|
|
|
|
// Search for Non-ASCII character (Negative byte value) in a byte array,
|
|
// return true if it has any and false otherwise.
|
|
void has_negatives(Register ary1, Register len,
|
|
Register result, Register tmp1,
|
|
XMMRegister vec1, XMMRegister vec2);
|
|
|
|
// Compare char[] or byte[] arrays.
|
|
void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
|
|
Register limit, Register result, Register chr,
|
|
XMMRegister vec1, XMMRegister vec2, bool is_char);
|
|
|
|
#endif
|
|
|
|
// Fill primitive arrays
|
|
void generate_fill(BasicType t, bool aligned,
|
|
Register to, Register value, Register count,
|
|
Register rtmp, XMMRegister xtmp);
|
|
|
|
void encode_iso_array(Register src, Register dst, Register len,
|
|
XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
|
|
XMMRegister tmp4, Register tmp5, Register result);
|
|
|
|
#ifdef _LP64
|
|
void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
|
|
void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
|
|
Register y, Register y_idx, Register z,
|
|
Register carry, Register product,
|
|
Register idx, Register kdx);
|
|
void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
|
|
Register yz_idx, Register idx,
|
|
Register carry, Register product, int offset);
|
|
void multiply_128_x_128_bmi2_loop(Register y, Register z,
|
|
Register carry, Register carry2,
|
|
Register idx, Register jdx,
|
|
Register yz_idx1, Register yz_idx2,
|
|
Register tmp, Register tmp3, Register tmp4);
|
|
void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
|
|
Register yz_idx, Register idx, Register jdx,
|
|
Register carry, Register product,
|
|
Register carry2);
|
|
void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
|
|
Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
|
|
void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
|
|
Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
|
|
void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
|
|
Register tmp2);
|
|
void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
|
|
Register rdxReg, Register raxReg);
|
|
void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
|
|
void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
|
|
Register tmp3, Register tmp4);
|
|
void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
|
|
Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
|
|
|
|
void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
|
|
Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
|
|
Register raxReg);
|
|
void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
|
|
Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
|
|
Register raxReg);
|
|
void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
|
|
Register result, Register tmp1, Register tmp2,
|
|
XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
|
|
#endif
|
|
|
|
// CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
|
|
void update_byte_crc32(Register crc, Register val, Register table);
|
|
void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
|
|
// CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
|
|
// Note on a naming convention:
|
|
// Prefix w = register only used on a Westmere+ architecture
|
|
// Prefix n = register only used on a Nehalem architecture
|
|
#ifdef _LP64
|
|
void crc32c_ipl_alg4(Register in_out, uint32_t n,
|
|
Register tmp1, Register tmp2, Register tmp3);
|
|
#else
|
|
void crc32c_ipl_alg4(Register in_out, uint32_t n,
|
|
Register tmp1, Register tmp2, Register tmp3,
|
|
XMMRegister xtmp1, XMMRegister xtmp2);
|
|
#endif
|
|
void crc32c_pclmulqdq(XMMRegister w_xtmp1,
|
|
Register in_out,
|
|
uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
|
|
XMMRegister w_xtmp2,
|
|
Register tmp1,
|
|
Register n_tmp2, Register n_tmp3);
|
|
void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
|
|
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
|
|
Register tmp1, Register tmp2,
|
|
Register n_tmp3);
|
|
void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
|
|
Register in_out1, Register in_out2, Register in_out3,
|
|
Register tmp1, Register tmp2, Register tmp3,
|
|
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
|
|
Register tmp4, Register tmp5,
|
|
Register n_tmp6);
|
|
void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
|
|
Register tmp1, Register tmp2, Register tmp3,
|
|
Register tmp4, Register tmp5, Register tmp6,
|
|
XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
|
|
bool is_pclmulqdq_supported);
|
|
// Fold 128-bit data chunk
|
|
void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
|
|
void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
|
|
// Fold 8-bit data
|
|
void fold_8bit_crc32(Register crc, Register table, Register tmp);
|
|
void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
|
|
|
|
// Compress char[] array to byte[].
|
|
void char_array_compress(Register src, Register dst, Register len,
|
|
XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
|
|
XMMRegister tmp4, Register tmp5, Register result);
|
|
|
|
// Inflate byte[] array to char[].
|
|
void byte_array_inflate(Register src, Register dst, Register len,
|
|
XMMRegister tmp1, Register tmp2);
|
|
|
|
};
|
|
|
|
/**
|
|
* class SkipIfEqual:
|
|
*
|
|
* Instantiating this class will result in assembly code being output that will
|
|
* jump around any code emitted between the creation of the instance and it's
|
|
* automatic destruction at the end of a scope block, depending on the value of
|
|
* the flag passed to the constructor, which will be checked at run-time.
|
|
*/
|
|
class SkipIfEqual {
|
|
private:
|
|
MacroAssembler* _masm;
|
|
Label _label;
|
|
|
|
public:
|
|
SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
|
|
~SkipIfEqual();
|
|
};
|
|
|
|
#endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP
|