ef1e9b3c80
Reviewed-by: ehelin, brutisso
1516 lines
60 KiB
C++
1516 lines
60 KiB
C++
/*
|
|
* Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "asm/codeBuffer.hpp"
|
|
#include "c1/c1_CodeStubs.hpp"
|
|
#include "c1/c1_Defs.hpp"
|
|
#include "c1/c1_FrameMap.hpp"
|
|
#include "c1/c1_LIRAssembler.hpp"
|
|
#include "c1/c1_MacroAssembler.hpp"
|
|
#include "c1/c1_Runtime1.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/codeBlob.hpp"
|
|
#include "code/compiledIC.hpp"
|
|
#include "code/pcDesc.hpp"
|
|
#include "code/scopeDesc.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/disassembler.hpp"
|
|
#include "gc_interface/collectedHeap.hpp"
|
|
#include "interpreter/bytecode.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/barrierSet.hpp"
|
|
#include "memory/oopFactory.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/objArrayKlass.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/atomic.inline.hpp"
|
|
#include "runtime/biasedLocking.hpp"
|
|
#include "runtime/compilationPolicy.hpp"
|
|
#include "runtime/interfaceSupport.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "runtime/vframe.hpp"
|
|
#include "runtime/vframeArray.hpp"
|
|
#include "utilities/copy.hpp"
|
|
#include "utilities/events.hpp"
|
|
|
|
|
|
// Implementation of StubAssembler
|
|
|
|
StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
|
|
_name = name;
|
|
_must_gc_arguments = false;
|
|
_frame_size = no_frame_size;
|
|
_num_rt_args = 0;
|
|
_stub_id = stub_id;
|
|
}
|
|
|
|
|
|
void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
|
|
_name = name;
|
|
_must_gc_arguments = must_gc_arguments;
|
|
}
|
|
|
|
|
|
void StubAssembler::set_frame_size(int size) {
|
|
if (_frame_size == no_frame_size) {
|
|
_frame_size = size;
|
|
}
|
|
assert(_frame_size == size, "can't change the frame size");
|
|
}
|
|
|
|
|
|
void StubAssembler::set_num_rt_args(int args) {
|
|
if (_num_rt_args == 0) {
|
|
_num_rt_args = args;
|
|
}
|
|
assert(_num_rt_args == args, "can't change the number of args");
|
|
}
|
|
|
|
// Implementation of Runtime1
|
|
|
|
CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
|
|
const char *Runtime1::_blob_names[] = {
|
|
RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
|
|
};
|
|
|
|
#ifndef PRODUCT
|
|
// statistics
|
|
int Runtime1::_generic_arraycopy_cnt = 0;
|
|
int Runtime1::_primitive_arraycopy_cnt = 0;
|
|
int Runtime1::_oop_arraycopy_cnt = 0;
|
|
int Runtime1::_generic_arraycopystub_cnt = 0;
|
|
int Runtime1::_arraycopy_slowcase_cnt = 0;
|
|
int Runtime1::_arraycopy_checkcast_cnt = 0;
|
|
int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
|
|
int Runtime1::_new_type_array_slowcase_cnt = 0;
|
|
int Runtime1::_new_object_array_slowcase_cnt = 0;
|
|
int Runtime1::_new_instance_slowcase_cnt = 0;
|
|
int Runtime1::_new_multi_array_slowcase_cnt = 0;
|
|
int Runtime1::_monitorenter_slowcase_cnt = 0;
|
|
int Runtime1::_monitorexit_slowcase_cnt = 0;
|
|
int Runtime1::_patch_code_slowcase_cnt = 0;
|
|
int Runtime1::_throw_range_check_exception_count = 0;
|
|
int Runtime1::_throw_index_exception_count = 0;
|
|
int Runtime1::_throw_div0_exception_count = 0;
|
|
int Runtime1::_throw_null_pointer_exception_count = 0;
|
|
int Runtime1::_throw_class_cast_exception_count = 0;
|
|
int Runtime1::_throw_incompatible_class_change_error_count = 0;
|
|
int Runtime1::_throw_array_store_exception_count = 0;
|
|
int Runtime1::_throw_count = 0;
|
|
|
|
static int _byte_arraycopy_stub_cnt = 0;
|
|
static int _short_arraycopy_stub_cnt = 0;
|
|
static int _int_arraycopy_stub_cnt = 0;
|
|
static int _long_arraycopy_stub_cnt = 0;
|
|
static int _oop_arraycopy_stub_cnt = 0;
|
|
|
|
address Runtime1::arraycopy_count_address(BasicType type) {
|
|
switch (type) {
|
|
case T_BOOLEAN:
|
|
case T_BYTE: return (address)&_byte_arraycopy_stub_cnt;
|
|
case T_CHAR:
|
|
case T_SHORT: return (address)&_short_arraycopy_stub_cnt;
|
|
case T_FLOAT:
|
|
case T_INT: return (address)&_int_arraycopy_stub_cnt;
|
|
case T_DOUBLE:
|
|
case T_LONG: return (address)&_long_arraycopy_stub_cnt;
|
|
case T_ARRAY:
|
|
case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
|
|
default:
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|
|
|
|
// Simple helper to see if the caller of a runtime stub which
|
|
// entered the VM has been deoptimized
|
|
|
|
static bool caller_is_deopted() {
|
|
JavaThread* thread = JavaThread::current();
|
|
RegisterMap reg_map(thread, false);
|
|
frame runtime_frame = thread->last_frame();
|
|
frame caller_frame = runtime_frame.sender(®_map);
|
|
assert(caller_frame.is_compiled_frame(), "must be compiled");
|
|
return caller_frame.is_deoptimized_frame();
|
|
}
|
|
|
|
// Stress deoptimization
|
|
static void deopt_caller() {
|
|
if ( !caller_is_deopted()) {
|
|
JavaThread* thread = JavaThread::current();
|
|
RegisterMap reg_map(thread, false);
|
|
frame runtime_frame = thread->last_frame();
|
|
frame caller_frame = runtime_frame.sender(®_map);
|
|
Deoptimization::deoptimize_frame(thread, caller_frame.id());
|
|
assert(caller_is_deopted(), "Must be deoptimized");
|
|
}
|
|
}
|
|
|
|
|
|
void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
|
|
assert(0 <= id && id < number_of_ids, "illegal stub id");
|
|
ResourceMark rm;
|
|
// create code buffer for code storage
|
|
CodeBuffer code(buffer_blob);
|
|
|
|
Compilation::setup_code_buffer(&code, 0);
|
|
|
|
// create assembler for code generation
|
|
StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
|
|
// generate code for runtime stub
|
|
OopMapSet* oop_maps;
|
|
oop_maps = generate_code_for(id, sasm);
|
|
assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
|
|
"if stub has an oop map it must have a valid frame size");
|
|
|
|
#ifdef ASSERT
|
|
// Make sure that stubs that need oopmaps have them
|
|
switch (id) {
|
|
// These stubs don't need to have an oopmap
|
|
case dtrace_object_alloc_id:
|
|
case g1_pre_barrier_slow_id:
|
|
case g1_post_barrier_slow_id:
|
|
case slow_subtype_check_id:
|
|
case fpu2long_stub_id:
|
|
case unwind_exception_id:
|
|
case counter_overflow_id:
|
|
#if defined(SPARC) || defined(PPC)
|
|
case handle_exception_nofpu_id: // Unused on sparc
|
|
#endif
|
|
break;
|
|
|
|
// All other stubs should have oopmaps
|
|
default:
|
|
assert(oop_maps != NULL, "must have an oopmap");
|
|
}
|
|
#endif
|
|
|
|
// align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
|
|
sasm->align(BytesPerWord);
|
|
// make sure all code is in code buffer
|
|
sasm->flush();
|
|
// create blob - distinguish a few special cases
|
|
CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
|
|
&code,
|
|
CodeOffsets::frame_never_safe,
|
|
sasm->frame_size(),
|
|
oop_maps,
|
|
sasm->must_gc_arguments());
|
|
// install blob
|
|
assert(blob != NULL, "blob must exist");
|
|
_blobs[id] = blob;
|
|
}
|
|
|
|
|
|
void Runtime1::initialize(BufferBlob* blob) {
|
|
// platform-dependent initialization
|
|
initialize_pd();
|
|
// generate stubs
|
|
for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
|
|
// printing
|
|
#ifndef PRODUCT
|
|
if (PrintSimpleStubs) {
|
|
ResourceMark rm;
|
|
for (int id = 0; id < number_of_ids; id++) {
|
|
_blobs[id]->print();
|
|
if (_blobs[id]->oop_maps() != NULL) {
|
|
_blobs[id]->oop_maps()->print();
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
CodeBlob* Runtime1::blob_for(StubID id) {
|
|
assert(0 <= id && id < number_of_ids, "illegal stub id");
|
|
return _blobs[id];
|
|
}
|
|
|
|
|
|
const char* Runtime1::name_for(StubID id) {
|
|
assert(0 <= id && id < number_of_ids, "illegal stub id");
|
|
return _blob_names[id];
|
|
}
|
|
|
|
const char* Runtime1::name_for_address(address entry) {
|
|
for (int id = 0; id < number_of_ids; id++) {
|
|
if (entry == entry_for((StubID)id)) return name_for((StubID)id);
|
|
}
|
|
|
|
#define FUNCTION_CASE(a, f) \
|
|
if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
|
|
|
|
FUNCTION_CASE(entry, os::javaTimeMillis);
|
|
FUNCTION_CASE(entry, os::javaTimeNanos);
|
|
FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
|
|
FUNCTION_CASE(entry, SharedRuntime::d2f);
|
|
FUNCTION_CASE(entry, SharedRuntime::d2i);
|
|
FUNCTION_CASE(entry, SharedRuntime::d2l);
|
|
FUNCTION_CASE(entry, SharedRuntime::dcos);
|
|
FUNCTION_CASE(entry, SharedRuntime::dexp);
|
|
FUNCTION_CASE(entry, SharedRuntime::dlog);
|
|
FUNCTION_CASE(entry, SharedRuntime::dlog10);
|
|
FUNCTION_CASE(entry, SharedRuntime::dpow);
|
|
FUNCTION_CASE(entry, SharedRuntime::drem);
|
|
FUNCTION_CASE(entry, SharedRuntime::dsin);
|
|
FUNCTION_CASE(entry, SharedRuntime::dtan);
|
|
FUNCTION_CASE(entry, SharedRuntime::f2i);
|
|
FUNCTION_CASE(entry, SharedRuntime::f2l);
|
|
FUNCTION_CASE(entry, SharedRuntime::frem);
|
|
FUNCTION_CASE(entry, SharedRuntime::l2d);
|
|
FUNCTION_CASE(entry, SharedRuntime::l2f);
|
|
FUNCTION_CASE(entry, SharedRuntime::ldiv);
|
|
FUNCTION_CASE(entry, SharedRuntime::lmul);
|
|
FUNCTION_CASE(entry, SharedRuntime::lrem);
|
|
FUNCTION_CASE(entry, SharedRuntime::lrem);
|
|
FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
|
|
FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
|
|
FUNCTION_CASE(entry, is_instance_of);
|
|
FUNCTION_CASE(entry, trace_block_entry);
|
|
#ifdef TRACE_HAVE_INTRINSICS
|
|
FUNCTION_CASE(entry, TRACE_TIME_METHOD);
|
|
#endif
|
|
FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
|
|
|
|
#undef FUNCTION_CASE
|
|
|
|
// Soft float adds more runtime names.
|
|
return pd_name_for_address(entry);
|
|
}
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
|
|
NOT_PRODUCT(_new_instance_slowcase_cnt++;)
|
|
|
|
assert(klass->is_klass(), "not a class");
|
|
instanceKlassHandle h(thread, klass);
|
|
h->check_valid_for_instantiation(true, CHECK);
|
|
// make sure klass is initialized
|
|
h->initialize(CHECK);
|
|
// allocate instance and return via TLS
|
|
oop obj = h->allocate_instance(CHECK);
|
|
thread->set_vm_result(obj);
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
|
|
NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
|
|
// Note: no handle for klass needed since they are not used
|
|
// anymore after new_typeArray() and no GC can happen before.
|
|
// (This may have to change if this code changes!)
|
|
assert(klass->is_klass(), "not a class");
|
|
BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
|
|
oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
|
|
thread->set_vm_result(obj);
|
|
// This is pretty rare but this runtime patch is stressful to deoptimization
|
|
// if we deoptimize here so force a deopt to stress the path.
|
|
if (DeoptimizeALot) {
|
|
deopt_caller();
|
|
}
|
|
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
|
|
NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
|
|
|
|
// Note: no handle for klass needed since they are not used
|
|
// anymore after new_objArray() and no GC can happen before.
|
|
// (This may have to change if this code changes!)
|
|
assert(array_klass->is_klass(), "not a class");
|
|
Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
|
|
objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
|
|
thread->set_vm_result(obj);
|
|
// This is pretty rare but this runtime patch is stressful to deoptimization
|
|
// if we deoptimize here so force a deopt to stress the path.
|
|
if (DeoptimizeALot) {
|
|
deopt_caller();
|
|
}
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
|
|
NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
|
|
|
|
assert(klass->is_klass(), "not a class");
|
|
assert(rank >= 1, "rank must be nonzero");
|
|
oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
|
|
thread->set_vm_result(obj);
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
|
|
tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
|
|
ResourceMark rm(thread);
|
|
const char* klass_name = obj->klass()->external_name();
|
|
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
|
|
JRT_END
|
|
|
|
|
|
// counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
|
|
// associated with the top activation record. The inlinee (that is possibly included in the enclosing
|
|
// method) method oop is passed as an argument. In order to do that it is embedded in the code as
|
|
// a constant.
|
|
static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
|
|
nmethod* osr_nm = NULL;
|
|
methodHandle method(THREAD, m);
|
|
|
|
RegisterMap map(THREAD, false);
|
|
frame fr = THREAD->last_frame().sender(&map);
|
|
nmethod* nm = (nmethod*) fr.cb();
|
|
assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
|
|
methodHandle enclosing_method(THREAD, nm->method());
|
|
|
|
CompLevel level = (CompLevel)nm->comp_level();
|
|
int bci = InvocationEntryBci;
|
|
if (branch_bci != InvocationEntryBci) {
|
|
// Compute desination bci
|
|
address pc = method()->code_base() + branch_bci;
|
|
Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
|
|
int offset = 0;
|
|
switch (branch) {
|
|
case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
|
|
case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
|
|
case Bytecodes::_if_icmple: case Bytecodes::_ifle:
|
|
case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
|
|
case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
|
|
case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
|
|
case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
|
|
offset = (int16_t)Bytes::get_Java_u2(pc + 1);
|
|
break;
|
|
case Bytecodes::_goto_w:
|
|
offset = Bytes::get_Java_u4(pc + 1);
|
|
break;
|
|
default: ;
|
|
}
|
|
bci = branch_bci + offset;
|
|
}
|
|
assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
|
|
osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
|
|
assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
|
|
return osr_nm;
|
|
}
|
|
|
|
JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
|
|
nmethod* osr_nm;
|
|
JRT_BLOCK
|
|
osr_nm = counter_overflow_helper(thread, bci, method);
|
|
if (osr_nm != NULL) {
|
|
RegisterMap map(thread, false);
|
|
frame fr = thread->last_frame().sender(&map);
|
|
Deoptimization::deoptimize_frame(thread, fr.id());
|
|
}
|
|
JRT_BLOCK_END
|
|
return NULL;
|
|
JRT_END
|
|
|
|
extern void vm_exit(int code);
|
|
|
|
// Enter this method from compiled code handler below. This is where we transition
|
|
// to VM mode. This is done as a helper routine so that the method called directly
|
|
// from compiled code does not have to transition to VM. This allows the entry
|
|
// method to see if the nmethod that we have just looked up a handler for has
|
|
// been deoptimized while we were in the vm. This simplifies the assembly code
|
|
// cpu directories.
|
|
//
|
|
// We are entering here from exception stub (via the entry method below)
|
|
// If there is a compiled exception handler in this method, we will continue there;
|
|
// otherwise we will unwind the stack and continue at the caller of top frame method
|
|
// Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
|
|
// control the area where we can allow a safepoint. After we exit the safepoint area we can
|
|
// check to see if the handler we are going to return is now in a nmethod that has
|
|
// been deoptimized. If that is the case we return the deopt blob
|
|
// unpack_with_exception entry instead. This makes life for the exception blob easier
|
|
// because making that same check and diverting is painful from assembly language.
|
|
JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
|
|
// Reset method handle flag.
|
|
thread->set_is_method_handle_return(false);
|
|
|
|
Handle exception(thread, ex);
|
|
nm = CodeCache::find_nmethod(pc);
|
|
assert(nm != NULL, "this is not an nmethod");
|
|
// Adjust the pc as needed/
|
|
if (nm->is_deopt_pc(pc)) {
|
|
RegisterMap map(thread, false);
|
|
frame exception_frame = thread->last_frame().sender(&map);
|
|
// if the frame isn't deopted then pc must not correspond to the caller of last_frame
|
|
assert(exception_frame.is_deoptimized_frame(), "must be deopted");
|
|
pc = exception_frame.pc();
|
|
}
|
|
#ifdef ASSERT
|
|
assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
|
|
assert(exception->is_oop(), "just checking");
|
|
// Check that exception is a subclass of Throwable, otherwise we have a VerifyError
|
|
if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
|
|
if (ExitVMOnVerifyError) vm_exit(-1);
|
|
ShouldNotReachHere();
|
|
}
|
|
#endif
|
|
|
|
// Check the stack guard pages and reenable them if necessary and there is
|
|
// enough space on the stack to do so. Use fast exceptions only if the guard
|
|
// pages are enabled.
|
|
bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
|
|
if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
|
|
|
|
if (JvmtiExport::can_post_on_exceptions()) {
|
|
// To ensure correct notification of exception catches and throws
|
|
// we have to deoptimize here. If we attempted to notify the
|
|
// catches and throws during this exception lookup it's possible
|
|
// we could deoptimize on the way out of the VM and end back in
|
|
// the interpreter at the throw site. This would result in double
|
|
// notifications since the interpreter would also notify about
|
|
// these same catches and throws as it unwound the frame.
|
|
|
|
RegisterMap reg_map(thread);
|
|
frame stub_frame = thread->last_frame();
|
|
frame caller_frame = stub_frame.sender(®_map);
|
|
|
|
// We don't really want to deoptimize the nmethod itself since we
|
|
// can actually continue in the exception handler ourselves but I
|
|
// don't see an easy way to have the desired effect.
|
|
Deoptimization::deoptimize_frame(thread, caller_frame.id());
|
|
assert(caller_is_deopted(), "Must be deoptimized");
|
|
|
|
return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
|
|
}
|
|
|
|
// ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
|
|
if (guard_pages_enabled) {
|
|
address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
|
|
if (fast_continuation != NULL) {
|
|
// Set flag if return address is a method handle call site.
|
|
thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
|
|
return fast_continuation;
|
|
}
|
|
}
|
|
|
|
// If the stack guard pages are enabled, check whether there is a handler in
|
|
// the current method. Otherwise (guard pages disabled), force an unwind and
|
|
// skip the exception cache update (i.e., just leave continuation==NULL).
|
|
address continuation = NULL;
|
|
if (guard_pages_enabled) {
|
|
|
|
// New exception handling mechanism can support inlined methods
|
|
// with exception handlers since the mappings are from PC to PC
|
|
|
|
// debugging support
|
|
// tracing
|
|
if (TraceExceptions) {
|
|
ttyLocker ttyl;
|
|
ResourceMark rm;
|
|
tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
|
|
exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
|
|
}
|
|
// for AbortVMOnException flag
|
|
NOT_PRODUCT(Exceptions::debug_check_abort(exception));
|
|
|
|
// Clear out the exception oop and pc since looking up an
|
|
// exception handler can cause class loading, which might throw an
|
|
// exception and those fields are expected to be clear during
|
|
// normal bytecode execution.
|
|
thread->clear_exception_oop_and_pc();
|
|
|
|
continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
|
|
// If an exception was thrown during exception dispatch, the exception oop may have changed
|
|
thread->set_exception_oop(exception());
|
|
thread->set_exception_pc(pc);
|
|
|
|
// the exception cache is used only by non-implicit exceptions
|
|
if (continuation != NULL) {
|
|
nm->add_handler_for_exception_and_pc(exception, pc, continuation);
|
|
}
|
|
}
|
|
|
|
thread->set_vm_result(exception());
|
|
// Set flag if return address is a method handle call site.
|
|
thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
|
|
|
|
if (TraceExceptions) {
|
|
ttyLocker ttyl;
|
|
ResourceMark rm;
|
|
tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
|
|
p2i(thread), p2i(continuation), p2i(pc));
|
|
}
|
|
|
|
return continuation;
|
|
JRT_END
|
|
|
|
// Enter this method from compiled code only if there is a Java exception handler
|
|
// in the method handling the exception.
|
|
// We are entering here from exception stub. We don't do a normal VM transition here.
|
|
// We do it in a helper. This is so we can check to see if the nmethod we have just
|
|
// searched for an exception handler has been deoptimized in the meantime.
|
|
address Runtime1::exception_handler_for_pc(JavaThread* thread) {
|
|
oop exception = thread->exception_oop();
|
|
address pc = thread->exception_pc();
|
|
// Still in Java mode
|
|
DEBUG_ONLY(ResetNoHandleMark rnhm);
|
|
nmethod* nm = NULL;
|
|
address continuation = NULL;
|
|
{
|
|
// Enter VM mode by calling the helper
|
|
ResetNoHandleMark rnhm;
|
|
continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
|
|
}
|
|
// Back in JAVA, use no oops DON'T safepoint
|
|
|
|
// Now check to see if the nmethod we were called from is now deoptimized.
|
|
// If so we must return to the deopt blob and deoptimize the nmethod
|
|
if (nm != NULL && caller_is_deopted()) {
|
|
continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
|
|
}
|
|
|
|
assert(continuation != NULL, "no handler found");
|
|
return continuation;
|
|
}
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
|
|
NOT_PRODUCT(_throw_range_check_exception_count++;)
|
|
char message[jintAsStringSize];
|
|
sprintf(message, "%d", index);
|
|
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
|
|
NOT_PRODUCT(_throw_index_exception_count++;)
|
|
char message[16];
|
|
sprintf(message, "%d", index);
|
|
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
|
|
NOT_PRODUCT(_throw_div0_exception_count++;)
|
|
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
|
|
NOT_PRODUCT(_throw_null_pointer_exception_count++;)
|
|
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
|
|
NOT_PRODUCT(_throw_class_cast_exception_count++;)
|
|
ResourceMark rm(thread);
|
|
char* message = SharedRuntime::generate_class_cast_message(
|
|
thread, object->klass()->external_name());
|
|
SharedRuntime::throw_and_post_jvmti_exception(
|
|
thread, vmSymbols::java_lang_ClassCastException(), message);
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
|
|
NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
|
|
ResourceMark rm(thread);
|
|
SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
|
|
JRT_END
|
|
|
|
|
|
JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
|
|
NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
|
|
if (PrintBiasedLockingStatistics) {
|
|
Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
|
|
}
|
|
Handle h_obj(thread, obj);
|
|
assert(h_obj()->is_oop(), "must be NULL or an object");
|
|
if (UseBiasedLocking) {
|
|
// Retry fast entry if bias is revoked to avoid unnecessary inflation
|
|
ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
|
|
} else {
|
|
if (UseFastLocking) {
|
|
// When using fast locking, the compiled code has already tried the fast case
|
|
assert(obj == lock->obj(), "must match");
|
|
ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
|
|
} else {
|
|
lock->set_obj(obj);
|
|
ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
|
|
}
|
|
}
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
|
|
NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
|
|
assert(thread == JavaThread::current(), "threads must correspond");
|
|
assert(thread->last_Java_sp(), "last_Java_sp must be set");
|
|
// monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
|
|
EXCEPTION_MARK;
|
|
|
|
oop obj = lock->obj();
|
|
assert(obj->is_oop(), "must be NULL or an object");
|
|
if (UseFastLocking) {
|
|
// When using fast locking, the compiled code has already tried the fast case
|
|
ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
|
|
} else {
|
|
ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
|
|
}
|
|
JRT_END
|
|
|
|
// Cf. OptoRuntime::deoptimize_caller_frame
|
|
JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
|
|
// Called from within the owner thread, so no need for safepoint
|
|
RegisterMap reg_map(thread, false);
|
|
frame stub_frame = thread->last_frame();
|
|
assert(stub_frame.is_runtime_frame(), "Sanity check");
|
|
frame caller_frame = stub_frame.sender(®_map);
|
|
nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
|
|
assert(nm != NULL, "Sanity check");
|
|
methodHandle method(thread, nm->method());
|
|
assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
|
|
Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
|
|
Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
|
|
|
|
if (action == Deoptimization::Action_make_not_entrant) {
|
|
if (nm->make_not_entrant()) {
|
|
if (reason == Deoptimization::Reason_tenured) {
|
|
MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
|
|
if (trap_mdo != NULL) {
|
|
trap_mdo->inc_tenure_traps();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Deoptimize the caller frame.
|
|
Deoptimization::deoptimize_frame(thread, caller_frame.id());
|
|
// Return to the now deoptimized frame.
|
|
JRT_END
|
|
|
|
|
|
static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
|
|
Bytecode_field field_access(caller, bci);
|
|
// This can be static or non-static field access
|
|
Bytecodes::Code code = field_access.code();
|
|
|
|
// We must load class, initialize class and resolvethe field
|
|
fieldDescriptor result; // initialize class if needed
|
|
constantPoolHandle constants(THREAD, caller->constants());
|
|
LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
|
|
return result.field_holder();
|
|
}
|
|
|
|
|
|
//
|
|
// This routine patches sites where a class wasn't loaded or
|
|
// initialized at the time the code was generated. It handles
|
|
// references to classes, fields and forcing of initialization. Most
|
|
// of the cases are straightforward and involving simply forcing
|
|
// resolution of a class, rewriting the instruction stream with the
|
|
// needed constant and replacing the call in this function with the
|
|
// patched code. The case for static field is more complicated since
|
|
// the thread which is in the process of initializing a class can
|
|
// access it's static fields but other threads can't so the code
|
|
// either has to deoptimize when this case is detected or execute a
|
|
// check that the current thread is the initializing thread. The
|
|
// current
|
|
//
|
|
// Patches basically look like this:
|
|
//
|
|
//
|
|
// patch_site: jmp patch stub ;; will be patched
|
|
// continue: ...
|
|
// ...
|
|
// ...
|
|
// ...
|
|
//
|
|
// They have a stub which looks like this:
|
|
//
|
|
// ;; patch body
|
|
// movl <const>, reg (for class constants)
|
|
// <or> movl [reg1 + <const>], reg (for field offsets)
|
|
// <or> movl reg, [reg1 + <const>] (for field offsets)
|
|
// <being_init offset> <bytes to copy> <bytes to skip>
|
|
// patch_stub: call Runtime1::patch_code (through a runtime stub)
|
|
// jmp patch_site
|
|
//
|
|
//
|
|
// A normal patch is done by rewriting the patch body, usually a move,
|
|
// and then copying it into place over top of the jmp instruction
|
|
// being careful to flush caches and doing it in an MP-safe way. The
|
|
// constants following the patch body are used to find various pieces
|
|
// of the patch relative to the call site for Runtime1::patch_code.
|
|
// The case for getstatic and putstatic is more complicated because
|
|
// getstatic and putstatic have special semantics when executing while
|
|
// the class is being initialized. getstatic/putstatic on a class
|
|
// which is being_initialized may be executed by the initializing
|
|
// thread but other threads have to block when they execute it. This
|
|
// is accomplished in compiled code by executing a test of the current
|
|
// thread against the initializing thread of the class. It's emitted
|
|
// as boilerplate in their stub which allows the patched code to be
|
|
// executed before it's copied back into the main body of the nmethod.
|
|
//
|
|
// being_init: get_thread(<tmp reg>
|
|
// cmpl [reg1 + <init_thread_offset>], <tmp reg>
|
|
// jne patch_stub
|
|
// movl [reg1 + <const>], reg (for field offsets) <or>
|
|
// movl reg, [reg1 + <const>] (for field offsets)
|
|
// jmp continue
|
|
// <being_init offset> <bytes to copy> <bytes to skip>
|
|
// patch_stub: jmp Runtim1::patch_code (through a runtime stub)
|
|
// jmp patch_site
|
|
//
|
|
// If the class is being initialized the patch body is rewritten and
|
|
// the patch site is rewritten to jump to being_init, instead of
|
|
// patch_stub. Whenever this code is executed it checks the current
|
|
// thread against the intializing thread so other threads will enter
|
|
// the runtime and end up blocked waiting the class to finish
|
|
// initializing inside the calls to resolve_field below. The
|
|
// initializing class will continue on it's way. Once the class is
|
|
// fully_initialized, the intializing_thread of the class becomes
|
|
// NULL, so the next thread to execute this code will fail the test,
|
|
// call into patch_code and complete the patching process by copying
|
|
// the patch body back into the main part of the nmethod and resume
|
|
// executing.
|
|
//
|
|
//
|
|
|
|
JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
|
|
NOT_PRODUCT(_patch_code_slowcase_cnt++;)
|
|
|
|
ResourceMark rm(thread);
|
|
RegisterMap reg_map(thread, false);
|
|
frame runtime_frame = thread->last_frame();
|
|
frame caller_frame = runtime_frame.sender(®_map);
|
|
|
|
// last java frame on stack
|
|
vframeStream vfst(thread, true);
|
|
assert(!vfst.at_end(), "Java frame must exist");
|
|
|
|
methodHandle caller_method(THREAD, vfst.method());
|
|
// Note that caller_method->code() may not be same as caller_code because of OSR's
|
|
// Note also that in the presence of inlining it is not guaranteed
|
|
// that caller_method() == caller_code->method()
|
|
|
|
int bci = vfst.bci();
|
|
Bytecodes::Code code = caller_method()->java_code_at(bci);
|
|
|
|
// this is used by assertions in the access_field_patching_id
|
|
BasicType patch_field_type = T_ILLEGAL;
|
|
bool deoptimize_for_volatile = false;
|
|
bool deoptimize_for_atomic = false;
|
|
int patch_field_offset = -1;
|
|
KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
|
|
KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
|
|
Handle mirror(THREAD, NULL); // oop needed by load_mirror_patching code
|
|
Handle appendix(THREAD, NULL); // oop needed by appendix_patching code
|
|
bool load_klass_or_mirror_patch_id =
|
|
(stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
|
|
|
|
if (stub_id == Runtime1::access_field_patching_id) {
|
|
|
|
Bytecode_field field_access(caller_method, bci);
|
|
fieldDescriptor result; // initialize class if needed
|
|
Bytecodes::Code code = field_access.code();
|
|
constantPoolHandle constants(THREAD, caller_method->constants());
|
|
LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
|
|
patch_field_offset = result.offset();
|
|
|
|
// If we're patching a field which is volatile then at compile it
|
|
// must not have been know to be volatile, so the generated code
|
|
// isn't correct for a volatile reference. The nmethod has to be
|
|
// deoptimized so that the code can be regenerated correctly.
|
|
// This check is only needed for access_field_patching since this
|
|
// is the path for patching field offsets. load_klass is only
|
|
// used for patching references to oops which don't need special
|
|
// handling in the volatile case.
|
|
|
|
deoptimize_for_volatile = result.access_flags().is_volatile();
|
|
|
|
// If we are patching a field which should be atomic, then
|
|
// the generated code is not correct either, force deoptimizing.
|
|
// We need to only cover T_LONG and T_DOUBLE fields, as we can
|
|
// break access atomicity only for them.
|
|
|
|
// Strictly speaking, the deoptimizaation on 64-bit platforms
|
|
// is unnecessary, and T_LONG stores on 32-bit platforms need
|
|
// to be handled by special patching code when AlwaysAtomicAccesses
|
|
// becomes product feature. At this point, we are still going
|
|
// for the deoptimization for consistency against volatile
|
|
// accesses.
|
|
|
|
patch_field_type = result.field_type();
|
|
deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
|
|
|
|
} else if (load_klass_or_mirror_patch_id) {
|
|
Klass* k = NULL;
|
|
switch (code) {
|
|
case Bytecodes::_putstatic:
|
|
case Bytecodes::_getstatic:
|
|
{ Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
|
|
init_klass = KlassHandle(THREAD, klass);
|
|
mirror = Handle(THREAD, klass->java_mirror());
|
|
}
|
|
break;
|
|
case Bytecodes::_new:
|
|
{ Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
|
|
k = caller_method->constants()->klass_at(bnew.index(), CHECK);
|
|
}
|
|
break;
|
|
case Bytecodes::_multianewarray:
|
|
{ Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
|
|
k = caller_method->constants()->klass_at(mna.index(), CHECK);
|
|
}
|
|
break;
|
|
case Bytecodes::_instanceof:
|
|
{ Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
|
|
k = caller_method->constants()->klass_at(io.index(), CHECK);
|
|
}
|
|
break;
|
|
case Bytecodes::_checkcast:
|
|
{ Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
|
|
k = caller_method->constants()->klass_at(cc.index(), CHECK);
|
|
}
|
|
break;
|
|
case Bytecodes::_anewarray:
|
|
{ Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
|
|
Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
|
|
k = ek->array_klass(CHECK);
|
|
}
|
|
break;
|
|
case Bytecodes::_ldc:
|
|
case Bytecodes::_ldc_w:
|
|
{
|
|
Bytecode_loadconstant cc(caller_method, bci);
|
|
oop m = cc.resolve_constant(CHECK);
|
|
mirror = Handle(THREAD, m);
|
|
}
|
|
break;
|
|
default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
|
|
}
|
|
// convert to handle
|
|
load_klass = KlassHandle(THREAD, k);
|
|
} else if (stub_id == load_appendix_patching_id) {
|
|
Bytecode_invoke bytecode(caller_method, bci);
|
|
Bytecodes::Code bc = bytecode.invoke_code();
|
|
|
|
CallInfo info;
|
|
constantPoolHandle pool(thread, caller_method->constants());
|
|
int index = bytecode.index();
|
|
LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
|
|
appendix = info.resolved_appendix();
|
|
switch (bc) {
|
|
case Bytecodes::_invokehandle: {
|
|
int cache_index = ConstantPool::decode_cpcache_index(index, true);
|
|
assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
|
|
pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
|
|
break;
|
|
}
|
|
case Bytecodes::_invokedynamic: {
|
|
pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
|
|
break;
|
|
}
|
|
default: fatal("unexpected bytecode for load_appendix_patching_id");
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
if (deoptimize_for_volatile || deoptimize_for_atomic) {
|
|
// At compile time we assumed the field wasn't volatile/atomic but after
|
|
// loading it turns out it was volatile/atomic so we have to throw the
|
|
// compiled code out and let it be regenerated.
|
|
if (TracePatching) {
|
|
if (deoptimize_for_volatile) {
|
|
tty->print_cr("Deoptimizing for patching volatile field reference");
|
|
}
|
|
if (deoptimize_for_atomic) {
|
|
tty->print_cr("Deoptimizing for patching atomic field reference");
|
|
}
|
|
}
|
|
|
|
// It's possible the nmethod was invalidated in the last
|
|
// safepoint, but if it's still alive then make it not_entrant.
|
|
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
|
|
if (nm != NULL) {
|
|
nm->make_not_entrant();
|
|
}
|
|
|
|
Deoptimization::deoptimize_frame(thread, caller_frame.id());
|
|
|
|
// Return to the now deoptimized frame.
|
|
}
|
|
|
|
// Now copy code back
|
|
|
|
{
|
|
MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
|
|
//
|
|
// Deoptimization may have happened while we waited for the lock.
|
|
// In that case we don't bother to do any patching we just return
|
|
// and let the deopt happen
|
|
if (!caller_is_deopted()) {
|
|
NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
|
|
address instr_pc = jump->jump_destination();
|
|
NativeInstruction* ni = nativeInstruction_at(instr_pc);
|
|
if (ni->is_jump() ) {
|
|
// the jump has not been patched yet
|
|
// The jump destination is slow case and therefore not part of the stubs
|
|
// (stubs are only for StaticCalls)
|
|
|
|
// format of buffer
|
|
// ....
|
|
// instr byte 0 <-- copy_buff
|
|
// instr byte 1
|
|
// ..
|
|
// instr byte n-1
|
|
// n
|
|
// .... <-- call destination
|
|
|
|
address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
|
|
unsigned char* byte_count = (unsigned char*) (stub_location - 1);
|
|
unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
|
|
unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
|
|
address copy_buff = stub_location - *byte_skip - *byte_count;
|
|
address being_initialized_entry = stub_location - *being_initialized_entry_offset;
|
|
if (TracePatching) {
|
|
tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci,
|
|
p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
|
|
nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
|
|
assert(caller_code != NULL, "nmethod not found");
|
|
|
|
// NOTE we use pc() not original_pc() because we already know they are
|
|
// identical otherwise we'd have never entered this block of code
|
|
|
|
OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
|
|
assert(map != NULL, "null check");
|
|
map->print();
|
|
tty->cr();
|
|
|
|
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
|
|
}
|
|
// depending on the code below, do_patch says whether to copy the patch body back into the nmethod
|
|
bool do_patch = true;
|
|
if (stub_id == Runtime1::access_field_patching_id) {
|
|
// The offset may not be correct if the class was not loaded at code generation time.
|
|
// Set it now.
|
|
NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
|
|
assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
|
|
assert(patch_field_offset >= 0, "illegal offset");
|
|
n_move->add_offset_in_bytes(patch_field_offset);
|
|
} else if (load_klass_or_mirror_patch_id) {
|
|
// If a getstatic or putstatic is referencing a klass which
|
|
// isn't fully initialized, the patch body isn't copied into
|
|
// place until initialization is complete. In this case the
|
|
// patch site is setup so that any threads besides the
|
|
// initializing thread are forced to come into the VM and
|
|
// block.
|
|
do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
|
|
InstanceKlass::cast(init_klass())->is_initialized();
|
|
NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
|
|
if (jump->jump_destination() == being_initialized_entry) {
|
|
assert(do_patch == true, "initialization must be complete at this point");
|
|
} else {
|
|
// patch the instruction <move reg, klass>
|
|
NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
|
|
|
|
assert(n_copy->data() == 0 ||
|
|
n_copy->data() == (intptr_t)Universe::non_oop_word(),
|
|
"illegal init value");
|
|
if (stub_id == Runtime1::load_klass_patching_id) {
|
|
assert(load_klass() != NULL, "klass not set");
|
|
n_copy->set_data((intx) (load_klass()));
|
|
} else {
|
|
assert(mirror() != NULL, "klass not set");
|
|
// Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
|
|
n_copy->set_data(cast_from_oop<intx>(mirror()));
|
|
}
|
|
|
|
if (TracePatching) {
|
|
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
|
|
}
|
|
}
|
|
} else if (stub_id == Runtime1::load_appendix_patching_id) {
|
|
NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
|
|
assert(n_copy->data() == 0 ||
|
|
n_copy->data() == (intptr_t)Universe::non_oop_word(),
|
|
"illegal init value");
|
|
n_copy->set_data(cast_from_oop<intx>(appendix()));
|
|
|
|
if (TracePatching) {
|
|
Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
|
|
}
|
|
} else {
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
#if defined(SPARC) || defined(PPC)
|
|
if (load_klass_or_mirror_patch_id ||
|
|
stub_id == Runtime1::load_appendix_patching_id) {
|
|
// Update the location in the nmethod with the proper
|
|
// metadata. When the code was generated, a NULL was stuffed
|
|
// in the metadata table and that table needs to be update to
|
|
// have the right value. On intel the value is kept
|
|
// directly in the instruction instead of in the metadata
|
|
// table, so set_data above effectively updated the value.
|
|
nmethod* nm = CodeCache::find_nmethod(instr_pc);
|
|
assert(nm != NULL, "invalid nmethod_pc");
|
|
RelocIterator mds(nm, copy_buff, copy_buff + 1);
|
|
bool found = false;
|
|
while (mds.next() && !found) {
|
|
if (mds.type() == relocInfo::oop_type) {
|
|
assert(stub_id == Runtime1::load_mirror_patching_id ||
|
|
stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
|
|
oop_Relocation* r = mds.oop_reloc();
|
|
oop* oop_adr = r->oop_addr();
|
|
*oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
|
|
r->fix_oop_relocation();
|
|
found = true;
|
|
} else if (mds.type() == relocInfo::metadata_type) {
|
|
assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
|
|
metadata_Relocation* r = mds.metadata_reloc();
|
|
Metadata** metadata_adr = r->metadata_addr();
|
|
*metadata_adr = load_klass();
|
|
r->fix_metadata_relocation();
|
|
found = true;
|
|
}
|
|
}
|
|
assert(found, "the metadata must exist!");
|
|
}
|
|
#endif
|
|
if (do_patch) {
|
|
// replace instructions
|
|
// first replace the tail, then the call
|
|
#ifdef ARM
|
|
if((load_klass_or_mirror_patch_id ||
|
|
stub_id == Runtime1::load_appendix_patching_id) &&
|
|
!VM_Version::supports_movw()) {
|
|
nmethod* nm = CodeCache::find_nmethod(instr_pc);
|
|
address addr = NULL;
|
|
assert(nm != NULL, "invalid nmethod_pc");
|
|
RelocIterator mds(nm, copy_buff, copy_buff + 1);
|
|
while (mds.next()) {
|
|
if (mds.type() == relocInfo::oop_type) {
|
|
assert(stub_id == Runtime1::load_mirror_patching_id ||
|
|
stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
|
|
oop_Relocation* r = mds.oop_reloc();
|
|
addr = (address)r->oop_addr();
|
|
break;
|
|
} else if (mds.type() == relocInfo::metadata_type) {
|
|
assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
|
|
metadata_Relocation* r = mds.metadata_reloc();
|
|
addr = (address)r->metadata_addr();
|
|
break;
|
|
}
|
|
}
|
|
assert(addr != NULL, "metadata relocation must exist");
|
|
copy_buff -= *byte_count;
|
|
NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
|
|
n_copy2->set_pc_relative_offset(addr, instr_pc);
|
|
}
|
|
#endif
|
|
|
|
for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
|
|
address ptr = copy_buff + i;
|
|
int a_byte = (*ptr) & 0xFF;
|
|
address dst = instr_pc + i;
|
|
*(unsigned char*)dst = (unsigned char) a_byte;
|
|
}
|
|
ICache::invalidate_range(instr_pc, *byte_count);
|
|
NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
|
|
|
|
if (load_klass_or_mirror_patch_id ||
|
|
stub_id == Runtime1::load_appendix_patching_id) {
|
|
relocInfo::relocType rtype =
|
|
(stub_id == Runtime1::load_klass_patching_id) ?
|
|
relocInfo::metadata_type :
|
|
relocInfo::oop_type;
|
|
// update relocInfo to metadata
|
|
nmethod* nm = CodeCache::find_nmethod(instr_pc);
|
|
assert(nm != NULL, "invalid nmethod_pc");
|
|
|
|
// The old patch site is now a move instruction so update
|
|
// the reloc info so that it will get updated during
|
|
// future GCs.
|
|
RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
|
|
relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
|
|
relocInfo::none, rtype);
|
|
#ifdef SPARC
|
|
// Sparc takes two relocations for an metadata so update the second one.
|
|
address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
|
|
RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
|
|
relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
|
|
relocInfo::none, rtype);
|
|
#endif
|
|
#ifdef PPC
|
|
{ address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
|
|
RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
|
|
relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
|
|
relocInfo::none, rtype);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
} else {
|
|
ICache::invalidate_range(copy_buff, *byte_count);
|
|
NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we are patching in a non-perm oop, make sure the nmethod
|
|
// is on the right list.
|
|
if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
|
|
(appendix.not_null() && appendix->is_scavengable()))) {
|
|
MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
|
|
guarantee(nm != NULL, "only nmethods can contain non-perm oops");
|
|
if (!nm->on_scavenge_root_list()) {
|
|
CodeCache::add_scavenge_root_nmethod(nm);
|
|
}
|
|
|
|
// Since we've patched some oops in the nmethod,
|
|
// (re)register it with the heap.
|
|
Universe::heap()->register_nmethod(nm);
|
|
}
|
|
JRT_END
|
|
|
|
//
|
|
// Entry point for compiled code. We want to patch a nmethod.
|
|
// We don't do a normal VM transition here because we want to
|
|
// know after the patching is complete and any safepoint(s) are taken
|
|
// if the calling nmethod was deoptimized. We do this by calling a
|
|
// helper method which does the normal VM transition and when it
|
|
// completes we can check for deoptimization. This simplifies the
|
|
// assembly code in the cpu directories.
|
|
//
|
|
int Runtime1::move_klass_patching(JavaThread* thread) {
|
|
//
|
|
// NOTE: we are still in Java
|
|
//
|
|
Thread* THREAD = thread;
|
|
debug_only(NoHandleMark nhm;)
|
|
{
|
|
// Enter VM mode
|
|
|
|
ResetNoHandleMark rnhm;
|
|
patch_code(thread, load_klass_patching_id);
|
|
}
|
|
// Back in JAVA, use no oops DON'T safepoint
|
|
|
|
// Return true if calling code is deoptimized
|
|
|
|
return caller_is_deopted();
|
|
}
|
|
|
|
int Runtime1::move_mirror_patching(JavaThread* thread) {
|
|
//
|
|
// NOTE: we are still in Java
|
|
//
|
|
Thread* THREAD = thread;
|
|
debug_only(NoHandleMark nhm;)
|
|
{
|
|
// Enter VM mode
|
|
|
|
ResetNoHandleMark rnhm;
|
|
patch_code(thread, load_mirror_patching_id);
|
|
}
|
|
// Back in JAVA, use no oops DON'T safepoint
|
|
|
|
// Return true if calling code is deoptimized
|
|
|
|
return caller_is_deopted();
|
|
}
|
|
|
|
int Runtime1::move_appendix_patching(JavaThread* thread) {
|
|
//
|
|
// NOTE: we are still in Java
|
|
//
|
|
Thread* THREAD = thread;
|
|
debug_only(NoHandleMark nhm;)
|
|
{
|
|
// Enter VM mode
|
|
|
|
ResetNoHandleMark rnhm;
|
|
patch_code(thread, load_appendix_patching_id);
|
|
}
|
|
// Back in JAVA, use no oops DON'T safepoint
|
|
|
|
// Return true if calling code is deoptimized
|
|
|
|
return caller_is_deopted();
|
|
}
|
|
//
|
|
// Entry point for compiled code. We want to patch a nmethod.
|
|
// We don't do a normal VM transition here because we want to
|
|
// know after the patching is complete and any safepoint(s) are taken
|
|
// if the calling nmethod was deoptimized. We do this by calling a
|
|
// helper method which does the normal VM transition and when it
|
|
// completes we can check for deoptimization. This simplifies the
|
|
// assembly code in the cpu directories.
|
|
//
|
|
|
|
int Runtime1::access_field_patching(JavaThread* thread) {
|
|
//
|
|
// NOTE: we are still in Java
|
|
//
|
|
Thread* THREAD = thread;
|
|
debug_only(NoHandleMark nhm;)
|
|
{
|
|
// Enter VM mode
|
|
|
|
ResetNoHandleMark rnhm;
|
|
patch_code(thread, access_field_patching_id);
|
|
}
|
|
// Back in JAVA, use no oops DON'T safepoint
|
|
|
|
// Return true if calling code is deoptimized
|
|
|
|
return caller_is_deopted();
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
|
|
// for now we just print out the block id
|
|
tty->print("%d ", block_id);
|
|
JRT_END
|
|
|
|
|
|
// Array copy return codes.
|
|
enum {
|
|
ac_failed = -1, // arraycopy failed
|
|
ac_ok = 0 // arraycopy succeeded
|
|
};
|
|
|
|
|
|
// Below length is the # elements copied.
|
|
template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
|
|
oopDesc* dst, T* dst_addr,
|
|
int length) {
|
|
|
|
// For performance reasons, we assume we are using a card marking write
|
|
// barrier. The assert will fail if this is not the case.
|
|
// Note that we use the non-virtual inlineable variant of write_ref_array.
|
|
BarrierSet* bs = Universe::heap()->barrier_set();
|
|
assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
|
|
assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
|
|
if (src == dst) {
|
|
// same object, no check
|
|
bs->write_ref_array_pre(dst_addr, length);
|
|
Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
|
|
bs->write_ref_array((HeapWord*)dst_addr, length);
|
|
return ac_ok;
|
|
} else {
|
|
Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
|
|
Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
|
|
if (stype == bound || stype->is_subtype_of(bound)) {
|
|
// Elements are guaranteed to be subtypes, so no check necessary
|
|
bs->write_ref_array_pre(dst_addr, length);
|
|
Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
|
|
bs->write_ref_array((HeapWord*)dst_addr, length);
|
|
return ac_ok;
|
|
}
|
|
}
|
|
return ac_failed;
|
|
}
|
|
|
|
// fast and direct copy of arrays; returning -1, means that an exception may be thrown
|
|
// and we did not copy anything
|
|
JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
|
|
#ifndef PRODUCT
|
|
_generic_arraycopy_cnt++; // Slow-path oop array copy
|
|
#endif
|
|
|
|
if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
|
|
if (!dst->is_array() || !src->is_array()) return ac_failed;
|
|
if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
|
|
if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
|
|
|
|
if (length == 0) return ac_ok;
|
|
if (src->is_typeArray()) {
|
|
Klass* klass_oop = src->klass();
|
|
if (klass_oop != dst->klass()) return ac_failed;
|
|
TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
|
|
const int l2es = klass->log2_element_size();
|
|
const int ihs = klass->array_header_in_bytes() / wordSize;
|
|
char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
|
|
char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
|
|
// Potential problem: memmove is not guaranteed to be word atomic
|
|
// Revisit in Merlin
|
|
memmove(dst_addr, src_addr, length << l2es);
|
|
return ac_ok;
|
|
} else if (src->is_objArray() && dst->is_objArray()) {
|
|
if (UseCompressedOops) {
|
|
narrowOop *src_addr = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
|
|
narrowOop *dst_addr = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
|
|
return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
|
|
} else {
|
|
oop *src_addr = objArrayOop(src)->obj_at_addr<oop>(src_pos);
|
|
oop *dst_addr = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
|
|
return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
|
|
}
|
|
}
|
|
return ac_failed;
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
|
|
#ifndef PRODUCT
|
|
_primitive_arraycopy_cnt++;
|
|
#endif
|
|
|
|
if (length == 0) return;
|
|
// Not guaranteed to be word atomic, but that doesn't matter
|
|
// for anything but an oop array, which is covered by oop_arraycopy.
|
|
Copy::conjoint_jbytes(src, dst, length);
|
|
JRT_END
|
|
|
|
JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
|
|
#ifndef PRODUCT
|
|
_oop_arraycopy_cnt++;
|
|
#endif
|
|
|
|
if (num == 0) return;
|
|
BarrierSet* bs = Universe::heap()->barrier_set();
|
|
assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
|
|
assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
|
|
if (UseCompressedOops) {
|
|
bs->write_ref_array_pre((narrowOop*)dst, num);
|
|
Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
|
|
} else {
|
|
bs->write_ref_array_pre((oop*)dst, num);
|
|
Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
|
|
}
|
|
bs->write_ref_array(dst, num);
|
|
JRT_END
|
|
|
|
|
|
JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
|
|
// had to return int instead of bool, otherwise there may be a mismatch
|
|
// between the C calling convention and the Java one.
|
|
// e.g., on x86, GCC may clear only %al when returning a bool false, but
|
|
// JVM takes the whole %eax as the return value, which may misinterpret
|
|
// the return value as a boolean true.
|
|
|
|
assert(mirror != NULL, "should null-check on mirror before calling");
|
|
Klass* k = java_lang_Class::as_Klass(mirror);
|
|
return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
|
|
JRT_END
|
|
|
|
JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
|
|
ResourceMark rm;
|
|
|
|
assert(!TieredCompilation, "incompatible with tiered compilation");
|
|
|
|
RegisterMap reg_map(thread, false);
|
|
frame runtime_frame = thread->last_frame();
|
|
frame caller_frame = runtime_frame.sender(®_map);
|
|
|
|
nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
|
|
assert (nm != NULL, "no more nmethod?");
|
|
nm->make_not_entrant();
|
|
|
|
methodHandle m(nm->method());
|
|
MethodData* mdo = m->method_data();
|
|
|
|
if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
|
|
// Build an MDO. Ignore errors like OutOfMemory;
|
|
// that simply means we won't have an MDO to update.
|
|
Method::build_interpreter_method_data(m, THREAD);
|
|
if (HAS_PENDING_EXCEPTION) {
|
|
assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
|
|
CLEAR_PENDING_EXCEPTION;
|
|
}
|
|
mdo = m->method_data();
|
|
}
|
|
|
|
if (mdo != NULL) {
|
|
mdo->inc_trap_count(Deoptimization::Reason_none);
|
|
}
|
|
|
|
if (TracePredicateFailedTraps) {
|
|
stringStream ss1, ss2;
|
|
vframeStream vfst(thread);
|
|
methodHandle inlinee = methodHandle(vfst.method());
|
|
inlinee->print_short_name(&ss1);
|
|
m->print_short_name(&ss2);
|
|
tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
|
|
}
|
|
|
|
|
|
Deoptimization::deoptimize_frame(thread, caller_frame.id());
|
|
|
|
JRT_END
|
|
|
|
#ifndef PRODUCT
|
|
void Runtime1::print_statistics() {
|
|
tty->print_cr("C1 Runtime statistics:");
|
|
tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr);
|
|
tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
|
|
tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr);
|
|
tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr);
|
|
tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr);
|
|
tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt);
|
|
tty->print_cr(" _generic_arraycopystub_cnt: %d", _generic_arraycopystub_cnt);
|
|
tty->print_cr(" _byte_arraycopy_cnt: %d", _byte_arraycopy_stub_cnt);
|
|
tty->print_cr(" _short_arraycopy_cnt: %d", _short_arraycopy_stub_cnt);
|
|
tty->print_cr(" _int_arraycopy_cnt: %d", _int_arraycopy_stub_cnt);
|
|
tty->print_cr(" _long_arraycopy_cnt: %d", _long_arraycopy_stub_cnt);
|
|
tty->print_cr(" _primitive_arraycopy_cnt: %d", _primitive_arraycopy_cnt);
|
|
tty->print_cr(" _oop_arraycopy_cnt (C): %d", Runtime1::_oop_arraycopy_cnt);
|
|
tty->print_cr(" _oop_arraycopy_cnt (stub): %d", _oop_arraycopy_stub_cnt);
|
|
tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt);
|
|
tty->print_cr(" _arraycopy_checkcast_cnt: %d", _arraycopy_checkcast_cnt);
|
|
tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
|
|
|
|
tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt);
|
|
tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt);
|
|
tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt);
|
|
tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt);
|
|
tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt);
|
|
tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt);
|
|
tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt);
|
|
|
|
tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count);
|
|
tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count);
|
|
tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count);
|
|
tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count);
|
|
tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count);
|
|
tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count);
|
|
tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count);
|
|
tty->print_cr(" _throw_count: %d:", _throw_count);
|
|
|
|
SharedRuntime::print_ic_miss_histogram();
|
|
tty->cr();
|
|
}
|
|
#endif // PRODUCT
|