4b3c528140
Refactor into G1RedirtyCardsQueue[Set] and G1DirtyCardQueueSet Reviewed-by: tschatzl, sangheki
431 lines
17 KiB
C++
431 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/g1/g1Allocator.inline.hpp"
|
|
#include "gc/g1/g1CollectedHeap.inline.hpp"
|
|
#include "gc/g1/g1CollectionSet.hpp"
|
|
#include "gc/g1/g1OopClosures.inline.hpp"
|
|
#include "gc/g1/g1ParScanThreadState.inline.hpp"
|
|
#include "gc/g1/g1RootClosures.hpp"
|
|
#include "gc/g1/g1StringDedup.hpp"
|
|
#include "gc/shared/gcTrace.hpp"
|
|
#include "gc/shared/taskqueue.inline.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "oops/access.inline.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "runtime/prefetch.inline.hpp"
|
|
|
|
G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h,
|
|
uint worker_id,
|
|
size_t young_cset_length,
|
|
size_t optional_cset_length)
|
|
: _g1h(g1h),
|
|
_refs(g1h->task_queue(worker_id)),
|
|
_rdcq(&g1h->redirty_cards_queue_set()),
|
|
_ct(g1h->card_table()),
|
|
_closures(NULL),
|
|
_plab_allocator(NULL),
|
|
_age_table(false),
|
|
_tenuring_threshold(g1h->policy()->tenuring_threshold()),
|
|
_scanner(g1h, this),
|
|
_worker_id(worker_id),
|
|
_last_enqueued_card(SIZE_MAX),
|
|
_stack_trim_upper_threshold(GCDrainStackTargetSize * 2 + 1),
|
|
_stack_trim_lower_threshold(GCDrainStackTargetSize),
|
|
_trim_ticks(),
|
|
_old_gen_is_full(false),
|
|
_num_optional_regions(optional_cset_length)
|
|
{
|
|
// we allocate G1YoungSurvRateNumRegions plus one entries, since
|
|
// we "sacrifice" entry 0 to keep track of surviving bytes for
|
|
// non-young regions (where the age is -1)
|
|
// We also add a few elements at the beginning and at the end in
|
|
// an attempt to eliminate cache contention
|
|
size_t real_length = 1 + young_cset_length;
|
|
size_t array_length = PADDING_ELEM_NUM +
|
|
real_length +
|
|
PADDING_ELEM_NUM;
|
|
_surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
|
|
if (_surviving_young_words_base == NULL)
|
|
vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
|
|
"Not enough space for young surv histo.");
|
|
_surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
|
|
memset(_surviving_young_words, 0, real_length * sizeof(size_t));
|
|
|
|
_plab_allocator = new G1PLABAllocator(_g1h->allocator());
|
|
|
|
// The dest for Young is used when the objects are aged enough to
|
|
// need to be moved to the next space.
|
|
_dest[G1HeapRegionAttr::Young] = G1HeapRegionAttr::Old;
|
|
_dest[G1HeapRegionAttr::Old] = G1HeapRegionAttr::Old;
|
|
|
|
_closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
|
|
|
|
_oops_into_optional_regions = new G1OopStarChunkedList[_num_optional_regions];
|
|
}
|
|
|
|
// Pass locally gathered statistics to global state.
|
|
void G1ParScanThreadState::flush(size_t* surviving_young_words) {
|
|
_rdcq.flush();
|
|
// Update allocation statistics.
|
|
_plab_allocator->flush_and_retire_stats();
|
|
_g1h->policy()->record_age_table(&_age_table);
|
|
|
|
uint length = _g1h->collection_set()->young_region_length();
|
|
for (uint region_index = 0; region_index < length; region_index++) {
|
|
surviving_young_words[region_index] += _surviving_young_words[region_index];
|
|
}
|
|
}
|
|
|
|
G1ParScanThreadState::~G1ParScanThreadState() {
|
|
delete _plab_allocator;
|
|
delete _closures;
|
|
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
|
|
delete[] _oops_into_optional_regions;
|
|
}
|
|
|
|
size_t G1ParScanThreadState::lab_waste_words() const {
|
|
return _plab_allocator->waste();
|
|
}
|
|
|
|
size_t G1ParScanThreadState::lab_undo_waste_words() const {
|
|
return _plab_allocator->undo_waste();
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
|
|
assert(ref != NULL, "invariant");
|
|
assert(UseCompressedOops, "sanity");
|
|
assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
|
|
oop p = RawAccess<>::oop_load(ref);
|
|
assert(_g1h->is_in_g1_reserved(p),
|
|
"ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
|
|
return true;
|
|
}
|
|
|
|
bool G1ParScanThreadState::verify_ref(oop* ref) const {
|
|
assert(ref != NULL, "invariant");
|
|
if (has_partial_array_mask(ref)) {
|
|
// Must be in the collection set--it's already been copied.
|
|
oop p = clear_partial_array_mask(ref);
|
|
assert(_g1h->is_in_cset(p),
|
|
"ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
|
|
} else {
|
|
oop p = RawAccess<>::oop_load(ref);
|
|
assert(_g1h->is_in_g1_reserved(p),
|
|
"ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool G1ParScanThreadState::verify_task(StarTask ref) const {
|
|
if (ref.is_narrow()) {
|
|
return verify_ref((narrowOop*) ref);
|
|
} else {
|
|
return verify_ref((oop*) ref);
|
|
}
|
|
}
|
|
#endif // ASSERT
|
|
|
|
void G1ParScanThreadState::trim_queue() {
|
|
StarTask ref;
|
|
do {
|
|
// Fully drain the queue.
|
|
trim_queue_to_threshold(0);
|
|
} while (!_refs->is_empty());
|
|
}
|
|
|
|
HeapWord* G1ParScanThreadState::allocate_in_next_plab(G1HeapRegionAttr const region_attr,
|
|
G1HeapRegionAttr* dest,
|
|
size_t word_sz,
|
|
bool previous_plab_refill_failed) {
|
|
assert(region_attr.is_in_cset_or_humongous(), "Unexpected region attr type: %s", region_attr.get_type_str());
|
|
assert(dest->is_in_cset_or_humongous(), "Unexpected dest: %s region attr", dest->get_type_str());
|
|
|
|
// Right now we only have two types of regions (young / old) so
|
|
// let's keep the logic here simple. We can generalize it when necessary.
|
|
if (dest->is_young()) {
|
|
bool plab_refill_in_old_failed = false;
|
|
HeapWord* const obj_ptr = _plab_allocator->allocate(G1HeapRegionAttr::Old,
|
|
word_sz,
|
|
&plab_refill_in_old_failed);
|
|
// Make sure that we won't attempt to copy any other objects out
|
|
// of a survivor region (given that apparently we cannot allocate
|
|
// any new ones) to avoid coming into this slow path again and again.
|
|
// Only consider failed PLAB refill here: failed inline allocations are
|
|
// typically large, so not indicative of remaining space.
|
|
if (previous_plab_refill_failed) {
|
|
_tenuring_threshold = 0;
|
|
}
|
|
|
|
if (obj_ptr != NULL) {
|
|
dest->set_old();
|
|
} else {
|
|
// We just failed to allocate in old gen. The same idea as explained above
|
|
// for making survivor gen unavailable for allocation applies for old gen.
|
|
_old_gen_is_full = plab_refill_in_old_failed;
|
|
}
|
|
return obj_ptr;
|
|
} else {
|
|
_old_gen_is_full = previous_plab_refill_failed;
|
|
assert(dest->is_old(), "Unexpected dest region attr: %s", dest->get_type_str());
|
|
// no other space to try.
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
G1HeapRegionAttr G1ParScanThreadState::next_region_attr(G1HeapRegionAttr const region_attr, markOop const m, uint& age) {
|
|
if (region_attr.is_young()) {
|
|
age = !m->has_displaced_mark_helper() ? m->age()
|
|
: m->displaced_mark_helper()->age();
|
|
if (age < _tenuring_threshold) {
|
|
return region_attr;
|
|
}
|
|
}
|
|
return dest(region_attr);
|
|
}
|
|
|
|
void G1ParScanThreadState::report_promotion_event(G1HeapRegionAttr const dest_attr,
|
|
oop const old, size_t word_sz, uint age,
|
|
HeapWord * const obj_ptr) const {
|
|
PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_attr);
|
|
if (alloc_buf->contains(obj_ptr)) {
|
|
_g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz * HeapWordSize, age,
|
|
dest_attr.type() == G1HeapRegionAttr::Old,
|
|
alloc_buf->word_sz() * HeapWordSize);
|
|
} else {
|
|
_g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz * HeapWordSize, age,
|
|
dest_attr.type() == G1HeapRegionAttr::Old);
|
|
}
|
|
}
|
|
|
|
oop G1ParScanThreadState::copy_to_survivor_space(G1HeapRegionAttr const region_attr,
|
|
oop const old,
|
|
markOop const old_mark) {
|
|
const size_t word_sz = old->size();
|
|
HeapRegion* const from_region = _g1h->heap_region_containing(old);
|
|
// +1 to make the -1 indexes valid...
|
|
const int young_index = from_region->young_index_in_cset()+1;
|
|
assert( (from_region->is_young() && young_index > 0) ||
|
|
(!from_region->is_young() && young_index == 0), "invariant" );
|
|
|
|
uint age = 0;
|
|
G1HeapRegionAttr dest_attr = next_region_attr(region_attr, old_mark, age);
|
|
// The second clause is to prevent premature evacuation failure in case there
|
|
// is still space in survivor, but old gen is full.
|
|
if (_old_gen_is_full && dest_attr.is_old()) {
|
|
return handle_evacuation_failure_par(old, old_mark);
|
|
}
|
|
HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_attr, word_sz);
|
|
|
|
// PLAB allocations should succeed most of the time, so we'll
|
|
// normally check against NULL once and that's it.
|
|
if (obj_ptr == NULL) {
|
|
bool plab_refill_failed = false;
|
|
obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_attr, word_sz, &plab_refill_failed);
|
|
if (obj_ptr == NULL) {
|
|
obj_ptr = allocate_in_next_plab(region_attr, &dest_attr, word_sz, plab_refill_failed);
|
|
if (obj_ptr == NULL) {
|
|
// This will either forward-to-self, or detect that someone else has
|
|
// installed a forwarding pointer.
|
|
return handle_evacuation_failure_par(old, old_mark);
|
|
}
|
|
}
|
|
if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
|
|
// The events are checked individually as part of the actual commit
|
|
report_promotion_event(dest_attr, old, word_sz, age, obj_ptr);
|
|
}
|
|
}
|
|
|
|
assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
|
|
assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
|
|
|
|
#ifndef PRODUCT
|
|
// Should this evacuation fail?
|
|
if (_g1h->evacuation_should_fail()) {
|
|
// Doing this after all the allocation attempts also tests the
|
|
// undo_allocation() method too.
|
|
_plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz);
|
|
return handle_evacuation_failure_par(old, old_mark);
|
|
}
|
|
#endif // !PRODUCT
|
|
|
|
// We're going to allocate linearly, so might as well prefetch ahead.
|
|
Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
|
|
|
|
const oop obj = oop(obj_ptr);
|
|
const oop forward_ptr = old->forward_to_atomic(obj, old_mark, memory_order_relaxed);
|
|
if (forward_ptr == NULL) {
|
|
Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
|
|
|
|
if (dest_attr.is_young()) {
|
|
if (age < markOopDesc::max_age) {
|
|
age++;
|
|
}
|
|
if (old_mark->has_displaced_mark_helper()) {
|
|
// In this case, we have to install the mark word first,
|
|
// otherwise obj looks to be forwarded (the old mark word,
|
|
// which contains the forward pointer, was copied)
|
|
obj->set_mark_raw(old_mark);
|
|
markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
|
|
old_mark->set_displaced_mark_helper(new_mark);
|
|
} else {
|
|
obj->set_mark_raw(old_mark->set_age(age));
|
|
}
|
|
_age_table.add(age, word_sz);
|
|
} else {
|
|
obj->set_mark_raw(old_mark);
|
|
}
|
|
|
|
if (G1StringDedup::is_enabled()) {
|
|
const bool is_from_young = region_attr.is_young();
|
|
const bool is_to_young = dest_attr.is_young();
|
|
assert(is_from_young == _g1h->heap_region_containing(old)->is_young(),
|
|
"sanity");
|
|
assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
|
|
"sanity");
|
|
G1StringDedup::enqueue_from_evacuation(is_from_young,
|
|
is_to_young,
|
|
_worker_id,
|
|
obj);
|
|
}
|
|
|
|
_surviving_young_words[young_index] += word_sz;
|
|
|
|
if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
|
|
// We keep track of the next start index in the length field of
|
|
// the to-space object. The actual length can be found in the
|
|
// length field of the from-space object.
|
|
arrayOop(obj)->set_length(0);
|
|
oop* old_p = set_partial_array_mask(old);
|
|
do_oop_partial_array(old_p);
|
|
} else {
|
|
G1ScanInYoungSetter x(&_scanner, dest_attr.is_young());
|
|
obj->oop_iterate_backwards(&_scanner);
|
|
}
|
|
return obj;
|
|
} else {
|
|
_plab_allocator->undo_allocation(dest_attr, obj_ptr, word_sz);
|
|
return forward_ptr;
|
|
}
|
|
}
|
|
|
|
G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
|
|
assert(worker_id < _n_workers, "out of bounds access");
|
|
if (_states[worker_id] == NULL) {
|
|
_states[worker_id] =
|
|
new G1ParScanThreadState(_g1h, worker_id, _young_cset_length, _optional_cset_length);
|
|
}
|
|
return _states[worker_id];
|
|
}
|
|
|
|
const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
|
|
assert(_flushed, "thread local state from the per thread states should have been flushed");
|
|
return _surviving_young_words_total;
|
|
}
|
|
|
|
void G1ParScanThreadStateSet::flush() {
|
|
assert(!_flushed, "thread local state from the per thread states should be flushed once");
|
|
|
|
for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
|
|
G1ParScanThreadState* pss = _states[worker_index];
|
|
|
|
if (pss == NULL) {
|
|
continue;
|
|
}
|
|
|
|
pss->flush(_surviving_young_words_total);
|
|
delete pss;
|
|
_states[worker_index] = NULL;
|
|
}
|
|
_flushed = true;
|
|
}
|
|
|
|
void G1ParScanThreadStateSet::record_unused_optional_region(HeapRegion* hr) {
|
|
for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
|
|
G1ParScanThreadState* pss = _states[worker_index];
|
|
|
|
if (pss == NULL) {
|
|
continue;
|
|
}
|
|
|
|
size_t used_memory = pss->oops_into_optional_region(hr)->used_memory();
|
|
_g1h->phase_times()->record_or_add_thread_work_item(G1GCPhaseTimes::OptScanHR, worker_index, used_memory, G1GCPhaseTimes::ScanHRUsedMemory);
|
|
}
|
|
}
|
|
|
|
oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
|
|
assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
|
|
|
|
oop forward_ptr = old->forward_to_atomic(old, m, memory_order_relaxed);
|
|
if (forward_ptr == NULL) {
|
|
// Forward-to-self succeeded. We are the "owner" of the object.
|
|
HeapRegion* r = _g1h->heap_region_containing(old);
|
|
|
|
if (!r->evacuation_failed()) {
|
|
r->set_evacuation_failed(true);
|
|
_g1h->hr_printer()->evac_failure(r);
|
|
}
|
|
|
|
_g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
|
|
|
|
G1ScanInYoungSetter x(&_scanner, r->is_young());
|
|
old->oop_iterate_backwards(&_scanner);
|
|
|
|
return old;
|
|
} else {
|
|
// Forward-to-self failed. Either someone else managed to allocate
|
|
// space for this object (old != forward_ptr) or they beat us in
|
|
// self-forwarding it (old == forward_ptr).
|
|
assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
|
|
"Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
|
|
"should not be in the CSet",
|
|
p2i(old), p2i(forward_ptr));
|
|
return forward_ptr;
|
|
}
|
|
}
|
|
G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h,
|
|
uint n_workers,
|
|
size_t young_cset_length,
|
|
size_t optional_cset_length) :
|
|
_g1h(g1h),
|
|
_states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
|
|
_surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length, mtGC)),
|
|
_young_cset_length(young_cset_length),
|
|
_optional_cset_length(optional_cset_length),
|
|
_n_workers(n_workers),
|
|
_flushed(false) {
|
|
for (uint i = 0; i < n_workers; ++i) {
|
|
_states[i] = NULL;
|
|
}
|
|
memset(_surviving_young_words_total, 0, young_cset_length * sizeof(size_t));
|
|
}
|
|
|
|
G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
|
|
assert(_flushed, "thread local state from the per thread states should have been flushed");
|
|
FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
|
|
FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
|
|
}
|