ad45678719
Reviewed-by: kvn
1721 lines
71 KiB
C++
1721 lines
71 KiB
C++
/*
|
|
* Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#ifndef SHARE_OPTO_MEMNODE_HPP
|
|
#define SHARE_OPTO_MEMNODE_HPP
|
|
|
|
#include "opto/multnode.hpp"
|
|
#include "opto/node.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
#include "opto/type.hpp"
|
|
|
|
// Portions of code courtesy of Clifford Click
|
|
|
|
class MultiNode;
|
|
class PhaseCCP;
|
|
class PhaseTransform;
|
|
|
|
//------------------------------MemNode----------------------------------------
|
|
// Load or Store, possibly throwing a NULL pointer exception
|
|
class MemNode : public Node {
|
|
private:
|
|
bool _unaligned_access; // Unaligned access from unsafe
|
|
bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
|
|
bool _unsafe_access; // Access of unsafe origin.
|
|
uint8_t _barrier_data; // Bit field with barrier information
|
|
|
|
protected:
|
|
#ifdef ASSERT
|
|
const TypePtr* _adr_type; // What kind of memory is being addressed?
|
|
#endif
|
|
virtual uint size_of() const;
|
|
public:
|
|
enum { Control, // When is it safe to do this load?
|
|
Memory, // Chunk of memory is being loaded from
|
|
Address, // Actually address, derived from base
|
|
ValueIn, // Value to store
|
|
OopStore // Preceeding oop store, only in StoreCM
|
|
};
|
|
typedef enum { unordered = 0,
|
|
acquire, // Load has to acquire or be succeeded by MemBarAcquire.
|
|
release, // Store has to release or be preceded by MemBarRelease.
|
|
seqcst, // LoadStore has to have both acquire and release semantics.
|
|
unset // The memory ordering is not set (used for testing)
|
|
} MemOrd;
|
|
protected:
|
|
MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at ) :
|
|
Node(c0,c1,c2),
|
|
_unaligned_access(false),
|
|
_mismatched_access(false),
|
|
_unsafe_access(false),
|
|
_barrier_data(0) {
|
|
init_class_id(Class_Mem);
|
|
debug_only(_adr_type=at; adr_type();)
|
|
}
|
|
MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 ) :
|
|
Node(c0,c1,c2,c3),
|
|
_unaligned_access(false),
|
|
_mismatched_access(false),
|
|
_unsafe_access(false),
|
|
_barrier_data(0) {
|
|
init_class_id(Class_Mem);
|
|
debug_only(_adr_type=at; adr_type();)
|
|
}
|
|
MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4) :
|
|
Node(c0,c1,c2,c3,c4),
|
|
_unaligned_access(false),
|
|
_mismatched_access(false),
|
|
_unsafe_access(false),
|
|
_barrier_data(0) {
|
|
init_class_id(Class_Mem);
|
|
debug_only(_adr_type=at; adr_type();)
|
|
}
|
|
|
|
virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return NULL; }
|
|
ArrayCopyNode* find_array_copy_clone(PhaseTransform* phase, Node* ld_alloc, Node* mem) const;
|
|
static bool check_if_adr_maybe_raw(Node* adr);
|
|
|
|
public:
|
|
// Helpers for the optimizer. Documented in memnode.cpp.
|
|
static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
|
|
Node* p2, AllocateNode* a2,
|
|
PhaseTransform* phase);
|
|
static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
|
|
|
|
static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
|
|
static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
|
|
// This one should probably be a phase-specific function:
|
|
static bool all_controls_dominate(Node* dom, Node* sub);
|
|
|
|
virtual const class TypePtr *adr_type() const; // returns bottom_type of address
|
|
|
|
// Shared code for Ideal methods:
|
|
Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
|
|
|
|
// Helper function for adr_type() implementations.
|
|
static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
|
|
|
|
// Raw access function, to allow copying of adr_type efficiently in
|
|
// product builds and retain the debug info for debug builds.
|
|
const TypePtr *raw_adr_type() const {
|
|
#ifdef ASSERT
|
|
return _adr_type;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
// Map a load or store opcode to its corresponding store opcode.
|
|
// (Return -1 if unknown.)
|
|
virtual int store_Opcode() const { return -1; }
|
|
|
|
// What is the type of the value in memory? (T_VOID mean "unspecified".)
|
|
virtual BasicType memory_type() const = 0;
|
|
virtual int memory_size() const {
|
|
#ifdef ASSERT
|
|
return type2aelembytes(memory_type(), true);
|
|
#else
|
|
return type2aelembytes(memory_type());
|
|
#endif
|
|
}
|
|
|
|
uint8_t barrier_data() { return _barrier_data; }
|
|
void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; }
|
|
|
|
// Search through memory states which precede this node (load or store).
|
|
// Look for an exact match for the address, with no intervening
|
|
// aliased stores.
|
|
Node* find_previous_store(PhaseTransform* phase);
|
|
|
|
// Can this node (load or store) accurately see a stored value in
|
|
// the given memory state? (The state may or may not be in(Memory).)
|
|
Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
|
|
|
|
void set_unaligned_access() { _unaligned_access = true; }
|
|
bool is_unaligned_access() const { return _unaligned_access; }
|
|
void set_mismatched_access() { _mismatched_access = true; }
|
|
bool is_mismatched_access() const { return _mismatched_access; }
|
|
void set_unsafe_access() { _unsafe_access = true; }
|
|
bool is_unsafe_access() const { return _unsafe_access; }
|
|
|
|
#ifndef PRODUCT
|
|
static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
|
|
virtual void dump_spec(outputStream *st) const;
|
|
#endif
|
|
};
|
|
|
|
//------------------------------LoadNode---------------------------------------
|
|
// Load value; requires Memory and Address
|
|
class LoadNode : public MemNode {
|
|
public:
|
|
// Some loads (from unsafe) should be pinned: they don't depend only
|
|
// on the dominating test. The field _control_dependency below records
|
|
// whether that node depends only on the dominating test.
|
|
// Pinned and UnknownControl are similar, but differ in that Pinned
|
|
// loads are not allowed to float across safepoints, whereas UnknownControl
|
|
// loads are allowed to do that. Therefore, Pinned is stricter.
|
|
enum ControlDependency {
|
|
Pinned,
|
|
UnknownControl,
|
|
DependsOnlyOnTest
|
|
};
|
|
|
|
private:
|
|
// LoadNode::hash() doesn't take the _control_dependency field
|
|
// into account: If the graph already has a non-pinned LoadNode and
|
|
// we add a pinned LoadNode with the same inputs, it's safe for GVN
|
|
// to replace the pinned LoadNode with the non-pinned LoadNode,
|
|
// otherwise it wouldn't be safe to have a non pinned LoadNode with
|
|
// those inputs in the first place. If the graph already has a
|
|
// pinned LoadNode and we add a non pinned LoadNode with the same
|
|
// inputs, it's safe (but suboptimal) for GVN to replace the
|
|
// non-pinned LoadNode by the pinned LoadNode.
|
|
ControlDependency _control_dependency;
|
|
|
|
// On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
|
|
// loads that can be reordered, and such requiring acquire semantics to
|
|
// adhere to the Java specification. The required behaviour is stored in
|
|
// this field.
|
|
const MemOrd _mo;
|
|
|
|
AllocateNode* is_new_object_mark_load(PhaseGVN *phase) const;
|
|
|
|
protected:
|
|
virtual bool cmp(const Node &n) const;
|
|
virtual uint size_of() const; // Size is bigger
|
|
// Should LoadNode::Ideal() attempt to remove control edges?
|
|
virtual bool can_remove_control() const;
|
|
const Type* const _type; // What kind of value is loaded?
|
|
|
|
virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
|
|
public:
|
|
|
|
LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
|
|
: MemNode(c,mem,adr,at), _control_dependency(control_dependency), _mo(mo), _type(rt) {
|
|
init_class_id(Class_Load);
|
|
}
|
|
inline bool is_unordered() const { return !is_acquire(); }
|
|
inline bool is_acquire() const {
|
|
assert(_mo == unordered || _mo == acquire, "unexpected");
|
|
return _mo == acquire;
|
|
}
|
|
inline bool is_unsigned() const {
|
|
int lop = Opcode();
|
|
return (lop == Op_LoadUB) || (lop == Op_LoadUS);
|
|
}
|
|
|
|
// Polymorphic factory method:
|
|
static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
|
|
const TypePtr* at, const Type *rt, BasicType bt,
|
|
MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
|
|
bool unaligned = false, bool mismatched = false, bool unsafe = false,
|
|
uint8_t barrier_data = 0);
|
|
|
|
virtual uint hash() const; // Check the type
|
|
|
|
// Handle algebraic identities here. If we have an identity, return the Node
|
|
// we are equivalent to. We look for Load of a Store.
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
|
|
// If the load is from Field memory and the pointer is non-null, it might be possible to
|
|
// zero out the control input.
|
|
// If the offset is constant and the base is an object allocation,
|
|
// try to hook me up to the exact initializing store.
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
|
|
// Split instance field load through Phi.
|
|
Node* split_through_phi(PhaseGVN *phase);
|
|
|
|
// Recover original value from boxed values
|
|
Node *eliminate_autobox(PhaseGVN *phase);
|
|
|
|
// Compute a new Type for this node. Basically we just do the pre-check,
|
|
// then call the virtual add() to set the type.
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
|
|
// Common methods for LoadKlass and LoadNKlass nodes.
|
|
const Type* klass_value_common(PhaseGVN* phase) const;
|
|
Node* klass_identity_common(PhaseGVN* phase);
|
|
|
|
virtual uint ideal_reg() const;
|
|
virtual const Type *bottom_type() const;
|
|
// Following method is copied from TypeNode:
|
|
void set_type(const Type* t) {
|
|
assert(t != NULL, "sanity");
|
|
debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
|
|
*(const Type**)&_type = t; // cast away const-ness
|
|
// If this node is in the hash table, make sure it doesn't need a rehash.
|
|
assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
|
|
}
|
|
const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
|
|
|
|
// Do not match memory edge
|
|
virtual uint match_edge(uint idx) const;
|
|
|
|
// Map a load opcode to its corresponding store opcode.
|
|
virtual int store_Opcode() const = 0;
|
|
|
|
// Check if the load's memory input is a Phi node with the same control.
|
|
bool is_instance_field_load_with_local_phi(Node* ctrl);
|
|
|
|
Node* convert_to_unsigned_load(PhaseGVN& gvn);
|
|
Node* convert_to_signed_load(PhaseGVN& gvn);
|
|
|
|
bool has_reinterpret_variant(const Type* rt);
|
|
Node* convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt);
|
|
|
|
void pin() { _control_dependency = Pinned; }
|
|
bool has_unknown_control_dependency() const { return _control_dependency == UnknownControl; }
|
|
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const;
|
|
#endif
|
|
#ifdef ASSERT
|
|
// Helper function to allow a raw load without control edge for some cases
|
|
static bool is_immutable_value(Node* adr);
|
|
#endif
|
|
protected:
|
|
const Type* load_array_final_field(const TypeKlassPtr *tkls,
|
|
ciKlass* klass) const;
|
|
|
|
Node* can_see_arraycopy_value(Node* st, PhaseGVN* phase) const;
|
|
|
|
// depends_only_on_test is almost always true, and needs to be almost always
|
|
// true to enable key hoisting & commoning optimizations. However, for the
|
|
// special case of RawPtr loads from TLS top & end, and other loads performed by
|
|
// GC barriers, the control edge carries the dependence preventing hoisting past
|
|
// a Safepoint instead of the memory edge. (An unfortunate consequence of having
|
|
// Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
|
|
// which produce results (new raw memory state) inside of loops preventing all
|
|
// manner of other optimizations). Basically, it's ugly but so is the alternative.
|
|
// See comment in macro.cpp, around line 125 expand_allocate_common().
|
|
virtual bool depends_only_on_test() const {
|
|
return adr_type() != TypeRawPtr::BOTTOM && _control_dependency == DependsOnlyOnTest;
|
|
}
|
|
};
|
|
|
|
//------------------------------LoadBNode--------------------------------------
|
|
// Load a byte (8bits signed) from memory
|
|
class LoadBNode : public LoadNode {
|
|
public:
|
|
LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegI; }
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual int store_Opcode() const { return Op_StoreB; }
|
|
virtual BasicType memory_type() const { return T_BYTE; }
|
|
};
|
|
|
|
//------------------------------LoadUBNode-------------------------------------
|
|
// Load a unsigned byte (8bits unsigned) from memory
|
|
class LoadUBNode : public LoadNode {
|
|
public:
|
|
LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegI; }
|
|
virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual int store_Opcode() const { return Op_StoreB; }
|
|
virtual BasicType memory_type() const { return T_BYTE; }
|
|
};
|
|
|
|
//------------------------------LoadUSNode-------------------------------------
|
|
// Load an unsigned short/char (16bits unsigned) from memory
|
|
class LoadUSNode : public LoadNode {
|
|
public:
|
|
LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegI; }
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual int store_Opcode() const { return Op_StoreC; }
|
|
virtual BasicType memory_type() const { return T_CHAR; }
|
|
};
|
|
|
|
//------------------------------LoadSNode--------------------------------------
|
|
// Load a short (16bits signed) from memory
|
|
class LoadSNode : public LoadNode {
|
|
public:
|
|
LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegI; }
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual int store_Opcode() const { return Op_StoreC; }
|
|
virtual BasicType memory_type() const { return T_SHORT; }
|
|
};
|
|
|
|
//------------------------------LoadINode--------------------------------------
|
|
// Load an integer from memory
|
|
class LoadINode : public LoadNode {
|
|
public:
|
|
LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegI; }
|
|
virtual int store_Opcode() const { return Op_StoreI; }
|
|
virtual BasicType memory_type() const { return T_INT; }
|
|
};
|
|
|
|
//------------------------------LoadRangeNode----------------------------------
|
|
// Load an array length from the array
|
|
class LoadRangeNode : public LoadINode {
|
|
public:
|
|
LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
|
|
: LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
|
|
virtual int Opcode() const;
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
};
|
|
|
|
//------------------------------LoadLNode--------------------------------------
|
|
// Load a long from memory
|
|
class LoadLNode : public LoadNode {
|
|
virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
|
|
virtual bool cmp( const Node &n ) const {
|
|
return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
|
|
&& LoadNode::cmp(n);
|
|
}
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
const bool _require_atomic_access; // is piecewise load forbidden?
|
|
|
|
public:
|
|
LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
|
|
MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
|
|
: LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegL; }
|
|
virtual int store_Opcode() const { return Op_StoreL; }
|
|
virtual BasicType memory_type() const { return T_LONG; }
|
|
bool require_atomic_access() const { return _require_atomic_access; }
|
|
static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
|
|
const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
|
|
bool unaligned = false, bool mismatched = false, bool unsafe = false, uint8_t barrier_data = 0);
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const {
|
|
LoadNode::dump_spec(st);
|
|
if (_require_atomic_access) st->print(" Atomic!");
|
|
}
|
|
#endif
|
|
};
|
|
|
|
//------------------------------LoadL_unalignedNode----------------------------
|
|
// Load a long from unaligned memory
|
|
class LoadL_unalignedNode : public LoadLNode {
|
|
public:
|
|
LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------LoadFNode--------------------------------------
|
|
// Load a float (64 bits) from memory
|
|
class LoadFNode : public LoadNode {
|
|
public:
|
|
LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegF; }
|
|
virtual int store_Opcode() const { return Op_StoreF; }
|
|
virtual BasicType memory_type() const { return T_FLOAT; }
|
|
};
|
|
|
|
//------------------------------LoadDNode--------------------------------------
|
|
// Load a double (64 bits) from memory
|
|
class LoadDNode : public LoadNode {
|
|
virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
|
|
virtual bool cmp( const Node &n ) const {
|
|
return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
|
|
&& LoadNode::cmp(n);
|
|
}
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
const bool _require_atomic_access; // is piecewise load forbidden?
|
|
|
|
public:
|
|
LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
|
|
MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
|
|
: LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegD; }
|
|
virtual int store_Opcode() const { return Op_StoreD; }
|
|
virtual BasicType memory_type() const { return T_DOUBLE; }
|
|
bool require_atomic_access() const { return _require_atomic_access; }
|
|
static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
|
|
const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest,
|
|
bool unaligned = false, bool mismatched = false, bool unsafe = false, uint8_t barrier_data = 0);
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const {
|
|
LoadNode::dump_spec(st);
|
|
if (_require_atomic_access) st->print(" Atomic!");
|
|
}
|
|
#endif
|
|
};
|
|
|
|
//------------------------------LoadD_unalignedNode----------------------------
|
|
// Load a double from unaligned memory
|
|
class LoadD_unalignedNode : public LoadDNode {
|
|
public:
|
|
LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------LoadPNode--------------------------------------
|
|
// Load a pointer from memory (either object or array)
|
|
class LoadPNode : public LoadNode {
|
|
public:
|
|
LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegP; }
|
|
virtual int store_Opcode() const { return Op_StoreP; }
|
|
virtual BasicType memory_type() const { return T_ADDRESS; }
|
|
};
|
|
|
|
|
|
//------------------------------LoadNNode--------------------------------------
|
|
// Load a narrow oop from memory (either object or array)
|
|
class LoadNNode : public LoadNode {
|
|
public:
|
|
LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
|
|
: LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegN; }
|
|
virtual int store_Opcode() const { return Op_StoreN; }
|
|
virtual BasicType memory_type() const { return T_NARROWOOP; }
|
|
};
|
|
|
|
//------------------------------LoadKlassNode----------------------------------
|
|
// Load a Klass from an object
|
|
class LoadKlassNode : public LoadPNode {
|
|
protected:
|
|
// In most cases, LoadKlassNode does not have the control input set. If the control
|
|
// input is set, it must not be removed (by LoadNode::Ideal()).
|
|
virtual bool can_remove_control() const;
|
|
public:
|
|
LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
|
|
: LoadPNode(c, mem, adr, at, tk, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
virtual bool depends_only_on_test() const { return true; }
|
|
|
|
// Polymorphic factory method:
|
|
static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
|
|
const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
|
|
};
|
|
|
|
//------------------------------LoadNKlassNode---------------------------------
|
|
// Load a narrow Klass from an object.
|
|
class LoadNKlassNode : public LoadNNode {
|
|
public:
|
|
LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
|
|
: LoadNNode(c, mem, adr, at, tk, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return Op_RegN; }
|
|
virtual int store_Opcode() const { return Op_StoreNKlass; }
|
|
virtual BasicType memory_type() const { return T_NARROWKLASS; }
|
|
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
virtual bool depends_only_on_test() const { return true; }
|
|
};
|
|
|
|
|
|
//------------------------------StoreNode--------------------------------------
|
|
// Store value; requires Store, Address and Value
|
|
class StoreNode : public MemNode {
|
|
private:
|
|
// On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
|
|
// stores that can be reordered, and such requiring release semantics to
|
|
// adhere to the Java specification. The required behaviour is stored in
|
|
// this field.
|
|
const MemOrd _mo;
|
|
// Needed for proper cloning.
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
protected:
|
|
virtual bool cmp( const Node &n ) const;
|
|
virtual bool depends_only_on_test() const { return false; }
|
|
|
|
Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
|
|
Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
|
|
|
|
public:
|
|
// We must ensure that stores of object references will be visible
|
|
// only after the object's initialization. So the callers of this
|
|
// procedure must indicate that the store requires `release'
|
|
// semantics, if the stored value is an object reference that might
|
|
// point to a new object and may become externally visible.
|
|
StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
|
|
: MemNode(c, mem, adr, at, val), _mo(mo) {
|
|
init_class_id(Class_Store);
|
|
}
|
|
StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
|
|
: MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
|
|
init_class_id(Class_Store);
|
|
}
|
|
|
|
inline bool is_unordered() const { return !is_release(); }
|
|
inline bool is_release() const {
|
|
assert((_mo == unordered || _mo == release), "unexpected");
|
|
return _mo == release;
|
|
}
|
|
|
|
// Conservatively release stores of object references in order to
|
|
// ensure visibility of object initialization.
|
|
static inline MemOrd release_if_reference(const BasicType t) {
|
|
#ifdef AARCH64
|
|
// AArch64 doesn't need a release store here because object
|
|
// initialization contains the necessary barriers.
|
|
return unordered;
|
|
#else
|
|
const MemOrd mo = (t == T_ARRAY ||
|
|
t == T_ADDRESS || // Might be the address of an object reference (`boxing').
|
|
t == T_OBJECT) ? release : unordered;
|
|
return mo;
|
|
#endif
|
|
}
|
|
|
|
// Polymorphic factory method
|
|
//
|
|
// We must ensure that stores of object references will be visible
|
|
// only after the object's initialization. So the callers of this
|
|
// procedure must indicate that the store requires `release'
|
|
// semantics, if the stored value is an object reference that might
|
|
// point to a new object and may become externally visible.
|
|
static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
|
|
const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
|
|
|
|
virtual uint hash() const; // Check the type
|
|
|
|
// If the store is to Field memory and the pointer is non-null, we can
|
|
// zero out the control input.
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
|
|
// Compute a new Type for this node. Basically we just do the pre-check,
|
|
// then call the virtual add() to set the type.
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
|
|
// Check for identity function on memory (Load then Store at same address)
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
|
|
// Do not match memory edge
|
|
virtual uint match_edge(uint idx) const;
|
|
|
|
virtual const Type *bottom_type() const; // returns Type::MEMORY
|
|
|
|
// Map a store opcode to its corresponding own opcode, trivially.
|
|
virtual int store_Opcode() const { return Opcode(); }
|
|
|
|
// have all possible loads of the value stored been optimized away?
|
|
bool value_never_loaded(PhaseTransform *phase) const;
|
|
|
|
bool has_reinterpret_variant(const Type* vt);
|
|
Node* convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt);
|
|
|
|
MemBarNode* trailing_membar() const;
|
|
};
|
|
|
|
//------------------------------StoreBNode-------------------------------------
|
|
// Store byte to memory
|
|
class StoreBNode : public StoreNode {
|
|
public:
|
|
StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
|
|
: StoreNode(c, mem, adr, at, val, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual BasicType memory_type() const { return T_BYTE; }
|
|
};
|
|
|
|
//------------------------------StoreCNode-------------------------------------
|
|
// Store char/short to memory
|
|
class StoreCNode : public StoreNode {
|
|
public:
|
|
StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
|
|
: StoreNode(c, mem, adr, at, val, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual BasicType memory_type() const { return T_CHAR; }
|
|
};
|
|
|
|
//------------------------------StoreINode-------------------------------------
|
|
// Store int to memory
|
|
class StoreINode : public StoreNode {
|
|
public:
|
|
StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
|
|
: StoreNode(c, mem, adr, at, val, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual BasicType memory_type() const { return T_INT; }
|
|
};
|
|
|
|
//------------------------------StoreLNode-------------------------------------
|
|
// Store long to memory
|
|
class StoreLNode : public StoreNode {
|
|
virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
|
|
virtual bool cmp( const Node &n ) const {
|
|
return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
|
|
&& StoreNode::cmp(n);
|
|
}
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
const bool _require_atomic_access; // is piecewise store forbidden?
|
|
|
|
public:
|
|
StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
|
|
: StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
|
|
virtual int Opcode() const;
|
|
virtual BasicType memory_type() const { return T_LONG; }
|
|
bool require_atomic_access() const { return _require_atomic_access; }
|
|
static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const {
|
|
StoreNode::dump_spec(st);
|
|
if (_require_atomic_access) st->print(" Atomic!");
|
|
}
|
|
#endif
|
|
};
|
|
|
|
//------------------------------StoreFNode-------------------------------------
|
|
// Store float to memory
|
|
class StoreFNode : public StoreNode {
|
|
public:
|
|
StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
|
|
: StoreNode(c, mem, adr, at, val, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual BasicType memory_type() const { return T_FLOAT; }
|
|
};
|
|
|
|
//------------------------------StoreDNode-------------------------------------
|
|
// Store double to memory
|
|
class StoreDNode : public StoreNode {
|
|
virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
|
|
virtual bool cmp( const Node &n ) const {
|
|
return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
|
|
&& StoreNode::cmp(n);
|
|
}
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
const bool _require_atomic_access; // is piecewise store forbidden?
|
|
public:
|
|
StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
|
|
MemOrd mo, bool require_atomic_access = false)
|
|
: StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
|
|
virtual int Opcode() const;
|
|
virtual BasicType memory_type() const { return T_DOUBLE; }
|
|
bool require_atomic_access() const { return _require_atomic_access; }
|
|
static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const {
|
|
StoreNode::dump_spec(st);
|
|
if (_require_atomic_access) st->print(" Atomic!");
|
|
}
|
|
#endif
|
|
|
|
};
|
|
|
|
//------------------------------StorePNode-------------------------------------
|
|
// Store pointer to memory
|
|
class StorePNode : public StoreNode {
|
|
public:
|
|
StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
|
|
: StoreNode(c, mem, adr, at, val, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual BasicType memory_type() const { return T_ADDRESS; }
|
|
};
|
|
|
|
//------------------------------StoreNNode-------------------------------------
|
|
// Store narrow oop to memory
|
|
class StoreNNode : public StoreNode {
|
|
public:
|
|
StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
|
|
: StoreNode(c, mem, adr, at, val, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual BasicType memory_type() const { return T_NARROWOOP; }
|
|
};
|
|
|
|
//------------------------------StoreNKlassNode--------------------------------------
|
|
// Store narrow klass to memory
|
|
class StoreNKlassNode : public StoreNNode {
|
|
public:
|
|
StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
|
|
: StoreNNode(c, mem, adr, at, val, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual BasicType memory_type() const { return T_NARROWKLASS; }
|
|
};
|
|
|
|
//------------------------------StoreCMNode-----------------------------------
|
|
// Store card-mark byte to memory for CM
|
|
// The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
|
|
// Preceeding equivalent StoreCMs may be eliminated.
|
|
class StoreCMNode : public StoreNode {
|
|
private:
|
|
virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
|
|
virtual bool cmp( const Node &n ) const {
|
|
return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
|
|
&& StoreNode::cmp(n);
|
|
}
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
int _oop_alias_idx; // The alias_idx of OopStore
|
|
|
|
public:
|
|
StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
|
|
StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
|
|
_oop_alias_idx(oop_alias_idx) {
|
|
assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
|
|
_oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
|
|
"bad oop alias idx");
|
|
}
|
|
virtual int Opcode() const;
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual BasicType memory_type() const { return T_VOID; } // unspecific
|
|
int oop_alias_idx() const { return _oop_alias_idx; }
|
|
};
|
|
|
|
//------------------------------LoadPLockedNode---------------------------------
|
|
// Load-locked a pointer from memory (either object or array).
|
|
// On Sparc & Intel this is implemented as a normal pointer load.
|
|
// On PowerPC and friends it's a real load-locked.
|
|
class LoadPLockedNode : public LoadPNode {
|
|
public:
|
|
LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
|
|
: LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
|
|
virtual int Opcode() const;
|
|
virtual int store_Opcode() const { return Op_StorePConditional; }
|
|
virtual bool depends_only_on_test() const { return true; }
|
|
};
|
|
|
|
//------------------------------SCMemProjNode---------------------------------------
|
|
// This class defines a projection of the memory state of a store conditional node.
|
|
// These nodes return a value, but also update memory.
|
|
class SCMemProjNode : public ProjNode {
|
|
public:
|
|
enum {SCMEMPROJCON = (uint)-2};
|
|
SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
|
|
virtual int Opcode() const;
|
|
virtual bool is_CFG() const { return false; }
|
|
virtual const Type *bottom_type() const {return Type::MEMORY;}
|
|
virtual const TypePtr *adr_type() const {
|
|
Node* ctrl = in(0);
|
|
if (ctrl == NULL) return NULL; // node is dead
|
|
return ctrl->in(MemNode::Memory)->adr_type();
|
|
}
|
|
virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const {};
|
|
#endif
|
|
};
|
|
|
|
//------------------------------LoadStoreNode---------------------------
|
|
// Note: is_Mem() method returns 'true' for this class.
|
|
class LoadStoreNode : public Node {
|
|
private:
|
|
const Type* const _type; // What kind of value is loaded?
|
|
const TypePtr* _adr_type; // What kind of memory is being addressed?
|
|
uint8_t _barrier_data; // Bit field with barrier information
|
|
virtual uint size_of() const; // Size is bigger
|
|
public:
|
|
LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
|
|
virtual bool depends_only_on_test() const { return false; }
|
|
virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
|
|
|
|
virtual const Type *bottom_type() const { return _type; }
|
|
virtual uint ideal_reg() const;
|
|
virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address
|
|
|
|
bool result_not_used() const;
|
|
MemBarNode* trailing_membar() const;
|
|
|
|
uint8_t barrier_data() { return _barrier_data; }
|
|
void set_barrier_data(uint8_t barrier_data) { _barrier_data = barrier_data; }
|
|
};
|
|
|
|
class LoadStoreConditionalNode : public LoadStoreNode {
|
|
public:
|
|
enum {
|
|
ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
|
|
};
|
|
LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
|
|
};
|
|
|
|
//------------------------------StorePConditionalNode---------------------------
|
|
// Conditionally store pointer to memory, if no change since prior
|
|
// load-locked. Sets flags for success or failure of the store.
|
|
class StorePConditionalNode : public LoadStoreConditionalNode {
|
|
public:
|
|
StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
|
|
virtual int Opcode() const;
|
|
// Produces flags
|
|
virtual uint ideal_reg() const { return Op_RegFlags; }
|
|
};
|
|
|
|
//------------------------------StoreIConditionalNode---------------------------
|
|
// Conditionally store int to memory, if no change since prior
|
|
// load-locked. Sets flags for success or failure of the store.
|
|
class StoreIConditionalNode : public LoadStoreConditionalNode {
|
|
public:
|
|
StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
|
|
virtual int Opcode() const;
|
|
// Produces flags
|
|
virtual uint ideal_reg() const { return Op_RegFlags; }
|
|
};
|
|
|
|
//------------------------------StoreLConditionalNode---------------------------
|
|
// Conditionally store long to memory, if no change since prior
|
|
// load-locked. Sets flags for success or failure of the store.
|
|
class StoreLConditionalNode : public LoadStoreConditionalNode {
|
|
public:
|
|
StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
|
|
virtual int Opcode() const;
|
|
// Produces flags
|
|
virtual uint ideal_reg() const { return Op_RegFlags; }
|
|
};
|
|
|
|
class CompareAndSwapNode : public LoadStoreConditionalNode {
|
|
private:
|
|
const MemNode::MemOrd _mem_ord;
|
|
public:
|
|
CompareAndSwapNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : LoadStoreConditionalNode(c, mem, adr, val, ex), _mem_ord(mem_ord) {}
|
|
MemNode::MemOrd order() const {
|
|
return _mem_ord;
|
|
}
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
};
|
|
|
|
class CompareAndExchangeNode : public LoadStoreNode {
|
|
private:
|
|
const MemNode::MemOrd _mem_ord;
|
|
public:
|
|
enum {
|
|
ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
|
|
};
|
|
CompareAndExchangeNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord, const TypePtr* at, const Type* t) :
|
|
LoadStoreNode(c, mem, adr, val, at, t, 5), _mem_ord(mem_ord) {
|
|
init_req(ExpectedIn, ex );
|
|
}
|
|
|
|
MemNode::MemOrd order() const {
|
|
return _mem_ord;
|
|
}
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
};
|
|
|
|
//------------------------------CompareAndSwapBNode---------------------------
|
|
class CompareAndSwapBNode : public CompareAndSwapNode {
|
|
public:
|
|
CompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------CompareAndSwapSNode---------------------------
|
|
class CompareAndSwapSNode : public CompareAndSwapNode {
|
|
public:
|
|
CompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------CompareAndSwapINode---------------------------
|
|
class CompareAndSwapINode : public CompareAndSwapNode {
|
|
public:
|
|
CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------CompareAndSwapLNode---------------------------
|
|
class CompareAndSwapLNode : public CompareAndSwapNode {
|
|
public:
|
|
CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------CompareAndSwapPNode---------------------------
|
|
class CompareAndSwapPNode : public CompareAndSwapNode {
|
|
public:
|
|
CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------CompareAndSwapNNode---------------------------
|
|
class CompareAndSwapNNode : public CompareAndSwapNode {
|
|
public:
|
|
CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------WeakCompareAndSwapBNode---------------------------
|
|
class WeakCompareAndSwapBNode : public CompareAndSwapNode {
|
|
public:
|
|
WeakCompareAndSwapBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------WeakCompareAndSwapSNode---------------------------
|
|
class WeakCompareAndSwapSNode : public CompareAndSwapNode {
|
|
public:
|
|
WeakCompareAndSwapSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------WeakCompareAndSwapINode---------------------------
|
|
class WeakCompareAndSwapINode : public CompareAndSwapNode {
|
|
public:
|
|
WeakCompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------WeakCompareAndSwapLNode---------------------------
|
|
class WeakCompareAndSwapLNode : public CompareAndSwapNode {
|
|
public:
|
|
WeakCompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------WeakCompareAndSwapPNode---------------------------
|
|
class WeakCompareAndSwapPNode : public CompareAndSwapNode {
|
|
public:
|
|
WeakCompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------WeakCompareAndSwapNNode---------------------------
|
|
class WeakCompareAndSwapNNode : public CompareAndSwapNode {
|
|
public:
|
|
WeakCompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, MemNode::MemOrd mem_ord) : CompareAndSwapNode(c, mem, adr, val, ex, mem_ord) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------CompareAndExchangeBNode---------------------------
|
|
class CompareAndExchangeBNode : public CompareAndExchangeNode {
|
|
public:
|
|
CompareAndExchangeBNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::BYTE) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
|
|
//------------------------------CompareAndExchangeSNode---------------------------
|
|
class CompareAndExchangeSNode : public CompareAndExchangeNode {
|
|
public:
|
|
CompareAndExchangeSNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::SHORT) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------CompareAndExchangeLNode---------------------------
|
|
class CompareAndExchangeLNode : public CompareAndExchangeNode {
|
|
public:
|
|
CompareAndExchangeLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeLong::LONG) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
|
|
//------------------------------CompareAndExchangeINode---------------------------
|
|
class CompareAndExchangeINode : public CompareAndExchangeNode {
|
|
public:
|
|
CompareAndExchangeINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, TypeInt::INT) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
|
|
//------------------------------CompareAndExchangePNode---------------------------
|
|
class CompareAndExchangePNode : public CompareAndExchangeNode {
|
|
public:
|
|
CompareAndExchangePNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------CompareAndExchangeNNode---------------------------
|
|
class CompareAndExchangeNNode : public CompareAndExchangeNode {
|
|
public:
|
|
CompareAndExchangeNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex, const TypePtr* at, const Type* t, MemNode::MemOrd mem_ord) : CompareAndExchangeNode(c, mem, adr, val, ex, mem_ord, at, t) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndAddBNode---------------------------
|
|
class GetAndAddBNode : public LoadStoreNode {
|
|
public:
|
|
GetAndAddBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndAddSNode---------------------------
|
|
class GetAndAddSNode : public LoadStoreNode {
|
|
public:
|
|
GetAndAddSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndAddINode---------------------------
|
|
class GetAndAddINode : public LoadStoreNode {
|
|
public:
|
|
GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndAddLNode---------------------------
|
|
class GetAndAddLNode : public LoadStoreNode {
|
|
public:
|
|
GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndSetBNode---------------------------
|
|
class GetAndSetBNode : public LoadStoreNode {
|
|
public:
|
|
GetAndSetBNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::BYTE, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndSetSNode---------------------------
|
|
class GetAndSetSNode : public LoadStoreNode {
|
|
public:
|
|
GetAndSetSNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::SHORT, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndSetINode---------------------------
|
|
class GetAndSetINode : public LoadStoreNode {
|
|
public:
|
|
GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndSetLNode---------------------------
|
|
class GetAndSetLNode : public LoadStoreNode {
|
|
public:
|
|
GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndSetPNode---------------------------
|
|
class GetAndSetPNode : public LoadStoreNode {
|
|
public:
|
|
GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------GetAndSetNNode---------------------------
|
|
class GetAndSetNNode : public LoadStoreNode {
|
|
public:
|
|
GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
//------------------------------ClearArray-------------------------------------
|
|
class ClearArrayNode: public Node {
|
|
private:
|
|
bool _is_large;
|
|
public:
|
|
ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base, bool is_large)
|
|
: Node(ctrl,arymem,word_cnt,base), _is_large(is_large) {
|
|
init_class_id(Class_ClearArray);
|
|
}
|
|
virtual int Opcode() const;
|
|
virtual const Type *bottom_type() const { return Type::MEMORY; }
|
|
// ClearArray modifies array elements, and so affects only the
|
|
// array memory addressed by the bottom_type of its base address.
|
|
virtual const class TypePtr *adr_type() const;
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual uint match_edge(uint idx) const;
|
|
bool is_large() const { return _is_large; }
|
|
|
|
// Clear the given area of an object or array.
|
|
// The start offset must always be aligned mod BytesPerInt.
|
|
// The end offset must always be aligned mod BytesPerLong.
|
|
// Return the new memory.
|
|
static Node* clear_memory(Node* control, Node* mem, Node* dest,
|
|
intptr_t start_offset,
|
|
intptr_t end_offset,
|
|
PhaseGVN* phase);
|
|
static Node* clear_memory(Node* control, Node* mem, Node* dest,
|
|
intptr_t start_offset,
|
|
Node* end_offset,
|
|
PhaseGVN* phase);
|
|
static Node* clear_memory(Node* control, Node* mem, Node* dest,
|
|
Node* start_offset,
|
|
Node* end_offset,
|
|
PhaseGVN* phase);
|
|
// Return allocation input memory edge if it is different instance
|
|
// or itself if it is the one we are looking for.
|
|
static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
|
|
};
|
|
|
|
//------------------------------MemBar-----------------------------------------
|
|
// There are different flavors of Memory Barriers to match the Java Memory
|
|
// Model. Monitor-enter and volatile-load act as Aquires: no following ref
|
|
// can be moved to before them. We insert a MemBar-Acquire after a FastLock or
|
|
// volatile-load. Monitor-exit and volatile-store act as Release: no
|
|
// preceding ref can be moved to after them. We insert a MemBar-Release
|
|
// before a FastUnlock or volatile-store. All volatiles need to be
|
|
// serialized, so we follow all volatile-stores with a MemBar-Volatile to
|
|
// separate it from any following volatile-load.
|
|
class MemBarNode: public MultiNode {
|
|
virtual uint hash() const ; // { return NO_HASH; }
|
|
virtual bool cmp( const Node &n ) const ; // Always fail, except on self
|
|
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
// Memory type this node is serializing. Usually either rawptr or bottom.
|
|
const TypePtr* _adr_type;
|
|
|
|
// How is this membar related to a nearby memory access?
|
|
enum {
|
|
Standalone,
|
|
TrailingLoad,
|
|
TrailingStore,
|
|
LeadingStore,
|
|
TrailingLoadStore,
|
|
LeadingLoadStore,
|
|
TrailingPartialArrayCopy
|
|
} _kind;
|
|
|
|
#ifdef ASSERT
|
|
uint _pair_idx;
|
|
#endif
|
|
|
|
public:
|
|
enum {
|
|
Precedent = TypeFunc::Parms // optional edge to force precedence
|
|
};
|
|
MemBarNode(Compile* C, int alias_idx, Node* precedent);
|
|
virtual int Opcode() const = 0;
|
|
virtual const class TypePtr *adr_type() const { return _adr_type; }
|
|
virtual const Type* Value(PhaseGVN* phase) const;
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual uint match_edge(uint idx) const { return 0; }
|
|
virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
|
|
virtual Node *match( const ProjNode *proj, const Matcher *m );
|
|
// Factory method. Builds a wide or narrow membar.
|
|
// Optional 'precedent' becomes an extra edge if not null.
|
|
static MemBarNode* make(Compile* C, int opcode,
|
|
int alias_idx = Compile::AliasIdxBot,
|
|
Node* precedent = NULL);
|
|
|
|
MemBarNode* trailing_membar() const;
|
|
MemBarNode* leading_membar() const;
|
|
|
|
void set_trailing_load() { _kind = TrailingLoad; }
|
|
bool trailing_load() const { return _kind == TrailingLoad; }
|
|
bool trailing_store() const { return _kind == TrailingStore; }
|
|
bool leading_store() const { return _kind == LeadingStore; }
|
|
bool trailing_load_store() const { return _kind == TrailingLoadStore; }
|
|
bool leading_load_store() const { return _kind == LeadingLoadStore; }
|
|
bool trailing() const { return _kind == TrailingLoad || _kind == TrailingStore || _kind == TrailingLoadStore; }
|
|
bool leading() const { return _kind == LeadingStore || _kind == LeadingLoadStore; }
|
|
bool standalone() const { return _kind == Standalone; }
|
|
void set_trailing_partial_array_copy() { _kind = TrailingPartialArrayCopy; }
|
|
bool trailing_partial_array_copy() const { return _kind == TrailingPartialArrayCopy; }
|
|
|
|
static void set_store_pair(MemBarNode* leading, MemBarNode* trailing);
|
|
static void set_load_store_pair(MemBarNode* leading, MemBarNode* trailing);
|
|
|
|
void remove(PhaseIterGVN *igvn);
|
|
};
|
|
|
|
// "Acquire" - no following ref can move before (but earlier refs can
|
|
// follow, like an early Load stalled in cache). Requires multi-cpu
|
|
// visibility. Inserted after a volatile load.
|
|
class MemBarAcquireNode: public MemBarNode {
|
|
public:
|
|
MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
// "Acquire" - no following ref can move before (but earlier refs can
|
|
// follow, like an early Load stalled in cache). Requires multi-cpu
|
|
// visibility. Inserted independ of any load, as required
|
|
// for intrinsic Unsafe.loadFence().
|
|
class LoadFenceNode: public MemBarNode {
|
|
public:
|
|
LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
// "Release" - no earlier ref can move after (but later refs can move
|
|
// up, like a speculative pipelined cache-hitting Load). Requires
|
|
// multi-cpu visibility. Inserted before a volatile store.
|
|
class MemBarReleaseNode: public MemBarNode {
|
|
public:
|
|
MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
// "Release" - no earlier ref can move after (but later refs can move
|
|
// up, like a speculative pipelined cache-hitting Load). Requires
|
|
// multi-cpu visibility. Inserted independent of any store, as required
|
|
// for intrinsic Unsafe.storeFence().
|
|
class StoreFenceNode: public MemBarNode {
|
|
public:
|
|
StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
// "Acquire" - no following ref can move before (but earlier refs can
|
|
// follow, like an early Load stalled in cache). Requires multi-cpu
|
|
// visibility. Inserted after a FastLock.
|
|
class MemBarAcquireLockNode: public MemBarNode {
|
|
public:
|
|
MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
// "Release" - no earlier ref can move after (but later refs can move
|
|
// up, like a speculative pipelined cache-hitting Load). Requires
|
|
// multi-cpu visibility. Inserted before a FastUnLock.
|
|
class MemBarReleaseLockNode: public MemBarNode {
|
|
public:
|
|
MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
class MemBarStoreStoreNode: public MemBarNode {
|
|
public:
|
|
MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {
|
|
init_class_id(Class_MemBarStoreStore);
|
|
}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
// Ordering between a volatile store and a following volatile load.
|
|
// Requires multi-CPU visibility?
|
|
class MemBarVolatileNode: public MemBarNode {
|
|
public:
|
|
MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
// Ordering within the same CPU. Used to order unsafe memory references
|
|
// inside the compiler when we lack alias info. Not needed "outside" the
|
|
// compiler because the CPU does all the ordering for us.
|
|
class MemBarCPUOrderNode: public MemBarNode {
|
|
public:
|
|
MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return 0; } // not matched in the AD file
|
|
};
|
|
|
|
class OnSpinWaitNode: public MemBarNode {
|
|
public:
|
|
OnSpinWaitNode(Compile* C, int alias_idx, Node* precedent)
|
|
: MemBarNode(C, alias_idx, precedent) {}
|
|
virtual int Opcode() const;
|
|
};
|
|
|
|
// Isolation of object setup after an AllocateNode and before next safepoint.
|
|
// (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
|
|
class InitializeNode: public MemBarNode {
|
|
friend class AllocateNode;
|
|
|
|
enum {
|
|
Incomplete = 0,
|
|
Complete = 1,
|
|
WithArraycopy = 2
|
|
};
|
|
int _is_complete;
|
|
|
|
bool _does_not_escape;
|
|
|
|
public:
|
|
enum {
|
|
Control = TypeFunc::Control,
|
|
Memory = TypeFunc::Memory, // MergeMem for states affected by this op
|
|
RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
|
|
RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
|
|
};
|
|
|
|
InitializeNode(Compile* C, int adr_type, Node* rawoop);
|
|
virtual int Opcode() const;
|
|
virtual uint size_of() const { return sizeof(*this); }
|
|
virtual uint ideal_reg() const { return 0; } // not matched in the AD file
|
|
virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
|
|
|
|
// Manage incoming memory edges via a MergeMem on in(Memory):
|
|
Node* memory(uint alias_idx);
|
|
|
|
// The raw memory edge coming directly from the Allocation.
|
|
// The contents of this memory are *always* all-zero-bits.
|
|
Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
|
|
|
|
// Return the corresponding allocation for this initialization (or null if none).
|
|
// (Note: Both InitializeNode::allocation and AllocateNode::initialization
|
|
// are defined in graphKit.cpp, which sets up the bidirectional relation.)
|
|
AllocateNode* allocation();
|
|
|
|
// Anything other than zeroing in this init?
|
|
bool is_non_zero();
|
|
|
|
// An InitializeNode must completed before macro expansion is done.
|
|
// Completion requires that the AllocateNode must be followed by
|
|
// initialization of the new memory to zero, then to any initializers.
|
|
bool is_complete() { return _is_complete != Incomplete; }
|
|
bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
|
|
|
|
// Mark complete. (Must not yet be complete.)
|
|
void set_complete(PhaseGVN* phase);
|
|
void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
|
|
|
|
bool does_not_escape() { return _does_not_escape; }
|
|
void set_does_not_escape() { _does_not_escape = true; }
|
|
|
|
#ifdef ASSERT
|
|
// ensure all non-degenerate stores are ordered and non-overlapping
|
|
bool stores_are_sane(PhaseTransform* phase);
|
|
#endif //ASSERT
|
|
|
|
// See if this store can be captured; return offset where it initializes.
|
|
// Return 0 if the store cannot be moved (any sort of problem).
|
|
intptr_t can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape);
|
|
|
|
// Capture another store; reformat it to write my internal raw memory.
|
|
// Return the captured copy, else NULL if there is some sort of problem.
|
|
Node* capture_store(StoreNode* st, intptr_t start, PhaseGVN* phase, bool can_reshape);
|
|
|
|
// Find captured store which corresponds to the range [start..start+size).
|
|
// Return my own memory projection (meaning the initial zero bits)
|
|
// if there is no such store. Return NULL if there is a problem.
|
|
Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
|
|
|
|
// Called when the associated AllocateNode is expanded into CFG.
|
|
Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
|
|
intptr_t header_size, Node* size_in_bytes,
|
|
PhaseIterGVN* phase);
|
|
|
|
private:
|
|
void remove_extra_zeroes();
|
|
|
|
// Find out where a captured store should be placed (or already is placed).
|
|
int captured_store_insertion_point(intptr_t start, int size_in_bytes,
|
|
PhaseTransform* phase);
|
|
|
|
static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
|
|
|
|
Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
|
|
|
|
bool detect_init_independence(Node* value, PhaseGVN* phase);
|
|
|
|
void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
|
|
PhaseGVN* phase);
|
|
|
|
intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
|
|
};
|
|
|
|
//------------------------------MergeMem---------------------------------------
|
|
// (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
|
|
class MergeMemNode: public Node {
|
|
virtual uint hash() const ; // { return NO_HASH; }
|
|
virtual bool cmp( const Node &n ) const ; // Always fail, except on self
|
|
friend class MergeMemStream;
|
|
MergeMemNode(Node* def); // clients use MergeMemNode::make
|
|
|
|
public:
|
|
// If the input is a whole memory state, clone it with all its slices intact.
|
|
// Otherwise, make a new memory state with just that base memory input.
|
|
// In either case, the result is a newly created MergeMem.
|
|
static MergeMemNode* make(Node* base_memory);
|
|
|
|
virtual int Opcode() const;
|
|
virtual Node* Identity(PhaseGVN* phase);
|
|
virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
|
|
virtual uint ideal_reg() const { return NotAMachineReg; }
|
|
virtual uint match_edge(uint idx) const { return 0; }
|
|
virtual const RegMask &out_RegMask() const;
|
|
virtual const Type *bottom_type() const { return Type::MEMORY; }
|
|
virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
|
|
// sparse accessors
|
|
// Fetch the previously stored "set_memory_at", or else the base memory.
|
|
// (Caller should clone it if it is a phi-nest.)
|
|
Node* memory_at(uint alias_idx) const;
|
|
// set the memory, regardless of its previous value
|
|
void set_memory_at(uint alias_idx, Node* n);
|
|
// the "base" is the memory that provides the non-finite support
|
|
Node* base_memory() const { return in(Compile::AliasIdxBot); }
|
|
// warning: setting the base can implicitly set any of the other slices too
|
|
void set_base_memory(Node* def);
|
|
// sentinel value which denotes a copy of the base memory:
|
|
Node* empty_memory() const { return in(Compile::AliasIdxTop); }
|
|
static Node* make_empty_memory(); // where the sentinel comes from
|
|
bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
|
|
// hook for the iterator, to perform any necessary setup
|
|
void iteration_setup(const MergeMemNode* other = NULL);
|
|
// push sentinels until I am at least as long as the other (semantic no-op)
|
|
void grow_to_match(const MergeMemNode* other);
|
|
bool verify_sparse() const PRODUCT_RETURN0;
|
|
#ifndef PRODUCT
|
|
virtual void dump_spec(outputStream *st) const;
|
|
#endif
|
|
};
|
|
|
|
class MergeMemStream : public StackObj {
|
|
private:
|
|
MergeMemNode* _mm;
|
|
const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
|
|
Node* _mm_base; // loop-invariant base memory of _mm
|
|
int _idx;
|
|
int _cnt;
|
|
Node* _mem;
|
|
Node* _mem2;
|
|
int _cnt2;
|
|
|
|
void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
|
|
// subsume_node will break sparseness at times, whenever a memory slice
|
|
// folds down to a copy of the base ("fat") memory. In such a case,
|
|
// the raw edge will update to base, although it should be top.
|
|
// This iterator will recognize either top or base_memory as an
|
|
// "empty" slice. See is_empty, is_empty2, and next below.
|
|
//
|
|
// The sparseness property is repaired in MergeMemNode::Ideal.
|
|
// As long as access to a MergeMem goes through this iterator
|
|
// or the memory_at accessor, flaws in the sparseness will
|
|
// never be observed.
|
|
//
|
|
// Also, iteration_setup repairs sparseness.
|
|
assert(mm->verify_sparse(), "please, no dups of base");
|
|
assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
|
|
|
|
_mm = mm;
|
|
_mm_base = mm->base_memory();
|
|
_mm2 = mm2;
|
|
_cnt = mm->req();
|
|
_idx = Compile::AliasIdxBot-1; // start at the base memory
|
|
_mem = NULL;
|
|
_mem2 = NULL;
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
Node* check_memory() const {
|
|
if (at_base_memory())
|
|
return _mm->base_memory();
|
|
else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
|
|
return _mm->memory_at(_idx);
|
|
else
|
|
return _mm_base;
|
|
}
|
|
Node* check_memory2() const {
|
|
return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
|
|
}
|
|
#endif
|
|
|
|
static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
|
|
void assert_synch() const {
|
|
assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
|
|
"no side-effects except through the stream");
|
|
}
|
|
|
|
public:
|
|
|
|
// expected usages:
|
|
// for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
|
|
// for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
|
|
|
|
// iterate over one merge
|
|
MergeMemStream(MergeMemNode* mm) {
|
|
mm->iteration_setup();
|
|
init(mm);
|
|
debug_only(_cnt2 = 999);
|
|
}
|
|
// iterate in parallel over two merges
|
|
// only iterates through non-empty elements of mm2
|
|
MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
|
|
assert(mm2, "second argument must be a MergeMem also");
|
|
((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
|
|
mm->iteration_setup(mm2);
|
|
init(mm, mm2);
|
|
_cnt2 = mm2->req();
|
|
}
|
|
#ifdef ASSERT
|
|
~MergeMemStream() {
|
|
assert_synch();
|
|
}
|
|
#endif
|
|
|
|
MergeMemNode* all_memory() const {
|
|
return _mm;
|
|
}
|
|
Node* base_memory() const {
|
|
assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
|
|
return _mm_base;
|
|
}
|
|
const MergeMemNode* all_memory2() const {
|
|
assert(_mm2 != NULL, "");
|
|
return _mm2;
|
|
}
|
|
bool at_base_memory() const {
|
|
return _idx == Compile::AliasIdxBot;
|
|
}
|
|
int alias_idx() const {
|
|
assert(_mem, "must call next 1st");
|
|
return _idx;
|
|
}
|
|
|
|
const TypePtr* adr_type() const {
|
|
return Compile::current()->get_adr_type(alias_idx());
|
|
}
|
|
|
|
const TypePtr* adr_type(Compile* C) const {
|
|
return C->get_adr_type(alias_idx());
|
|
}
|
|
bool is_empty() const {
|
|
assert(_mem, "must call next 1st");
|
|
assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
|
|
return _mem->is_top();
|
|
}
|
|
bool is_empty2() const {
|
|
assert(_mem2, "must call next 1st");
|
|
assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
|
|
return _mem2->is_top();
|
|
}
|
|
Node* memory() const {
|
|
assert(!is_empty(), "must not be empty");
|
|
assert_synch();
|
|
return _mem;
|
|
}
|
|
// get the current memory, regardless of empty or non-empty status
|
|
Node* force_memory() const {
|
|
assert(!is_empty() || !at_base_memory(), "");
|
|
// Use _mm_base to defend against updates to _mem->base_memory().
|
|
Node *mem = _mem->is_top() ? _mm_base : _mem;
|
|
assert(mem == check_memory(), "");
|
|
return mem;
|
|
}
|
|
Node* memory2() const {
|
|
assert(_mem2 == check_memory2(), "");
|
|
return _mem2;
|
|
}
|
|
void set_memory(Node* mem) {
|
|
if (at_base_memory()) {
|
|
// Note that this does not change the invariant _mm_base.
|
|
_mm->set_base_memory(mem);
|
|
} else {
|
|
_mm->set_memory_at(_idx, mem);
|
|
}
|
|
_mem = mem;
|
|
assert_synch();
|
|
}
|
|
|
|
// Recover from a side effect to the MergeMemNode.
|
|
void set_memory() {
|
|
_mem = _mm->in(_idx);
|
|
}
|
|
|
|
bool next() { return next(false); }
|
|
bool next2() { return next(true); }
|
|
|
|
bool next_non_empty() { return next_non_empty(false); }
|
|
bool next_non_empty2() { return next_non_empty(true); }
|
|
// next_non_empty2 can yield states where is_empty() is true
|
|
|
|
private:
|
|
// find the next item, which might be empty
|
|
bool next(bool have_mm2) {
|
|
assert((_mm2 != NULL) == have_mm2, "use other next");
|
|
assert_synch();
|
|
if (++_idx < _cnt) {
|
|
// Note: This iterator allows _mm to be non-sparse.
|
|
// It behaves the same whether _mem is top or base_memory.
|
|
_mem = _mm->in(_idx);
|
|
if (have_mm2)
|
|
_mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// find the next non-empty item
|
|
bool next_non_empty(bool have_mm2) {
|
|
while (next(have_mm2)) {
|
|
if (!is_empty()) {
|
|
// make sure _mem2 is filled in sensibly
|
|
if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
|
|
return true;
|
|
} else if (have_mm2 && !is_empty2()) {
|
|
return true; // is_empty() == true
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// cachewb node for guaranteeing writeback of the cache line at a
|
|
// given address to (non-volatile) RAM
|
|
class CacheWBNode : public Node {
|
|
public:
|
|
CacheWBNode(Node *ctrl, Node *mem, Node *addr) : Node(ctrl, mem, addr) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return NotAMachineReg; }
|
|
virtual uint match_edge(uint idx) const { return (idx == 2); }
|
|
virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
|
|
virtual const Type *bottom_type() const { return Type::MEMORY; }
|
|
};
|
|
|
|
// cachewb pre sync node for ensuring that writebacks are serialised
|
|
// relative to preceding or following stores
|
|
class CacheWBPreSyncNode : public Node {
|
|
public:
|
|
CacheWBPreSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return NotAMachineReg; }
|
|
virtual uint match_edge(uint idx) const { return false; }
|
|
virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
|
|
virtual const Type *bottom_type() const { return Type::MEMORY; }
|
|
};
|
|
|
|
// cachewb pre sync node for ensuring that writebacks are serialised
|
|
// relative to preceding or following stores
|
|
class CacheWBPostSyncNode : public Node {
|
|
public:
|
|
CacheWBPostSyncNode(Node *ctrl, Node *mem) : Node(ctrl, mem) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return NotAMachineReg; }
|
|
virtual uint match_edge(uint idx) const { return false; }
|
|
virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
|
|
virtual const Type *bottom_type() const { return Type::MEMORY; }
|
|
};
|
|
|
|
//------------------------------Prefetch---------------------------------------
|
|
|
|
// Allocation prefetch which may fault, TLAB size have to be adjusted.
|
|
class PrefetchAllocationNode : public Node {
|
|
public:
|
|
PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
|
|
virtual int Opcode() const;
|
|
virtual uint ideal_reg() const { return NotAMachineReg; }
|
|
virtual uint match_edge(uint idx) const { return idx==2; }
|
|
virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
|
|
};
|
|
|
|
#endif // SHARE_OPTO_MEMNODE_HPP
|