jdk-24/src/hotspot/share/compiler/compileBroker.cpp
Daniel D. Daugherty 47a0842646 8241403: JavaThread::get_thread_name() should be ThreadSMR-aware
Reviewed-by: rehn, coleenp, dholmes
2021-02-26 15:41:13 +00:00

2933 lines
110 KiB
C++

/*
* Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "classfile/javaClasses.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/vmClasses.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/codeCache.hpp"
#include "code/codeHeapState.hpp"
#include "code/dependencyContext.hpp"
#include "compiler/compilationPolicy.hpp"
#include "compiler/compileBroker.hpp"
#include "compiler/compileLog.hpp"
#include "compiler/compilerEvent.hpp"
#include "compiler/compilerOracle.hpp"
#include "compiler/directivesParser.hpp"
#include "interpreter/linkResolver.hpp"
#include "jfr/jfrEvents.hpp"
#include "logging/log.hpp"
#include "logging/logStream.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/methodData.hpp"
#include "oops/method.inline.hpp"
#include "oops/oop.inline.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/nativeLookup.hpp"
#include "prims/whitebox.hpp"
#include "runtime/arguments.hpp"
#include "runtime/atomic.hpp"
#include "runtime/escapeBarrier.hpp"
#include "runtime/globals_extension.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/init.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/javaCalls.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/os.hpp"
#include "runtime/perfData.hpp"
#include "runtime/safepointVerifiers.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/sweeper.hpp"
#include "runtime/threadSMR.hpp"
#include "runtime/timerTrace.hpp"
#include "runtime/vframe.inline.hpp"
#include "utilities/debug.hpp"
#include "utilities/dtrace.hpp"
#include "utilities/events.hpp"
#include "utilities/formatBuffer.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER1
#include "c1/c1_Compiler.hpp"
#endif
#if INCLUDE_JVMCI
#include "jvmci/jvmciEnv.hpp"
#include "jvmci/jvmciRuntime.hpp"
#endif
#ifdef COMPILER2
#include "opto/c2compiler.hpp"
#endif
#ifdef DTRACE_ENABLED
// Only bother with this argument setup if dtrace is available
#define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name) \
{ \
Symbol* klass_name = (method)->klass_name(); \
Symbol* name = (method)->name(); \
Symbol* signature = (method)->signature(); \
HOTSPOT_METHOD_COMPILE_BEGIN( \
(char *) comp_name, strlen(comp_name), \
(char *) klass_name->bytes(), klass_name->utf8_length(), \
(char *) name->bytes(), name->utf8_length(), \
(char *) signature->bytes(), signature->utf8_length()); \
}
#define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success) \
{ \
Symbol* klass_name = (method)->klass_name(); \
Symbol* name = (method)->name(); \
Symbol* signature = (method)->signature(); \
HOTSPOT_METHOD_COMPILE_END( \
(char *) comp_name, strlen(comp_name), \
(char *) klass_name->bytes(), klass_name->utf8_length(), \
(char *) name->bytes(), name->utf8_length(), \
(char *) signature->bytes(), signature->utf8_length(), (success)); \
}
#else // ndef DTRACE_ENABLED
#define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
#define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
#endif // ndef DTRACE_ENABLED
bool CompileBroker::_initialized = false;
volatile bool CompileBroker::_should_block = false;
volatile int CompileBroker::_print_compilation_warning = 0;
volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
// The installed compiler(s)
AbstractCompiler* CompileBroker::_compilers[2];
// The maximum numbers of compiler threads to be determined during startup.
int CompileBroker::_c1_count = 0;
int CompileBroker::_c2_count = 0;
// An array of compiler names as Java String objects
jobject* CompileBroker::_compiler1_objects = NULL;
jobject* CompileBroker::_compiler2_objects = NULL;
CompileLog** CompileBroker::_compiler1_logs = NULL;
CompileLog** CompileBroker::_compiler2_logs = NULL;
// These counters are used to assign an unique ID to each compilation.
volatile jint CompileBroker::_compilation_id = 0;
volatile jint CompileBroker::_osr_compilation_id = 0;
// Performance counters
PerfCounter* CompileBroker::_perf_total_compilation = NULL;
PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
PerfStringVariable* CompileBroker::_perf_last_method = NULL;
PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
PerfVariable* CompileBroker::_perf_last_compile_type = NULL;
PerfVariable* CompileBroker::_perf_last_compile_size = NULL;
PerfVariable* CompileBroker::_perf_last_failed_type = NULL;
PerfVariable* CompileBroker::_perf_last_invalidated_type = NULL;
// Timers and counters for generating statistics
elapsedTimer CompileBroker::_t_total_compilation;
elapsedTimer CompileBroker::_t_osr_compilation;
elapsedTimer CompileBroker::_t_standard_compilation;
elapsedTimer CompileBroker::_t_invalidated_compilation;
elapsedTimer CompileBroker::_t_bailedout_compilation;
int CompileBroker::_total_bailout_count = 0;
int CompileBroker::_total_invalidated_count = 0;
int CompileBroker::_total_compile_count = 0;
int CompileBroker::_total_osr_compile_count = 0;
int CompileBroker::_total_standard_compile_count = 0;
int CompileBroker::_total_compiler_stopped_count = 0;
int CompileBroker::_total_compiler_restarted_count = 0;
int CompileBroker::_sum_osr_bytes_compiled = 0;
int CompileBroker::_sum_standard_bytes_compiled = 0;
int CompileBroker::_sum_nmethod_size = 0;
int CompileBroker::_sum_nmethod_code_size = 0;
long CompileBroker::_peak_compilation_time = 0;
CompilerStatistics CompileBroker::_stats_per_level[CompLevel_full_optimization];
CompileQueue* CompileBroker::_c2_compile_queue = NULL;
CompileQueue* CompileBroker::_c1_compile_queue = NULL;
class CompilationLog : public StringEventLog {
public:
CompilationLog() : StringEventLog("Compilation events", "jit") {
}
void log_compile(JavaThread* thread, CompileTask* task) {
StringLogMessage lm;
stringStream sstr(lm.buffer(), lm.size());
// msg.time_stamp().update_to(tty->time_stamp().ticks());
task->print(&sstr, NULL, true, false);
log(thread, "%s", (const char*)lm);
}
void log_nmethod(JavaThread* thread, nmethod* nm) {
log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
nm->compile_id(), nm->is_osr_method() ? "%" : "",
p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
}
void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
StringLogMessage lm;
lm.print("%4d COMPILE SKIPPED: %s", task->compile_id(), reason);
if (retry_message != NULL) {
lm.append(" (%s)", retry_message);
}
lm.print("\n");
log(thread, "%s", (const char*)lm);
}
void log_metaspace_failure(const char* reason) {
ResourceMark rm;
StringLogMessage lm;
lm.print("%4d COMPILE PROFILING SKIPPED: %s", -1, reason);
lm.print("\n");
log(JavaThread::current(), "%s", (const char*)lm);
}
};
static CompilationLog* _compilation_log = NULL;
bool compileBroker_init() {
if (LogEvents) {
_compilation_log = new CompilationLog();
}
// init directives stack, adding default directive
DirectivesStack::init();
if (DirectivesParser::has_file()) {
return DirectivesParser::parse_from_flag();
} else if (CompilerDirectivesPrint) {
// Print default directive even when no other was added
DirectivesStack::print(tty);
}
return true;
}
CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
CompilerThread* thread = CompilerThread::current();
thread->set_task(task);
CompileLog* log = thread->log();
if (log != NULL && !task->is_unloaded()) task->log_task_start(log);
}
CompileTaskWrapper::~CompileTaskWrapper() {
CompilerThread* thread = CompilerThread::current();
CompileTask* task = thread->task();
CompileLog* log = thread->log();
if (log != NULL && !task->is_unloaded()) task->log_task_done(log);
thread->set_task(NULL);
task->set_code_handle(NULL);
thread->set_env(NULL);
if (task->is_blocking()) {
bool free_task = false;
{
MutexLocker notifier(thread, task->lock());
task->mark_complete();
#if INCLUDE_JVMCI
if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
if (!task->has_waiter()) {
// The waiting thread timed out and thus did not free the task.
free_task = true;
}
task->set_blocking_jvmci_compile_state(NULL);
}
#endif
if (!free_task) {
// Notify the waiting thread that the compilation has completed
// so that it can free the task.
task->lock()->notify_all();
}
}
if (free_task) {
// The task can only be freed once the task lock is released.
CompileTask::free(task);
}
} else {
task->mark_complete();
// By convention, the compiling thread is responsible for
// recycling a non-blocking CompileTask.
CompileTask::free(task);
}
}
/**
* Check if a CompilerThread can be removed and update count if requested.
*/
bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
if (!ReduceNumberOfCompilerThreads) return false;
AbstractCompiler *compiler = ct->compiler();
int compiler_count = compiler->num_compiler_threads();
bool c1 = compiler->is_c1();
// Keep at least 1 compiler thread of each type.
if (compiler_count < 2) return false;
// Keep thread alive for at least some time.
if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
#if INCLUDE_JVMCI
if (compiler->is_jvmci()) {
// Handles for JVMCI thread objects may get released concurrently.
if (do_it) {
assert(CompileThread_lock->owner() == ct, "must be holding lock");
} else {
// Skip check if it's the last thread and let caller check again.
return true;
}
}
#endif
// We only allow the last compiler thread of each type to get removed.
jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
: compiler2_object(compiler_count - 1);
if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
if (do_it) {
assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
compiler->set_num_compiler_threads(compiler_count - 1);
#if INCLUDE_JVMCI
if (compiler->is_jvmci()) {
// Old j.l.Thread object can die when no longer referenced elsewhere.
JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
_compiler2_objects[compiler_count - 1] = NULL;
}
#endif
}
return true;
}
return false;
}
/**
* Add a CompileTask to a CompileQueue.
*/
void CompileQueue::add(CompileTask* task) {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
task->set_next(NULL);
task->set_prev(NULL);
if (_last == NULL) {
// The compile queue is empty.
assert(_first == NULL, "queue is empty");
_first = task;
_last = task;
} else {
// Append the task to the queue.
assert(_last->next() == NULL, "not last");
_last->set_next(task);
task->set_prev(_last);
_last = task;
}
++_size;
// Mark the method as being in the compile queue.
task->method()->set_queued_for_compilation();
if (CIPrintCompileQueue) {
print_tty();
}
if (LogCompilation && xtty != NULL) {
task->log_task_queued();
}
// Notify CompilerThreads that a task is available.
MethodCompileQueue_lock->notify_all();
}
/**
* Empties compilation queue by putting all compilation tasks onto
* a freelist. Furthermore, the method wakes up all threads that are
* waiting on a compilation task to finish. This can happen if background
* compilation is disabled.
*/
void CompileQueue::free_all() {
MutexLocker mu(MethodCompileQueue_lock);
CompileTask* next = _first;
// Iterate over all tasks in the compile queue
while (next != NULL) {
CompileTask* current = next;
next = current->next();
{
// Wake up thread that blocks on the compile task.
MutexLocker ct_lock(current->lock());
current->lock()->notify();
}
// Put the task back on the freelist.
CompileTask::free(current);
}
_first = NULL;
// Wake up all threads that block on the queue.
MethodCompileQueue_lock->notify_all();
}
/**
* Get the next CompileTask from a CompileQueue
*/
CompileTask* CompileQueue::get() {
// save methods from RedefineClasses across safepoint
// across MethodCompileQueue_lock below.
methodHandle save_method;
methodHandle save_hot_method;
MonitorLocker locker(MethodCompileQueue_lock);
// If _first is NULL we have no more compile jobs. There are two reasons for
// having no compile jobs: First, we compiled everything we wanted. Second,
// we ran out of code cache so compilation has been disabled. In the latter
// case we perform code cache sweeps to free memory such that we can re-enable
// compilation.
while (_first == NULL) {
// Exit loop if compilation is disabled forever
if (CompileBroker::is_compilation_disabled_forever()) {
return NULL;
}
// If there are no compilation tasks and we can compile new jobs
// (i.e., there is enough free space in the code cache) there is
// no need to invoke the sweeper. As a result, the hotness of methods
// remains unchanged. This behavior is desired, since we want to keep
// the stable state, i.e., we do not want to evict methods from the
// code cache if it is unnecessary.
// We need a timed wait here, since compiler threads can exit if compilation
// is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
// is not critical and we do not want idle compiler threads to wake up too often.
locker.wait(5*1000);
if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
// Still nothing to compile. Give caller a chance to stop this thread.
if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
}
}
if (CompileBroker::is_compilation_disabled_forever()) {
return NULL;
}
CompileTask* task;
{
NoSafepointVerifier nsv;
task = CompilationPolicy::select_task(this);
if (task != NULL) {
task = task->select_for_compilation();
}
}
if (task != NULL) {
// Save method pointers across unlock safepoint. The task is removed from
// the compilation queue, which is walked during RedefineClasses.
Thread* thread = Thread::current();
save_method = methodHandle(thread, task->method());
save_hot_method = methodHandle(thread, task->hot_method());
remove(task);
}
purge_stale_tasks(); // may temporarily release MCQ lock
return task;
}
// Clean & deallocate stale compile tasks.
// Temporarily releases MethodCompileQueue lock.
void CompileQueue::purge_stale_tasks() {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
if (_first_stale != NULL) {
// Stale tasks are purged when MCQ lock is released,
// but _first_stale updates are protected by MCQ lock.
// Once task processing starts and MCQ lock is released,
// other compiler threads can reuse _first_stale.
CompileTask* head = _first_stale;
_first_stale = NULL;
{
MutexUnlocker ul(MethodCompileQueue_lock);
for (CompileTask* task = head; task != NULL; ) {
CompileTask* next_task = task->next();
CompileTaskWrapper ctw(task); // Frees the task
task->set_failure_reason("stale task");
task = next_task;
}
}
}
}
void CompileQueue::remove(CompileTask* task) {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
if (task->prev() != NULL) {
task->prev()->set_next(task->next());
} else {
// max is the first element
assert(task == _first, "Sanity");
_first = task->next();
}
if (task->next() != NULL) {
task->next()->set_prev(task->prev());
} else {
// max is the last element
assert(task == _last, "Sanity");
_last = task->prev();
}
--_size;
}
void CompileQueue::remove_and_mark_stale(CompileTask* task) {
assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
remove(task);
// Enqueue the task for reclamation (should be done outside MCQ lock)
task->set_next(_first_stale);
task->set_prev(NULL);
_first_stale = task;
}
// methods in the compile queue need to be marked as used on the stack
// so that they don't get reclaimed by Redefine Classes
void CompileQueue::mark_on_stack() {
CompileTask* task = _first;
while (task != NULL) {
task->mark_on_stack();
task = task->next();
}
}
CompileQueue* CompileBroker::compile_queue(int comp_level) {
if (is_c2_compile(comp_level)) return _c2_compile_queue;
if (is_c1_compile(comp_level)) return _c1_compile_queue;
return NULL;
}
void CompileBroker::print_compile_queues(outputStream* st) {
st->print_cr("Current compiles: ");
char buf[2000];
int buflen = sizeof(buf);
Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
st->cr();
if (_c1_compile_queue != NULL) {
_c1_compile_queue->print(st);
}
if (_c2_compile_queue != NULL) {
_c2_compile_queue->print(st);
}
}
void CompileQueue::print(outputStream* st) {
assert_locked_or_safepoint(MethodCompileQueue_lock);
st->print_cr("%s:", name());
CompileTask* task = _first;
if (task == NULL) {
st->print_cr("Empty");
} else {
while (task != NULL) {
task->print(st, NULL, true, true);
task = task->next();
}
}
st->cr();
}
void CompileQueue::print_tty() {
ResourceMark rm;
stringStream ss;
// Dump the compile queue into a buffer before locking the tty
print(&ss);
{
ttyLocker ttyl;
tty->print("%s", ss.as_string());
}
}
CompilerCounters::CompilerCounters() {
_current_method[0] = '\0';
_compile_type = CompileBroker::no_compile;
}
#if INCLUDE_JFR && COMPILER2_OR_JVMCI
// It appends new compiler phase names to growable array phase_names(a new CompilerPhaseType mapping
// in compiler/compilerEvent.cpp) and registers it with its serializer.
//
// c2 uses explicit CompilerPhaseType idToPhase mapping in opto/phasetype.hpp,
// so if c2 is used, it should be always registered first.
// This function is called during vm initialization.
void register_jfr_phasetype_serializer(CompilerType compiler_type) {
ResourceMark rm;
static bool first_registration = true;
if (compiler_type == compiler_jvmci) {
CompilerEvent::PhaseEvent::get_phase_id("NOT_A_PHASE_NAME", false, false, false);
first_registration = false;
#ifdef COMPILER2
} else if (compiler_type == compiler_c2) {
assert(first_registration, "invariant"); // c2 must be registered first.
GrowableArray<const char*>* c2_phase_names = new GrowableArray<const char*>(PHASE_NUM_TYPES);
for (int i = 0; i < PHASE_NUM_TYPES; i++) {
const char* phase_name = CompilerPhaseTypeHelper::to_string((CompilerPhaseType) i);
CompilerEvent::PhaseEvent::get_phase_id(phase_name, false, false, false);
}
first_registration = false;
#endif // COMPILER2
}
}
#endif // INCLUDE_JFR && COMPILER2_OR_JVMCI
// ------------------------------------------------------------------
// CompileBroker::compilation_init
//
// Initialize the Compilation object
void CompileBroker::compilation_init_phase1(Thread* THREAD) {
// No need to initialize compilation system if we do not use it.
if (!UseCompiler) {
return;
}
// Set the interface to the current compiler(s).
_c1_count = CompilationPolicy::c1_count();
_c2_count = CompilationPolicy::c2_count();
#if INCLUDE_JVMCI
if (EnableJVMCI) {
// This is creating a JVMCICompiler singleton.
JVMCICompiler* jvmci = new JVMCICompiler();
if (UseJVMCICompiler) {
_compilers[1] = jvmci;
if (FLAG_IS_DEFAULT(JVMCIThreads)) {
if (BootstrapJVMCI) {
// JVMCI will bootstrap so give it more threads
_c2_count = MIN2(32, os::active_processor_count());
}
} else {
_c2_count = JVMCIThreads;
}
if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
} else {
_c1_count = JVMCIHostThreads;
}
}
}
#endif // INCLUDE_JVMCI
#ifdef COMPILER1
if (_c1_count > 0) {
_compilers[0] = new Compiler();
}
#endif // COMPILER1
#ifdef COMPILER2
if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
if (_c2_count > 0) {
_compilers[1] = new C2Compiler();
// Register c2 first as c2 CompilerPhaseType idToPhase mapping is explicit.
// idToPhase mapping for c2 is in opto/phasetype.hpp
JFR_ONLY(register_jfr_phasetype_serializer(compiler_c2);)
}
}
#endif // COMPILER2
#if INCLUDE_JVMCI
// Register after c2 registration.
// JVMCI CompilerPhaseType idToPhase mapping is dynamic.
if (EnableJVMCI) {
JFR_ONLY(register_jfr_phasetype_serializer(compiler_jvmci);)
}
#endif // INCLUDE_JVMCI
// Start the compiler thread(s) and the sweeper thread
init_compiler_sweeper_threads();
// totalTime performance counter is always created as it is required
// by the implementation of java.lang.management.CompilationMXBean.
{
// Ensure OOM leads to vm_exit_during_initialization.
EXCEPTION_MARK;
_perf_total_compilation =
PerfDataManager::create_counter(JAVA_CI, "totalTime",
PerfData::U_Ticks, CHECK);
}
if (UsePerfData) {
EXCEPTION_MARK;
// create the jvmstat performance counters
_perf_osr_compilation =
PerfDataManager::create_counter(SUN_CI, "osrTime",
PerfData::U_Ticks, CHECK);
_perf_standard_compilation =
PerfDataManager::create_counter(SUN_CI, "standardTime",
PerfData::U_Ticks, CHECK);
_perf_total_bailout_count =
PerfDataManager::create_counter(SUN_CI, "totalBailouts",
PerfData::U_Events, CHECK);
_perf_total_invalidated_count =
PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
PerfData::U_Events, CHECK);
_perf_total_compile_count =
PerfDataManager::create_counter(SUN_CI, "totalCompiles",
PerfData::U_Events, CHECK);
_perf_total_osr_compile_count =
PerfDataManager::create_counter(SUN_CI, "osrCompiles",
PerfData::U_Events, CHECK);
_perf_total_standard_compile_count =
PerfDataManager::create_counter(SUN_CI, "standardCompiles",
PerfData::U_Events, CHECK);
_perf_sum_osr_bytes_compiled =
PerfDataManager::create_counter(SUN_CI, "osrBytes",
PerfData::U_Bytes, CHECK);
_perf_sum_standard_bytes_compiled =
PerfDataManager::create_counter(SUN_CI, "standardBytes",
PerfData::U_Bytes, CHECK);
_perf_sum_nmethod_size =
PerfDataManager::create_counter(SUN_CI, "nmethodSize",
PerfData::U_Bytes, CHECK);
_perf_sum_nmethod_code_size =
PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
PerfData::U_Bytes, CHECK);
_perf_last_method =
PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
CompilerCounters::cmname_buffer_length,
"", CHECK);
_perf_last_failed_method =
PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
CompilerCounters::cmname_buffer_length,
"", CHECK);
_perf_last_invalidated_method =
PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
CompilerCounters::cmname_buffer_length,
"", CHECK);
_perf_last_compile_type =
PerfDataManager::create_variable(SUN_CI, "lastType",
PerfData::U_None,
(jlong)CompileBroker::no_compile,
CHECK);
_perf_last_compile_size =
PerfDataManager::create_variable(SUN_CI, "lastSize",
PerfData::U_Bytes,
(jlong)CompileBroker::no_compile,
CHECK);
_perf_last_failed_type =
PerfDataManager::create_variable(SUN_CI, "lastFailedType",
PerfData::U_None,
(jlong)CompileBroker::no_compile,
CHECK);
_perf_last_invalidated_type =
PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
PerfData::U_None,
(jlong)CompileBroker::no_compile,
CHECK);
}
}
// Completes compiler initialization. Compilation requests submitted
// prior to this will be silently ignored.
void CompileBroker::compilation_init_phase2() {
_initialized = true;
}
Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
Handle string = java_lang_String::create_from_str(name, CHECK_NH);
Handle thread_group(THREAD, Universe::system_thread_group());
return JavaCalls::construct_new_instance(
vmClasses::Thread_klass(),
vmSymbols::threadgroup_string_void_signature(),
thread_group,
string,
CHECK_NH);
}
#if defined(ASSERT) && COMPILER2_OR_JVMCI
// Stress testing. Dedicated threads revert optimizations based on escape analysis concurrently to
// the running java application. Configured with vm options DeoptimizeObjectsALot*.
class DeoptimizeObjectsALotThread : public JavaThread {
static void deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS);
void deoptimize_objects_alot_loop_single();
void deoptimize_objects_alot_loop_all();
public:
DeoptimizeObjectsALotThread() : JavaThread(&deopt_objs_alot_thread_entry) { }
bool is_hidden_from_external_view() const { return true; }
};
// Entry for DeoptimizeObjectsALotThread. The threads are started in
// CompileBroker::init_compiler_sweeper_threads() iff DeoptimizeObjectsALot is enabled
void DeoptimizeObjectsALotThread::deopt_objs_alot_thread_entry(JavaThread* thread, TRAPS) {
DeoptimizeObjectsALotThread* dt = ((DeoptimizeObjectsALotThread*) thread);
bool enter_single_loop;
{
MonitorLocker ml(dt, EscapeBarrier_lock, Mutex::_no_safepoint_check_flag);
static int single_thread_count = 0;
enter_single_loop = single_thread_count++ < DeoptimizeObjectsALotThreadCountSingle;
}
if (enter_single_loop) {
dt->deoptimize_objects_alot_loop_single();
} else {
dt->deoptimize_objects_alot_loop_all();
}
}
// Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
// barrier targets a single thread which is selected round robin.
void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_single() {
HandleMark hm(this);
while (true) {
for (JavaThreadIteratorWithHandle jtiwh; JavaThread *deoptee_thread = jtiwh.next(); ) {
{ // Begin new scope for escape barrier
HandleMarkCleaner hmc(this);
ResourceMark rm(this);
EscapeBarrier eb(true, this, deoptee_thread);
eb.deoptimize_objects(100);
}
// Now sleep after the escape barriers destructor resumed deoptee_thread.
sleep(DeoptimizeObjectsALotInterval);
}
}
}
// Execute EscapeBarriers in an endless loop to revert optimizations based on escape analysis. Each
// barrier targets all java threads in the vm at once.
void DeoptimizeObjectsALotThread::deoptimize_objects_alot_loop_all() {
HandleMark hm(this);
while (true) {
{ // Begin new scope for escape barrier
HandleMarkCleaner hmc(this);
ResourceMark rm(this);
EscapeBarrier eb(true, this);
eb.deoptimize_objects_all_threads();
}
// Now sleep after the escape barriers destructor resumed the java threads.
sleep(DeoptimizeObjectsALotInterval);
}
}
#endif // defined(ASSERT) && COMPILER2_OR_JVMCI
JavaThread* CompileBroker::make_thread(ThreadType type, jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, Thread* THREAD) {
JavaThread* new_thread = NULL;
{
MutexLocker mu(THREAD, Threads_lock);
switch (type) {
case compiler_t:
assert(comp != NULL, "Compiler instance missing.");
if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
CompilerCounters* counters = new CompilerCounters();
new_thread = new CompilerThread(queue, counters);
}
break;
case sweeper_t:
new_thread = new CodeCacheSweeperThread();
break;
#if defined(ASSERT) && COMPILER2_OR_JVMCI
case deoptimizer_t:
new_thread = new DeoptimizeObjectsALotThread();
break;
#endif // ASSERT
default:
ShouldNotReachHere();
}
// At this point the new CompilerThread data-races with this startup
// thread (which I believe is the primoridal thread and NOT the VM
// thread). This means Java bytecodes being executed at startup can
// queue compile jobs which will run at whatever default priority the
// newly created CompilerThread runs at.
// At this point it may be possible that no osthread was created for the
// JavaThread due to lack of memory. We would have to throw an exception
// in that case. However, since this must work and we do not allow
// exceptions anyway, check and abort if this fails. But first release the
// lock.
if (new_thread != NULL && new_thread->osthread() != NULL) {
java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), new_thread);
// Note that this only sets the JavaThread _priority field, which by
// definition is limited to Java priorities and not OS priorities.
// The os-priority is set in the CompilerThread startup code itself
java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
// Note that we cannot call os::set_priority because it expects Java
// priorities and we are *explicitly* using OS priorities so that it's
// possible to set the compiler thread priority higher than any Java
// thread.
int native_prio = CompilerThreadPriority;
if (native_prio == -1) {
if (UseCriticalCompilerThreadPriority) {
native_prio = os::java_to_os_priority[CriticalPriority];
} else {
native_prio = os::java_to_os_priority[NearMaxPriority];
}
}
os::set_native_priority(new_thread, native_prio);
java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
new_thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
if (type == compiler_t) {
new_thread->as_CompilerThread()->set_compiler(comp);
}
Threads::add(new_thread);
Thread::start(new_thread);
}
}
// First release lock before aborting VM.
if (new_thread == NULL || new_thread->osthread() == NULL) {
if (UseDynamicNumberOfCompilerThreads && type == compiler_t && comp->num_compiler_threads() > 0) {
if (new_thread != NULL) {
new_thread->smr_delete();
}
return NULL;
}
vm_exit_during_initialization("java.lang.OutOfMemoryError",
os::native_thread_creation_failed_msg());
}
// Let go of Threads_lock before yielding
os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
return new_thread;
}
void CompileBroker::init_compiler_sweeper_threads() {
NMethodSweeper::set_sweep_threshold_bytes(static_cast<size_t>(SweeperThreshold * ReservedCodeCacheSize / 100.0));
log_info(codecache, sweep)("Sweeper threshold: " SIZE_FORMAT " bytes", NMethodSweeper::sweep_threshold_bytes());
// Ensure any exceptions lead to vm_exit_during_initialization.
EXCEPTION_MARK;
#if !defined(ZERO)
assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
#endif // !ZERO
// Initialize the compilation queue
if (_c2_count > 0) {
const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
_c2_compile_queue = new CompileQueue(name);
_compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
_compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
}
if (_c1_count > 0) {
_c1_compile_queue = new CompileQueue("C1 compile queue");
_compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
_compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
}
char name_buffer[256];
for (int i = 0; i < _c2_count; i++) {
jobject thread_handle = NULL;
// Create all j.l.Thread objects for C1 and C2 threads here, but only one
// for JVMCI compiler which can create further ones on demand.
JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
// Create a name for our thread.
sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
Handle thread_oop = create_thread_oop(name_buffer, CHECK);
thread_handle = JNIHandles::make_global(thread_oop);
JVMCI_ONLY(})
_compiler2_objects[i] = thread_handle;
_compiler2_logs[i] = NULL;
if (!UseDynamicNumberOfCompilerThreads || i == 0) {
JavaThread *ct = make_thread(compiler_t, thread_handle, _c2_compile_queue, _compilers[1], THREAD);
assert(ct != NULL, "should have been handled for initial thread");
_compilers[1]->set_num_compiler_threads(i + 1);
if (TraceCompilerThreads) {
ResourceMark rm;
ThreadsListHandle tlh; // get_thread_name() depends on the TLH.
assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
}
}
}
for (int i = 0; i < _c1_count; i++) {
// Create a name for our thread.
sprintf(name_buffer, "C1 CompilerThread%d", i);
Handle thread_oop = create_thread_oop(name_buffer, CHECK);
jobject thread_handle = JNIHandles::make_global(thread_oop);
_compiler1_objects[i] = thread_handle;
_compiler1_logs[i] = NULL;
if (!UseDynamicNumberOfCompilerThreads || i == 0) {
JavaThread *ct = make_thread(compiler_t, thread_handle, _c1_compile_queue, _compilers[0], THREAD);
assert(ct != NULL, "should have been handled for initial thread");
_compilers[0]->set_num_compiler_threads(i + 1);
if (TraceCompilerThreads) {
ResourceMark rm;
ThreadsListHandle tlh; // get_thread_name() depends on the TLH.
assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
}
}
}
if (UsePerfData) {
PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
}
if (MethodFlushing) {
// Initialize the sweeper thread
Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
make_thread(sweeper_t, thread_handle, NULL, NULL, THREAD);
}
#if defined(ASSERT) && COMPILER2_OR_JVMCI
if (DeoptimizeObjectsALot) {
// Initialize and start the object deoptimizer threads
const int total_count = DeoptimizeObjectsALotThreadCountSingle + DeoptimizeObjectsALotThreadCountAll;
for (int count = 0; count < total_count; count++) {
Handle thread_oop = create_thread_oop("Deoptimize objects a lot single mode", CHECK);
jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
make_thread(deoptimizer_t, thread_handle, NULL, NULL, THREAD);
}
}
#endif // defined(ASSERT) && COMPILER2_OR_JVMCI
}
void CompileBroker::possibly_add_compiler_threads(Thread* THREAD) {
julong available_memory = os::available_memory();
// If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
size_t available_cc_np = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
available_cc_p = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
// Only do attempt to start additional threads if the lock is free.
if (!CompileThread_lock->try_lock()) return;
if (_c2_compile_queue != NULL) {
int old_c2_count = _compilers[1]->num_compiler_threads();
int new_c2_count = MIN4(_c2_count,
_c2_compile_queue->size() / 2,
(int)(available_memory / (200*M)),
(int)(available_cc_np / (128*K)));
for (int i = old_c2_count; i < new_c2_count; i++) {
#if INCLUDE_JVMCI
if (UseJVMCICompiler) {
// Native compiler threads as used in C1/C2 can reuse the j.l.Thread
// objects as their existence is completely hidden from the rest of
// the VM (and those compiler threads can't call Java code to do the
// creation anyway). For JVMCI we have to create new j.l.Thread objects
// as they are visible and we can see unexpected thread lifecycle
// transitions if we bind them to new JavaThreads.
if (!THREAD->can_call_java()) break;
char name_buffer[256];
sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
Handle thread_oop;
{
// We have to give up the lock temporarily for the Java calls.
MutexUnlocker mu(CompileThread_lock);
thread_oop = create_thread_oop(name_buffer, THREAD);
}
if (HAS_PENDING_EXCEPTION) {
if (TraceCompilerThreads) {
ResourceMark rm;
tty->print_cr("JVMCI compiler thread creation failed:");
PENDING_EXCEPTION->print();
}
CLEAR_PENDING_EXCEPTION;
break;
}
// Check if another thread has beaten us during the Java calls.
if (_compilers[1]->num_compiler_threads() != i) break;
jobject thread_handle = JNIHandles::make_global(thread_oop);
assert(compiler2_object(i) == NULL, "Old one must be released!");
_compiler2_objects[i] = thread_handle;
}
#endif
JavaThread *ct = make_thread(compiler_t, compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
if (ct == NULL) break;
_compilers[1]->set_num_compiler_threads(i + 1);
if (TraceCompilerThreads) {
ResourceMark rm;
ThreadsListHandle tlh; // get_thread_name() depends on the TLH.
assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
}
}
}
if (_c1_compile_queue != NULL) {
int old_c1_count = _compilers[0]->num_compiler_threads();
int new_c1_count = MIN4(_c1_count,
_c1_compile_queue->size() / 4,
(int)(available_memory / (100*M)),
(int)(available_cc_p / (128*K)));
for (int i = old_c1_count; i < new_c1_count; i++) {
JavaThread *ct = make_thread(compiler_t, compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
if (ct == NULL) break;
_compilers[0]->set_num_compiler_threads(i + 1);
if (TraceCompilerThreads) {
ResourceMark rm;
ThreadsListHandle tlh; // get_thread_name() depends on the TLH.
assert(tlh.includes(ct), "ct=" INTPTR_FORMAT " exited unexpectedly.", p2i(ct));
tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
}
}
}
CompileThread_lock->unlock();
}
/**
* Set the methods on the stack as on_stack so that redefine classes doesn't
* reclaim them. This method is executed at a safepoint.
*/
void CompileBroker::mark_on_stack() {
assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
// Since we are at a safepoint, we do not need a lock to access
// the compile queues.
if (_c2_compile_queue != NULL) {
_c2_compile_queue->mark_on_stack();
}
if (_c1_compile_queue != NULL) {
_c1_compile_queue->mark_on_stack();
}
}
// ------------------------------------------------------------------
// CompileBroker::compile_method
//
// Request compilation of a method.
void CompileBroker::compile_method_base(const methodHandle& method,
int osr_bci,
int comp_level,
const methodHandle& hot_method,
int hot_count,
CompileTask::CompileReason compile_reason,
bool blocking,
Thread* thread) {
guarantee(!method->is_abstract(), "cannot compile abstract methods");
assert(method->method_holder()->is_instance_klass(),
"sanity check");
assert(!method->method_holder()->is_not_initialized(),
"method holder must be initialized");
assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
if (CIPrintRequests) {
tty->print("request: ");
method->print_short_name(tty);
if (osr_bci != InvocationEntryBci) {
tty->print(" osr_bci: %d", osr_bci);
}
tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
if (!hot_method.is_null()) {
tty->print(" hot: ");
if (hot_method() != method()) {
hot_method->print_short_name(tty);
} else {
tty->print("yes");
}
}
tty->cr();
}
// A request has been made for compilation. Before we do any
// real work, check to see if the method has been compiled
// in the meantime with a definitive result.
if (compilation_is_complete(method, osr_bci, comp_level)) {
return;
}
#ifndef PRODUCT
if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
// Positive OSROnlyBCI means only compile that bci. Negative means don't compile that BCI.
return;
}
}
#endif
// If this method is already in the compile queue, then
// we do not block the current thread.
if (compilation_is_in_queue(method)) {
// We may want to decay our counter a bit here to prevent
// multiple denied requests for compilation. This is an
// open compilation policy issue. Note: The other possibility,
// in the case that this is a blocking compile request, is to have
// all subsequent blocking requesters wait for completion of
// ongoing compiles. Note that in this case we'll need a protocol
// for freeing the associated compile tasks. [Or we could have
// a single static monitor on which all these waiters sleep.]
return;
}
// Tiered policy requires MethodCounters to exist before adding a method to
// the queue. Create if we don't have them yet.
method->get_method_counters(thread);
// Outputs from the following MutexLocker block:
CompileTask* task = NULL;
CompileQueue* queue = compile_queue(comp_level);
// Acquire our lock.
{
MutexLocker locker(thread, MethodCompileQueue_lock);
// Make sure the method has not slipped into the queues since
// last we checked; note that those checks were "fast bail-outs".
// Here we need to be more careful, see 14012000 below.
if (compilation_is_in_queue(method)) {
return;
}
// We need to check again to see if the compilation has
// completed. A previous compilation may have registered
// some result.
if (compilation_is_complete(method, osr_bci, comp_level)) {
return;
}
// We now know that this compilation is not pending, complete,
// or prohibited. Assign a compile_id to this compilation
// and check to see if it is in our [Start..Stop) range.
int compile_id = assign_compile_id(method, osr_bci);
if (compile_id == 0) {
// The compilation falls outside the allowed range.
return;
}
#if INCLUDE_JVMCI
if (UseJVMCICompiler && blocking) {
// Don't allow blocking compiles for requests triggered by JVMCI.
if (thread->is_Compiler_thread()) {
blocking = false;
}
if (!UseJVMCINativeLibrary) {
// Don't allow blocking compiles if inside a class initializer or while performing class loading
vframeStream vfst(thread->as_Java_thread());
for (; !vfst.at_end(); vfst.next()) {
if (vfst.method()->is_static_initializer() ||
(vfst.method()->method_holder()->is_subclass_of(vmClasses::ClassLoader_klass()) &&
vfst.method()->name() == vmSymbols::loadClass_name())) {
blocking = false;
break;
}
}
}
// Don't allow blocking compilation requests to JVMCI
// if JVMCI itself is not yet initialized
if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
blocking = false;
}
// Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
// to avoid deadlock between compiler thread(s) and threads run at shutdown
// such as the DestroyJavaVM thread.
if (JVMCI::in_shutdown()) {
blocking = false;
}
}
#endif // INCLUDE_JVMCI
// We will enter the compilation in the queue.
// 14012000: Note that this sets the queued_for_compile bits in
// the target method. We can now reason that a method cannot be
// queued for compilation more than once, as follows:
// Before a thread queues a task for compilation, it first acquires
// the compile queue lock, then checks if the method's queued bits
// are set or it has already been compiled. Thus there can not be two
// instances of a compilation task for the same method on the
// compilation queue. Consider now the case where the compilation
// thread has already removed a task for that method from the queue
// and is in the midst of compiling it. In this case, the
// queued_for_compile bits must be set in the method (and these
// will be visible to the current thread, since the bits were set
// under protection of the compile queue lock, which we hold now.
// When the compilation completes, the compiler thread first sets
// the compilation result and then clears the queued_for_compile
// bits. Neither of these actions are protected by a barrier (or done
// under the protection of a lock), so the only guarantee we have
// (on machines with TSO (Total Store Order)) is that these values
// will update in that order. As a result, the only combinations of
// these bits that the current thread will see are, in temporal order:
// <RESULT, QUEUE> :
// <0, 1> : in compile queue, but not yet compiled
// <1, 1> : compiled but queue bit not cleared
// <1, 0> : compiled and queue bit cleared
// Because we first check the queue bits then check the result bits,
// we are assured that we cannot introduce a duplicate task.
// Note that if we did the tests in the reverse order (i.e. check
// result then check queued bit), we could get the result bit before
// the compilation completed, and the queue bit after the compilation
// completed, and end up introducing a "duplicate" (redundant) task.
// In that case, the compiler thread should first check if a method
// has already been compiled before trying to compile it.
// NOTE: in the event that there are multiple compiler threads and
// there is de-optimization/recompilation, things will get hairy,
// and in that case it's best to protect both the testing (here) of
// these bits, and their updating (here and elsewhere) under a
// common lock.
task = create_compile_task(queue,
compile_id, method,
osr_bci, comp_level,
hot_method, hot_count, compile_reason,
blocking);
}
if (blocking) {
wait_for_completion(task);
}
}
nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
int comp_level,
const methodHandle& hot_method, int hot_count,
CompileTask::CompileReason compile_reason,
TRAPS) {
// Do nothing if compilebroker is not initalized or compiles are submitted on level none
if (!_initialized || comp_level == CompLevel_none) {
return NULL;
}
AbstractCompiler *comp = CompileBroker::compiler(comp_level);
assert(comp != NULL, "Ensure we have a compiler");
DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
// CompileBroker::compile_method can trap and can have pending aysnc exception.
nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
DirectivesStack::release(directive);
return nm;
}
nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
int comp_level,
const methodHandle& hot_method, int hot_count,
CompileTask::CompileReason compile_reason,
DirectiveSet* directive,
TRAPS) {
// make sure arguments make sense
assert(method->method_holder()->is_instance_klass(), "not an instance method");
assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
// return quickly if possible
// lock, make sure that the compilation
// isn't prohibited in a straightforward way.
AbstractCompiler* comp = CompileBroker::compiler(comp_level);
if (comp == NULL || compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
return NULL;
}
#if INCLUDE_JVMCI
if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
return NULL;
}
#endif
if (osr_bci == InvocationEntryBci) {
// standard compilation
CompiledMethod* method_code = method->code();
if (method_code != NULL && method_code->is_nmethod()) {
if (compilation_is_complete(method, osr_bci, comp_level)) {
return (nmethod*) method_code;
}
}
if (method->is_not_compilable(comp_level)) {
return NULL;
}
} else {
// osr compilation
// We accept a higher level osr method
nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
if (nm != NULL) return nm;
if (method->is_not_osr_compilable(comp_level)) return NULL;
}
assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
// some prerequisites that are compiler specific
if (comp->is_c2()) {
method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NONASYNC_NULL);
// Resolve all classes seen in the signature of the method
// we are compiling.
Method::load_signature_classes(method, CHECK_AND_CLEAR_NONASYNC_NULL);
}
// If the method is native, do the lookup in the thread requesting
// the compilation. Native lookups can load code, which is not
// permitted during compilation.
//
// Note: A native method implies non-osr compilation which is
// checked with an assertion at the entry of this method.
if (method->is_native() && !method->is_method_handle_intrinsic()) {
bool in_base_library;
address adr = NativeLookup::lookup(method, in_base_library, THREAD);
if (HAS_PENDING_EXCEPTION) {
// In case of an exception looking up the method, we just forget
// about it. The interpreter will kick-in and throw the exception.
method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
CLEAR_PENDING_EXCEPTION;
return NULL;
}
assert(method->has_native_function(), "must have native code by now");
}
// RedefineClasses() has replaced this method; just return
if (method->is_old()) {
return NULL;
}
// JVMTI -- post_compile_event requires jmethod_id() that may require
// a lock the compiling thread can not acquire. Prefetch it here.
if (JvmtiExport::should_post_compiled_method_load()) {
method->jmethod_id();
}
// do the compilation
if (method->is_native()) {
if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
#if defined(X86) && !defined(ZERO)
// The following native methods:
//
// java.lang.Float.intBitsToFloat
// java.lang.Float.floatToRawIntBits
// java.lang.Double.longBitsToDouble
// java.lang.Double.doubleToRawLongBits
//
// are called through the interpreter even if interpreter native stubs
// are not preferred (i.e., calling through adapter handlers is preferred).
// The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
// if the version of the methods from the native libraries is called.
// As the interpreter and the C2-intrinsified version of the methods preserves
// sNaNs, that would result in an inconsistent way of handling of sNaNs.
if ((UseSSE >= 1 &&
(method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
(UseSSE >= 2 &&
(method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
return NULL;
}
#endif // X86 && !ZERO
// To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
// pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
//
// Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
// in this case. If we can't generate one and use it we can not execute the out-of-line method handle calls.
AdapterHandlerLibrary::create_native_wrapper(method);
} else {
return NULL;
}
} else {
// If the compiler is shut off due to code cache getting full
// fail out now so blocking compiles dont hang the java thread
if (!should_compile_new_jobs()) {
return NULL;
}
bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
}
// return requested nmethod
// We accept a higher level osr method
if (osr_bci == InvocationEntryBci) {
CompiledMethod* code = method->code();
if (code == NULL) {
return (nmethod*) code;
} else {
return code->as_nmethod_or_null();
}
}
return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
}
// ------------------------------------------------------------------
// CompileBroker::compilation_is_complete
//
// See if compilation of this method is already complete.
bool CompileBroker::compilation_is_complete(const methodHandle& method,
int osr_bci,
int comp_level) {
bool is_osr = (osr_bci != standard_entry_bci);
if (is_osr) {
if (method->is_not_osr_compilable(comp_level)) {
return true;
} else {
nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
return (result != NULL);
}
} else {
if (method->is_not_compilable(comp_level)) {
return true;
} else {
CompiledMethod* result = method->code();
if (result == NULL) return false;
return comp_level == result->comp_level();
}
}
}
/**
* See if this compilation is already requested.
*
* Implementation note: there is only a single "is in queue" bit
* for each method. This means that the check below is overly
* conservative in the sense that an osr compilation in the queue
* will block a normal compilation from entering the queue (and vice
* versa). This can be remedied by a full queue search to disambiguate
* cases. If it is deemed profitable, this may be done.
*/
bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
return method->queued_for_compilation();
}
// ------------------------------------------------------------------
// CompileBroker::compilation_is_prohibited
//
// See if this compilation is not allowed.
bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
bool is_native = method->is_native();
// Some compilers may not support the compilation of natives.
AbstractCompiler *comp = compiler(comp_level);
if (is_native && (!CICompileNatives || comp == NULL)) {
method->set_not_compilable_quietly("native methods not supported", comp_level);
return true;
}
bool is_osr = (osr_bci != standard_entry_bci);
// Some compilers may not support on stack replacement.
if (is_osr && (!CICompileOSR || comp == NULL)) {
method->set_not_osr_compilable("OSR not supported", comp_level);
return true;
}
// The method may be explicitly excluded by the user.
double scale;
if (excluded || (CompilerOracle::has_option_value(method, CompileCommand::CompileThresholdScaling, scale) && scale == 0)) {
bool quietly = CompilerOracle::be_quiet();
if (PrintCompilation && !quietly) {
// This does not happen quietly...
ResourceMark rm;
tty->print("### Excluding %s:%s",
method->is_native() ? "generation of native wrapper" : "compile",
(method->is_static() ? " static" : ""));
method->print_short_name(tty);
tty->cr();
}
method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
}
return false;
}
/**
* Generate serialized IDs for compilation requests. If certain debugging flags are used
* and the ID is not within the specified range, the method is not compiled and 0 is returned.
* The function also allows to generate separate compilation IDs for OSR compilations.
*/
int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
#ifdef ASSERT
bool is_osr = (osr_bci != standard_entry_bci);
int id;
if (method->is_native()) {
assert(!is_osr, "can't be osr");
// Adapters, native wrappers and method handle intrinsics
// should be generated always.
return Atomic::add(&_compilation_id, 1);
} else if (CICountOSR && is_osr) {
id = Atomic::add(&_osr_compilation_id, 1);
if (CIStartOSR <= id && id < CIStopOSR) {
return id;
}
} else {
id = Atomic::add(&_compilation_id, 1);
if (CIStart <= id && id < CIStop) {
return id;
}
}
// Method was not in the appropriate compilation range.
method->set_not_compilable_quietly("Not in requested compile id range");
return 0;
#else
// CICountOSR is a develop flag and set to 'false' by default. In a product built,
// only _compilation_id is incremented.
return Atomic::add(&_compilation_id, 1);
#endif
}
// ------------------------------------------------------------------
// CompileBroker::assign_compile_id_unlocked
//
// Public wrapper for assign_compile_id that acquires the needed locks
uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
MutexLocker locker(thread, MethodCompileQueue_lock);
return assign_compile_id(method, osr_bci);
}
// ------------------------------------------------------------------
// CompileBroker::create_compile_task
//
// Create a CompileTask object representing the current request for
// compilation. Add this task to the queue.
CompileTask* CompileBroker::create_compile_task(CompileQueue* queue,
int compile_id,
const methodHandle& method,
int osr_bci,
int comp_level,
const methodHandle& hot_method,
int hot_count,
CompileTask::CompileReason compile_reason,
bool blocking) {
CompileTask* new_task = CompileTask::allocate();
new_task->initialize(compile_id, method, osr_bci, comp_level,
hot_method, hot_count, compile_reason,
blocking);
queue->add(new_task);
return new_task;
}
#if INCLUDE_JVMCI
// The number of milliseconds to wait before checking if
// JVMCI compilation has made progress.
static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
// The number of JVMCI compilation progress checks that must fail
// before unblocking a thread waiting for a blocking compilation.
static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
/**
* Waits for a JVMCI compiler to complete a given task. This thread
* waits until either the task completes or it sees no JVMCI compilation
* progress for N consecutive milliseconds where N is
* JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
* JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
*
* @return true if this thread needs to free/recycle the task
*/
bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
assert(UseJVMCICompiler, "sanity");
MonitorLocker ml(thread, task->lock());
int progress_wait_attempts = 0;
jint thread_jvmci_compilation_ticks = 0;
jint global_jvmci_compilation_ticks = jvmci->global_compilation_ticks();
while (!task->is_complete() && !is_compilation_disabled_forever() &&
ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
JVMCICompileState* jvmci_compile_state = task->blocking_jvmci_compile_state();
bool progress;
if (jvmci_compile_state != NULL) {
jint ticks = jvmci_compile_state->compilation_ticks();
progress = (ticks - thread_jvmci_compilation_ticks) != 0;
JVMCI_event_1("waiting on compilation %d [ticks=%d]", task->compile_id(), ticks);
thread_jvmci_compilation_ticks = ticks;
} else {
// Still waiting on JVMCI compiler queue. This thread may be holding a lock
// that all JVMCI compiler threads are blocked on. We use the global JVMCI
// compilation ticks to determine whether JVMCI compilation
// is still making progress through the JVMCI compiler queue.
jint ticks = jvmci->global_compilation_ticks();
progress = (ticks - global_jvmci_compilation_ticks) != 0;
JVMCI_event_1("waiting on compilation %d to be queued [ticks=%d]", task->compile_id(), ticks);
global_jvmci_compilation_ticks = ticks;
}
if (!progress) {
if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
if (PrintCompilation) {
task->print(tty, "wait for blocking compilation timed out");
}
JVMCI_event_1("waiting on compilation %d timed out", task->compile_id());
break;
}
} else {
progress_wait_attempts = 0;
}
}
task->clear_waiter();
return task->is_complete();
}
#endif
/**
* Wait for the compilation task to complete.
*/
void CompileBroker::wait_for_completion(CompileTask* task) {
if (CIPrintCompileQueue) {
ttyLocker ttyl;
tty->print_cr("BLOCKING FOR COMPILE");
}
assert(task->is_blocking(), "can only wait on blocking task");
JavaThread* thread = JavaThread::current();
methodHandle method(thread, task->method());
bool free_task;
#if INCLUDE_JVMCI
AbstractCompiler* comp = compiler(task->comp_level());
if (comp->is_jvmci() && !task->should_wait_for_compilation()) {
// It may return before compilation is completed.
free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
} else
#endif
{
MonitorLocker ml(thread, task->lock());
free_task = true;
while (!task->is_complete() && !is_compilation_disabled_forever()) {
ml.wait();
}
}
if (free_task) {
if (is_compilation_disabled_forever()) {
CompileTask::free(task);
return;
}
// It is harmless to check this status without the lock, because
// completion is a stable property (until the task object is recycled).
assert(task->is_complete(), "Compilation should have completed");
assert(task->code_handle() == NULL, "must be reset");
// By convention, the waiter is responsible for recycling a
// blocking CompileTask. Since there is only one waiter ever
// waiting on a CompileTask, we know that no one else will
// be using this CompileTask; we can free it.
CompileTask::free(task);
}
}
/**
* Initialize compiler thread(s) + compiler object(s). The postcondition
* of this function is that the compiler runtimes are initialized and that
* compiler threads can start compiling.
*/
bool CompileBroker::init_compiler_runtime() {
CompilerThread* thread = CompilerThread::current();
AbstractCompiler* comp = thread->compiler();
// Final sanity check - the compiler object must exist
guarantee(comp != NULL, "Compiler object must exist");
{
// Must switch to native to allocate ci_env
ThreadToNativeFromVM ttn(thread);
ciEnv ci_env((CompileTask*)NULL);
// Cache Jvmti state
ci_env.cache_jvmti_state();
// Cache DTrace flags
ci_env.cache_dtrace_flags();
// Switch back to VM state to do compiler initialization
ThreadInVMfromNative tv(thread);
// Perform per-thread and global initializations
comp->initialize();
}
if (comp->is_failed()) {
disable_compilation_forever();
// If compiler initialization failed, no compiler thread that is specific to a
// particular compiler runtime will ever start to compile methods.
shutdown_compiler_runtime(comp, thread);
return false;
}
// C1 specific check
if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
return false;
}
return true;
}
/**
* If C1 and/or C2 initialization failed, we shut down all compilation.
* We do this to keep things simple. This can be changed if it ever turns
* out to be a problem.
*/
void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
// Free buffer blob, if allocated
if (thread->get_buffer_blob() != NULL) {
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::free(thread->get_buffer_blob());
}
if (comp->should_perform_shutdown()) {
// There are two reasons for shutting down the compiler
// 1) compiler runtime initialization failed
// 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
warning("%s initialization failed. Shutting down all compilers", comp->name());
// Only one thread per compiler runtime object enters here
// Set state to shut down
comp->set_shut_down();
// Delete all queued compilation tasks to make compiler threads exit faster.
if (_c1_compile_queue != NULL) {
_c1_compile_queue->free_all();
}
if (_c2_compile_queue != NULL) {
_c2_compile_queue->free_all();
}
// Set flags so that we continue execution with using interpreter only.
UseCompiler = false;
UseInterpreter = true;
// We could delete compiler runtimes also. However, there are references to
// the compiler runtime(s) (e.g., nmethod::is_compiled_by_c1()) which then
// fail. This can be done later if necessary.
}
}
/**
* Helper function to create new or reuse old CompileLog.
*/
CompileLog* CompileBroker::get_log(CompilerThread* ct) {
if (!LogCompilation) return NULL;
AbstractCompiler *compiler = ct->compiler();
bool c1 = compiler->is_c1();
jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
assert(compiler_objects != NULL, "must be initialized at this point");
CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
assert(logs != NULL, "must be initialized at this point");
int count = c1 ? _c1_count : _c2_count;
// Find Compiler number by its threadObj.
oop compiler_obj = ct->threadObj();
int compiler_number = 0;
bool found = false;
for (; compiler_number < count; compiler_number++) {
if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
found = true;
break;
}
}
assert(found, "Compiler must exist at this point");
// Determine pointer for this thread's log.
CompileLog** log_ptr = &logs[compiler_number];
// Return old one if it exists.
CompileLog* log = *log_ptr;
if (log != NULL) {
ct->init_log(log);
return log;
}
// Create a new one and remember it.
init_compiler_thread_log();
log = ct->log();
*log_ptr = log;
return log;
}
// ------------------------------------------------------------------
// CompileBroker::compiler_thread_loop
//
// The main loop run by a CompilerThread.
void CompileBroker::compiler_thread_loop() {
CompilerThread* thread = CompilerThread::current();
CompileQueue* queue = thread->queue();
// For the thread that initializes the ciObjectFactory
// this resource mark holds all the shared objects
ResourceMark rm;
// First thread to get here will initialize the compiler interface
{
ASSERT_IN_VM;
MutexLocker only_one (thread, CompileThread_lock);
if (!ciObjectFactory::is_initialized()) {
ciObjectFactory::initialize();
}
}
// Open a log.
CompileLog* log = get_log(thread);
if (log != NULL) {
log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
thread->name(),
os::current_thread_id(),
os::current_process_id());
log->stamp();
log->end_elem();
}
// If compiler thread/runtime initialization fails, exit the compiler thread
if (!init_compiler_runtime()) {
return;
}
thread->start_idle_timer();
// Poll for new compilation tasks as long as the JVM runs. Compilation
// should only be disabled if something went wrong while initializing the
// compiler runtimes. This, in turn, should not happen. The only known case
// when compiler runtime initialization fails is if there is not enough free
// space in the code cache to generate the necessary stubs, etc.
while (!is_compilation_disabled_forever()) {
// We need this HandleMark to avoid leaking VM handles.
HandleMark hm(thread);
CompileTask* task = queue->get();
if (task == NULL) {
if (UseDynamicNumberOfCompilerThreads) {
// Access compiler_count under lock to enforce consistency.
MutexLocker only_one(CompileThread_lock);
if (can_remove(thread, true)) {
if (TraceCompilerThreads) {
tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
thread->name(), thread->idle_time_millis());
}
// Free buffer blob, if allocated
if (thread->get_buffer_blob() != NULL) {
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::free(thread->get_buffer_blob());
}
return; // Stop this thread.
}
}
} else {
// Assign the task to the current thread. Mark this compilation
// thread as active for the profiler.
// CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
// occurs after fetching the compile task off the queue.
CompileTaskWrapper ctw(task);
nmethodLocker result_handle; // (handle for the nmethod produced by this task)
task->set_code_handle(&result_handle);
methodHandle method(thread, task->method());
// Never compile a method if breakpoints are present in it
if (method()->number_of_breakpoints() == 0) {
// Compile the method.
if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
invoke_compiler_on_method(task);
thread->start_idle_timer();
} else {
// After compilation is disabled, remove remaining methods from queue
method->clear_queued_for_compilation();
task->set_failure_reason("compilation is disabled");
}
}
if (UseDynamicNumberOfCompilerThreads) {
possibly_add_compiler_threads(thread);
assert(!thread->has_pending_exception(), "should have been handled");
}
}
}
// Shut down compiler runtime
shutdown_compiler_runtime(thread->compiler(), thread);
}
// ------------------------------------------------------------------
// CompileBroker::init_compiler_thread_log
//
// Set up state required by +LogCompilation.
void CompileBroker::init_compiler_thread_log() {
CompilerThread* thread = CompilerThread::current();
char file_name[4*K];
FILE* fp = NULL;
intx thread_id = os::current_thread_id();
for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
if (dir == NULL) {
jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
thread_id, os::current_process_id());
} else {
jio_snprintf(file_name, sizeof(file_name),
"%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
os::file_separator(), thread_id, os::current_process_id());
}
fp = fopen(file_name, "wt");
if (fp != NULL) {
if (LogCompilation && Verbose) {
tty->print_cr("Opening compilation log %s", file_name);
}
CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
if (log == NULL) {
fclose(fp);
return;
}
thread->init_log(log);
if (xtty != NULL) {
ttyLocker ttyl;
// Record any per thread log files
xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
}
return;
}
}
warning("Cannot open log file: %s", file_name);
}
void CompileBroker::log_metaspace_failure() {
const char* message = "some methods may not be compiled because metaspace "
"is out of memory";
if (_compilation_log != NULL) {
_compilation_log->log_metaspace_failure(message);
}
if (PrintCompilation) {
tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
}
}
// ------------------------------------------------------------------
// CompileBroker::set_should_block
//
// Set _should_block.
// Call this from the VM, with Threads_lock held and a safepoint requested.
void CompileBroker::set_should_block() {
assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
#ifndef PRODUCT
if (PrintCompilation && (Verbose || WizardMode))
tty->print_cr("notifying compiler thread pool to block");
#endif
_should_block = true;
}
// ------------------------------------------------------------------
// CompileBroker::maybe_block
//
// Call this from the compiler at convenient points, to poll for _should_block.
void CompileBroker::maybe_block() {
if (_should_block) {
#ifndef PRODUCT
if (PrintCompilation && (Verbose || WizardMode))
tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
#endif
ThreadInVMfromNative tivfn(JavaThread::current());
}
}
// wrapper for CodeCache::print_summary()
static void codecache_print(bool detailed)
{
ResourceMark rm;
stringStream s;
// Dump code cache into a buffer before locking the tty,
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::print_summary(&s, detailed);
}
ttyLocker ttyl;
tty->print("%s", s.as_string());
}
// wrapper for CodeCache::print_summary() using outputStream
static void codecache_print(outputStream* out, bool detailed) {
ResourceMark rm;
stringStream s;
// Dump code cache into a buffer
{
MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
CodeCache::print_summary(&s, detailed);
}
char* remaining_log = s.as_string();
while (*remaining_log != '\0') {
char* eol = strchr(remaining_log, '\n');
if (eol == NULL) {
out->print_cr("%s", remaining_log);
remaining_log = remaining_log + strlen(remaining_log);
} else {
*eol = '\0';
out->print_cr("%s", remaining_log);
remaining_log = eol + 1;
}
}
}
void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
int compilable, const char* failure_reason) {
if (success) {
task->mark_success();
if (ci_env != NULL) {
task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
}
if (_compilation_log != NULL) {
nmethod* code = task->code();
if (code != NULL) {
_compilation_log->log_nmethod(thread, code);
}
}
} else if (AbortVMOnCompilationFailure) {
if (compilable == ciEnv::MethodCompilable_not_at_tier) {
fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
}
if (compilable == ciEnv::MethodCompilable_never) {
fatal("Never compilable: %s", failure_reason);
}
}
// simulate crash during compilation
assert(task->compile_id() != CICrashAt, "just as planned");
}
static void post_compilation_event(EventCompilation& event, CompileTask* task) {
assert(task != NULL, "invariant");
CompilerEvent::CompilationEvent::post(event,
task->compile_id(),
task->compiler()->type(),
task->method(),
task->comp_level(),
task->is_success(),
task->osr_bci() != CompileBroker::standard_entry_bci,
(task->code() == NULL) ? 0 : task->code()->total_size(),
task->num_inlined_bytecodes());
}
int DirectivesStack::_depth = 0;
CompilerDirectives* DirectivesStack::_top = NULL;
CompilerDirectives* DirectivesStack::_bottom = NULL;
// ------------------------------------------------------------------
// CompileBroker::invoke_compiler_on_method
//
// Compile a method.
//
void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
task->print_ul();
if (PrintCompilation) {
ResourceMark rm;
task->print_tty();
}
elapsedTimer time;
CompilerThread* thread = CompilerThread::current();
ResourceMark rm(thread);
if (LogEvents) {
_compilation_log->log_compile(thread, task);
}
// Common flags.
uint compile_id = task->compile_id();
int osr_bci = task->osr_bci();
bool is_osr = (osr_bci != standard_entry_bci);
bool should_log = (thread->log() != NULL);
bool should_break = false;
const int task_level = task->comp_level();
AbstractCompiler* comp = task->compiler();
DirectiveSet* directive;
{
// create the handle inside it's own block so it can't
// accidentally be referenced once the thread transitions to
// native. The NoHandleMark before the transition should catch
// any cases where this occurs in the future.
methodHandle method(thread, task->method());
assert(!method->is_native(), "no longer compile natives");
// Look up matching directives
directive = DirectivesStack::getMatchingDirective(method, comp);
// Update compile information when using perfdata.
if (UsePerfData) {
update_compile_perf_data(thread, method, is_osr);
}
DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
}
should_break = directive->BreakAtCompileOption || task->check_break_at_flags();
if (should_log && !directive->LogOption) {
should_log = false;
}
// Allocate a new set of JNI handles.
push_jni_handle_block();
Method* target_handle = task->method();
int compilable = ciEnv::MethodCompilable;
const char* failure_reason = NULL;
bool failure_reason_on_C_heap = false;
const char* retry_message = NULL;
#if INCLUDE_JVMCI
if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
JVMCICompiler* jvmci = (JVMCICompiler*) comp;
TraceTime t1("compilation", &time);
EventCompilation event;
JVMCICompileState compile_state(task, jvmci);
JVMCIRuntime *runtime = NULL;
if (JVMCI::in_shutdown()) {
failure_reason = "in JVMCI shutdown";
retry_message = "not retryable";
compilable = ciEnv::MethodCompilable_never;
} else if (compile_state.target_method_is_old()) {
// Skip redefined methods
failure_reason = "redefined method";
retry_message = "not retryable";
compilable = ciEnv::MethodCompilable_never;
} else {
JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
methodHandle method(thread, target_handle);
runtime = env.runtime();
runtime->compile_method(&env, jvmci, method, osr_bci);
failure_reason = compile_state.failure_reason();
failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
if (!compile_state.retryable()) {
retry_message = "not retryable";
compilable = ciEnv::MethodCompilable_not_at_tier;
}
if (task->code() == NULL) {
assert(failure_reason != NULL, "must specify failure_reason");
}
}
post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
if (event.should_commit()) {
post_compilation_event(event, task);
}
} else
#endif // INCLUDE_JVMCI
{
NoHandleMark nhm;
ThreadToNativeFromVM ttn(thread);
ciEnv ci_env(task);
if (should_break) {
ci_env.set_break_at_compile(true);
}
if (should_log) {
ci_env.set_log(thread->log());
}
assert(thread->env() == &ci_env, "set by ci_env");
// The thread-env() field is cleared in ~CompileTaskWrapper.
// Cache Jvmti state
bool method_is_old = ci_env.cache_jvmti_state();
// Skip redefined methods
if (method_is_old) {
ci_env.record_method_not_compilable("redefined method", true);
}
// Cache DTrace flags
ci_env.cache_dtrace_flags();
ciMethod* target = ci_env.get_method_from_handle(target_handle);
TraceTime t1("compilation", &time);
EventCompilation event;
if (comp == NULL) {
ci_env.record_method_not_compilable("no compiler");
} else if (!ci_env.failing()) {
if (WhiteBoxAPI && WhiteBox::compilation_locked) {
MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
while (WhiteBox::compilation_locked) {
locker.wait();
}
}
comp->compile_method(&ci_env, target, osr_bci, true, directive);
/* Repeat compilation without installing code for profiling purposes */
int repeat_compilation_count = directive->RepeatCompilationOption;
while (repeat_compilation_count > 0) {
task->print_ul("NO CODE INSTALLED");
comp->compile_method(&ci_env, target, osr_bci, false , directive);
repeat_compilation_count--;
}
}
if (!ci_env.failing() && task->code() == NULL) {
//assert(false, "compiler should always document failure");
// The compiler elected, without comment, not to register a result.
// Do not attempt further compilations of this method.
ci_env.record_method_not_compilable("compile failed");
}
// Copy this bit to the enclosing block:
compilable = ci_env.compilable();
if (ci_env.failing()) {
failure_reason = ci_env.failure_reason();
retry_message = ci_env.retry_message();
ci_env.report_failure(failure_reason);
}
post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
if (event.should_commit()) {
post_compilation_event(event, task);
}
}
// Remove the JNI handle block after the ciEnv destructor has run in
// the previous block.
pop_jni_handle_block();
if (failure_reason != NULL) {
task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
if (_compilation_log != NULL) {
_compilation_log->log_failure(thread, task, failure_reason, retry_message);
}
if (PrintCompilation) {
FormatBufferResource msg = retry_message != NULL ?
FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
FormatBufferResource("COMPILE SKIPPED: %s", failure_reason);
task->print(tty, msg);
}
}
methodHandle method(thread, task->method());
DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
collect_statistics(thread, time, task);
nmethod* nm = task->code();
if (nm != NULL) {
nm->maybe_print_nmethod(directive);
}
DirectivesStack::release(directive);
if (PrintCompilation && PrintCompilation2) {
tty->print("%7d ", (int) tty->time_stamp().milliseconds()); // print timestamp
tty->print("%4d ", compile_id); // print compilation number
tty->print("%s ", (is_osr ? "%" : " "));
if (task->code() != NULL) {
tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
}
tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
}
Log(compilation, codecache) log;
if (log.is_debug()) {
LogStream ls(log.debug());
codecache_print(&ls, /* detailed= */ false);
}
if (PrintCodeCacheOnCompilation) {
codecache_print(/* detailed= */ false);
}
// Disable compilation, if required.
switch (compilable) {
case ciEnv::MethodCompilable_never:
if (is_osr)
method->set_not_osr_compilable_quietly("MethodCompilable_never");
else
method->set_not_compilable_quietly("MethodCompilable_never");
break;
case ciEnv::MethodCompilable_not_at_tier:
if (is_osr)
method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
else
method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
break;
}
// Note that the queued_for_compilation bits are cleared without
// protection of a mutex. [They were set by the requester thread,
// when adding the task to the compile queue -- at which time the
// compile queue lock was held. Subsequently, we acquired the compile
// queue lock to get this task off the compile queue; thus (to belabour
// the point somewhat) our clearing of the bits must be occurring
// only after the setting of the bits. See also 14012000 above.
method->clear_queued_for_compilation();
}
/**
* The CodeCache is full. Print warning and disable compilation.
* Schedule code cache cleaning so compilation can continue later.
* This function needs to be called only from CodeCache::allocate(),
* since we currently handle a full code cache uniformly.
*/
void CompileBroker::handle_full_code_cache(int code_blob_type) {
UseInterpreter = true;
if (UseCompiler || AlwaysCompileLoopMethods ) {
if (xtty != NULL) {
ResourceMark rm;
stringStream s;
// Dump code cache state into a buffer before locking the tty,
// because log_state() will use locks causing lock conflicts.
CodeCache::log_state(&s);
// Lock to prevent tearing
ttyLocker ttyl;
xtty->begin_elem("code_cache_full");
xtty->print("%s", s.as_string());
xtty->stamp();
xtty->end_elem();
}
#ifndef PRODUCT
if (ExitOnFullCodeCache) {
codecache_print(/* detailed= */ true);
before_exit(JavaThread::current());
exit_globals(); // will delete tty
vm_direct_exit(1);
}
#endif
if (UseCodeCacheFlushing) {
// Since code cache is full, immediately stop new compiles
if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
NMethodSweeper::log_sweep("disable_compiler");
}
} else {
disable_compilation_forever();
}
CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
}
}
// ------------------------------------------------------------------
// CompileBroker::update_compile_perf_data
//
// Record this compilation for debugging purposes.
void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
ResourceMark rm;
char* method_name = method->name()->as_C_string();
char current_method[CompilerCounters::cmname_buffer_length];
size_t maxLen = CompilerCounters::cmname_buffer_length;
const char* class_name = method->method_holder()->name()->as_C_string();
size_t s1len = strlen(class_name);
size_t s2len = strlen(method_name);
// check if we need to truncate the string
if (s1len + s2len + 2 > maxLen) {
// the strategy is to lop off the leading characters of the
// class name and the trailing characters of the method name.
if (s2len + 2 > maxLen) {
// lop of the entire class name string, let snprintf handle
// truncation of the method name.
class_name += s1len; // null string
}
else {
// lop off the extra characters from the front of the class name
class_name += ((s1len + s2len + 2) - maxLen);
}
}
jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
int last_compile_type = normal_compile;
if (CICountOSR && is_osr) {
last_compile_type = osr_compile;
}
CompilerCounters* counters = thread->counters();
counters->set_current_method(current_method);
counters->set_compile_type((jlong) last_compile_type);
}
// ------------------------------------------------------------------
// CompileBroker::push_jni_handle_block
//
// Push on a new block of JNI handles.
void CompileBroker::push_jni_handle_block() {
JavaThread* thread = JavaThread::current();
// Allocate a new block for JNI handles.
// Inlined code from jni_PushLocalFrame()
JNIHandleBlock* java_handles = thread->active_handles();
JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
compile_handles->set_pop_frame_link(java_handles); // make sure java handles get gc'd.
thread->set_active_handles(compile_handles);
}
// ------------------------------------------------------------------
// CompileBroker::pop_jni_handle_block
//
// Pop off the current block of JNI handles.
void CompileBroker::pop_jni_handle_block() {
JavaThread* thread = JavaThread::current();
// Release our JNI handle block
JNIHandleBlock* compile_handles = thread->active_handles();
JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
thread->set_active_handles(java_handles);
compile_handles->set_pop_frame_link(NULL);
JNIHandleBlock::release_block(compile_handles, thread); // may block
}
// ------------------------------------------------------------------
// CompileBroker::collect_statistics
//
// Collect statistics about the compilation.
void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
bool success = task->is_success();
methodHandle method (thread, task->method());
uint compile_id = task->compile_id();
bool is_osr = (task->osr_bci() != standard_entry_bci);
const int comp_level = task->comp_level();
nmethod* code = task->code();
CompilerCounters* counters = thread->counters();
assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
MutexLocker locker(CompileStatistics_lock);
// _perf variables are production performance counters which are
// updated regardless of the setting of the CITime and CITimeEach flags
//
// account all time, including bailouts and failures in this counter;
// C1 and C2 counters are counting both successful and unsuccessful compiles
_t_total_compilation.add(time);
if (!success) {
_total_bailout_count++;
if (UsePerfData) {
_perf_last_failed_method->set_value(counters->current_method());
_perf_last_failed_type->set_value(counters->compile_type());
_perf_total_bailout_count->inc();
}
_t_bailedout_compilation.add(time);
} else if (code == NULL) {
if (UsePerfData) {
_perf_last_invalidated_method->set_value(counters->current_method());
_perf_last_invalidated_type->set_value(counters->compile_type());
_perf_total_invalidated_count->inc();
}
_total_invalidated_count++;
_t_invalidated_compilation.add(time);
} else {
// Compilation succeeded
// update compilation ticks - used by the implementation of
// java.lang.management.CompilationMXBean
_perf_total_compilation->inc(time.ticks());
_peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
if (CITime) {
int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
if (is_osr) {
_t_osr_compilation.add(time);
_sum_osr_bytes_compiled += bytes_compiled;
} else {
_t_standard_compilation.add(time);
_sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
}
// Collect statistic per compilation level
if (comp_level > CompLevel_none && comp_level <= CompLevel_full_optimization) {
CompilerStatistics* stats = &_stats_per_level[comp_level-1];
if (is_osr) {
stats->_osr.update(time, bytes_compiled);
} else {
stats->_standard.update(time, bytes_compiled);
}
stats->_nmethods_size += code->total_size();
stats->_nmethods_code_size += code->insts_size();
} else {
assert(false, "CompilerStatistics object does not exist for compilation level %d", comp_level);
}
// Collect statistic per compiler
AbstractCompiler* comp = compiler(comp_level);
if (comp) {
CompilerStatistics* stats = comp->stats();
if (is_osr) {
stats->_osr.update(time, bytes_compiled);
} else {
stats->_standard.update(time, bytes_compiled);
}
stats->_nmethods_size += code->total_size();
stats->_nmethods_code_size += code->insts_size();
} else { // if (!comp)
assert(false, "Compiler object must exist");
}
}
if (UsePerfData) {
// save the name of the last method compiled
_perf_last_method->set_value(counters->current_method());
_perf_last_compile_type->set_value(counters->compile_type());
_perf_last_compile_size->set_value(method->code_size() +
task->num_inlined_bytecodes());
if (is_osr) {
_perf_osr_compilation->inc(time.ticks());
_perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
} else {
_perf_standard_compilation->inc(time.ticks());
_perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
}
}
if (CITimeEach) {
double compile_time = time.seconds();
double bytes_per_sec = compile_time == 0.0 ? 0.0 : (double)(method->code_size() + task->num_inlined_bytecodes()) / compile_time;
tty->print_cr("%3d seconds: %6.3f bytes/sec : %f (bytes %d + %d inlined)",
compile_id, compile_time, bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
}
// Collect counts of successful compilations
_sum_nmethod_size += code->total_size();
_sum_nmethod_code_size += code->insts_size();
_total_compile_count++;
if (UsePerfData) {
_perf_sum_nmethod_size->inc( code->total_size());
_perf_sum_nmethod_code_size->inc(code->insts_size());
_perf_total_compile_count->inc();
}
if (is_osr) {
if (UsePerfData) _perf_total_osr_compile_count->inc();
_total_osr_compile_count++;
} else {
if (UsePerfData) _perf_total_standard_compile_count->inc();
_total_standard_compile_count++;
}
}
// set the current method for the thread to null
if (UsePerfData) counters->set_current_method("");
}
const char* CompileBroker::compiler_name(int comp_level) {
AbstractCompiler *comp = CompileBroker::compiler(comp_level);
if (comp == NULL) {
return "no compiler";
} else {
return (comp->name());
}
}
jlong CompileBroker::total_compilation_ticks() {
return _perf_total_compilation != NULL ? _perf_total_compilation->get_value() : 0;
}
void CompileBroker::print_times(const char* name, CompilerStatistics* stats) {
tty->print_cr(" %s {speed: %6.3f bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
name, stats->bytes_per_second(),
stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
stats->_nmethods_size, stats->_nmethods_code_size);
}
void CompileBroker::print_times(bool per_compiler, bool aggregate) {
if (per_compiler) {
if (aggregate) {
tty->cr();
tty->print_cr("Individual compiler times (for compiled methods only)");
tty->print_cr("------------------------------------------------");
tty->cr();
}
for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
AbstractCompiler* comp = _compilers[i];
if (comp != NULL) {
print_times(comp->name(), comp->stats());
}
}
if (aggregate) {
tty->cr();
tty->print_cr("Individual compilation Tier times (for compiled methods only)");
tty->print_cr("------------------------------------------------");
tty->cr();
}
char tier_name[256];
for (int tier = CompLevel_simple; tier <= CompilationPolicy::highest_compile_level(); tier++) {
CompilerStatistics* stats = &_stats_per_level[tier-1];
sprintf(tier_name, "Tier%d", tier);
print_times(tier_name, stats);
}
}
if (!aggregate) {
return;
}
elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
int standard_compile_count = CompileBroker::_total_standard_compile_count;
int osr_compile_count = CompileBroker::_total_osr_compile_count;
int total_compile_count = CompileBroker::_total_compile_count;
int total_bailout_count = CompileBroker::_total_bailout_count;
int total_invalidated_count = CompileBroker::_total_invalidated_count;
int nmethods_size = CompileBroker::_sum_nmethod_code_size;
int nmethods_code_size = CompileBroker::_sum_nmethod_size;
tty->cr();
tty->print_cr("Accumulated compiler times");
tty->print_cr("----------------------------------------------------------");
//0000000000111111111122222222223333333333444444444455555555556666666666
//0123456789012345678901234567890123456789012345678901234567890123456789
tty->print_cr(" Total compilation time : %7.3f s", total_compilation.seconds());
tty->print_cr(" Standard compilation : %7.3f s, Average : %2.3f s",
standard_compilation.seconds(),
standard_compile_count == 0 ? 0.0 : standard_compilation.seconds() / standard_compile_count);
tty->print_cr(" Bailed out compilation : %7.3f s, Average : %2.3f s",
CompileBroker::_t_bailedout_compilation.seconds(),
total_bailout_count == 0 ? 0.0 : CompileBroker::_t_bailedout_compilation.seconds() / total_bailout_count);
tty->print_cr(" On stack replacement : %7.3f s, Average : %2.3f s",
osr_compilation.seconds(),
osr_compile_count == 0 ? 0.0 : osr_compilation.seconds() / osr_compile_count);
tty->print_cr(" Invalidated : %7.3f s, Average : %2.3f s",
CompileBroker::_t_invalidated_compilation.seconds(),
total_invalidated_count == 0 ? 0.0 : CompileBroker::_t_invalidated_compilation.seconds() / total_invalidated_count);
AbstractCompiler *comp = compiler(CompLevel_simple);
if (comp != NULL) {
tty->cr();
comp->print_timers();
}
comp = compiler(CompLevel_full_optimization);
if (comp != NULL) {
tty->cr();
comp->print_timers();
}
#if INCLUDE_JVMCI
if (EnableJVMCI) {
tty->cr();
JVMCICompiler::print_hosted_timers();
}
#endif
tty->cr();
tty->print_cr(" Total compiled methods : %8d methods", total_compile_count);
tty->print_cr(" Standard compilation : %8d methods", standard_compile_count);
tty->print_cr(" On stack replacement : %8d methods", osr_compile_count);
int tcb = osr_bytes_compiled + standard_bytes_compiled;
tty->print_cr(" Total compiled bytecodes : %8d bytes", tcb);
tty->print_cr(" Standard compilation : %8d bytes", standard_bytes_compiled);
tty->print_cr(" On stack replacement : %8d bytes", osr_bytes_compiled);
double tcs = total_compilation.seconds();
int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
tty->print_cr(" Average compilation speed : %8d bytes/s", bps);
tty->cr();
tty->print_cr(" nmethod code size : %8d bytes", nmethods_code_size);
tty->print_cr(" nmethod total size : %8d bytes", nmethods_size);
}
// Print general/accumulated JIT information.
void CompileBroker::print_info(outputStream *out) {
if (out == NULL) out = tty;
out->cr();
out->print_cr("======================");
out->print_cr(" General JIT info ");
out->print_cr("======================");
out->cr();
out->print_cr(" JIT is : %7s", should_compile_new_jobs() ? "on" : "off");
out->print_cr(" Compiler threads : %7d", (int)CICompilerCount);
out->cr();
out->print_cr("CodeCache overview");
out->print_cr("--------------------------------------------------------");
out->cr();
out->print_cr(" Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
out->print_cr(" Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
out->print_cr(" Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
out->cr();
out->cr();
out->print_cr("CodeCache cleaning overview");
out->print_cr("--------------------------------------------------------");
out->cr();
NMethodSweeper::print(out);
out->print_cr("--------------------------------------------------------");
out->cr();
}
// Note: tty_lock must not be held upon entry to this function.
// Print functions called from herein do "micro-locking" on tty_lock.
// That's a tradeoff which keeps together important blocks of output.
// At the same time, continuous tty_lock hold time is kept in check,
// preventing concurrently printing threads from stalling a long time.
void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
TimeStamp ts_total;
TimeStamp ts_global;
TimeStamp ts;
bool allFun = !strcmp(function, "all");
bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
bool methodCount = !strcmp(function, "MethodCount") || allFun;
bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
bool methodAge = !strcmp(function, "MethodAge") || allFun;
bool methodNames = !strcmp(function, "MethodNames") || allFun;
bool discard = !strcmp(function, "discard") || allFun;
if (out == NULL) {
out = tty;
}
if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
out->cr();
return;
}
ts_total.update(); // record starting point
if (aggregate) {
print_info(out);
}
// We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
// That prevents other threads from destroying (making inconsistent) our view on the CodeHeap.
// When we request individual parts of the analysis via the jcmd interface, it is possible
// that in between another thread (another jcmd user or the vm running into CodeCache OOM)
// updated the aggregated data. We will then see a modified, but again consistent, view
// on the CodeHeap. That's a tolerable tradeoff we have to accept because we can't hold
// a lock across user interaction.
// We should definitely acquire this lock before acquiring Compile_lock and CodeCache_lock.
// CodeHeapStateAnalytics_lock may be held by a concurrent thread for a long time,
// leading to an unnecessarily long hold time of the other locks we acquired before.
ts.update(); // record starting point
MutexLocker mu0(CodeHeapStateAnalytics_lock, Mutex::_safepoint_check_flag);
out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
// Holding the CodeCache_lock protects from concurrent alterations of the CodeCache.
// Unfortunately, such protection is not sufficient:
// When a new nmethod is created via ciEnv::register_method(), the
// Compile_lock is taken first. After some initializations,
// nmethod::new_nmethod() takes over, grabbing the CodeCache_lock
// immediately (after finalizing the oop references). To lock out concurrent
// modifiers, we have to grab both locks as well in the described sequence.
//
// If we serve an "allFun" call, it is beneficial to hold CodeCache_lock and Compile_lock
// for the entire duration of aggregation and printing. That makes sure we see
// a consistent picture and do not run into issues caused by concurrent alterations.
bool should_take_Compile_lock = !SafepointSynchronize::is_at_safepoint() &&
!Compile_lock->owned_by_self();
bool should_take_CodeCache_lock = !SafepointSynchronize::is_at_safepoint() &&
!CodeCache_lock->owned_by_self();
Mutex* global_lock_1 = allFun ? (should_take_Compile_lock ? Compile_lock : NULL) : NULL;
Monitor* global_lock_2 = allFun ? (should_take_CodeCache_lock ? CodeCache_lock : NULL) : NULL;
Mutex* function_lock_1 = allFun ? NULL : (should_take_Compile_lock ? Compile_lock : NULL);
Monitor* function_lock_2 = allFun ? NULL : (should_take_CodeCache_lock ? CodeCache_lock : NULL);
ts_global.update(); // record starting point
MutexLocker mu1(global_lock_1, Mutex::_safepoint_check_flag);
MutexLocker mu2(global_lock_2, Mutex::_no_safepoint_check_flag);
if ((global_lock_1 != NULL) || (global_lock_2 != NULL)) {
out->print_cr("\n__ Compile & CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
ts_global.update(); // record starting point
}
if (aggregate) {
ts.update(); // record starting point
MutexLocker mu11(function_lock_1, Mutex::_safepoint_check_flag);
MutexLocker mu22(function_lock_2, Mutex::_no_safepoint_check_flag);
if ((function_lock_1 != NULL) || (function_lock_1 != NULL)) {
out->print_cr("\n__ Compile & CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
}
ts.update(); // record starting point
CodeCache::aggregate(out, granularity);
if ((function_lock_1 != NULL) || (function_lock_1 != NULL)) {
out->print_cr("\n__ Compile & CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
}
}
if (usedSpace) CodeCache::print_usedSpace(out);
if (freeSpace) CodeCache::print_freeSpace(out);
if (methodCount) CodeCache::print_count(out);
if (methodSpace) CodeCache::print_space(out);
if (methodAge) CodeCache::print_age(out);
if (methodNames) {
if (allFun) {
// print_names() can only be used safely if the locks have been continuously held
// since aggregation begin. That is true only for function "all".
CodeCache::print_names(out);
} else {
out->print_cr("\nCodeHeapStateAnalytics: Function 'MethodNames' is only available as part of function 'all'");
}
}
if (discard) CodeCache::discard(out);
if ((global_lock_1 != NULL) || (global_lock_2 != NULL)) {
out->print_cr("\n__ Compile & CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
}
out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
}