1d8e92ae0d
Reviewed-by: darcy
745 lines
30 KiB
Java
745 lines
30 KiB
Java
/*
|
|
* Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*/
|
|
|
|
/*
|
|
* @test
|
|
* @bug 4851777 8233452
|
|
* @summary Tests of BigDecimal.sqrt().
|
|
*/
|
|
|
|
import java.math.BigDecimal;
|
|
import java.math.BigInteger;
|
|
import java.math.MathContext;
|
|
import java.math.RoundingMode;
|
|
import java.util.List;
|
|
|
|
import static java.math.BigDecimal.ONE;
|
|
import static java.math.BigDecimal.TWO;
|
|
import static java.math.BigDecimal.TEN;
|
|
import static java.math.BigDecimal.ZERO;
|
|
import static java.math.BigDecimal.valueOf;
|
|
|
|
public class SquareRootTests {
|
|
/**
|
|
* The value 0.1, with a scale of 1.
|
|
*/
|
|
private static final BigDecimal ONE_TENTH = valueOf(1L, 1);
|
|
|
|
public static void main(String... args) {
|
|
int failures = 0;
|
|
|
|
failures += negativeTests();
|
|
failures += zeroTests();
|
|
failures += oneDigitTests();
|
|
failures += twoDigitTests();
|
|
failures += evenPowersOfTenTests();
|
|
failures += squareRootTwoTests();
|
|
failures += lowPrecisionPerfectSquares();
|
|
failures += almostFourRoundingDown();
|
|
failures += almostFourRoundingUp();
|
|
failures += nearTen();
|
|
failures += nearOne();
|
|
failures += halfWay();
|
|
|
|
if (failures > 0 ) {
|
|
throw new RuntimeException("Incurred " + failures + " failures" +
|
|
" testing BigDecimal.sqrt().");
|
|
}
|
|
}
|
|
|
|
private static int negativeTests() {
|
|
int failures = 0;
|
|
|
|
for (long i = -10; i < 0; i++) {
|
|
for (int j = -5; j < 5; j++) {
|
|
try {
|
|
BigDecimal input = BigDecimal.valueOf(i, j);
|
|
BigDecimal result = input.sqrt(MathContext.DECIMAL64);
|
|
System.err.println("Unexpected sqrt of negative: (" +
|
|
input + ").sqrt() = " + result );
|
|
failures += 1;
|
|
} catch (ArithmeticException e) {
|
|
; // Expected
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int zeroTests() {
|
|
int failures = 0;
|
|
|
|
for (int i = -100; i < 100; i++) {
|
|
BigDecimal expected = BigDecimal.valueOf(0L, i/2);
|
|
// These results are independent of rounding mode
|
|
failures += compare(BigDecimal.valueOf(0L, i).sqrt(MathContext.UNLIMITED),
|
|
expected, true, "zeros");
|
|
|
|
failures += compare(BigDecimal.valueOf(0L, i).sqrt(MathContext.DECIMAL64),
|
|
expected, true, "zeros");
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Probe inputs with one digit of precision, 1 ... 9 and those
|
|
* values scaled by 10^-1, 0.1, ... 0.9.
|
|
*/
|
|
private static int oneDigitTests() {
|
|
int failures = 0;
|
|
|
|
List<BigDecimal> oneToNine =
|
|
List.of(ONE, TWO, valueOf(3),
|
|
valueOf(4), valueOf(5), valueOf(6),
|
|
valueOf(7), valueOf(8), valueOf(9));
|
|
|
|
List<RoundingMode> modes =
|
|
List.of(RoundingMode.UP, RoundingMode.DOWN,
|
|
RoundingMode.CEILING, RoundingMode.FLOOR,
|
|
RoundingMode.HALF_UP, RoundingMode.HALF_DOWN, RoundingMode.HALF_EVEN);
|
|
|
|
for (int i = 1; i < 20; i++) {
|
|
for (RoundingMode rm : modes) {
|
|
for (BigDecimal bd : oneToNine) {
|
|
MathContext mc = new MathContext(i, rm);
|
|
|
|
failures += compareSqrtImplementations(bd, mc);
|
|
bd = bd.multiply(ONE_TENTH);
|
|
failures += compareSqrtImplementations(bd, mc);
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Probe inputs with two digits of precision, (10 ... 99) and
|
|
* those values scaled by 10^-1 (1, ... 9.9) and scaled by 10^-2
|
|
* (0.1 ... 0.99).
|
|
*/
|
|
private static int twoDigitTests() {
|
|
int failures = 0;
|
|
|
|
List<RoundingMode> modes =
|
|
List.of(RoundingMode.UP, RoundingMode.DOWN,
|
|
RoundingMode.CEILING, RoundingMode.FLOOR,
|
|
RoundingMode.HALF_UP, RoundingMode.HALF_DOWN, RoundingMode.HALF_EVEN);
|
|
|
|
for (int i = 10; i < 100; i++) {
|
|
BigDecimal bd0 = BigDecimal.valueOf(i);
|
|
BigDecimal bd1 = bd0.multiply(ONE_TENTH);
|
|
BigDecimal bd2 = bd1.multiply(ONE_TENTH);
|
|
|
|
for (BigDecimal bd : List.of(bd0, bd1, bd2)) {
|
|
for (int precision = 1; i < 20; i++) {
|
|
for (RoundingMode rm : modes) {
|
|
MathContext mc = new MathContext(precision, rm);
|
|
failures += compareSqrtImplementations(bd, mc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int compareSqrtImplementations(BigDecimal bd, MathContext mc) {
|
|
return equalNumerically(BigSquareRoot.sqrt(bd, mc),
|
|
bd.sqrt(mc), "sqrt(" + bd + ") under " + mc);
|
|
}
|
|
|
|
/**
|
|
* sqrt(10^2N) is 10^N
|
|
* Both numerical value and representation should be verified
|
|
*/
|
|
private static int evenPowersOfTenTests() {
|
|
int failures = 0;
|
|
MathContext oneDigitExactly = new MathContext(1, RoundingMode.UNNECESSARY);
|
|
|
|
for (int scale = -100; scale <= 100; scale++) {
|
|
BigDecimal testValue = BigDecimal.valueOf(1, 2*scale);
|
|
BigDecimal expectedNumericalResult = BigDecimal.valueOf(1, scale);
|
|
|
|
BigDecimal result;
|
|
|
|
failures += equalNumerically(expectedNumericalResult,
|
|
result = testValue.sqrt(MathContext.DECIMAL64),
|
|
"Even powers of 10, DECIMAL64");
|
|
|
|
// Can round to one digit of precision exactly
|
|
failures += equalNumerically(expectedNumericalResult,
|
|
result = testValue.sqrt(oneDigitExactly),
|
|
"even powers of 10, 1 digit");
|
|
|
|
if (result.precision() > 1) {
|
|
failures += 1;
|
|
System.err.println("Excess precision for " + result);
|
|
}
|
|
|
|
// If rounding to more than one digit, do precision / scale checking...
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int squareRootTwoTests() {
|
|
int failures = 0;
|
|
|
|
// Square root of 2 truncated to 65 digits
|
|
BigDecimal highPrecisionRoot2 =
|
|
new BigDecimal("1.41421356237309504880168872420969807856967187537694807317667973799");
|
|
|
|
RoundingMode[] modes = {
|
|
RoundingMode.UP, RoundingMode.DOWN,
|
|
RoundingMode.CEILING, RoundingMode.FLOOR,
|
|
RoundingMode.HALF_UP, RoundingMode.HALF_DOWN, RoundingMode.HALF_EVEN
|
|
};
|
|
|
|
|
|
// For each interesting rounding mode, for precisions 1 to, say,
|
|
// 63 numerically compare TWO.sqrt(mc) to
|
|
// highPrecisionRoot2.round(mc) and the alternative internal high-precision
|
|
// implementation of square root.
|
|
for (RoundingMode mode : modes) {
|
|
for (int precision = 1; precision < 63; precision++) {
|
|
MathContext mc = new MathContext(precision, mode);
|
|
BigDecimal expected = highPrecisionRoot2.round(mc);
|
|
BigDecimal computed = TWO.sqrt(mc);
|
|
BigDecimal altComputed = BigSquareRoot.sqrt(TWO, mc);
|
|
|
|
failures += equalNumerically(expected, computed, "sqrt(2)");
|
|
failures += equalNumerically(computed, altComputed, "computed & altComputed");
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int lowPrecisionPerfectSquares() {
|
|
int failures = 0;
|
|
|
|
// For 5^2 through 9^2, if the input is rounded to one digit
|
|
// first before the root is computed, the wrong answer will
|
|
// result. Verify results and scale for different rounding
|
|
// modes and precisions.
|
|
long[][] squaresWithOneDigitRoot = {{ 4, 2},
|
|
{ 9, 3},
|
|
{25, 5},
|
|
{36, 6},
|
|
{49, 7},
|
|
{64, 8},
|
|
{81, 9}};
|
|
|
|
for (long[] squareAndRoot : squaresWithOneDigitRoot) {
|
|
BigDecimal square = new BigDecimal(squareAndRoot[0]);
|
|
BigDecimal expected = new BigDecimal(squareAndRoot[1]);
|
|
|
|
for (int scale = 0; scale <= 4; scale++) {
|
|
BigDecimal scaledSquare = square.setScale(scale, RoundingMode.UNNECESSARY);
|
|
int expectedScale = scale/2;
|
|
for (int precision = 0; precision <= 5; precision++) {
|
|
for (RoundingMode rm : RoundingMode.values()) {
|
|
MathContext mc = new MathContext(precision, rm);
|
|
BigDecimal computedRoot = scaledSquare.sqrt(mc);
|
|
failures += equalNumerically(expected, computedRoot, "simple squares");
|
|
int computedScale = computedRoot.scale();
|
|
if (precision >= expectedScale + 1 &&
|
|
computedScale != expectedScale) {
|
|
System.err.printf("%s\tprecision=%d\trm=%s%n",
|
|
computedRoot.toString(), precision, rm);
|
|
failures++;
|
|
System.err.printf("\t%s does not have expected scale of %d%n.",
|
|
computedRoot, expectedScale);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Test around 3.9999 that the sqrt doesn't improperly round-up to
|
|
* a numerical value of 2.
|
|
*/
|
|
private static int almostFourRoundingDown() {
|
|
int failures = 0;
|
|
BigDecimal nearFour = new BigDecimal("3.999999999999999999999999999999");
|
|
|
|
// Sqrt is 1.9999...
|
|
|
|
for (int i = 1; i < 64; i++) {
|
|
MathContext mc = new MathContext(i, RoundingMode.FLOOR);
|
|
BigDecimal result = nearFour.sqrt(mc);
|
|
BigDecimal expected = BigSquareRoot.sqrt(nearFour, mc);
|
|
failures += equalNumerically(expected, result, "near four rounding down");
|
|
failures += (result.compareTo(TWO) < 0) ? 0 : 1 ;
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
/**
|
|
* Test around 4.000...1 that the sqrt doesn't improperly
|
|
* round-down to a numerical value of 2.
|
|
*/
|
|
private static int almostFourRoundingUp() {
|
|
int failures = 0;
|
|
BigDecimal nearFour = new BigDecimal("4.000000000000000000000000000001");
|
|
|
|
// Sqrt is 2.0000....<non-zero digits>
|
|
|
|
for (int i = 1; i < 64; i++) {
|
|
MathContext mc = new MathContext(i, RoundingMode.CEILING);
|
|
BigDecimal result = nearFour.sqrt(mc);
|
|
BigDecimal expected = BigSquareRoot.sqrt(nearFour, mc);
|
|
failures += equalNumerically(expected, result, "near four rounding up");
|
|
failures += (result.compareTo(TWO) > 0) ? 0 : 1 ;
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int nearTen() {
|
|
int failures = 0;
|
|
|
|
BigDecimal near10 = new BigDecimal("9.99999999999999999999");
|
|
|
|
BigDecimal near10sq = near10.multiply(near10);
|
|
|
|
BigDecimal near10sq_ulp = near10sq.add(near10sq.ulp());
|
|
|
|
for (int i = 10; i < 23; i++) {
|
|
MathContext mc = new MathContext(i, RoundingMode.HALF_EVEN);
|
|
|
|
failures += equalNumerically(BigSquareRoot.sqrt(near10sq_ulp, mc),
|
|
near10sq_ulp.sqrt(mc),
|
|
"near 10 rounding half even");
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
|
|
/*
|
|
* Probe for rounding failures near a power of ten, 1 = 10^0,
|
|
* where an ulp has a different size above and below the value.
|
|
*/
|
|
private static int nearOne() {
|
|
int failures = 0;
|
|
|
|
BigDecimal near1 = new BigDecimal(".999999999999999999999");
|
|
BigDecimal near1sq = near1.multiply(near1);
|
|
BigDecimal near1sq_ulp = near1sq.add(near1sq.ulp());
|
|
|
|
for (int i = 10; i < 23; i++) {
|
|
for (RoundingMode rm : List.of(RoundingMode.HALF_EVEN,
|
|
RoundingMode.UP,
|
|
RoundingMode.DOWN )) {
|
|
MathContext mc = new MathContext(i, rm);
|
|
failures += equalNumerically(BigSquareRoot.sqrt(near1sq_ulp, mc),
|
|
near1sq_ulp.sqrt(mc),
|
|
mc.toString());
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
|
|
private static int halfWay() {
|
|
int failures = 0;
|
|
|
|
/*
|
|
* Use enough digits that the exact result cannot be computed
|
|
* from the sqrt of a double.
|
|
*/
|
|
BigDecimal[] halfWayCases = {
|
|
// Odd next digit, truncate on HALF_EVEN
|
|
new BigDecimal("123456789123456789.5"),
|
|
|
|
// Even next digit, round up on HALF_EVEN
|
|
new BigDecimal("123456789123456788.5"),
|
|
};
|
|
|
|
for (BigDecimal halfWayCase : halfWayCases) {
|
|
// Round result to next-to-last place
|
|
int precision = halfWayCase.precision() - 1;
|
|
BigDecimal square = halfWayCase.multiply(halfWayCase);
|
|
|
|
for (RoundingMode rm : List.of(RoundingMode.HALF_EVEN,
|
|
RoundingMode.HALF_UP,
|
|
RoundingMode.HALF_DOWN)) {
|
|
MathContext mc = new MathContext(precision, rm);
|
|
|
|
System.out.println("\nRounding mode " + rm);
|
|
System.out.println("\t" + halfWayCase.round(mc) + "\t" + halfWayCase);
|
|
System.out.println("\t" + BigSquareRoot.sqrt(square, mc));
|
|
|
|
failures += equalNumerically(/*square.sqrt(mc),*/
|
|
BigSquareRoot.sqrt(square, mc),
|
|
halfWayCase.round(mc),
|
|
"Rounding halway " + rm);
|
|
}
|
|
}
|
|
|
|
return failures;
|
|
}
|
|
|
|
private static int compare(BigDecimal a, BigDecimal b, boolean expected, String prefix) {
|
|
boolean result = a.equals(b);
|
|
int failed = (result==expected) ? 0 : 1;
|
|
if (failed == 1) {
|
|
System.err.println("Testing " + prefix +
|
|
"(" + a + ").compareTo(" + b + ") => " + result +
|
|
"\n\tExpected " + expected);
|
|
}
|
|
return failed;
|
|
}
|
|
|
|
private static int equalNumerically(BigDecimal a, BigDecimal b,
|
|
String prefix) {
|
|
return compareNumerically(a, b, 0, prefix);
|
|
}
|
|
|
|
|
|
private static int compareNumerically(BigDecimal a, BigDecimal b,
|
|
int expected, String prefix) {
|
|
int result = a.compareTo(b);
|
|
int failed = (result==expected) ? 0 : 1;
|
|
if (failed == 1) {
|
|
System.err.println("Testing " + prefix +
|
|
"(" + a + ").compareTo(" + b + ") => " + result +
|
|
"\n\tExpected " + expected);
|
|
}
|
|
return failed;
|
|
}
|
|
|
|
/**
|
|
* Alternative implementation of BigDecimal square root which uses
|
|
* higher-precision for a simpler set of termination conditions
|
|
* for the Newton iteration.
|
|
*/
|
|
private static class BigSquareRoot {
|
|
|
|
/**
|
|
* The value 0.5, with a scale of 1.
|
|
*/
|
|
private static final BigDecimal ONE_HALF = valueOf(5L, 1);
|
|
|
|
public static boolean isPowerOfTen(BigDecimal bd) {
|
|
return BigInteger.ONE.equals(bd.unscaledValue());
|
|
}
|
|
|
|
public static BigDecimal square(BigDecimal bd) {
|
|
return bd.multiply(bd);
|
|
}
|
|
|
|
public static BigDecimal sqrt(BigDecimal bd, MathContext mc) {
|
|
int signum = bd.signum();
|
|
if (signum == 1) {
|
|
/*
|
|
* The following code draws on the algorithm presented in
|
|
* "Properly Rounded Variable Precision Square Root," Hull and
|
|
* Abrham, ACM Transactions on Mathematical Software, Vol 11,
|
|
* No. 3, September 1985, Pages 229-237.
|
|
*
|
|
* The BigDecimal computational model differs from the one
|
|
* presented in the paper in several ways: first BigDecimal
|
|
* numbers aren't necessarily normalized, second many more
|
|
* rounding modes are supported, including UNNECESSARY, and
|
|
* exact results can be requested.
|
|
*
|
|
* The main steps of the algorithm below are as follows,
|
|
* first argument reduce the value to the numerical range
|
|
* [1, 10) using the following relations:
|
|
*
|
|
* x = y * 10 ^ exp
|
|
* sqrt(x) = sqrt(y) * 10^(exp / 2) if exp is even
|
|
* sqrt(x) = sqrt(y/10) * 10 ^((exp+1)/2) is exp is odd
|
|
*
|
|
* Then use Newton's iteration on the reduced value to compute
|
|
* the numerical digits of the desired result.
|
|
*
|
|
* Finally, scale back to the desired exponent range and
|
|
* perform any adjustment to get the preferred scale in the
|
|
* representation.
|
|
*/
|
|
|
|
// The code below favors relative simplicity over checking
|
|
// for special cases that could run faster.
|
|
|
|
int preferredScale = bd.scale()/2;
|
|
BigDecimal zeroWithFinalPreferredScale =
|
|
BigDecimal.valueOf(0L, preferredScale);
|
|
|
|
// First phase of numerical normalization, strip trailing
|
|
// zeros and check for even powers of 10.
|
|
BigDecimal stripped = bd.stripTrailingZeros();
|
|
int strippedScale = stripped.scale();
|
|
|
|
// Numerically sqrt(10^2N) = 10^N
|
|
if (isPowerOfTen(stripped) &&
|
|
strippedScale % 2 == 0) {
|
|
BigDecimal result = BigDecimal.valueOf(1L, strippedScale/2);
|
|
if (result.scale() != preferredScale) {
|
|
// Adjust to requested precision and preferred
|
|
// scale as appropriate.
|
|
result = result.add(zeroWithFinalPreferredScale, mc);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// After stripTrailingZeros, the representation is normalized as
|
|
//
|
|
// unscaledValue * 10^(-scale)
|
|
//
|
|
// where unscaledValue is an integer with the mimimum
|
|
// precision for the cohort of the numerical value. To
|
|
// allow binary floating-point hardware to be used to get
|
|
// approximately a 15 digit approximation to the square
|
|
// root, it is helpful to instead normalize this so that
|
|
// the significand portion is to right of the decimal
|
|
// point by roughly (scale() - precision() + 1).
|
|
|
|
// Now the precision / scale adjustment
|
|
int scaleAdjust = 0;
|
|
int scale = stripped.scale() - stripped.precision() + 1;
|
|
if (scale % 2 == 0) {
|
|
scaleAdjust = scale;
|
|
} else {
|
|
scaleAdjust = scale - 1;
|
|
}
|
|
|
|
BigDecimal working = stripped.scaleByPowerOfTen(scaleAdjust);
|
|
|
|
assert // Verify 0.1 <= working < 10
|
|
ONE_TENTH.compareTo(working) <= 0 && working.compareTo(TEN) < 0;
|
|
|
|
// Use good ole' Math.sqrt to get the initial guess for
|
|
// the Newton iteration, good to at least 15 decimal
|
|
// digits. This approach does incur the cost of a
|
|
//
|
|
// BigDecimal -> double -> BigDecimal
|
|
//
|
|
// conversion cycle, but it avoids the need for several
|
|
// Newton iterations in BigDecimal arithmetic to get the
|
|
// working answer to 15 digits of precision. If many fewer
|
|
// than 15 digits were needed, it might be faster to do
|
|
// the loop entirely in BigDecimal arithmetic.
|
|
//
|
|
// (A double value might have as much many as 17 decimal
|
|
// digits of precision; it depends on the relative density
|
|
// of binary and decimal numbers at different regions of
|
|
// the number line.)
|
|
//
|
|
// (It would be possible to check for certain special
|
|
// cases to avoid doing any Newton iterations. For
|
|
// example, if the BigDecimal -> double conversion was
|
|
// known to be exact and the rounding mode had a
|
|
// low-enough precision, the post-Newton rounding logic
|
|
// could be applied directly.)
|
|
|
|
BigDecimal guess = new BigDecimal(Math.sqrt(working.doubleValue()));
|
|
int guessPrecision = 15;
|
|
int originalPrecision = mc.getPrecision();
|
|
int targetPrecision;
|
|
|
|
// If an exact value is requested, it must only need
|
|
// about half of the input digits to represent since
|
|
// multiplying an N digit number by itself yield a (2N
|
|
// - 1) digit or 2N digit result.
|
|
if (originalPrecision == 0) {
|
|
targetPrecision = stripped.precision()/2 + 1;
|
|
} else {
|
|
targetPrecision = originalPrecision;
|
|
}
|
|
|
|
// When setting the precision to use inside the Newton
|
|
// iteration loop, take care to avoid the case where the
|
|
// precision of the input exceeds the requested precision
|
|
// and rounding the input value too soon.
|
|
BigDecimal approx = guess;
|
|
int workingPrecision = working.precision();
|
|
// Use "2p + 2" property to guarantee enough
|
|
// intermediate precision so that a double-rounding
|
|
// error does not occur when rounded to the final
|
|
// destination precision.
|
|
int loopPrecision =
|
|
Math.max(2 * Math.max(targetPrecision, workingPrecision) + 2,
|
|
34); // Force at least two Netwon
|
|
// iterations on the Math.sqrt
|
|
// result.
|
|
do {
|
|
MathContext mcTmp = new MathContext(loopPrecision, RoundingMode.HALF_EVEN);
|
|
// approx = 0.5 * (approx + fraction / approx)
|
|
approx = ONE_HALF.multiply(approx.add(working.divide(approx, mcTmp), mcTmp));
|
|
guessPrecision *= 2;
|
|
} while (guessPrecision < loopPrecision);
|
|
|
|
BigDecimal result;
|
|
RoundingMode targetRm = mc.getRoundingMode();
|
|
if (targetRm == RoundingMode.UNNECESSARY || originalPrecision == 0) {
|
|
RoundingMode tmpRm =
|
|
(targetRm == RoundingMode.UNNECESSARY) ? RoundingMode.DOWN : targetRm;
|
|
MathContext mcTmp = new MathContext(targetPrecision, tmpRm);
|
|
result = approx.scaleByPowerOfTen(-scaleAdjust/2).round(mcTmp);
|
|
|
|
// If result*result != this numerically, the square
|
|
// root isn't exact
|
|
if (bd.subtract(square(result)).compareTo(ZERO) != 0) {
|
|
throw new ArithmeticException("Computed square root not exact.");
|
|
}
|
|
} else {
|
|
result = approx.scaleByPowerOfTen(-scaleAdjust/2).round(mc);
|
|
}
|
|
|
|
assert squareRootResultAssertions(bd, result, mc);
|
|
if (result.scale() != preferredScale) {
|
|
// The preferred scale of an add is
|
|
// max(addend.scale(), augend.scale()). Therefore, if
|
|
// the scale of the result is first minimized using
|
|
// stripTrailingZeros(), adding a zero of the
|
|
// preferred scale rounding the correct precision will
|
|
// perform the proper scale vs precision tradeoffs.
|
|
result = result.stripTrailingZeros().
|
|
add(zeroWithFinalPreferredScale,
|
|
new MathContext(originalPrecision, RoundingMode.UNNECESSARY));
|
|
}
|
|
return result;
|
|
} else {
|
|
switch (signum) {
|
|
case -1:
|
|
throw new ArithmeticException("Attempted square root " +
|
|
"of negative BigDecimal");
|
|
case 0:
|
|
return valueOf(0L, bd.scale()/2);
|
|
|
|
default:
|
|
throw new AssertionError("Bad value from signum");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* For nonzero values, check numerical correctness properties of
|
|
* the computed result for the chosen rounding mode.
|
|
*
|
|
* For the directed roundings, for DOWN and FLOOR, result^2 must
|
|
* be {@code <=} the input and (result+ulp)^2 must be {@code >} the
|
|
* input. Conversely, for UP and CEIL, result^2 must be {@code >=} the
|
|
* input and (result-ulp)^2 must be {@code <} the input.
|
|
*/
|
|
private static boolean squareRootResultAssertions(BigDecimal input, BigDecimal result, MathContext mc) {
|
|
if (result.signum() == 0) {
|
|
return squareRootZeroResultAssertions(input, result, mc);
|
|
} else {
|
|
RoundingMode rm = mc.getRoundingMode();
|
|
BigDecimal ulp = result.ulp();
|
|
BigDecimal neighborUp = result.add(ulp);
|
|
// Make neighbor down accurate even for powers of ten
|
|
if (isPowerOfTen(result)) {
|
|
ulp = ulp.divide(TEN);
|
|
}
|
|
BigDecimal neighborDown = result.subtract(ulp);
|
|
|
|
// Both the starting value and result should be nonzero and positive.
|
|
if (result.signum() != 1 ||
|
|
input.signum() != 1) {
|
|
return false;
|
|
}
|
|
|
|
switch (rm) {
|
|
case DOWN:
|
|
case FLOOR:
|
|
assert
|
|
square(result).compareTo(input) <= 0 &&
|
|
square(neighborUp).compareTo(input) > 0:
|
|
"Square of result out for bounds rounding " + rm;
|
|
return true;
|
|
|
|
case UP:
|
|
case CEILING:
|
|
assert
|
|
square(result).compareTo(input) >= 0 :
|
|
"Square of result too small rounding " + rm;
|
|
|
|
assert
|
|
square(neighborDown).compareTo(input) < 0 :
|
|
"Square of down neighbor too large rounding " + rm + "\n" +
|
|
"\t input: " + input + "\t neighborDown: " + neighborDown +"\t sqrt: " + result +
|
|
"\t" + mc;
|
|
return true;
|
|
|
|
|
|
case HALF_DOWN:
|
|
case HALF_EVEN:
|
|
case HALF_UP:
|
|
BigDecimal err = square(result).subtract(input).abs();
|
|
BigDecimal errUp = square(neighborUp).subtract(input);
|
|
BigDecimal errDown = input.subtract(square(neighborDown));
|
|
// All error values should be positive so don't need to
|
|
// compare absolute values.
|
|
|
|
int err_comp_errUp = err.compareTo(errUp);
|
|
int err_comp_errDown = err.compareTo(errDown);
|
|
|
|
assert
|
|
errUp.signum() == 1 &&
|
|
errDown.signum() == 1 :
|
|
"Errors of neighbors squared don't have correct signs";
|
|
|
|
// At least one of these must be true, but not both
|
|
// assert
|
|
// err_comp_errUp <= 0 : "Upper neighbor is closer than result: " + rm +
|
|
// "\t" + input + "\t result" + result;
|
|
// assert
|
|
// err_comp_errDown <= 0 : "Lower neighbor is closer than result: " + rm +
|
|
// "\t" + input + "\t result " + result + "\t lower neighbor: " + neighborDown;
|
|
|
|
assert
|
|
((err_comp_errUp == 0 ) ? err_comp_errDown < 0 : true) &&
|
|
((err_comp_errDown == 0 ) ? err_comp_errUp < 0 : true) :
|
|
"Incorrect error relationships";
|
|
// && could check for digit conditions for ties too
|
|
return true;
|
|
|
|
default: // Definition of UNNECESSARY already verified.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
private static boolean squareRootZeroResultAssertions(BigDecimal input,
|
|
BigDecimal result,
|
|
MathContext mc) {
|
|
return input.compareTo(ZERO) == 0;
|
|
}
|
|
}
|
|
}
|
|
|