ad9c86bc97
Aligning code heap sizes to large page size if supported. Reviewed-by: kvn, anoll
1432 lines
46 KiB
C++
1432 lines
46 KiB
C++
/*
|
|
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "code/codeBlob.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/compiledIC.hpp"
|
|
#include "code/dependencies.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/nmethod.hpp"
|
|
#include "code/pcDesc.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "gc_implementation/shared/markSweep.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/gcLocker.hpp"
|
|
#include "memory/iterator.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/method.hpp"
|
|
#include "oops/objArrayOop.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/arguments.hpp"
|
|
#include "runtime/icache.hpp"
|
|
#include "runtime/java.hpp"
|
|
#include "runtime/mutexLocker.hpp"
|
|
#include "runtime/sweeper.hpp"
|
|
#include "runtime/compilationPolicy.hpp"
|
|
#include "services/memoryService.hpp"
|
|
#include "trace/tracing.hpp"
|
|
#include "utilities/xmlstream.hpp"
|
|
#ifdef COMPILER1
|
|
#include "c1/c1_Compilation.hpp"
|
|
#include "c1/c1_Compiler.hpp"
|
|
#endif
|
|
#ifdef COMPILER2
|
|
#include "opto/c2compiler.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/node.hpp"
|
|
#endif
|
|
|
|
// Helper class for printing in CodeCache
|
|
class CodeBlob_sizes {
|
|
private:
|
|
int count;
|
|
int total_size;
|
|
int header_size;
|
|
int code_size;
|
|
int stub_size;
|
|
int relocation_size;
|
|
int scopes_oop_size;
|
|
int scopes_metadata_size;
|
|
int scopes_data_size;
|
|
int scopes_pcs_size;
|
|
|
|
public:
|
|
CodeBlob_sizes() {
|
|
count = 0;
|
|
total_size = 0;
|
|
header_size = 0;
|
|
code_size = 0;
|
|
stub_size = 0;
|
|
relocation_size = 0;
|
|
scopes_oop_size = 0;
|
|
scopes_metadata_size = 0;
|
|
scopes_data_size = 0;
|
|
scopes_pcs_size = 0;
|
|
}
|
|
|
|
int total() { return total_size; }
|
|
bool is_empty() { return count == 0; }
|
|
|
|
void print(const char* title) {
|
|
tty->print_cr(" #%d %s = %dK (hdr %d%%, loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
|
|
count,
|
|
title,
|
|
(int)(total() / K),
|
|
header_size * 100 / total_size,
|
|
relocation_size * 100 / total_size,
|
|
code_size * 100 / total_size,
|
|
stub_size * 100 / total_size,
|
|
scopes_oop_size * 100 / total_size,
|
|
scopes_metadata_size * 100 / total_size,
|
|
scopes_data_size * 100 / total_size,
|
|
scopes_pcs_size * 100 / total_size);
|
|
}
|
|
|
|
void add(CodeBlob* cb) {
|
|
count++;
|
|
total_size += cb->size();
|
|
header_size += cb->header_size();
|
|
relocation_size += cb->relocation_size();
|
|
if (cb->is_nmethod()) {
|
|
nmethod* nm = cb->as_nmethod_or_null();
|
|
code_size += nm->insts_size();
|
|
stub_size += nm->stub_size();
|
|
|
|
scopes_oop_size += nm->oops_size();
|
|
scopes_metadata_size += nm->metadata_size();
|
|
scopes_data_size += nm->scopes_data_size();
|
|
scopes_pcs_size += nm->scopes_pcs_size();
|
|
} else {
|
|
code_size += cb->code_size();
|
|
}
|
|
}
|
|
};
|
|
|
|
// Iterate over all CodeHeaps
|
|
#define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
|
|
// Iterate over all CodeBlobs (cb) on the given CodeHeap
|
|
#define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
|
|
|
|
address CodeCache::_low_bound = 0;
|
|
address CodeCache::_high_bound = 0;
|
|
int CodeCache::_number_of_blobs = 0;
|
|
int CodeCache::_number_of_adapters = 0;
|
|
int CodeCache::_number_of_nmethods = 0;
|
|
int CodeCache::_number_of_nmethods_with_dependencies = 0;
|
|
bool CodeCache::_needs_cache_clean = false;
|
|
nmethod* CodeCache::_scavenge_root_nmethods = NULL;
|
|
int CodeCache::_codemem_full_count = 0;
|
|
|
|
// Initialize array of CodeHeaps
|
|
GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
|
|
|
|
void CodeCache::initialize_heaps() {
|
|
// Determine size of compiler buffers
|
|
size_t code_buffers_size = 0;
|
|
#ifdef COMPILER1
|
|
// C1 temporary code buffers (see Compiler::init_buffer_blob())
|
|
const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
|
|
code_buffers_size += c1_count * Compiler::code_buffer_size();
|
|
#endif
|
|
#ifdef COMPILER2
|
|
// C2 scratch buffers (see Compile::init_scratch_buffer_blob())
|
|
const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
|
|
// Initial size of constant table (this may be increased if a compiled method needs more space)
|
|
code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
|
|
#endif
|
|
|
|
// Calculate default CodeHeap sizes if not set by user
|
|
if (!FLAG_IS_CMDLINE(NonNMethodCodeHeapSize) && !FLAG_IS_CMDLINE(ProfiledCodeHeapSize)
|
|
&& !FLAG_IS_CMDLINE(NonProfiledCodeHeapSize)) {
|
|
// Increase default NonNMethodCodeHeapSize to account for compiler buffers
|
|
FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, NonNMethodCodeHeapSize + code_buffers_size);
|
|
|
|
// Check if we have enough space for the non-nmethod code heap
|
|
if (ReservedCodeCacheSize > NonNMethodCodeHeapSize) {
|
|
// Use the default value for NonNMethodCodeHeapSize and one half of the
|
|
// remaining size for non-profiled methods and one half for profiled methods
|
|
size_t remaining_size = ReservedCodeCacheSize - NonNMethodCodeHeapSize;
|
|
size_t profiled_size = remaining_size / 2;
|
|
size_t non_profiled_size = remaining_size - profiled_size;
|
|
FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
|
|
FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
|
|
} else {
|
|
// Use all space for the non-nmethod heap and set other heaps to minimal size
|
|
FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, ReservedCodeCacheSize - os::vm_page_size() * 2);
|
|
FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, os::vm_page_size());
|
|
FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, os::vm_page_size());
|
|
}
|
|
}
|
|
|
|
// We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
|
|
if(!heap_available(CodeBlobType::MethodProfiled)) {
|
|
FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, NonProfiledCodeHeapSize + ProfiledCodeHeapSize);
|
|
FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
|
|
}
|
|
// We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
|
|
if(!heap_available(CodeBlobType::MethodNonProfiled)) {
|
|
FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, NonNMethodCodeHeapSize + NonProfiledCodeHeapSize);
|
|
FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
|
|
}
|
|
|
|
// Make sure we have enough space for VM internal code
|
|
uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
|
|
if (NonNMethodCodeHeapSize < (min_code_cache_size + code_buffers_size)) {
|
|
vm_exit_during_initialization("Not enough space in non-nmethod code heap to run VM.");
|
|
}
|
|
guarantee(NonProfiledCodeHeapSize + ProfiledCodeHeapSize + NonNMethodCodeHeapSize <= ReservedCodeCacheSize, "Size check");
|
|
|
|
// Align CodeHeaps
|
|
size_t alignment = heap_alignment();
|
|
size_t non_method_size = align_size_up(NonNMethodCodeHeapSize, alignment);
|
|
size_t profiled_size = align_size_down(ProfiledCodeHeapSize, alignment);
|
|
|
|
// Reserve one continuous chunk of memory for CodeHeaps and split it into
|
|
// parts for the individual heaps. The memory layout looks like this:
|
|
// ---------- high -----------
|
|
// Non-profiled nmethods
|
|
// Profiled nmethods
|
|
// Non-nmethods
|
|
// ---------- low ------------
|
|
ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
|
|
ReservedSpace non_method_space = rs.first_part(non_method_size);
|
|
ReservedSpace rest = rs.last_part(non_method_size);
|
|
ReservedSpace profiled_space = rest.first_part(profiled_size);
|
|
ReservedSpace non_profiled_space = rest.last_part(profiled_size);
|
|
|
|
// Non-nmethods (stubs, adapters, ...)
|
|
add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
|
|
// Tier 2 and tier 3 (profiled) methods
|
|
add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
|
|
// Tier 1 and tier 4 (non-profiled) methods and native methods
|
|
add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
|
|
}
|
|
|
|
size_t CodeCache::heap_alignment() {
|
|
// If large page support is enabled, align code heaps according to large
|
|
// page size to make sure that code cache is covered by large pages.
|
|
const size_t page_size = os::can_execute_large_page_memory() ?
|
|
os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8) :
|
|
os::vm_page_size();
|
|
return MAX2(page_size, (size_t) os::vm_allocation_granularity());
|
|
}
|
|
|
|
ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
|
|
// Determine alignment
|
|
const size_t page_size = os::can_execute_large_page_memory() ?
|
|
MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
|
|
os::page_size_for_region_aligned(size, 8)) :
|
|
os::vm_page_size();
|
|
const size_t granularity = os::vm_allocation_granularity();
|
|
const size_t r_align = MAX2(page_size, granularity);
|
|
const size_t r_size = align_size_up(size, r_align);
|
|
const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
|
|
MAX2(page_size, granularity);
|
|
|
|
ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
|
|
|
|
// Initialize bounds
|
|
_low_bound = (address)rs.base();
|
|
_high_bound = _low_bound + rs.size();
|
|
|
|
return rs;
|
|
}
|
|
|
|
bool CodeCache::heap_available(int code_blob_type) {
|
|
if (!SegmentedCodeCache) {
|
|
// No segmentation: use a single code heap
|
|
return (code_blob_type == CodeBlobType::All);
|
|
} else if (Arguments::mode() == Arguments::_int) {
|
|
// Interpreter only: we don't need any method code heaps
|
|
return (code_blob_type == CodeBlobType::NonNMethod);
|
|
} else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
|
|
// Tiered compilation: use all code heaps
|
|
return (code_blob_type < CodeBlobType::All);
|
|
} else {
|
|
// No TieredCompilation: we only need the non-nmethod and non-profiled code heap
|
|
return (code_blob_type == CodeBlobType::NonNMethod) ||
|
|
(code_blob_type == CodeBlobType::MethodNonProfiled);
|
|
}
|
|
}
|
|
|
|
const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
|
|
switch(code_blob_type) {
|
|
case CodeBlobType::NonNMethod:
|
|
return "NonNMethodCodeHeapSize";
|
|
break;
|
|
case CodeBlobType::MethodNonProfiled:
|
|
return "NonProfiledCodeHeapSize";
|
|
break;
|
|
case CodeBlobType::MethodProfiled:
|
|
return "ProfiledCodeHeapSize";
|
|
break;
|
|
}
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
|
|
// Check if heap is needed
|
|
if (!heap_available(code_blob_type)) {
|
|
return;
|
|
}
|
|
|
|
// Create CodeHeap
|
|
CodeHeap* heap = new CodeHeap(name, code_blob_type);
|
|
_heaps->append(heap);
|
|
|
|
// Reserve Space
|
|
size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
|
|
size_initial = round_to(size_initial, os::vm_page_size());
|
|
if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
|
|
vm_exit_during_initialization("Could not reserve enough space for code cache");
|
|
}
|
|
|
|
// Register the CodeHeap
|
|
MemoryService::add_code_heap_memory_pool(heap, name);
|
|
}
|
|
|
|
CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
|
|
assert(cb != NULL, "CodeBlob is null");
|
|
FOR_ALL_HEAPS(heap) {
|
|
if ((*heap)->contains(cb)) {
|
|
return *heap;
|
|
}
|
|
}
|
|
ShouldNotReachHere();
|
|
return NULL;
|
|
}
|
|
|
|
CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
|
|
FOR_ALL_HEAPS(heap) {
|
|
if ((*heap)->accepts(code_blob_type)) {
|
|
return *heap;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
assert(heap != NULL, "heap is null");
|
|
return (CodeBlob*)heap->first();
|
|
}
|
|
|
|
CodeBlob* CodeCache::first_blob(int code_blob_type) {
|
|
if (heap_available(code_blob_type)) {
|
|
return first_blob(get_code_heap(code_blob_type));
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
assert(heap != NULL, "heap is null");
|
|
return (CodeBlob*)heap->next(cb);
|
|
}
|
|
|
|
CodeBlob* CodeCache::next_blob(CodeBlob* cb) {
|
|
return next_blob(get_code_heap(cb), cb);
|
|
}
|
|
|
|
/**
|
|
* Do not seize the CodeCache lock here--if the caller has not
|
|
* already done so, we are going to lose bigtime, since the code
|
|
* cache will contain a garbage CodeBlob until the caller can
|
|
* run the constructor for the CodeBlob subclass he is busy
|
|
* instantiating.
|
|
*/
|
|
CodeBlob* CodeCache::allocate(int size, int code_blob_type) {
|
|
// Possibly wakes up the sweeper thread.
|
|
NMethodSweeper::notify(code_blob_type);
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
assert(size > 0, err_msg_res("Code cache allocation request must be > 0 but is %d", size));
|
|
if (size <= 0) {
|
|
return NULL;
|
|
}
|
|
CodeBlob* cb = NULL;
|
|
|
|
// Get CodeHeap for the given CodeBlobType
|
|
CodeHeap* heap = get_code_heap(code_blob_type);
|
|
assert(heap != NULL, "heap is null");
|
|
|
|
while (true) {
|
|
cb = (CodeBlob*)heap->allocate(size);
|
|
if (cb != NULL) break;
|
|
if (!heap->expand_by(CodeCacheExpansionSize)) {
|
|
// Expansion failed
|
|
if (SegmentedCodeCache && (code_blob_type == CodeBlobType::NonNMethod)) {
|
|
// Fallback solution: Store non-nmethod code in the non-profiled code heap.
|
|
// Note that at in the sweeper, we check the reverse_free_ratio of the non-profiled
|
|
// code heap and force stack scanning if less than 10% if the code heap are free.
|
|
return allocate(size, CodeBlobType::MethodNonProfiled);
|
|
}
|
|
MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
CompileBroker::handle_full_code_cache(code_blob_type);
|
|
return NULL;
|
|
}
|
|
if (PrintCodeCacheExtension) {
|
|
ResourceMark rm;
|
|
if (SegmentedCodeCache) {
|
|
tty->print("%s", heap->name());
|
|
} else {
|
|
tty->print("CodeCache");
|
|
}
|
|
tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
|
|
(intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
|
|
(address)heap->high() - (address)heap->low_boundary());
|
|
}
|
|
}
|
|
print_trace("allocation", cb, size);
|
|
_number_of_blobs++;
|
|
return cb;
|
|
}
|
|
|
|
void CodeCache::free(CodeBlob* cb) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
|
|
print_trace("free", cb);
|
|
if (cb->is_nmethod()) {
|
|
_number_of_nmethods--;
|
|
if (((nmethod *)cb)->has_dependencies()) {
|
|
_number_of_nmethods_with_dependencies--;
|
|
}
|
|
}
|
|
if (cb->is_adapter_blob()) {
|
|
_number_of_adapters--;
|
|
}
|
|
_number_of_blobs--;
|
|
|
|
// Get heap for given CodeBlob and deallocate
|
|
get_code_heap(cb)->deallocate(cb);
|
|
|
|
assert(_number_of_blobs >= 0, "sanity check");
|
|
}
|
|
|
|
void CodeCache::commit(CodeBlob* cb) {
|
|
// this is called by nmethod::nmethod, which must already own CodeCache_lock
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
if (cb->is_nmethod()) {
|
|
_number_of_nmethods++;
|
|
if (((nmethod *)cb)->has_dependencies()) {
|
|
_number_of_nmethods_with_dependencies++;
|
|
}
|
|
}
|
|
if (cb->is_adapter_blob()) {
|
|
_number_of_adapters++;
|
|
}
|
|
|
|
// flush the hardware I-cache
|
|
ICache::invalidate_range(cb->content_begin(), cb->content_size());
|
|
}
|
|
|
|
bool CodeCache::contains(void *p) {
|
|
// It should be ok to call contains without holding a lock
|
|
FOR_ALL_HEAPS(heap) {
|
|
if ((*heap)->contains(p)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
|
|
// looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
|
|
// valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
|
|
CodeBlob* CodeCache::find_blob(void* start) {
|
|
CodeBlob* result = find_blob_unsafe(start);
|
|
// We could potentially look up non_entrant methods
|
|
guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || is_error_reported(), "unsafe access to zombie method");
|
|
return result;
|
|
}
|
|
|
|
// Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
|
|
// what you are doing)
|
|
CodeBlob* CodeCache::find_blob_unsafe(void* start) {
|
|
// NMT can walk the stack before code cache is created
|
|
if (_heaps == NULL || _heaps->is_empty()) return NULL;
|
|
|
|
FOR_ALL_HEAPS(heap) {
|
|
CodeBlob* result = (CodeBlob*) (*heap)->find_start(start);
|
|
if (result != NULL && result->blob_contains((address)start)) {
|
|
return result;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
nmethod* CodeCache::find_nmethod(void* start) {
|
|
CodeBlob* cb = find_blob(start);
|
|
assert(cb->is_nmethod(), "did not find an nmethod");
|
|
return (nmethod*)cb;
|
|
}
|
|
|
|
void CodeCache::blobs_do(void f(CodeBlob* nm)) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
FOR_ALL_HEAPS(heap) {
|
|
FOR_ALL_BLOBS(cb, *heap) {
|
|
f(cb);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeCache::nmethods_do(void f(nmethod* nm)) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
NMethodIterator iter;
|
|
while(iter.next()) {
|
|
f(iter.method());
|
|
}
|
|
}
|
|
|
|
void CodeCache::alive_nmethods_do(void f(nmethod* nm)) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
f(iter.method());
|
|
}
|
|
}
|
|
|
|
int CodeCache::alignment_unit() {
|
|
return (int)_heaps->first()->alignment_unit();
|
|
}
|
|
|
|
int CodeCache::alignment_offset() {
|
|
return (int)_heaps->first()->alignment_offset();
|
|
}
|
|
|
|
// Mark nmethods for unloading if they contain otherwise unreachable oops.
|
|
void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
iter.method()->do_unloading(is_alive, unloading_occurred);
|
|
}
|
|
}
|
|
|
|
void CodeCache::blobs_do(CodeBlobClosure* f) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
FOR_ALL_HEAPS(heap) {
|
|
FOR_ALL_BLOBS(cb, *heap) {
|
|
if (cb->is_alive()) {
|
|
f->do_code_blob(cb);
|
|
|
|
#ifdef ASSERT
|
|
if (cb->is_nmethod())
|
|
((nmethod*)cb)->verify_scavenge_root_oops();
|
|
#endif //ASSERT
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Walk the list of methods which might contain non-perm oops.
|
|
void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
|
|
if (UseG1GC) {
|
|
return;
|
|
}
|
|
|
|
debug_only(mark_scavenge_root_nmethods());
|
|
|
|
for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
|
|
debug_only(cur->clear_scavenge_root_marked());
|
|
assert(cur->scavenge_root_not_marked(), "");
|
|
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
|
|
|
|
bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
|
|
#ifndef PRODUCT
|
|
if (TraceScavenge) {
|
|
cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
|
|
}
|
|
#endif //PRODUCT
|
|
if (is_live) {
|
|
// Perform cur->oops_do(f), maybe just once per nmethod.
|
|
f->do_code_blob(cur);
|
|
}
|
|
}
|
|
|
|
// Check for stray marks.
|
|
debug_only(verify_perm_nmethods(NULL));
|
|
}
|
|
|
|
void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
|
|
if (UseG1GC) {
|
|
return;
|
|
}
|
|
|
|
nm->set_on_scavenge_root_list();
|
|
nm->set_scavenge_root_link(_scavenge_root_nmethods);
|
|
set_scavenge_root_nmethods(nm);
|
|
print_trace("add_scavenge_root", nm);
|
|
}
|
|
|
|
void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
|
|
if (UseG1GC) {
|
|
return;
|
|
}
|
|
|
|
print_trace("drop_scavenge_root", nm);
|
|
nmethod* last = NULL;
|
|
nmethod* cur = scavenge_root_nmethods();
|
|
while (cur != NULL) {
|
|
nmethod* next = cur->scavenge_root_link();
|
|
if (cur == nm) {
|
|
if (last != NULL)
|
|
last->set_scavenge_root_link(next);
|
|
else set_scavenge_root_nmethods(next);
|
|
nm->set_scavenge_root_link(NULL);
|
|
nm->clear_on_scavenge_root_list();
|
|
return;
|
|
}
|
|
last = cur;
|
|
cur = next;
|
|
}
|
|
assert(false, "should have been on list");
|
|
}
|
|
|
|
void CodeCache::prune_scavenge_root_nmethods() {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
|
|
if (UseG1GC) {
|
|
return;
|
|
}
|
|
|
|
debug_only(mark_scavenge_root_nmethods());
|
|
|
|
nmethod* last = NULL;
|
|
nmethod* cur = scavenge_root_nmethods();
|
|
while (cur != NULL) {
|
|
nmethod* next = cur->scavenge_root_link();
|
|
debug_only(cur->clear_scavenge_root_marked());
|
|
assert(cur->scavenge_root_not_marked(), "");
|
|
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
|
|
|
|
if (!cur->is_zombie() && !cur->is_unloaded()
|
|
&& cur->detect_scavenge_root_oops()) {
|
|
// Keep it. Advance 'last' to prevent deletion.
|
|
last = cur;
|
|
} else {
|
|
// Prune it from the list, so we don't have to look at it any more.
|
|
print_trace("prune_scavenge_root", cur);
|
|
cur->set_scavenge_root_link(NULL);
|
|
cur->clear_on_scavenge_root_list();
|
|
if (last != NULL)
|
|
last->set_scavenge_root_link(next);
|
|
else set_scavenge_root_nmethods(next);
|
|
}
|
|
cur = next;
|
|
}
|
|
|
|
// Check for stray marks.
|
|
debug_only(verify_perm_nmethods(NULL));
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
|
|
if (UseG1GC) {
|
|
return;
|
|
}
|
|
|
|
// While we are here, verify the integrity of the list.
|
|
mark_scavenge_root_nmethods();
|
|
for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
|
|
assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
|
|
cur->clear_scavenge_root_marked();
|
|
}
|
|
verify_perm_nmethods(f);
|
|
}
|
|
|
|
// Temporarily mark nmethods that are claimed to be on the non-perm list.
|
|
void CodeCache::mark_scavenge_root_nmethods() {
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
assert(nm->scavenge_root_not_marked(), "clean state");
|
|
if (nm->on_scavenge_root_list())
|
|
nm->set_scavenge_root_marked();
|
|
}
|
|
}
|
|
|
|
// If the closure is given, run it on the unlisted nmethods.
|
|
// Also make sure that the effects of mark_scavenge_root_nmethods is gone.
|
|
void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
bool call_f = (f_or_null != NULL);
|
|
assert(nm->scavenge_root_not_marked(), "must be already processed");
|
|
if (nm->on_scavenge_root_list())
|
|
call_f = false; // don't show this one to the client
|
|
nm->verify_scavenge_root_oops();
|
|
if (call_f) f_or_null->do_code_blob(nm);
|
|
}
|
|
}
|
|
#endif //PRODUCT
|
|
|
|
void CodeCache::verify_clean_inline_caches() {
|
|
#ifdef ASSERT
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
assert(!nm->is_unloaded(), "Tautology");
|
|
nm->verify_clean_inline_caches();
|
|
nm->verify();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void CodeCache::verify_icholder_relocations() {
|
|
#ifdef ASSERT
|
|
// make sure that we aren't leaking icholders
|
|
int count = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
FOR_ALL_BLOBS(cb, *heap) {
|
|
if (cb->is_nmethod()) {
|
|
nmethod* nm = (nmethod*)cb;
|
|
count += nm->verify_icholder_relocations();
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
|
|
CompiledICHolder::live_count(), "must agree");
|
|
#endif
|
|
}
|
|
|
|
void CodeCache::gc_prologue() {
|
|
}
|
|
|
|
void CodeCache::gc_epilogue() {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
assert(!nm->is_unloaded(), "Tautology");
|
|
if (needs_cache_clean()) {
|
|
nm->cleanup_inline_caches();
|
|
}
|
|
DEBUG_ONLY(nm->verify());
|
|
DEBUG_ONLY(nm->verify_oop_relocations());
|
|
}
|
|
set_needs_cache_clean(false);
|
|
prune_scavenge_root_nmethods();
|
|
|
|
verify_icholder_relocations();
|
|
}
|
|
|
|
void CodeCache::verify_oops() {
|
|
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
VerifyOopClosure voc;
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
nm->oops_do(&voc);
|
|
nm->verify_oop_relocations();
|
|
}
|
|
}
|
|
|
|
size_t CodeCache::capacity() {
|
|
size_t cap = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
cap += (*heap)->capacity();
|
|
}
|
|
return cap;
|
|
}
|
|
|
|
size_t CodeCache::unallocated_capacity(int code_blob_type) {
|
|
CodeHeap* heap = get_code_heap(code_blob_type);
|
|
return (heap != NULL) ? heap->unallocated_capacity() : 0;
|
|
}
|
|
|
|
size_t CodeCache::unallocated_capacity() {
|
|
size_t unallocated_cap = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
unallocated_cap += (*heap)->unallocated_capacity();
|
|
}
|
|
return unallocated_cap;
|
|
}
|
|
|
|
size_t CodeCache::max_capacity() {
|
|
size_t max_cap = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
max_cap += (*heap)->max_capacity();
|
|
}
|
|
return max_cap;
|
|
}
|
|
|
|
/**
|
|
* Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
|
|
* is free, reverse_free_ratio() returns 4.
|
|
*/
|
|
double CodeCache::reverse_free_ratio(int code_blob_type) {
|
|
CodeHeap* heap = get_code_heap(code_blob_type);
|
|
if (heap == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
|
|
double max_capacity = (double)heap->max_capacity();
|
|
double result = max_capacity / unallocated_capacity;
|
|
assert (max_capacity >= unallocated_capacity, "Must be");
|
|
assert (result >= 1.0, err_msg_res("reverse_free_ratio must be at least 1. It is %f", result));
|
|
return result;
|
|
}
|
|
|
|
size_t CodeCache::bytes_allocated_in_freelists() {
|
|
size_t allocated_bytes = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
allocated_bytes += (*heap)->allocated_in_freelist();
|
|
}
|
|
return allocated_bytes;
|
|
}
|
|
|
|
int CodeCache::allocated_segments() {
|
|
int number_of_segments = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
number_of_segments += (*heap)->allocated_segments();
|
|
}
|
|
return number_of_segments;
|
|
}
|
|
|
|
size_t CodeCache::freelists_length() {
|
|
size_t length = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
length += (*heap)->freelist_length();
|
|
}
|
|
return length;
|
|
}
|
|
|
|
void icache_init();
|
|
|
|
void CodeCache::initialize() {
|
|
assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
|
|
#ifdef COMPILER2
|
|
assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment, "CodeCacheSegmentSize must be large enough to align inner loops");
|
|
#endif
|
|
assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants");
|
|
// This was originally just a check of the alignment, causing failure, instead, round
|
|
// the code cache to the page size. In particular, Solaris is moving to a larger
|
|
// default page size.
|
|
CodeCacheExpansionSize = round_to(CodeCacheExpansionSize, os::vm_page_size());
|
|
|
|
if (SegmentedCodeCache) {
|
|
// Use multiple code heaps
|
|
initialize_heaps();
|
|
} else {
|
|
// Use a single code heap
|
|
ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
|
|
add_heap(rs, "CodeCache", CodeBlobType::All);
|
|
}
|
|
|
|
// Initialize ICache flush mechanism
|
|
// This service is needed for os::register_code_area
|
|
icache_init();
|
|
|
|
// Give OS a chance to register generated code area.
|
|
// This is used on Windows 64 bit platforms to register
|
|
// Structured Exception Handlers for our generated code.
|
|
os::register_code_area((char*)low_bound(), (char*)high_bound());
|
|
}
|
|
|
|
void codeCache_init() {
|
|
CodeCache::initialize();
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
|
|
int CodeCache::number_of_nmethods_with_dependencies() {
|
|
return _number_of_nmethods_with_dependencies;
|
|
}
|
|
|
|
void CodeCache::clear_inline_caches() {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
iter.method()->clear_inline_caches();
|
|
}
|
|
}
|
|
|
|
// Keeps track of time spent for checking dependencies
|
|
NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
|
|
|
|
int CodeCache::mark_for_deoptimization(DepChange& changes) {
|
|
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
int number_of_marked_CodeBlobs = 0;
|
|
|
|
// search the hierarchy looking for nmethods which are affected by the loading of this class
|
|
|
|
// then search the interfaces this class implements looking for nmethods
|
|
// which might be dependent of the fact that an interface only had one
|
|
// implementor.
|
|
// nmethod::check_all_dependencies works only correctly, if no safepoint
|
|
// can happen
|
|
No_Safepoint_Verifier nsv;
|
|
for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
|
|
Klass* d = str.klass();
|
|
number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (VerifyDependencies) {
|
|
// Object pointers are used as unique identifiers for dependency arguments. This
|
|
// is only possible if no safepoint, i.e., GC occurs during the verification code.
|
|
dependentCheckTime.start();
|
|
nmethod::check_all_dependencies(changes);
|
|
dependentCheckTime.stop();
|
|
}
|
|
#endif
|
|
|
|
return number_of_marked_CodeBlobs;
|
|
}
|
|
|
|
|
|
#ifdef HOTSWAP
|
|
int CodeCache::mark_for_evol_deoptimization(instanceKlassHandle dependee) {
|
|
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
int number_of_marked_CodeBlobs = 0;
|
|
|
|
// Deoptimize all methods of the evolving class itself
|
|
Array<Method*>* old_methods = dependee->methods();
|
|
for (int i = 0; i < old_methods->length(); i++) {
|
|
ResourceMark rm;
|
|
Method* old_method = old_methods->at(i);
|
|
nmethod *nm = old_method->code();
|
|
if (nm != NULL) {
|
|
nm->mark_for_deoptimization();
|
|
number_of_marked_CodeBlobs++;
|
|
}
|
|
}
|
|
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
if (nm->is_marked_for_deoptimization()) {
|
|
// ...Already marked in the previous pass; don't count it again.
|
|
} else if (nm->is_evol_dependent_on(dependee())) {
|
|
ResourceMark rm;
|
|
nm->mark_for_deoptimization();
|
|
number_of_marked_CodeBlobs++;
|
|
} else {
|
|
// flush caches in case they refer to a redefined Method*
|
|
nm->clear_inline_caches();
|
|
}
|
|
}
|
|
|
|
return number_of_marked_CodeBlobs;
|
|
}
|
|
#endif // HOTSWAP
|
|
|
|
|
|
// Deoptimize all methods
|
|
void CodeCache::mark_all_nmethods_for_deoptimization() {
|
|
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
if (!nm->method()->is_method_handle_intrinsic()) {
|
|
nm->mark_for_deoptimization();
|
|
}
|
|
}
|
|
}
|
|
|
|
int CodeCache::mark_for_deoptimization(Method* dependee) {
|
|
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
int number_of_marked_CodeBlobs = 0;
|
|
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
if (nm->is_dependent_on_method(dependee)) {
|
|
ResourceMark rm;
|
|
nm->mark_for_deoptimization();
|
|
number_of_marked_CodeBlobs++;
|
|
}
|
|
}
|
|
|
|
return number_of_marked_CodeBlobs;
|
|
}
|
|
|
|
void CodeCache::make_marked_nmethods_zombies() {
|
|
assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
if (nm->is_marked_for_deoptimization()) {
|
|
|
|
// If the nmethod has already been made non-entrant and it can be converted
|
|
// then zombie it now. Otherwise make it non-entrant and it will eventually
|
|
// be zombied when it is no longer seen on the stack. Note that the nmethod
|
|
// might be "entrant" and not on the stack and so could be zombied immediately
|
|
// but we can't tell because we don't track it on stack until it becomes
|
|
// non-entrant.
|
|
|
|
if (nm->is_not_entrant() && nm->can_not_entrant_be_converted()) {
|
|
nm->make_zombie();
|
|
} else {
|
|
nm->make_not_entrant();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeCache::make_marked_nmethods_not_entrant() {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
if (nm->is_marked_for_deoptimization()) {
|
|
nm->make_not_entrant();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Flushes compiled methods dependent on dependee.
|
|
void CodeCache::flush_dependents_on(instanceKlassHandle dependee) {
|
|
assert_lock_strong(Compile_lock);
|
|
|
|
if (number_of_nmethods_with_dependencies() == 0) return;
|
|
|
|
// CodeCache can only be updated by a thread_in_VM and they will all be
|
|
// stopped during the safepoint so CodeCache will be safe to update without
|
|
// holding the CodeCache_lock.
|
|
|
|
KlassDepChange changes(dependee);
|
|
|
|
// Compute the dependent nmethods
|
|
if (mark_for_deoptimization(changes) > 0) {
|
|
// At least one nmethod has been marked for deoptimization
|
|
VM_Deoptimize op;
|
|
VMThread::execute(&op);
|
|
}
|
|
}
|
|
|
|
// Flushes compiled methods dependent on a particular CallSite
|
|
// instance when its target is different than the given MethodHandle.
|
|
void CodeCache::flush_dependents_on(Handle call_site, Handle method_handle) {
|
|
assert_lock_strong(Compile_lock);
|
|
|
|
if (number_of_nmethods_with_dependencies() == 0) return;
|
|
|
|
// CodeCache can only be updated by a thread_in_VM and they will all be
|
|
// stopped during the safepoint so CodeCache will be safe to update without
|
|
// holding the CodeCache_lock.
|
|
|
|
CallSiteDepChange changes(call_site(), method_handle());
|
|
|
|
// Compute the dependent nmethods that have a reference to a
|
|
// CallSite object. We use InstanceKlass::mark_dependent_nmethod
|
|
// directly instead of CodeCache::mark_for_deoptimization because we
|
|
// want dependents on the call site class only not all classes in
|
|
// the ContextStream.
|
|
int marked = 0;
|
|
{
|
|
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
InstanceKlass* call_site_klass = InstanceKlass::cast(call_site->klass());
|
|
marked = call_site_klass->mark_dependent_nmethods(changes);
|
|
}
|
|
if (marked > 0) {
|
|
// At least one nmethod has been marked for deoptimization
|
|
VM_Deoptimize op;
|
|
VMThread::execute(&op);
|
|
}
|
|
}
|
|
|
|
#ifdef HOTSWAP
|
|
// Flushes compiled methods dependent on dependee in the evolutionary sense
|
|
void CodeCache::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
|
|
// --- Compile_lock is not held. However we are at a safepoint.
|
|
assert_locked_or_safepoint(Compile_lock);
|
|
if (number_of_nmethods_with_dependencies() == 0) return;
|
|
|
|
// CodeCache can only be updated by a thread_in_VM and they will all be
|
|
// stopped during the safepoint so CodeCache will be safe to update without
|
|
// holding the CodeCache_lock.
|
|
|
|
// Compute the dependent nmethods
|
|
if (mark_for_evol_deoptimization(ev_k_h) > 0) {
|
|
// At least one nmethod has been marked for deoptimization
|
|
|
|
// All this already happens inside a VM_Operation, so we'll do all the work here.
|
|
// Stuff copied from VM_Deoptimize and modified slightly.
|
|
|
|
// We do not want any GCs to happen while we are in the middle of this VM operation
|
|
ResourceMark rm;
|
|
DeoptimizationMarker dm;
|
|
|
|
// Deoptimize all activations depending on marked nmethods
|
|
Deoptimization::deoptimize_dependents();
|
|
|
|
// Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
|
|
make_marked_nmethods_not_entrant();
|
|
}
|
|
}
|
|
#endif // HOTSWAP
|
|
|
|
|
|
// Flushes compiled methods dependent on dependee
|
|
void CodeCache::flush_dependents_on_method(methodHandle m_h) {
|
|
// --- Compile_lock is not held. However we are at a safepoint.
|
|
assert_locked_or_safepoint(Compile_lock);
|
|
|
|
// CodeCache can only be updated by a thread_in_VM and they will all be
|
|
// stopped dring the safepoint so CodeCache will be safe to update without
|
|
// holding the CodeCache_lock.
|
|
|
|
// Compute the dependent nmethods
|
|
if (mark_for_deoptimization(m_h()) > 0) {
|
|
// At least one nmethod has been marked for deoptimization
|
|
|
|
// All this already happens inside a VM_Operation, so we'll do all the work here.
|
|
// Stuff copied from VM_Deoptimize and modified slightly.
|
|
|
|
// We do not want any GCs to happen while we are in the middle of this VM operation
|
|
ResourceMark rm;
|
|
DeoptimizationMarker dm;
|
|
|
|
// Deoptimize all activations depending on marked nmethods
|
|
Deoptimization::deoptimize_dependents();
|
|
|
|
// Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
|
|
make_marked_nmethods_not_entrant();
|
|
}
|
|
}
|
|
|
|
void CodeCache::verify() {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
FOR_ALL_HEAPS(heap) {
|
|
(*heap)->verify();
|
|
FOR_ALL_BLOBS(cb, *heap) {
|
|
if (cb->is_alive()) {
|
|
cb->verify();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// A CodeHeap is full. Print out warning and report event.
|
|
void CodeCache::report_codemem_full(int code_blob_type, bool print) {
|
|
// Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
|
|
CodeHeap* heap = get_code_heap(code_blob_type);
|
|
assert(heap != NULL, "heap is null");
|
|
|
|
if (!heap->was_full() || print) {
|
|
// Not yet reported for this heap, report
|
|
heap->report_full();
|
|
if (SegmentedCodeCache) {
|
|
warning("%s is full. Compiler has been disabled.", get_code_heap_name(code_blob_type));
|
|
warning("Try increasing the code heap size using -XX:%s=", get_code_heap_flag_name(code_blob_type));
|
|
} else {
|
|
warning("CodeCache is full. Compiler has been disabled.");
|
|
warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize=");
|
|
}
|
|
ResourceMark rm;
|
|
stringStream s;
|
|
// Dump code cache into a buffer before locking the tty,
|
|
{
|
|
MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
|
|
print_summary(&s);
|
|
}
|
|
ttyLocker ttyl;
|
|
tty->print("%s", s.as_string());
|
|
}
|
|
|
|
_codemem_full_count++;
|
|
EventCodeCacheFull event;
|
|
if (event.should_commit()) {
|
|
event.set_codeBlobType((u1)code_blob_type);
|
|
event.set_startAddress((u8)heap->low_boundary());
|
|
event.set_commitedTopAddress((u8)heap->high());
|
|
event.set_reservedTopAddress((u8)heap->high_boundary());
|
|
event.set_entryCount(nof_blobs());
|
|
event.set_methodCount(nof_nmethods());
|
|
event.set_adaptorCount(nof_adapters());
|
|
event.set_unallocatedCapacity(heap->unallocated_capacity()/K);
|
|
event.set_fullCount(_codemem_full_count);
|
|
event.commit();
|
|
}
|
|
}
|
|
|
|
void CodeCache::print_memory_overhead() {
|
|
size_t wasted_bytes = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
CodeHeap* curr_heap = *heap;
|
|
for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
|
|
HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
|
|
wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
|
|
}
|
|
}
|
|
// Print bytes that are allocated in the freelist
|
|
ttyLocker ttl;
|
|
tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT, freelists_length());
|
|
tty->print_cr("Allocated in freelist: " SSIZE_FORMAT "kB", bytes_allocated_in_freelists()/K);
|
|
tty->print_cr("Unused bytes in CodeBlobs: " SSIZE_FORMAT "kB", (wasted_bytes/K));
|
|
tty->print_cr("Segment map size: " SSIZE_FORMAT "kB", allocated_segments()/K); // 1 byte per segment
|
|
}
|
|
|
|
//------------------------------------------------------------------------------------------------
|
|
// Non-product version
|
|
|
|
#ifndef PRODUCT
|
|
|
|
void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
|
|
if (PrintCodeCache2) { // Need to add a new flag
|
|
ResourceMark rm;
|
|
if (size == 0) size = cb->size();
|
|
tty->print_cr("CodeCache %s: addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
|
|
}
|
|
}
|
|
|
|
void CodeCache::print_internals() {
|
|
int nmethodCount = 0;
|
|
int runtimeStubCount = 0;
|
|
int adapterCount = 0;
|
|
int deoptimizationStubCount = 0;
|
|
int uncommonTrapStubCount = 0;
|
|
int bufferBlobCount = 0;
|
|
int total = 0;
|
|
int nmethodAlive = 0;
|
|
int nmethodNotEntrant = 0;
|
|
int nmethodZombie = 0;
|
|
int nmethodUnloaded = 0;
|
|
int nmethodJava = 0;
|
|
int nmethodNative = 0;
|
|
int max_nm_size = 0;
|
|
ResourceMark rm;
|
|
|
|
int i = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
if (SegmentedCodeCache && Verbose) {
|
|
tty->print_cr("-- %s --", (*heap)->name());
|
|
}
|
|
FOR_ALL_BLOBS(cb, *heap) {
|
|
total++;
|
|
if (cb->is_nmethod()) {
|
|
nmethod* nm = (nmethod*)cb;
|
|
|
|
if (Verbose && nm->method() != NULL) {
|
|
ResourceMark rm;
|
|
char *method_name = nm->method()->name_and_sig_as_C_string();
|
|
tty->print("%s", method_name);
|
|
if(nm->is_alive()) { tty->print_cr(" alive"); }
|
|
if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
|
|
if(nm->is_zombie()) { tty->print_cr(" zombie"); }
|
|
}
|
|
|
|
nmethodCount++;
|
|
|
|
if(nm->is_alive()) { nmethodAlive++; }
|
|
if(nm->is_not_entrant()) { nmethodNotEntrant++; }
|
|
if(nm->is_zombie()) { nmethodZombie++; }
|
|
if(nm->is_unloaded()) { nmethodUnloaded++; }
|
|
if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
|
|
|
|
if(nm->method() != NULL && nm->is_java_method()) {
|
|
nmethodJava++;
|
|
max_nm_size = MAX2(max_nm_size, nm->size());
|
|
}
|
|
} else if (cb->is_runtime_stub()) {
|
|
runtimeStubCount++;
|
|
} else if (cb->is_deoptimization_stub()) {
|
|
deoptimizationStubCount++;
|
|
} else if (cb->is_uncommon_trap_stub()) {
|
|
uncommonTrapStubCount++;
|
|
} else if (cb->is_adapter_blob()) {
|
|
adapterCount++;
|
|
} else if (cb->is_buffer_blob()) {
|
|
bufferBlobCount++;
|
|
}
|
|
}
|
|
}
|
|
|
|
int bucketSize = 512;
|
|
int bucketLimit = max_nm_size / bucketSize + 1;
|
|
int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
|
|
memset(buckets, 0, sizeof(int) * bucketLimit);
|
|
|
|
NMethodIterator iter;
|
|
while(iter.next()) {
|
|
nmethod* nm = iter.method();
|
|
if(nm->method() != NULL && nm->is_java_method()) {
|
|
buckets[nm->size() / bucketSize]++;
|
|
}
|
|
}
|
|
|
|
tty->print_cr("Code Cache Entries (total of %d)",total);
|
|
tty->print_cr("-------------------------------------------------");
|
|
tty->print_cr("nmethods: %d",nmethodCount);
|
|
tty->print_cr("\talive: %d",nmethodAlive);
|
|
tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
|
|
tty->print_cr("\tzombie: %d",nmethodZombie);
|
|
tty->print_cr("\tunloaded: %d",nmethodUnloaded);
|
|
tty->print_cr("\tjava: %d",nmethodJava);
|
|
tty->print_cr("\tnative: %d",nmethodNative);
|
|
tty->print_cr("runtime_stubs: %d",runtimeStubCount);
|
|
tty->print_cr("adapters: %d",adapterCount);
|
|
tty->print_cr("buffer blobs: %d",bufferBlobCount);
|
|
tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
|
|
tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
|
|
tty->print_cr("\nnmethod size distribution (non-zombie java)");
|
|
tty->print_cr("-------------------------------------------------");
|
|
|
|
for(int i=0; i<bucketLimit; i++) {
|
|
if(buckets[i] != 0) {
|
|
tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
|
|
tty->fill_to(40);
|
|
tty->print_cr("%d",buckets[i]);
|
|
}
|
|
}
|
|
|
|
FREE_C_HEAP_ARRAY(int, buckets);
|
|
print_memory_overhead();
|
|
}
|
|
|
|
#endif // !PRODUCT
|
|
|
|
void CodeCache::print() {
|
|
print_summary(tty);
|
|
|
|
#ifndef PRODUCT
|
|
if (!Verbose) return;
|
|
|
|
CodeBlob_sizes live;
|
|
CodeBlob_sizes dead;
|
|
|
|
FOR_ALL_HEAPS(heap) {
|
|
FOR_ALL_BLOBS(cb, *heap) {
|
|
if (!cb->is_alive()) {
|
|
dead.add(cb);
|
|
} else {
|
|
live.add(cb);
|
|
}
|
|
}
|
|
}
|
|
|
|
tty->print_cr("CodeCache:");
|
|
tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
|
|
|
|
if (!live.is_empty()) {
|
|
live.print("live");
|
|
}
|
|
if (!dead.is_empty()) {
|
|
dead.print("dead");
|
|
}
|
|
|
|
if (WizardMode) {
|
|
// print the oop_map usage
|
|
int code_size = 0;
|
|
int number_of_blobs = 0;
|
|
int number_of_oop_maps = 0;
|
|
int map_size = 0;
|
|
FOR_ALL_HEAPS(heap) {
|
|
FOR_ALL_BLOBS(cb, *heap) {
|
|
if (cb->is_alive()) {
|
|
number_of_blobs++;
|
|
code_size += cb->code_size();
|
|
OopMapSet* set = cb->oop_maps();
|
|
if (set != NULL) {
|
|
number_of_oop_maps += set->size();
|
|
map_size += set->heap_size();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
tty->print_cr("OopMaps");
|
|
tty->print_cr(" #blobs = %d", number_of_blobs);
|
|
tty->print_cr(" code size = %d", code_size);
|
|
tty->print_cr(" #oop_maps = %d", number_of_oop_maps);
|
|
tty->print_cr(" map size = %d", map_size);
|
|
}
|
|
|
|
#endif // !PRODUCT
|
|
}
|
|
|
|
void CodeCache::print_summary(outputStream* st, bool detailed) {
|
|
FOR_ALL_HEAPS(heap_iterator) {
|
|
CodeHeap* heap = (*heap_iterator);
|
|
size_t total = (heap->high_boundary() - heap->low_boundary());
|
|
if (SegmentedCodeCache) {
|
|
st->print("%s:", heap->name());
|
|
} else {
|
|
st->print("CodeCache:");
|
|
}
|
|
st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
|
|
"Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
|
|
total/K, (total - heap->unallocated_capacity())/K,
|
|
heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
|
|
|
|
if (detailed) {
|
|
st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
|
|
p2i(heap->low_boundary()),
|
|
p2i(heap->high()),
|
|
p2i(heap->high_boundary()));
|
|
}
|
|
}
|
|
|
|
if (detailed) {
|
|
st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
|
|
" adapters=" UINT32_FORMAT,
|
|
nof_blobs(), nof_nmethods(), nof_adapters());
|
|
st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
|
|
"enabled" : Arguments::mode() == Arguments::_int ?
|
|
"disabled (interpreter mode)" :
|
|
"disabled (not enough contiguous free space left)");
|
|
}
|
|
}
|
|
|
|
void CodeCache::print_codelist(outputStream* st) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
|
|
NMethodIterator iter;
|
|
while(iter.next_alive()) {
|
|
nmethod* nm = iter.method();
|
|
ResourceMark rm;
|
|
char *method_name = nm->method()->name_and_sig_as_C_string();
|
|
st->print_cr("%d %d %s ["INTPTR_FORMAT", "INTPTR_FORMAT" - "INTPTR_FORMAT"]",
|
|
nm->compile_id(), nm->comp_level(), method_name, (intptr_t)nm->header_begin(),
|
|
(intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
|
|
}
|
|
}
|
|
|
|
void CodeCache::print_layout(outputStream* st) {
|
|
assert_locked_or_safepoint(CodeCache_lock);
|
|
ResourceMark rm;
|
|
|
|
print_summary(st, true);
|
|
}
|
|
|
|
void CodeCache::log_state(outputStream* st) {
|
|
st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
|
|
" adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
|
|
nof_blobs(), nof_nmethods(), nof_adapters(),
|
|
unallocated_capacity());
|
|
}
|