a7d89b56a8
Reviewed-by: jwilhelm, mgerdin
1327 lines
46 KiB
C++
1327 lines
46 KiB
C++
/*
|
|
* Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/symbolTable.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "gc/shared/collectorCounters.hpp"
|
|
#include "gc/shared/gcId.hpp"
|
|
#include "gc/shared/gcLocker.inline.hpp"
|
|
#include "gc/shared/gcTrace.hpp"
|
|
#include "gc/shared/gcTraceTime.hpp"
|
|
#include "gc/shared/genCollectedHeap.hpp"
|
|
#include "gc/shared/genOopClosures.inline.hpp"
|
|
#include "gc/shared/generationSpec.hpp"
|
|
#include "gc/shared/space.hpp"
|
|
#include "gc/shared/strongRootsScope.hpp"
|
|
#include "gc/shared/vmGCOperations.hpp"
|
|
#include "gc/shared/workgroup.hpp"
|
|
#include "memory/filemap.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/biasedLocking.hpp"
|
|
#include "runtime/fprofiler.hpp"
|
|
#include "runtime/handles.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/vmThread.hpp"
|
|
#include "services/management.hpp"
|
|
#include "services/memoryService.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/stack.inline.hpp"
|
|
#include "utilities/vmError.hpp"
|
|
#if INCLUDE_ALL_GCS
|
|
#include "gc/cms/concurrentMarkSweepThread.hpp"
|
|
#include "gc/cms/vmCMSOperations.hpp"
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
|
|
|
|
// The set of potentially parallel tasks in root scanning.
|
|
enum GCH_strong_roots_tasks {
|
|
GCH_PS_Universe_oops_do,
|
|
GCH_PS_JNIHandles_oops_do,
|
|
GCH_PS_ObjectSynchronizer_oops_do,
|
|
GCH_PS_FlatProfiler_oops_do,
|
|
GCH_PS_Management_oops_do,
|
|
GCH_PS_SystemDictionary_oops_do,
|
|
GCH_PS_ClassLoaderDataGraph_oops_do,
|
|
GCH_PS_jvmti_oops_do,
|
|
GCH_PS_CodeCache_oops_do,
|
|
GCH_PS_younger_gens,
|
|
// Leave this one last.
|
|
GCH_PS_NumElements
|
|
};
|
|
|
|
GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
|
|
CollectedHeap(),
|
|
_rem_set(NULL),
|
|
_gen_policy(policy),
|
|
_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
|
|
_full_collections_completed(0)
|
|
{
|
|
assert(policy != NULL, "Sanity check");
|
|
if (UseConcMarkSweepGC) {
|
|
_workers = new WorkGang("GC Thread", ParallelGCThreads,
|
|
/* are_GC_task_threads */true,
|
|
/* are_ConcurrentGC_threads */false);
|
|
_workers->initialize_workers();
|
|
} else {
|
|
// Serial GC does not use workers.
|
|
_workers = NULL;
|
|
}
|
|
}
|
|
|
|
jint GenCollectedHeap::initialize() {
|
|
CollectedHeap::pre_initialize();
|
|
|
|
// While there are no constraints in the GC code that HeapWordSize
|
|
// be any particular value, there are multiple other areas in the
|
|
// system which believe this to be true (e.g. oop->object_size in some
|
|
// cases incorrectly returns the size in wordSize units rather than
|
|
// HeapWordSize).
|
|
guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
|
|
|
|
// Allocate space for the heap.
|
|
|
|
char* heap_address;
|
|
ReservedSpace heap_rs;
|
|
|
|
size_t heap_alignment = collector_policy()->heap_alignment();
|
|
|
|
heap_address = allocate(heap_alignment, &heap_rs);
|
|
|
|
if (!heap_rs.is_reserved()) {
|
|
vm_shutdown_during_initialization(
|
|
"Could not reserve enough space for object heap");
|
|
return JNI_ENOMEM;
|
|
}
|
|
|
|
initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
|
|
|
|
_rem_set = collector_policy()->create_rem_set(reserved_region());
|
|
set_barrier_set(rem_set()->bs());
|
|
|
|
ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
|
|
_young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
|
|
heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
|
|
|
|
ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
|
|
_old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
|
|
clear_incremental_collection_failed();
|
|
|
|
#if INCLUDE_ALL_GCS
|
|
// If we are running CMS, create the collector responsible
|
|
// for collecting the CMS generations.
|
|
if (collector_policy()->is_concurrent_mark_sweep_policy()) {
|
|
bool success = create_cms_collector();
|
|
if (!success) return JNI_ENOMEM;
|
|
}
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
return JNI_OK;
|
|
}
|
|
|
|
char* GenCollectedHeap::allocate(size_t alignment,
|
|
ReservedSpace* heap_rs){
|
|
// Now figure out the total size.
|
|
const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
|
|
assert(alignment % pageSize == 0, "Must be");
|
|
|
|
GenerationSpec* young_spec = gen_policy()->young_gen_spec();
|
|
GenerationSpec* old_spec = gen_policy()->old_gen_spec();
|
|
|
|
// Check for overflow.
|
|
size_t total_reserved = young_spec->max_size() + old_spec->max_size();
|
|
if (total_reserved < young_spec->max_size()) {
|
|
vm_exit_during_initialization("The size of the object heap + VM data exceeds "
|
|
"the maximum representable size");
|
|
}
|
|
assert(total_reserved % alignment == 0,
|
|
"Gen size; total_reserved=" SIZE_FORMAT ", alignment="
|
|
SIZE_FORMAT, total_reserved, alignment);
|
|
|
|
*heap_rs = Universe::reserve_heap(total_reserved, alignment);
|
|
return heap_rs->base();
|
|
}
|
|
|
|
void GenCollectedHeap::post_initialize() {
|
|
CollectedHeap::post_initialize();
|
|
ref_processing_init();
|
|
assert((_young_gen->kind() == Generation::DefNew) ||
|
|
(_young_gen->kind() == Generation::ParNew),
|
|
"Wrong youngest generation type");
|
|
DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
|
|
|
|
assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
|
|
_old_gen->kind() == Generation::MarkSweepCompact,
|
|
"Wrong generation kind");
|
|
|
|
_gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
|
|
_old_gen->capacity(),
|
|
def_new_gen->from()->capacity());
|
|
_gen_policy->initialize_gc_policy_counters();
|
|
}
|
|
|
|
void GenCollectedHeap::ref_processing_init() {
|
|
_young_gen->ref_processor_init();
|
|
_old_gen->ref_processor_init();
|
|
}
|
|
|
|
size_t GenCollectedHeap::capacity() const {
|
|
return _young_gen->capacity() + _old_gen->capacity();
|
|
}
|
|
|
|
size_t GenCollectedHeap::used() const {
|
|
return _young_gen->used() + _old_gen->used();
|
|
}
|
|
|
|
void GenCollectedHeap::save_used_regions() {
|
|
_old_gen->save_used_region();
|
|
_young_gen->save_used_region();
|
|
}
|
|
|
|
size_t GenCollectedHeap::max_capacity() const {
|
|
return _young_gen->max_capacity() + _old_gen->max_capacity();
|
|
}
|
|
|
|
// Update the _full_collections_completed counter
|
|
// at the end of a stop-world full GC.
|
|
unsigned int GenCollectedHeap::update_full_collections_completed() {
|
|
MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
|
|
assert(_full_collections_completed <= _total_full_collections,
|
|
"Can't complete more collections than were started");
|
|
_full_collections_completed = _total_full_collections;
|
|
ml.notify_all();
|
|
return _full_collections_completed;
|
|
}
|
|
|
|
// Update the _full_collections_completed counter, as appropriate,
|
|
// at the end of a concurrent GC cycle. Note the conditional update
|
|
// below to allow this method to be called by a concurrent collector
|
|
// without synchronizing in any manner with the VM thread (which
|
|
// may already have initiated a STW full collection "concurrently").
|
|
unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
|
|
MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
|
|
assert((_full_collections_completed <= _total_full_collections) &&
|
|
(count <= _total_full_collections),
|
|
"Can't complete more collections than were started");
|
|
if (count > _full_collections_completed) {
|
|
_full_collections_completed = count;
|
|
ml.notify_all();
|
|
}
|
|
return _full_collections_completed;
|
|
}
|
|
|
|
|
|
#ifndef PRODUCT
|
|
// Override of memory state checking method in CollectedHeap:
|
|
// Some collectors (CMS for example) can't have badHeapWordVal written
|
|
// in the first two words of an object. (For instance , in the case of
|
|
// CMS these words hold state used to synchronize between certain
|
|
// (concurrent) GC steps and direct allocating mutators.)
|
|
// The skip_header_HeapWords() method below, allows us to skip
|
|
// over the requisite number of HeapWord's. Note that (for
|
|
// generational collectors) this means that those many words are
|
|
// skipped in each object, irrespective of the generation in which
|
|
// that object lives. The resultant loss of precision seems to be
|
|
// harmless and the pain of avoiding that imprecision appears somewhat
|
|
// higher than we are prepared to pay for such rudimentary debugging
|
|
// support.
|
|
void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
|
|
size_t size) {
|
|
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
|
|
// We are asked to check a size in HeapWords,
|
|
// but the memory is mangled in juint words.
|
|
juint* start = (juint*) (addr + skip_header_HeapWords());
|
|
juint* end = (juint*) (addr + size);
|
|
for (juint* slot = start; slot < end; slot += 1) {
|
|
assert(*slot == badHeapWordVal,
|
|
"Found non badHeapWordValue in pre-allocation check");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
|
|
bool is_tlab,
|
|
bool first_only) {
|
|
HeapWord* res = NULL;
|
|
|
|
if (_young_gen->should_allocate(size, is_tlab)) {
|
|
res = _young_gen->allocate(size, is_tlab);
|
|
if (res != NULL || first_only) {
|
|
return res;
|
|
}
|
|
}
|
|
|
|
if (_old_gen->should_allocate(size, is_tlab)) {
|
|
res = _old_gen->allocate(size, is_tlab);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
HeapWord* GenCollectedHeap::mem_allocate(size_t size,
|
|
bool* gc_overhead_limit_was_exceeded) {
|
|
return collector_policy()->mem_allocate_work(size,
|
|
false /* is_tlab */,
|
|
gc_overhead_limit_was_exceeded);
|
|
}
|
|
|
|
bool GenCollectedHeap::must_clear_all_soft_refs() {
|
|
return _gc_cause == GCCause::_last_ditch_collection;
|
|
}
|
|
|
|
bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
|
|
if (!UseConcMarkSweepGC) {
|
|
return false;
|
|
}
|
|
|
|
switch (cause) {
|
|
case GCCause::_gc_locker: return GCLockerInvokesConcurrent;
|
|
case GCCause::_java_lang_system_gc:
|
|
case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent;
|
|
default: return false;
|
|
}
|
|
}
|
|
|
|
void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
|
|
bool is_tlab, bool run_verification, bool clear_soft_refs,
|
|
bool restore_marks_for_biased_locking) {
|
|
// Timer for individual generations. Last argument is false: no CR
|
|
// FIXME: We should try to start the timing earlier to cover more of the GC pause
|
|
GCTraceTime t1(gen->short_name(), PrintGCDetails, false, NULL);
|
|
TraceCollectorStats tcs(gen->counters());
|
|
TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
|
|
|
|
size_t prev_used = gen->used();
|
|
gen->stat_record()->invocations++;
|
|
gen->stat_record()->accumulated_time.start();
|
|
|
|
// Must be done anew before each collection because
|
|
// a previous collection will do mangling and will
|
|
// change top of some spaces.
|
|
record_gen_tops_before_GC();
|
|
|
|
if (PrintGC && Verbose) {
|
|
// I didn't want to change the logging when removing the level concept,
|
|
// but I guess this logging could say young/old or something instead of 0/1.
|
|
uint level;
|
|
if (heap()->is_young_gen(gen)) {
|
|
level = 0;
|
|
} else {
|
|
level = 1;
|
|
}
|
|
gclog_or_tty->print("level=%u invoke=%d size=" SIZE_FORMAT,
|
|
level,
|
|
gen->stat_record()->invocations,
|
|
size * HeapWordSize);
|
|
}
|
|
|
|
if (run_verification && VerifyBeforeGC) {
|
|
HandleMark hm; // Discard invalid handles created during verification
|
|
Universe::verify(" VerifyBeforeGC:");
|
|
}
|
|
COMPILER2_PRESENT(DerivedPointerTable::clear());
|
|
|
|
if (restore_marks_for_biased_locking) {
|
|
// We perform this mark word preservation work lazily
|
|
// because it's only at this point that we know whether we
|
|
// absolutely have to do it; we want to avoid doing it for
|
|
// scavenge-only collections where it's unnecessary
|
|
BiasedLocking::preserve_marks();
|
|
}
|
|
|
|
// Do collection work
|
|
{
|
|
// Note on ref discovery: For what appear to be historical reasons,
|
|
// GCH enables and disabled (by enqueing) refs discovery.
|
|
// In the future this should be moved into the generation's
|
|
// collect method so that ref discovery and enqueueing concerns
|
|
// are local to a generation. The collect method could return
|
|
// an appropriate indication in the case that notification on
|
|
// the ref lock was needed. This will make the treatment of
|
|
// weak refs more uniform (and indeed remove such concerns
|
|
// from GCH). XXX
|
|
|
|
HandleMark hm; // Discard invalid handles created during gc
|
|
save_marks(); // save marks for all gens
|
|
// We want to discover references, but not process them yet.
|
|
// This mode is disabled in process_discovered_references if the
|
|
// generation does some collection work, or in
|
|
// enqueue_discovered_references if the generation returns
|
|
// without doing any work.
|
|
ReferenceProcessor* rp = gen->ref_processor();
|
|
// If the discovery of ("weak") refs in this generation is
|
|
// atomic wrt other collectors in this configuration, we
|
|
// are guaranteed to have empty discovered ref lists.
|
|
if (rp->discovery_is_atomic()) {
|
|
rp->enable_discovery();
|
|
rp->setup_policy(clear_soft_refs);
|
|
} else {
|
|
// collect() below will enable discovery as appropriate
|
|
}
|
|
gen->collect(full, clear_soft_refs, size, is_tlab);
|
|
if (!rp->enqueuing_is_done()) {
|
|
rp->enqueue_discovered_references();
|
|
} else {
|
|
rp->set_enqueuing_is_done(false);
|
|
}
|
|
rp->verify_no_references_recorded();
|
|
}
|
|
|
|
COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
|
|
|
|
gen->stat_record()->accumulated_time.stop();
|
|
|
|
update_gc_stats(gen, full);
|
|
|
|
if (run_verification && VerifyAfterGC) {
|
|
HandleMark hm; // Discard invalid handles created during verification
|
|
Universe::verify(" VerifyAfterGC:");
|
|
}
|
|
|
|
if (PrintGCDetails) {
|
|
gclog_or_tty->print(":");
|
|
gen->print_heap_change(prev_used);
|
|
}
|
|
}
|
|
|
|
void GenCollectedHeap::do_collection(bool full,
|
|
bool clear_all_soft_refs,
|
|
size_t size,
|
|
bool is_tlab,
|
|
GenerationType max_generation) {
|
|
ResourceMark rm;
|
|
DEBUG_ONLY(Thread* my_thread = Thread::current();)
|
|
|
|
assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
|
|
assert(my_thread->is_VM_thread() ||
|
|
my_thread->is_ConcurrentGC_thread(),
|
|
"incorrect thread type capability");
|
|
assert(Heap_lock->is_locked(),
|
|
"the requesting thread should have the Heap_lock");
|
|
guarantee(!is_gc_active(), "collection is not reentrant");
|
|
|
|
if (GC_locker::check_active_before_gc()) {
|
|
return; // GC is disabled (e.g. JNI GetXXXCritical operation)
|
|
}
|
|
|
|
GCIdMark gc_id_mark;
|
|
|
|
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
|
|
collector_policy()->should_clear_all_soft_refs();
|
|
|
|
ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
|
|
|
|
const size_t metadata_prev_used = MetaspaceAux::used_bytes();
|
|
|
|
print_heap_before_gc();
|
|
|
|
{
|
|
FlagSetting fl(_is_gc_active, true);
|
|
|
|
bool complete = full && (max_generation == OldGen);
|
|
const char* gc_cause_prefix = complete ? "Full GC" : "GC";
|
|
TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
|
|
GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);
|
|
|
|
gc_prologue(complete);
|
|
increment_total_collections(complete);
|
|
|
|
size_t gch_prev_used = used();
|
|
bool run_verification = total_collections() >= VerifyGCStartAt;
|
|
|
|
bool prepared_for_verification = false;
|
|
bool collected_old = false;
|
|
bool old_collects_young = complete &&
|
|
_old_gen->full_collects_young_generation();
|
|
if (!old_collects_young &&
|
|
_young_gen->should_collect(full, size, is_tlab)) {
|
|
if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
|
|
prepare_for_verify();
|
|
prepared_for_verification = true;
|
|
}
|
|
|
|
assert(!_young_gen->performs_in_place_marking(), "No young generation do in place marking");
|
|
collect_generation(_young_gen,
|
|
full,
|
|
size,
|
|
is_tlab,
|
|
run_verification && VerifyGCLevel <= 0,
|
|
do_clear_all_soft_refs,
|
|
false);
|
|
|
|
if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
|
|
size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
|
|
// Allocation request was met by young GC.
|
|
size = 0;
|
|
}
|
|
}
|
|
|
|
bool must_restore_marks_for_biased_locking = false;
|
|
|
|
if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
|
|
GCIdMarkAndRestore gc_id_mark;
|
|
if (!complete) {
|
|
// The full_collections increment was missed above.
|
|
increment_total_full_collections();
|
|
}
|
|
|
|
pre_full_gc_dump(NULL); // do any pre full gc dumps
|
|
|
|
if (!prepared_for_verification && run_verification &&
|
|
VerifyGCLevel <= 1 && VerifyBeforeGC) {
|
|
prepare_for_verify();
|
|
}
|
|
|
|
assert(_old_gen->performs_in_place_marking(), "All old generations do in place marking");
|
|
collect_generation(_old_gen,
|
|
full,
|
|
size,
|
|
is_tlab,
|
|
run_verification && VerifyGCLevel <= 1,
|
|
do_clear_all_soft_refs,
|
|
true);
|
|
|
|
must_restore_marks_for_biased_locking = true;
|
|
collected_old = true;
|
|
}
|
|
|
|
// Update "complete" boolean wrt what actually transpired --
|
|
// for instance, a promotion failure could have led to
|
|
// a whole heap collection.
|
|
complete = complete || collected_old;
|
|
|
|
if (complete) { // We did a full collection
|
|
// FIXME: See comment at pre_full_gc_dump call
|
|
post_full_gc_dump(NULL); // do any post full gc dumps
|
|
}
|
|
|
|
if (PrintGCDetails) {
|
|
print_heap_change(gch_prev_used);
|
|
|
|
// Print metaspace info for full GC with PrintGCDetails flag.
|
|
if (complete) {
|
|
MetaspaceAux::print_metaspace_change(metadata_prev_used);
|
|
}
|
|
}
|
|
|
|
// Adjust generation sizes.
|
|
if (collected_old) {
|
|
_old_gen->compute_new_size();
|
|
}
|
|
_young_gen->compute_new_size();
|
|
|
|
if (complete) {
|
|
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
|
|
ClassLoaderDataGraph::purge();
|
|
MetaspaceAux::verify_metrics();
|
|
// Resize the metaspace capacity after full collections
|
|
MetaspaceGC::compute_new_size();
|
|
update_full_collections_completed();
|
|
}
|
|
|
|
// Track memory usage and detect low memory after GC finishes
|
|
MemoryService::track_memory_usage();
|
|
|
|
gc_epilogue(complete);
|
|
|
|
if (must_restore_marks_for_biased_locking) {
|
|
BiasedLocking::restore_marks();
|
|
}
|
|
}
|
|
|
|
print_heap_after_gc();
|
|
|
|
#ifdef TRACESPINNING
|
|
ParallelTaskTerminator::print_termination_counts();
|
|
#endif
|
|
}
|
|
|
|
HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
|
|
return collector_policy()->satisfy_failed_allocation(size, is_tlab);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
class AssertNonScavengableClosure: public OopClosure {
|
|
public:
|
|
virtual void do_oop(oop* p) {
|
|
assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
|
|
"Referent should not be scavengable."); }
|
|
virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
|
|
};
|
|
static AssertNonScavengableClosure assert_is_non_scavengable_closure;
|
|
#endif
|
|
|
|
void GenCollectedHeap::process_roots(StrongRootsScope* scope,
|
|
ScanningOption so,
|
|
OopClosure* strong_roots,
|
|
OopClosure* weak_roots,
|
|
CLDClosure* strong_cld_closure,
|
|
CLDClosure* weak_cld_closure,
|
|
CodeBlobClosure* code_roots) {
|
|
// General roots.
|
|
assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
|
|
assert(code_roots != NULL, "code root closure should always be set");
|
|
// _n_termination for _process_strong_tasks should be set up stream
|
|
// in a method not running in a GC worker. Otherwise the GC worker
|
|
// could be trying to change the termination condition while the task
|
|
// is executing in another GC worker.
|
|
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
|
|
ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
|
|
}
|
|
|
|
// Some CLDs contained in the thread frames should be considered strong.
|
|
// Don't process them if they will be processed during the ClassLoaderDataGraph phase.
|
|
CLDClosure* roots_from_clds_p = (strong_cld_closure != weak_cld_closure) ? strong_cld_closure : NULL;
|
|
// Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
|
|
CodeBlobClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
|
|
|
|
bool is_par = scope->n_threads() > 1;
|
|
Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_clds_p, roots_from_code_p);
|
|
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
|
|
Universe::oops_do(strong_roots);
|
|
}
|
|
// Global (strong) JNI handles
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
|
|
JNIHandles::oops_do(strong_roots);
|
|
}
|
|
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
|
|
ObjectSynchronizer::oops_do(strong_roots);
|
|
}
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
|
|
FlatProfiler::oops_do(strong_roots);
|
|
}
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
|
|
Management::oops_do(strong_roots);
|
|
}
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
|
|
JvmtiExport::oops_do(strong_roots);
|
|
}
|
|
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
|
|
SystemDictionary::roots_oops_do(strong_roots, weak_roots);
|
|
}
|
|
|
|
// All threads execute the following. A specific chunk of buckets
|
|
// from the StringTable are the individual tasks.
|
|
if (weak_roots != NULL) {
|
|
if (is_par) {
|
|
StringTable::possibly_parallel_oops_do(weak_roots);
|
|
} else {
|
|
StringTable::oops_do(weak_roots);
|
|
}
|
|
}
|
|
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
|
|
if (so & SO_ScavengeCodeCache) {
|
|
assert(code_roots != NULL, "must supply closure for code cache");
|
|
|
|
// We only visit parts of the CodeCache when scavenging.
|
|
CodeCache::scavenge_root_nmethods_do(code_roots);
|
|
}
|
|
if (so & SO_AllCodeCache) {
|
|
assert(code_roots != NULL, "must supply closure for code cache");
|
|
|
|
// CMSCollector uses this to do intermediate-strength collections.
|
|
// We scan the entire code cache, since CodeCache::do_unloading is not called.
|
|
CodeCache::blobs_do(code_roots);
|
|
}
|
|
// Verify that the code cache contents are not subject to
|
|
// movement by a scavenging collection.
|
|
DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
|
|
DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
|
|
}
|
|
}
|
|
|
|
void GenCollectedHeap::gen_process_roots(StrongRootsScope* scope,
|
|
GenerationType type,
|
|
bool young_gen_as_roots,
|
|
ScanningOption so,
|
|
bool only_strong_roots,
|
|
OopsInGenClosure* not_older_gens,
|
|
OopsInGenClosure* older_gens,
|
|
CLDClosure* cld_closure) {
|
|
const bool is_adjust_phase = !only_strong_roots && !young_gen_as_roots;
|
|
|
|
bool is_moving_collection = false;
|
|
if (type == YoungGen || is_adjust_phase) {
|
|
// young collections are always moving
|
|
is_moving_collection = true;
|
|
}
|
|
|
|
MarkingCodeBlobClosure mark_code_closure(not_older_gens, is_moving_collection);
|
|
OopsInGenClosure* weak_roots = only_strong_roots ? NULL : not_older_gens;
|
|
CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
|
|
|
|
process_roots(scope, so,
|
|
not_older_gens, weak_roots,
|
|
cld_closure, weak_cld_closure,
|
|
&mark_code_closure);
|
|
|
|
if (young_gen_as_roots) {
|
|
if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
|
|
if (type == OldGen) {
|
|
not_older_gens->set_generation(_young_gen);
|
|
_young_gen->oop_iterate(not_older_gens);
|
|
}
|
|
not_older_gens->reset_generation();
|
|
}
|
|
}
|
|
// When collection is parallel, all threads get to cooperate to do
|
|
// old generation scanning.
|
|
if (type == YoungGen) {
|
|
older_gens->set_generation(_old_gen);
|
|
rem_set()->younger_refs_iterate(_old_gen, older_gens, scope->n_threads());
|
|
older_gens->reset_generation();
|
|
}
|
|
|
|
_process_strong_tasks->all_tasks_completed(scope->n_threads());
|
|
}
|
|
|
|
|
|
class AlwaysTrueClosure: public BoolObjectClosure {
|
|
public:
|
|
bool do_object_b(oop p) { return true; }
|
|
};
|
|
static AlwaysTrueClosure always_true;
|
|
|
|
void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
|
|
JNIHandles::weak_oops_do(&always_true, root_closure);
|
|
_young_gen->ref_processor()->weak_oops_do(root_closure);
|
|
_old_gen->ref_processor()->weak_oops_do(root_closure);
|
|
}
|
|
|
|
#define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \
|
|
void GenCollectedHeap:: \
|
|
oop_since_save_marks_iterate(GenerationType gen, \
|
|
OopClosureType* cur, \
|
|
OopClosureType* older) { \
|
|
if (gen == YoungGen) { \
|
|
_young_gen->oop_since_save_marks_iterate##nv_suffix(cur); \
|
|
_old_gen->oop_since_save_marks_iterate##nv_suffix(older); \
|
|
} else { \
|
|
_old_gen->oop_since_save_marks_iterate##nv_suffix(cur); \
|
|
} \
|
|
}
|
|
|
|
ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
|
|
|
|
#undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
|
|
|
|
bool GenCollectedHeap::no_allocs_since_save_marks() {
|
|
return _young_gen->no_allocs_since_save_marks() &&
|
|
_old_gen->no_allocs_since_save_marks();
|
|
}
|
|
|
|
bool GenCollectedHeap::supports_inline_contig_alloc() const {
|
|
return _young_gen->supports_inline_contig_alloc();
|
|
}
|
|
|
|
HeapWord** GenCollectedHeap::top_addr() const {
|
|
return _young_gen->top_addr();
|
|
}
|
|
|
|
HeapWord** GenCollectedHeap::end_addr() const {
|
|
return _young_gen->end_addr();
|
|
}
|
|
|
|
// public collection interfaces
|
|
|
|
void GenCollectedHeap::collect(GCCause::Cause cause) {
|
|
if (should_do_concurrent_full_gc(cause)) {
|
|
#if INCLUDE_ALL_GCS
|
|
// Mostly concurrent full collection.
|
|
collect_mostly_concurrent(cause);
|
|
#else // INCLUDE_ALL_GCS
|
|
ShouldNotReachHere();
|
|
#endif // INCLUDE_ALL_GCS
|
|
} else if (cause == GCCause::_wb_young_gc) {
|
|
// Young collection for the WhiteBox API.
|
|
collect(cause, YoungGen);
|
|
} else {
|
|
#ifdef ASSERT
|
|
if (cause == GCCause::_scavenge_alot) {
|
|
// Young collection only.
|
|
collect(cause, YoungGen);
|
|
} else {
|
|
// Stop-the-world full collection.
|
|
collect(cause, OldGen);
|
|
}
|
|
#else
|
|
// Stop-the-world full collection.
|
|
collect(cause, OldGen);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
|
|
// The caller doesn't have the Heap_lock
|
|
assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
|
|
MutexLocker ml(Heap_lock);
|
|
collect_locked(cause, max_generation);
|
|
}
|
|
|
|
void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
|
|
// The caller has the Heap_lock
|
|
assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
|
|
collect_locked(cause, OldGen);
|
|
}
|
|
|
|
// this is the private collection interface
|
|
// The Heap_lock is expected to be held on entry.
|
|
|
|
void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
|
|
// Read the GC count while holding the Heap_lock
|
|
unsigned int gc_count_before = total_collections();
|
|
unsigned int full_gc_count_before = total_full_collections();
|
|
{
|
|
MutexUnlocker mu(Heap_lock); // give up heap lock, execute gets it back
|
|
VM_GenCollectFull op(gc_count_before, full_gc_count_before,
|
|
cause, max_generation);
|
|
VMThread::execute(&op);
|
|
}
|
|
}
|
|
|
|
#if INCLUDE_ALL_GCS
|
|
bool GenCollectedHeap::create_cms_collector() {
|
|
|
|
assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
|
|
"Unexpected generation kinds");
|
|
// Skip two header words in the block content verification
|
|
NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
|
|
assert(_gen_policy->is_concurrent_mark_sweep_policy(), "Unexpected policy type");
|
|
CMSCollector* collector =
|
|
new CMSCollector((ConcurrentMarkSweepGeneration*)_old_gen,
|
|
_rem_set,
|
|
_gen_policy->as_concurrent_mark_sweep_policy());
|
|
|
|
if (collector == NULL || !collector->completed_initialization()) {
|
|
if (collector) {
|
|
delete collector; // Be nice in embedded situation
|
|
}
|
|
vm_shutdown_during_initialization("Could not create CMS collector");
|
|
return false;
|
|
}
|
|
return true; // success
|
|
}
|
|
|
|
void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
|
|
assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
|
|
|
|
MutexLocker ml(Heap_lock);
|
|
// Read the GC counts while holding the Heap_lock
|
|
unsigned int full_gc_count_before = total_full_collections();
|
|
unsigned int gc_count_before = total_collections();
|
|
{
|
|
MutexUnlocker mu(Heap_lock);
|
|
VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
|
|
VMThread::execute(&op);
|
|
}
|
|
}
|
|
#endif // INCLUDE_ALL_GCS
|
|
|
|
void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
|
|
do_full_collection(clear_all_soft_refs, OldGen);
|
|
}
|
|
|
|
void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
|
|
GenerationType last_generation) {
|
|
GenerationType local_last_generation;
|
|
if (!incremental_collection_will_fail(false /* don't consult_young */) &&
|
|
gc_cause() == GCCause::_gc_locker) {
|
|
local_last_generation = YoungGen;
|
|
} else {
|
|
local_last_generation = last_generation;
|
|
}
|
|
|
|
do_collection(true, // full
|
|
clear_all_soft_refs, // clear_all_soft_refs
|
|
0, // size
|
|
false, // is_tlab
|
|
local_last_generation); // last_generation
|
|
// Hack XXX FIX ME !!!
|
|
// A scavenge may not have been attempted, or may have
|
|
// been attempted and failed, because the old gen was too full
|
|
if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
|
|
incremental_collection_will_fail(false /* don't consult_young */)) {
|
|
if (PrintGCDetails) {
|
|
gclog_or_tty->print_cr("GC locker: Trying a full collection "
|
|
"because scavenge failed");
|
|
}
|
|
// This time allow the old gen to be collected as well
|
|
do_collection(true, // full
|
|
clear_all_soft_refs, // clear_all_soft_refs
|
|
0, // size
|
|
false, // is_tlab
|
|
OldGen); // last_generation
|
|
}
|
|
}
|
|
|
|
bool GenCollectedHeap::is_in_young(oop p) {
|
|
bool result = ((HeapWord*)p) < _old_gen->reserved().start();
|
|
assert(result == _young_gen->is_in_reserved(p),
|
|
"incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
|
|
return result;
|
|
}
|
|
|
|
// Returns "TRUE" iff "p" points into the committed areas of the heap.
|
|
bool GenCollectedHeap::is_in(const void* p) const {
|
|
return _young_gen->is_in(p) || _old_gen->is_in(p);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Don't implement this by using is_in_young(). This method is used
|
|
// in some cases to check that is_in_young() is correct.
|
|
bool GenCollectedHeap::is_in_partial_collection(const void* p) {
|
|
assert(is_in_reserved(p) || p == NULL,
|
|
"Does not work if address is non-null and outside of the heap");
|
|
return p < _young_gen->reserved().end() && p != NULL;
|
|
}
|
|
#endif
|
|
|
|
void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
|
|
NoHeaderExtendedOopClosure no_header_cl(cl);
|
|
oop_iterate(&no_header_cl);
|
|
}
|
|
|
|
void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
|
|
_young_gen->oop_iterate(cl);
|
|
_old_gen->oop_iterate(cl);
|
|
}
|
|
|
|
void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
|
|
_young_gen->object_iterate(cl);
|
|
_old_gen->object_iterate(cl);
|
|
}
|
|
|
|
void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
|
|
_young_gen->safe_object_iterate(cl);
|
|
_old_gen->safe_object_iterate(cl);
|
|
}
|
|
|
|
Space* GenCollectedHeap::space_containing(const void* addr) const {
|
|
Space* res = _young_gen->space_containing(addr);
|
|
if (res != NULL) {
|
|
return res;
|
|
}
|
|
res = _old_gen->space_containing(addr);
|
|
assert(res != NULL, "Could not find containing space");
|
|
return res;
|
|
}
|
|
|
|
HeapWord* GenCollectedHeap::block_start(const void* addr) const {
|
|
assert(is_in_reserved(addr), "block_start of address outside of heap");
|
|
if (_young_gen->is_in_reserved(addr)) {
|
|
assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
|
|
return _young_gen->block_start(addr);
|
|
}
|
|
|
|
assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
|
|
assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
|
|
return _old_gen->block_start(addr);
|
|
}
|
|
|
|
size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
|
|
assert(is_in_reserved(addr), "block_size of address outside of heap");
|
|
if (_young_gen->is_in_reserved(addr)) {
|
|
assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
|
|
return _young_gen->block_size(addr);
|
|
}
|
|
|
|
assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
|
|
assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
|
|
return _old_gen->block_size(addr);
|
|
}
|
|
|
|
bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
|
|
assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
|
|
assert(block_start(addr) == addr, "addr must be a block start");
|
|
if (_young_gen->is_in_reserved(addr)) {
|
|
return _young_gen->block_is_obj(addr);
|
|
}
|
|
|
|
assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
|
|
return _old_gen->block_is_obj(addr);
|
|
}
|
|
|
|
bool GenCollectedHeap::supports_tlab_allocation() const {
|
|
assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
|
|
return _young_gen->supports_tlab_allocation();
|
|
}
|
|
|
|
size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
|
|
assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
|
|
if (_young_gen->supports_tlab_allocation()) {
|
|
return _young_gen->tlab_capacity();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
size_t GenCollectedHeap::tlab_used(Thread* thr) const {
|
|
assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
|
|
if (_young_gen->supports_tlab_allocation()) {
|
|
return _young_gen->tlab_used();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
|
|
assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
|
|
if (_young_gen->supports_tlab_allocation()) {
|
|
return _young_gen->unsafe_max_tlab_alloc();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
|
|
bool gc_overhead_limit_was_exceeded;
|
|
return collector_policy()->mem_allocate_work(size /* size */,
|
|
true /* is_tlab */,
|
|
&gc_overhead_limit_was_exceeded);
|
|
}
|
|
|
|
// Requires "*prev_ptr" to be non-NULL. Deletes and a block of minimal size
|
|
// from the list headed by "*prev_ptr".
|
|
static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
|
|
bool first = true;
|
|
size_t min_size = 0; // "first" makes this conceptually infinite.
|
|
ScratchBlock **smallest_ptr, *smallest;
|
|
ScratchBlock *cur = *prev_ptr;
|
|
while (cur) {
|
|
assert(*prev_ptr == cur, "just checking");
|
|
if (first || cur->num_words < min_size) {
|
|
smallest_ptr = prev_ptr;
|
|
smallest = cur;
|
|
min_size = smallest->num_words;
|
|
first = false;
|
|
}
|
|
prev_ptr = &cur->next;
|
|
cur = cur->next;
|
|
}
|
|
smallest = *smallest_ptr;
|
|
*smallest_ptr = smallest->next;
|
|
return smallest;
|
|
}
|
|
|
|
// Sort the scratch block list headed by res into decreasing size order,
|
|
// and set "res" to the result.
|
|
static void sort_scratch_list(ScratchBlock*& list) {
|
|
ScratchBlock* sorted = NULL;
|
|
ScratchBlock* unsorted = list;
|
|
while (unsorted) {
|
|
ScratchBlock *smallest = removeSmallestScratch(&unsorted);
|
|
smallest->next = sorted;
|
|
sorted = smallest;
|
|
}
|
|
list = sorted;
|
|
}
|
|
|
|
ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
|
|
size_t max_alloc_words) {
|
|
ScratchBlock* res = NULL;
|
|
_young_gen->contribute_scratch(res, requestor, max_alloc_words);
|
|
_old_gen->contribute_scratch(res, requestor, max_alloc_words);
|
|
sort_scratch_list(res);
|
|
return res;
|
|
}
|
|
|
|
void GenCollectedHeap::release_scratch() {
|
|
_young_gen->reset_scratch();
|
|
_old_gen->reset_scratch();
|
|
}
|
|
|
|
class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
|
|
void do_generation(Generation* gen) {
|
|
gen->prepare_for_verify();
|
|
}
|
|
};
|
|
|
|
void GenCollectedHeap::prepare_for_verify() {
|
|
ensure_parsability(false); // no need to retire TLABs
|
|
GenPrepareForVerifyClosure blk;
|
|
generation_iterate(&blk, false);
|
|
}
|
|
|
|
void GenCollectedHeap::generation_iterate(GenClosure* cl,
|
|
bool old_to_young) {
|
|
if (old_to_young) {
|
|
cl->do_generation(_old_gen);
|
|
cl->do_generation(_young_gen);
|
|
} else {
|
|
cl->do_generation(_young_gen);
|
|
cl->do_generation(_old_gen);
|
|
}
|
|
}
|
|
|
|
bool GenCollectedHeap::is_maximal_no_gc() const {
|
|
return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
|
|
}
|
|
|
|
void GenCollectedHeap::save_marks() {
|
|
_young_gen->save_marks();
|
|
_old_gen->save_marks();
|
|
}
|
|
|
|
GenCollectedHeap* GenCollectedHeap::heap() {
|
|
CollectedHeap* heap = Universe::heap();
|
|
assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
|
|
assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Not a GenCollectedHeap");
|
|
return (GenCollectedHeap*)heap;
|
|
}
|
|
|
|
void GenCollectedHeap::prepare_for_compaction() {
|
|
// Start by compacting into same gen.
|
|
CompactPoint cp(_old_gen);
|
|
_old_gen->prepare_for_compaction(&cp);
|
|
_young_gen->prepare_for_compaction(&cp);
|
|
}
|
|
|
|
GCStats* GenCollectedHeap::gc_stats(Generation* gen) const {
|
|
return gen->gc_stats();
|
|
}
|
|
|
|
void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
|
|
if (!silent) {
|
|
gclog_or_tty->print("%s", _old_gen->name());
|
|
gclog_or_tty->print(" ");
|
|
}
|
|
_old_gen->verify();
|
|
|
|
if (!silent) {
|
|
gclog_or_tty->print("%s", _young_gen->name());
|
|
gclog_or_tty->print(" ");
|
|
}
|
|
_young_gen->verify();
|
|
|
|
if (!silent) {
|
|
gclog_or_tty->print("remset ");
|
|
}
|
|
rem_set()->verify();
|
|
}
|
|
|
|
void GenCollectedHeap::print_on(outputStream* st) const {
|
|
_young_gen->print_on(st);
|
|
_old_gen->print_on(st);
|
|
MetaspaceAux::print_on(st);
|
|
}
|
|
|
|
void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
|
|
if (workers() != NULL) {
|
|
workers()->threads_do(tc);
|
|
}
|
|
#if INCLUDE_ALL_GCS
|
|
if (UseConcMarkSweepGC) {
|
|
ConcurrentMarkSweepThread::threads_do(tc);
|
|
}
|
|
#endif // INCLUDE_ALL_GCS
|
|
}
|
|
|
|
void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
|
|
#if INCLUDE_ALL_GCS
|
|
if (UseConcMarkSweepGC) {
|
|
workers()->print_worker_threads_on(st);
|
|
ConcurrentMarkSweepThread::print_all_on(st);
|
|
}
|
|
#endif // INCLUDE_ALL_GCS
|
|
}
|
|
|
|
void GenCollectedHeap::print_on_error(outputStream* st) const {
|
|
this->CollectedHeap::print_on_error(st);
|
|
|
|
#if INCLUDE_ALL_GCS
|
|
if (UseConcMarkSweepGC) {
|
|
st->cr();
|
|
CMSCollector::print_on_error(st);
|
|
}
|
|
#endif // INCLUDE_ALL_GCS
|
|
}
|
|
|
|
void GenCollectedHeap::print_tracing_info() const {
|
|
if (TraceYoungGenTime) {
|
|
_young_gen->print_summary_info();
|
|
}
|
|
if (TraceOldGenTime) {
|
|
_old_gen->print_summary_info();
|
|
}
|
|
}
|
|
|
|
void GenCollectedHeap::print_heap_change(size_t prev_used) const {
|
|
if (PrintGCDetails && Verbose) {
|
|
gclog_or_tty->print(" " SIZE_FORMAT
|
|
"->" SIZE_FORMAT
|
|
"(" SIZE_FORMAT ")",
|
|
prev_used, used(), capacity());
|
|
} else {
|
|
gclog_or_tty->print(" " SIZE_FORMAT "K"
|
|
"->" SIZE_FORMAT "K"
|
|
"(" SIZE_FORMAT "K)",
|
|
prev_used / K, used() / K, capacity() / K);
|
|
}
|
|
}
|
|
|
|
class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
|
|
private:
|
|
bool _full;
|
|
public:
|
|
void do_generation(Generation* gen) {
|
|
gen->gc_prologue(_full);
|
|
}
|
|
GenGCPrologueClosure(bool full) : _full(full) {};
|
|
};
|
|
|
|
void GenCollectedHeap::gc_prologue(bool full) {
|
|
assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
|
|
|
|
always_do_update_barrier = false;
|
|
// Fill TLAB's and such
|
|
CollectedHeap::accumulate_statistics_all_tlabs();
|
|
ensure_parsability(true); // retire TLABs
|
|
|
|
// Walk generations
|
|
GenGCPrologueClosure blk(full);
|
|
generation_iterate(&blk, false); // not old-to-young.
|
|
};
|
|
|
|
class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
|
|
private:
|
|
bool _full;
|
|
public:
|
|
void do_generation(Generation* gen) {
|
|
gen->gc_epilogue(_full);
|
|
}
|
|
GenGCEpilogueClosure(bool full) : _full(full) {};
|
|
};
|
|
|
|
void GenCollectedHeap::gc_epilogue(bool full) {
|
|
#ifdef COMPILER2
|
|
assert(DerivedPointerTable::is_empty(), "derived pointer present");
|
|
size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
|
|
guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
|
|
#endif /* COMPILER2 */
|
|
|
|
resize_all_tlabs();
|
|
|
|
GenGCEpilogueClosure blk(full);
|
|
generation_iterate(&blk, false); // not old-to-young.
|
|
|
|
if (!CleanChunkPoolAsync) {
|
|
Chunk::clean_chunk_pool();
|
|
}
|
|
|
|
MetaspaceCounters::update_performance_counters();
|
|
CompressedClassSpaceCounters::update_performance_counters();
|
|
|
|
always_do_update_barrier = UseConcMarkSweepGC;
|
|
};
|
|
|
|
#ifndef PRODUCT
|
|
class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
|
|
private:
|
|
public:
|
|
void do_generation(Generation* gen) {
|
|
gen->record_spaces_top();
|
|
}
|
|
};
|
|
|
|
void GenCollectedHeap::record_gen_tops_before_GC() {
|
|
if (ZapUnusedHeapArea) {
|
|
GenGCSaveTopsBeforeGCClosure blk;
|
|
generation_iterate(&blk, false); // not old-to-young.
|
|
}
|
|
}
|
|
#endif // not PRODUCT
|
|
|
|
class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
|
|
public:
|
|
void do_generation(Generation* gen) {
|
|
gen->ensure_parsability();
|
|
}
|
|
};
|
|
|
|
void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
|
|
CollectedHeap::ensure_parsability(retire_tlabs);
|
|
GenEnsureParsabilityClosure ep_cl;
|
|
generation_iterate(&ep_cl, false);
|
|
}
|
|
|
|
oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
|
|
oop obj,
|
|
size_t obj_size) {
|
|
guarantee(old_gen == _old_gen, "We only get here with an old generation");
|
|
assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
|
|
HeapWord* result = NULL;
|
|
|
|
result = old_gen->expand_and_allocate(obj_size, false);
|
|
|
|
if (result != NULL) {
|
|
Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
|
|
}
|
|
return oop(result);
|
|
}
|
|
|
|
class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
|
|
jlong _time; // in ms
|
|
jlong _now; // in ms
|
|
|
|
public:
|
|
GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
|
|
|
|
jlong time() { return _time; }
|
|
|
|
void do_generation(Generation* gen) {
|
|
_time = MIN2(_time, gen->time_of_last_gc(_now));
|
|
}
|
|
};
|
|
|
|
jlong GenCollectedHeap::millis_since_last_gc() {
|
|
// We need a monotonically non-decreasing time in ms but
|
|
// os::javaTimeMillis() does not guarantee monotonicity.
|
|
jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
|
|
GenTimeOfLastGCClosure tolgc_cl(now);
|
|
// iterate over generations getting the oldest
|
|
// time that a generation was collected
|
|
generation_iterate(&tolgc_cl, false);
|
|
|
|
// javaTimeNanos() is guaranteed to be monotonically non-decreasing
|
|
// provided the underlying platform provides such a time source
|
|
// (and it is bug free). So we still have to guard against getting
|
|
// back a time later than 'now'.
|
|
jlong retVal = now - tolgc_cl.time();
|
|
if (retVal < 0) {
|
|
NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, retVal);)
|
|
return 0;
|
|
}
|
|
return retVal;
|
|
}
|