8ebc8387ba
Remove unnecessary pure virtual decl and default argument values. Reviewed-by: jwilhelm, tbenson, jmasa
225 lines
9.1 KiB
C++
225 lines
9.1 KiB
C++
/*
|
|
* Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_VM_GC_SHARED_BARRIERSET_HPP
|
|
#define SHARE_VM_GC_SHARED_BARRIERSET_HPP
|
|
|
|
#include "memory/memRegion.hpp"
|
|
#include "oops/oopsHierarchy.hpp"
|
|
#include "utilities/fakeRttiSupport.hpp"
|
|
|
|
// This class provides the interface between a barrier implementation and
|
|
// the rest of the system.
|
|
|
|
class BarrierSet: public CHeapObj<mtGC> {
|
|
friend class VMStructs;
|
|
public:
|
|
// Fake RTTI support. For a derived class T to participate
|
|
// - T must have a corresponding Name entry.
|
|
// - GetName<T> must be specialized to return the corresponding Name
|
|
// entry.
|
|
// - If T is a base class, the constructor must have a FakeRtti
|
|
// parameter and pass it up to its base class, with the tag set
|
|
// augmented with the corresponding Name entry.
|
|
// - If T is a concrete class, the constructor must create a
|
|
// FakeRtti object whose tag set includes the corresponding Name
|
|
// entry, and pass it up to its base class.
|
|
|
|
enum Name { // associated class
|
|
ModRef, // ModRefBarrierSet
|
|
CardTableModRef, // CardTableModRefBS
|
|
CardTableForRS, // CardTableModRefBSForCTRS
|
|
CardTableExtension, // CardTableExtension
|
|
G1SATBCT, // G1SATBCardTableModRefBS
|
|
G1SATBCTLogging // G1SATBCardTableLoggingModRefBS
|
|
};
|
|
|
|
protected:
|
|
typedef FakeRttiSupport<BarrierSet, Name> FakeRtti;
|
|
|
|
private:
|
|
FakeRtti _fake_rtti;
|
|
|
|
// Metafunction mapping a class derived from BarrierSet to the
|
|
// corresponding Name enum tag.
|
|
template<typename T> struct GetName;
|
|
|
|
// Downcast argument to a derived barrier set type.
|
|
// The cast is checked in a debug build.
|
|
// T must have a specialization for BarrierSet::GetName<T>.
|
|
template<typename T> friend T* barrier_set_cast(BarrierSet* bs);
|
|
|
|
public:
|
|
// Note: This is not presently the Name corresponding to the
|
|
// concrete class of this object.
|
|
BarrierSet::Name kind() const { return _fake_rtti.concrete_tag(); }
|
|
|
|
// Test whether this object is of the type corresponding to bsn.
|
|
bool is_a(BarrierSet::Name bsn) const { return _fake_rtti.has_tag(bsn); }
|
|
|
|
// End of fake RTTI support.
|
|
|
|
public:
|
|
enum Flags {
|
|
None = 0,
|
|
TargetUninitialized = 1
|
|
};
|
|
|
|
protected:
|
|
// Some barrier sets create tables whose elements correspond to parts of
|
|
// the heap; the CardTableModRefBS is an example. Such barrier sets will
|
|
// normally reserve space for such tables, and commit parts of the table
|
|
// "covering" parts of the heap that are committed. At most one covered
|
|
// region per generation is needed.
|
|
static const int _max_covered_regions = 2;
|
|
|
|
BarrierSet(const FakeRtti& fake_rtti) : _fake_rtti(fake_rtti) { }
|
|
~BarrierSet() { }
|
|
|
|
public:
|
|
|
|
// These operations indicate what kind of barriers the BarrierSet has.
|
|
virtual bool has_read_ref_barrier() = 0;
|
|
virtual bool has_read_prim_barrier() = 0;
|
|
virtual bool has_write_ref_barrier() = 0;
|
|
virtual bool has_write_ref_pre_barrier() = 0;
|
|
virtual bool has_write_prim_barrier() = 0;
|
|
|
|
// These functions indicate whether a particular access of the given
|
|
// kinds requires a barrier.
|
|
virtual bool read_ref_needs_barrier(void* field) = 0;
|
|
virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
|
|
virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
|
|
juint val1, juint val2) = 0;
|
|
|
|
// The first four operations provide a direct implementation of the
|
|
// barrier set. An interpreter loop, for example, could call these
|
|
// directly, as appropriate.
|
|
|
|
// Invoke the barrier, if any, necessary when reading the given ref field.
|
|
virtual void read_ref_field(void* field) = 0;
|
|
|
|
// Invoke the barrier, if any, necessary when reading the given primitive
|
|
// "field" of "bytes" bytes in "obj".
|
|
virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
|
|
|
|
// Invoke the barrier, if any, necessary when writing "new_val" into the
|
|
// ref field at "offset" in "obj".
|
|
// (For efficiency reasons, this operation is specialized for certain
|
|
// barrier types. Semantically, it should be thought of as a call to the
|
|
// virtual "_work" function below, which must implement the barrier.)
|
|
// First the pre-write versions...
|
|
template <class T> inline void write_ref_field_pre(T* field, oop new_val);
|
|
private:
|
|
// Helper for write_ref_field_pre and friends, testing for specialized cases.
|
|
bool devirtualize_reference_writes() const;
|
|
|
|
// Keep this private so as to catch violations at build time.
|
|
virtual void write_ref_field_pre_work( void* field, oop new_val) { guarantee(false, "Not needed"); };
|
|
protected:
|
|
virtual void write_ref_field_pre_work( oop* field, oop new_val) {};
|
|
virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
|
|
public:
|
|
|
|
// ...then the post-write version.
|
|
inline void write_ref_field(void* field, oop new_val, bool release = false);
|
|
protected:
|
|
virtual void write_ref_field_work(void* field, oop new_val, bool release) = 0;
|
|
public:
|
|
|
|
// Invoke the barrier, if any, necessary when writing the "bytes"-byte
|
|
// value(s) "val1" (and "val2") into the primitive "field".
|
|
virtual void write_prim_field(HeapWord* field, size_t bytes,
|
|
juint val1, juint val2) = 0;
|
|
|
|
// Operations on arrays, or general regions (e.g., for "clone") may be
|
|
// optimized by some barriers.
|
|
|
|
// The first six operations tell whether such an optimization exists for
|
|
// the particular barrier.
|
|
virtual bool has_read_ref_array_opt() = 0;
|
|
virtual bool has_read_prim_array_opt() = 0;
|
|
virtual bool has_write_ref_array_pre_opt() { return true; }
|
|
virtual bool has_write_ref_array_opt() = 0;
|
|
virtual bool has_write_prim_array_opt() = 0;
|
|
|
|
virtual bool has_read_region_opt() = 0;
|
|
virtual bool has_write_region_opt() = 0;
|
|
|
|
// These operations should assert false unless the corresponding operation
|
|
// above returns true. Otherwise, they should perform an appropriate
|
|
// barrier for an array whose elements are all in the given memory region.
|
|
virtual void read_ref_array(MemRegion mr) = 0;
|
|
virtual void read_prim_array(MemRegion mr) = 0;
|
|
|
|
// Below length is the # array elements being written
|
|
virtual void write_ref_array_pre(oop* dst, int length,
|
|
bool dest_uninitialized = false) {}
|
|
virtual void write_ref_array_pre(narrowOop* dst, int length,
|
|
bool dest_uninitialized = false) {}
|
|
// Below count is the # array elements being written, starting
|
|
// at the address "start", which may not necessarily be HeapWord-aligned
|
|
inline void write_ref_array(HeapWord* start, size_t count);
|
|
|
|
// Static versions, suitable for calling from generated code;
|
|
// count is # array elements being written, starting with "start",
|
|
// which may not necessarily be HeapWord-aligned.
|
|
static void static_write_ref_array_pre(HeapWord* start, size_t count);
|
|
static void static_write_ref_array_post(HeapWord* start, size_t count);
|
|
|
|
protected:
|
|
virtual void write_ref_array_work(MemRegion mr) = 0;
|
|
public:
|
|
virtual void write_prim_array(MemRegion mr) = 0;
|
|
|
|
virtual void read_region(MemRegion mr) = 0;
|
|
|
|
// (For efficiency reasons, this operation is specialized for certain
|
|
// barrier types. Semantically, it should be thought of as a call to the
|
|
// virtual "_work" function below, which must implement the barrier.)
|
|
void write_region(MemRegion mr);
|
|
protected:
|
|
virtual void write_region_work(MemRegion mr) = 0;
|
|
public:
|
|
// Inform the BarrierSet that the the covered heap region that starts
|
|
// with "base" has been changed to have the given size (possibly from 0,
|
|
// for initialization.)
|
|
virtual void resize_covered_region(MemRegion new_region) = 0;
|
|
|
|
// If the barrier set imposes any alignment restrictions on boundaries
|
|
// within the heap, this function tells whether they are met.
|
|
virtual bool is_aligned(HeapWord* addr) = 0;
|
|
|
|
// Print a description of the memory for the barrier set
|
|
virtual void print_on(outputStream* st) const = 0;
|
|
};
|
|
|
|
template<typename T>
|
|
inline T* barrier_set_cast(BarrierSet* bs) {
|
|
assert(bs->is_a(BarrierSet::GetName<T>::value), "wrong type of barrier set");
|
|
return static_cast<T*>(bs);
|
|
}
|
|
|
|
#endif // SHARE_VM_GC_SHARED_BARRIERSET_HPP
|