jdk-24/src/hotspot/share/opto/vectorIntrinsics.cpp
2021-03-05 05:57:30 +00:00

1689 lines
69 KiB
C++

/*
* Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "ci/ciSymbols.hpp"
#include "classfile/vmSymbols.hpp"
#include "opto/library_call.hpp"
#include "opto/runtime.hpp"
#include "opto/vectornode.hpp"
#include "prims/vectorSupport.hpp"
#ifdef ASSERT
static bool is_vector(ciKlass* klass) {
return klass->is_subclass_of(ciEnv::current()->vector_VectorPayload_klass());
}
static bool check_vbox(const TypeInstPtr* vbox_type) {
assert(vbox_type->klass_is_exact(), "");
ciInstanceKlass* ik = vbox_type->klass()->as_instance_klass();
assert(is_vector(ik), "not a vector");
ciField* fd1 = ik->get_field_by_name(ciSymbols::ETYPE_name(), ciSymbols::class_signature(), /* is_static */ true);
assert(fd1 != NULL, "element type info is missing");
ciConstant val1 = fd1->constant_value();
BasicType elem_bt = val1.as_object()->as_instance()->java_mirror_type()->basic_type();
assert(is_java_primitive(elem_bt), "element type info is missing");
ciField* fd2 = ik->get_field_by_name(ciSymbols::VLENGTH_name(), ciSymbols::int_signature(), /* is_static */ true);
assert(fd2 != NULL, "vector length info is missing");
ciConstant val2 = fd2->constant_value();
assert(val2.as_int() > 0, "vector length info is missing");
return true;
}
#endif
Node* GraphKit::box_vector(Node* vector, const TypeInstPtr* vbox_type, BasicType elem_bt, int num_elem, bool deoptimize_on_exception) {
assert(EnableVectorSupport, "");
PreserveReexecuteState preexecs(this);
jvms()->set_should_reexecute(true);
VectorBoxAllocateNode* alloc = new VectorBoxAllocateNode(C, vbox_type);
set_edges_for_java_call(alloc, /*must_throw=*/false, /*separate_io_proj=*/true);
make_slow_call_ex(alloc, env()->Throwable_klass(), /*separate_io_proj=*/true, deoptimize_on_exception);
set_i_o(gvn().transform( new ProjNode(alloc, TypeFunc::I_O) ));
set_all_memory(gvn().transform( new ProjNode(alloc, TypeFunc::Memory) ));
Node* ret = gvn().transform(new ProjNode(alloc, TypeFunc::Parms));
assert(check_vbox(vbox_type), "");
const TypeVect* vt = TypeVect::make(elem_bt, num_elem);
VectorBoxNode* vbox = new VectorBoxNode(C, ret, vector, vbox_type, vt);
return gvn().transform(vbox);
}
Node* GraphKit::unbox_vector(Node* v, const TypeInstPtr* vbox_type, BasicType elem_bt, int num_elem, bool shuffle_to_vector) {
assert(EnableVectorSupport, "");
const TypeInstPtr* vbox_type_v = gvn().type(v)->is_instptr();
if (vbox_type->klass() != vbox_type_v->klass()) {
return NULL; // arguments don't agree on vector shapes
}
if (vbox_type_v->maybe_null()) {
return NULL; // no nulls are allowed
}
assert(check_vbox(vbox_type), "");
const TypeVect* vt = TypeVect::make(elem_bt, num_elem);
Node* unbox = gvn().transform(new VectorUnboxNode(C, vt, v, merged_memory(), shuffle_to_vector));
return unbox;
}
Node* GraphKit::vector_shift_count(Node* cnt, int shift_op, BasicType bt, int num_elem) {
assert(bt == T_INT || bt == T_LONG || bt == T_SHORT || bt == T_BYTE, "byte, short, long and int are supported");
juint mask = (type2aelembytes(bt) * BitsPerByte - 1);
Node* nmask = gvn().transform(ConNode::make(TypeInt::make(mask)));
Node* mcnt = gvn().transform(new AndINode(cnt, nmask));
return gvn().transform(VectorNode::shift_count(shift_op, mcnt, num_elem, bt));
}
bool LibraryCallKit::arch_supports_vector(int sopc, int num_elem, BasicType type, VectorMaskUseType mask_use_type, bool has_scalar_args) {
// Check that the operation is valid.
if (sopc <= 0) {
#ifndef PRODUCT
if (C->print_intrinsics()) {
tty->print_cr(" ** Rejected intrinsification because no valid vector op could be extracted");
}
#endif
return false;
}
// Check that architecture supports this op-size-type combination.
if (!Matcher::match_rule_supported_vector(sopc, num_elem, type)) {
#ifndef PRODUCT
if (C->print_intrinsics()) {
tty->print_cr(" ** Rejected vector op (%s,%s,%d) because architecture does not support it",
NodeClassNames[sopc], type2name(type), num_elem);
}
#endif
return false;
} else {
assert(Matcher::match_rule_supported(sopc), "must be supported");
}
if (!has_scalar_args && VectorNode::is_vector_shift(sopc) &&
Matcher::supports_vector_variable_shifts() == false) {
if (C->print_intrinsics()) {
tty->print_cr(" ** Rejected vector op (%s,%s,%d) because architecture does not support variable vector shifts",
NodeClassNames[sopc], type2name(type), num_elem);
}
return false;
}
// Check whether mask unboxing is supported.
if (mask_use_type == VecMaskUseAll || mask_use_type == VecMaskUseLoad) {
if (!Matcher::match_rule_supported_vector(Op_VectorLoadMask, num_elem, type)) {
#ifndef PRODUCT
if (C->print_intrinsics()) {
tty->print_cr(" ** Rejected vector mask loading (%s,%s,%d) because architecture does not support it",
NodeClassNames[Op_VectorLoadMask], type2name(type), num_elem);
}
#endif
return false;
}
}
// Check whether mask boxing is supported.
if (mask_use_type == VecMaskUseAll || mask_use_type == VecMaskUseStore) {
if (!Matcher::match_rule_supported_vector(Op_VectorStoreMask, num_elem, type)) {
#ifndef PRODUCT
if (C->print_intrinsics()) {
tty->print_cr("Rejected vector mask storing (%s,%s,%d) because architecture does not support it",
NodeClassNames[Op_VectorStoreMask], type2name(type), num_elem);
}
#endif
return false;
}
}
return true;
}
static bool is_vector_mask(ciKlass* klass) {
return klass->is_subclass_of(ciEnv::current()->vector_VectorMask_klass());
}
static bool is_vector_shuffle(ciKlass* klass) {
return klass->is_subclass_of(ciEnv::current()->vector_VectorShuffle_klass());
}
static bool is_klass_initialized(const TypeInstPtr* vec_klass) {
if (vec_klass->const_oop() == NULL) {
return false; // uninitialized or some kind of unsafe access
}
assert(vec_klass->const_oop()->as_instance()->java_lang_Class_klass() != NULL, "klass instance expected");
ciInstanceKlass* klass = vec_klass->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
return klass->is_initialized();
}
// public static
// <VM>
// VM unaryOp(int oprId, Class<? extends VM> vmClass, Class<?> elementType, int length,
// VM vm,
// Function<VM, VM> defaultImpl) {
//
// public static
// <VM>
// VM binaryOp(int oprId, Class<? extends VM> vmClass, Class<?> elementType, int length,
// VM vm1, VM vm2,
// BiFunction<VM, VM, VM> defaultImpl) {
//
// public static
// <VM>
// VM ternaryOp(int oprId, Class<? extends VM> vmClass, Class<?> elementType, int length,
// VM vm1, VM vm2, VM vm3,
// TernaryOperation<VM> defaultImpl) {
//
bool LibraryCallKit::inline_vector_nary_operation(int n) {
const TypeInt* opr = gvn().type(argument(0))->isa_int();
const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(3))->isa_int();
if (opr == NULL || vector_klass == NULL || elem_klass == NULL || vlen == NULL ||
!opr->is_con() || vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()]);
}
return false; // not enough info for intrinsification
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
if (!is_klass_initialized(vector_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt);
int sopc = VectorNode::opcode(opc, elem_bt);
if (sopc == 0) {
if (C->print_intrinsics()) {
tty->print_cr(" ** operation not supported: opc=%s bt=%s", NodeClassNames[opc], type2name(elem_bt));
}
return false; // operation not supported
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
// TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad.
if (!arch_supports_vector(sopc, num_elem, elem_bt, is_vector_mask(vbox_klass) ? VecMaskUseAll : VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=%d opc=%d vlen=%d etype=%s ismask=%d",
n, sopc, num_elem, type2name(elem_bt),
is_vector_mask(vbox_klass) ? 1 : 0);
}
return false; // not supported
}
Node* opd1 = NULL; Node* opd2 = NULL; Node* opd3 = NULL;
switch (n) {
case 3: {
opd3 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem);
if (opd3 == NULL) {
if (C->print_intrinsics()) {
tty->print_cr(" ** unbox failed v3=%s",
NodeClassNames[argument(6)->Opcode()]);
}
return false;
}
// fall-through
}
case 2: {
opd2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem);
if (opd2 == NULL) {
if (C->print_intrinsics()) {
tty->print_cr(" ** unbox failed v2=%s",
NodeClassNames[argument(5)->Opcode()]);
}
return false;
}
// fall-through
}
case 1: {
opd1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
if (opd1 == NULL) {
if (C->print_intrinsics()) {
tty->print_cr(" ** unbox failed v1=%s",
NodeClassNames[argument(4)->Opcode()]);
}
return false;
}
break;
}
default: fatal("unsupported arity: %d", n);
}
Node* operation = NULL;
const TypeVect* vt = TypeVect::make(elem_bt, num_elem);
switch (n) {
case 1:
case 2: {
operation = gvn().transform(VectorNode::make(sopc, opd1, opd2, vt));
break;
}
case 3: {
operation = gvn().transform(VectorNode::make(sopc, opd1, opd2, opd3, vt));
break;
}
default: fatal("unsupported arity: %d", n);
}
// Wrap it up in VectorBox to keep object type information.
Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem);
set_result(vbox);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// <Sh extends VectorShuffle<E>, E>
// Sh ShuffleIota(Class<?> E, Class<?> ShuffleClass, Vector.Species<E> s, int length,
// int start, int step, int wrap, ShuffleIotaOperation<Sh, E> defaultImpl)
bool LibraryCallKit::inline_vector_shuffle_iota() {
const TypeInstPtr* shuffle_klass = gvn().type(argument(1))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(3))->isa_int();
const TypeInt* start_val = gvn().type(argument(4))->isa_int();
const TypeInt* step_val = gvn().type(argument(5))->isa_int();
const TypeInt* wrap = gvn().type(argument(6))->isa_int();
Node* start = argument(4);
Node* step = argument(5);
if (shuffle_klass == NULL || vlen == NULL || start_val == NULL || step_val == NULL || wrap == NULL) {
return false; // dead code
}
if (!vlen->is_con() || !is_power_of_2(vlen->get_con()) ||
shuffle_klass->const_oop() == NULL || !wrap->is_con()) {
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(shuffle_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
int do_wrap = wrap->get_con();
int num_elem = vlen->get_con();
BasicType elem_bt = T_BYTE;
if (num_elem < 4)
return false;
if (!arch_supports_vector(VectorNode::replicate_opcode(elem_bt), num_elem, elem_bt, VecMaskNotUsed)) {
return false;
}
if (!arch_supports_vector(Op_AddVB, num_elem, elem_bt, VecMaskNotUsed)) {
return false;
}
if (!arch_supports_vector(Op_AndV, num_elem, elem_bt, VecMaskNotUsed)) {
return false;
}
if (!arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) {
return false;
}
if (!arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUseStore)) {
return false;
}
const Type * type_bt = Type::get_const_basic_type(elem_bt);
const TypeVect * vt = TypeVect::make(type_bt, num_elem);
Node* res = gvn().transform(new VectorLoadConstNode(gvn().makecon(TypeInt::ZERO), vt));
if(!step_val->is_con() || !is_power_of_2(step_val->get_con())) {
Node* bcast_step = gvn().transform(VectorNode::scalar2vector(step, num_elem, type_bt));
res = gvn().transform(VectorNode::make(Op_MulI, res, bcast_step, num_elem, elem_bt));
} else if (step_val->get_con() > 1) {
Node* cnt = gvn().makecon(TypeInt::make(log2i_exact(step_val->get_con())));
res = gvn().transform(VectorNode::make(Op_LShiftVB, res, cnt, vt));
}
if (!start_val->is_con() || start_val->get_con() != 0) {
Node* bcast_start = gvn().transform(VectorNode::scalar2vector(start, num_elem, type_bt));
res = gvn().transform(VectorNode::make(Op_AddI, res, bcast_start, num_elem, elem_bt));
}
Node * mod_val = gvn().makecon(TypeInt::make(num_elem-1));
Node * bcast_mod = gvn().transform(VectorNode::scalar2vector(mod_val, num_elem, type_bt));
if(do_wrap) {
// Wrap the indices greater than lane count.
res = gvn().transform(VectorNode::make(Op_AndI, res, bcast_mod, num_elem, elem_bt));
} else {
ConINode* pred_node = (ConINode*)gvn().makecon(TypeInt::make(1));
Node * lane_cnt = gvn().makecon(TypeInt::make(num_elem));
Node * bcast_lane_cnt = gvn().transform(VectorNode::scalar2vector(lane_cnt, num_elem, type_bt));
Node* mask = gvn().transform(new VectorMaskCmpNode(BoolTest::ge, bcast_lane_cnt, res, pred_node, vt));
// Make the indices greater than lane count as -ve values. This matches the java side implementation.
res = gvn().transform(VectorNode::make(Op_AndI, res, bcast_mod, num_elem, elem_bt));
Node * biased_val = gvn().transform(VectorNode::make(Op_SubI, res, bcast_lane_cnt, num_elem, elem_bt));
res = gvn().transform(new VectorBlendNode(biased_val, res, mask));
}
ciKlass* sbox_klass = shuffle_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* shuffle_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, sbox_klass);
// Wrap it up in VectorBox to keep object type information.
res = box_vector(res, shuffle_box_type, elem_bt, num_elem);
set_result(res);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// <VM ,Sh extends VectorShuffle<E>, E>
// VM shuffleToVector(Class<VM> VecClass, Class<?>E , Class<?> ShuffleClass, Sh s, int length,
// ShuffleToVectorOperation<VM,Sh,E> defaultImpl)
bool LibraryCallKit::inline_vector_shuffle_to_vector() {
const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* shuffle_klass = gvn().type(argument(2))->isa_instptr();
Node* shuffle = argument(3);
const TypeInt* vlen = gvn().type(argument(4))->isa_int();
if (vector_klass == NULL || elem_klass == NULL || shuffle_klass == NULL || shuffle->is_top() || vlen == NULL) {
return false; // dead code
}
if (!vlen->is_con() || vector_klass->const_oop() == NULL || shuffle_klass->const_oop() == NULL) {
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(shuffle_klass) || !is_klass_initialized(vector_klass) ) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
int num_elem = vlen->get_con();
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
BasicType elem_bt = elem_type->basic_type();
if (num_elem < 4) {
return false;
}
int cast_vopc = VectorCastNode::opcode(T_BYTE); // from shuffle of type T_BYTE
// Make sure that cast is implemented to particular type/size combination.
if (!arch_supports_vector(cast_vopc, num_elem, elem_bt, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=cast#%d/3 vlen2=%d etype2=%s",
cast_vopc, num_elem, type2name(elem_bt));
}
return false;
}
ciKlass* sbox_klass = shuffle_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* shuffle_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, sbox_klass);
// Unbox shuffle with true flag to indicate its load shuffle to vector
Node* shuffle_vec = unbox_vector(shuffle, shuffle_box_type, elem_bt, num_elem, true);
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vec_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
// Box vector
Node* res = box_vector(shuffle_vec, vec_box_type, elem_bt, num_elem);
set_result(res);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// <V extends Vector<?,?>>
// V broadcastCoerced(Class<?> vectorClass, Class<?> elementType, int vlen,
// long bits,
// LongFunction<V> defaultImpl)
bool LibraryCallKit::inline_vector_broadcast_coerced() {
const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(2))->isa_int();
if (vector_klass == NULL || elem_klass == NULL || vlen == NULL ||
vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
// TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad.
if (!arch_supports_vector(VectorNode::replicate_opcode(elem_bt), num_elem, elem_bt,
(is_vector_mask(vbox_klass) ? VecMaskUseStore : VecMaskNotUsed), true /*has_scalar_args*/)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=0 op=broadcast vlen=%d etype=%s ismask=%d",
num_elem, type2name(elem_bt),
is_vector_mask(vbox_klass) ? 1 : 0);
}
return false; // not supported
}
Node* bits = argument(3); // long
Node* elem = NULL;
switch (elem_bt) {
case T_BOOLEAN: // fall-through
case T_BYTE: // fall-through
case T_SHORT: // fall-through
case T_CHAR: // fall-through
case T_INT: {
elem = gvn().transform(new ConvL2INode(bits));
break;
}
case T_DOUBLE: {
elem = gvn().transform(new MoveL2DNode(bits));
break;
}
case T_FLOAT: {
bits = gvn().transform(new ConvL2INode(bits));
elem = gvn().transform(new MoveI2FNode(bits));
break;
}
case T_LONG: {
elem = bits; // no conversion needed
break;
}
default: fatal("%s", type2name(elem_bt));
}
Node* broadcast = VectorNode::scalar2vector(elem, num_elem, Type::get_const_basic_type(elem_bt));
broadcast = gvn().transform(broadcast);
Node* box = box_vector(broadcast, vbox_type, elem_bt, num_elem);
set_result(box);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// <C, V extends Vector<?,?>>
// V load(Class<?> vectorClass, Class<?> elementType, int vlen,
// Object base, long offset,
// /* Vector.Mask<E,S> m*/
// Object container, int index,
// LoadOperation<C, VM> defaultImpl) {
//
// <C, V extends Vector<?,?>>
// void store(Class<?> vectorClass, Class<?> elementType, int vlen,
// Object base, long offset,
// V v, /*Vector.Mask<E,S> m*/
// Object container, int index,
// StoreVectorOperation<C, V> defaultImpl) {
bool LibraryCallKit::inline_vector_mem_operation(bool is_store) {
const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(2))->isa_int();
if (vector_klass == NULL || elem_klass == NULL || vlen == NULL ||
vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
// TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad.
if (!arch_supports_vector(is_store ? Op_StoreVector : Op_LoadVector, num_elem, elem_bt, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s ismask=no",
is_store, is_store ? "store" : "load",
num_elem, type2name(elem_bt));
}
return false; // not supported
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
bool is_mask = is_vector_mask(vbox_klass);
Node* base = argument(3);
Node* offset = ConvL2X(argument(4));
DecoratorSet decorators = C2_UNSAFE_ACCESS;
// Save state and restore on bailout
uint old_sp = sp();
SafePointNode* old_map = clone_map();
Node* addr = make_unsafe_address(base, offset, decorators, (is_mask ? T_BOOLEAN : elem_bt), true);
// Can base be NULL? Otherwise, always on-heap access.
bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(gvn().type(base));
const TypePtr *addr_type = gvn().type(addr)->isa_ptr();
const TypeAryPtr* arr_type = addr_type->isa_aryptr();
// Now handle special case where load/store happens from/to byte array but element type is not byte.
bool using_byte_array = arr_type != NULL && arr_type->elem()->array_element_basic_type() == T_BYTE && elem_bt != T_BYTE;
// Handle loading masks.
// If there is no consistency between array and vector element types, it must be special byte array case or loading masks
if (arr_type != NULL && !using_byte_array && elem_bt != arr_type->elem()->array_element_basic_type() && !is_mask) {
set_map(old_map);
set_sp(old_sp);
return false;
}
// Since we are using byte array, we need to double check that the byte operations are supported by backend.
if (using_byte_array) {
int byte_num_elem = num_elem * type2aelembytes(elem_bt);
if (!arch_supports_vector(is_store ? Op_StoreVector : Op_LoadVector, byte_num_elem, T_BYTE, VecMaskNotUsed)
|| !arch_supports_vector(Op_VectorReinterpret, byte_num_elem, T_BYTE, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d*8 etype=%s/8 ismask=no",
is_store, is_store ? "store" : "load",
byte_num_elem, type2name(elem_bt));
}
set_map(old_map);
set_sp(old_sp);
return false; // not supported
}
}
if (is_mask) {
if (!arch_supports_vector(Op_LoadVector, num_elem, T_BOOLEAN, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=%d op=%s/mask vlen=%d etype=bit ismask=no",
is_store, is_store ? "store" : "load",
num_elem);
}
set_map(old_map);
set_sp(old_sp);
return false; // not supported
}
if (!is_store) {
if (!arch_supports_vector(Op_LoadVector, num_elem, elem_bt, VecMaskUseLoad)) {
set_map(old_map);
set_sp(old_sp);
return false; // not supported
}
} else {
if (!arch_supports_vector(Op_StoreVector, num_elem, elem_bt, VecMaskUseStore)) {
set_map(old_map);
set_sp(old_sp);
return false; // not supported
}
}
}
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
if (can_access_non_heap) {
insert_mem_bar(Op_MemBarCPUOrder);
}
if (is_store) {
Node* val = unbox_vector(argument(6), vbox_type, elem_bt, num_elem);
if (val == NULL) {
set_map(old_map);
set_sp(old_sp);
return false; // operand unboxing failed
}
set_all_memory(reset_memory());
// In case the store needs to happen to byte array, reinterpret the incoming vector to byte vector.
int store_num_elem = num_elem;
if (using_byte_array) {
store_num_elem = num_elem * type2aelembytes(elem_bt);
const TypeVect* to_vect_type = TypeVect::make(T_BYTE, store_num_elem);
val = gvn().transform(new VectorReinterpretNode(val, val->bottom_type()->is_vect(), to_vect_type));
}
Node* vstore = gvn().transform(StoreVectorNode::make(0, control(), memory(addr), addr, addr_type, val, store_num_elem));
set_memory(vstore, addr_type);
} else {
// When using byte array, we need to load as byte then reinterpret the value. Otherwise, do a simple vector load.
Node* vload = NULL;
if (using_byte_array) {
int load_num_elem = num_elem * type2aelembytes(elem_bt);
vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, load_num_elem, T_BYTE));
const TypeVect* to_vect_type = TypeVect::make(elem_bt, num_elem);
vload = gvn().transform(new VectorReinterpretNode(vload, vload->bottom_type()->is_vect(), to_vect_type));
} else {
// Special handle for masks
if (is_mask) {
vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, num_elem, T_BOOLEAN));
const TypeVect* to_vect_type = TypeVect::make(elem_bt, num_elem);
vload = gvn().transform(new VectorLoadMaskNode(vload, to_vect_type));
} else {
vload = gvn().transform(LoadVectorNode::make(0, control(), memory(addr), addr, addr_type, num_elem, elem_bt));
}
}
Node* box = box_vector(vload, vbox_type, elem_bt, num_elem);
set_result(box);
}
old_map->destruct(&_gvn);
if (can_access_non_heap) {
insert_mem_bar(Op_MemBarCPUOrder);
}
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// <C, V extends Vector<?>, W extends IntVector, E, S extends VectorSpecies<E>>
// void loadWithMap(Class<?> vectorClass, Class<E> E, int length, Class<?> vectorIndexClass,
// Object base, long offset, // Unsafe addressing
// W index_vector,
// C container, int index, int[] indexMap, int indexM, S s, // Arguments for default implementation
// LoadVectorOperationWithMap<C, V, E, S> defaultImpl)
//
// <C, V extends Vector<?>, W extends IntVector>
// void storeWithMap(Class<?> vectorClass, Class<?> elementType, int length, Class<?> vectorIndexClass,
// Object base, long offset, // Unsafe addressing
// W index_vector, V v,
// C container, int index, int[] indexMap, int indexM, // Arguments for default implementation
// StoreVectorOperationWithMap<C, V> defaultImpl) {
//
bool LibraryCallKit::inline_vector_gather_scatter(bool is_scatter) {
const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(2))->isa_int();
const TypeInstPtr* vector_idx_klass = gvn().type(argument(3))->isa_instptr();
if (vector_klass == NULL || elem_klass == NULL || vector_idx_klass == NULL || vlen == NULL ||
vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || vector_idx_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s viclass=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass) || !is_klass_initialized(vector_idx_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
if (!arch_supports_vector(is_scatter ? Op_StoreVectorScatter : Op_LoadVectorGather, num_elem, elem_bt, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=%d op=%s vlen=%d etype=%s ismask=no",
is_scatter, is_scatter ? "scatter" : "gather",
num_elem, type2name(elem_bt));
}
return false; // not supported
}
// Check that the vector holding indices is supported by architecture
if (!arch_supports_vector(Op_LoadVector, num_elem, T_INT, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=%d op=%s/loadindex vlen=%d etype=int ismask=no",
is_scatter, is_scatter ? "scatter" : "gather",
num_elem);
}
return false; // not supported
}
Node* base = argument(4);
Node* offset = ConvL2X(argument(5));
// Save state and restore on bailout
uint old_sp = sp();
SafePointNode* old_map = clone_map();
Node* addr = make_unsafe_address(base, offset, C2_UNSAFE_ACCESS, elem_bt, true);
const TypePtr *addr_type = gvn().type(addr)->isa_ptr();
const TypeAryPtr* arr_type = addr_type->isa_aryptr();
// The array must be consistent with vector type
if (arr_type == NULL || (arr_type != NULL && elem_bt != arr_type->elem()->array_element_basic_type())) {
set_map(old_map);
set_sp(old_sp);
return false;
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
ciKlass* vbox_idx_klass = vector_idx_klass->const_oop()->as_instance()->java_lang_Class_klass();
if (vbox_idx_klass == NULL) {
set_map(old_map);
set_sp(old_sp);
return false;
}
const TypeInstPtr* vbox_idx_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_idx_klass);
Node* index_vect = unbox_vector(argument(7), vbox_idx_type, T_INT, num_elem);
if (index_vect == NULL) {
set_map(old_map);
set_sp(old_sp);
return false;
}
const TypeVect* vector_type = TypeVect::make(elem_bt, num_elem);
if (is_scatter) {
Node* val = unbox_vector(argument(8), vbox_type, elem_bt, num_elem);
if (val == NULL) {
set_map(old_map);
set_sp(old_sp);
return false; // operand unboxing failed
}
set_all_memory(reset_memory());
Node* vstore = gvn().transform(new StoreVectorScatterNode(control(), memory(addr), addr, addr_type, val, index_vect));
set_memory(vstore, addr_type);
} else {
Node* vload = gvn().transform(new LoadVectorGatherNode(control(), memory(addr), addr, addr_type, vector_type, index_vect));
Node* box = box_vector(vload, vbox_type, elem_bt, num_elem);
set_result(box);
}
old_map->destruct(&_gvn);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// <V extends Vector<?,?>>
// long reductionCoerced(int oprId, Class<?> vectorClass, Class<?> elementType, int vlen,
// V v,
// Function<V,Long> defaultImpl)
bool LibraryCallKit::inline_vector_reduction() {
const TypeInt* opr = gvn().type(argument(0))->isa_int();
const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(3))->isa_int();
if (opr == NULL || vector_klass == NULL || elem_klass == NULL || vlen == NULL ||
!opr->is_con() || vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt);
int sopc = ReductionNode::opcode(opc, elem_bt);
// TODO When mask usage is supported, VecMaskNotUsed needs to be VecMaskUseLoad.
if (!arch_supports_vector(sopc, num_elem, elem_bt, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=%d/reduce vlen=%d etype=%s ismask=no",
sopc, num_elem, type2name(elem_bt));
}
return false;
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
Node* opd = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
if (opd == NULL) {
return false; // operand unboxing failed
}
Node* init = ReductionNode::make_reduction_input(gvn(), opc, elem_bt);
Node* rn = gvn().transform(ReductionNode::make(opc, NULL, init, opd, elem_bt));
Node* bits = NULL;
switch (elem_bt) {
case T_BYTE:
case T_SHORT:
case T_INT: {
bits = gvn().transform(new ConvI2LNode(rn));
break;
}
case T_FLOAT: {
rn = gvn().transform(new MoveF2INode(rn));
bits = gvn().transform(new ConvI2LNode(rn));
break;
}
case T_DOUBLE: {
bits = gvn().transform(new MoveD2LNode(rn));
break;
}
case T_LONG: {
bits = rn; // no conversion needed
break;
}
default: fatal("%s", type2name(elem_bt));
}
set_result(bits);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// public static <V> boolean test(int cond, Class<?> vectorClass, Class<?> elementType, int vlen,
// V v1, V v2,
// BiFunction<V, V, Boolean> defaultImpl) {
//
bool LibraryCallKit::inline_vector_test() {
const TypeInt* cond = gvn().type(argument(0))->isa_int();
const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(3))->isa_int();
if (cond == NULL || vector_klass == NULL || elem_klass == NULL || vlen == NULL ||
!cond->is_con() || vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: cond=%s vclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
BoolTest::mask booltest = (BoolTest::mask)cond->get_con();
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
if (!arch_supports_vector(Op_VectorTest, num_elem, elem_bt, is_vector_mask(vbox_klass) ? VecMaskUseLoad : VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=2 op=test/%d vlen=%d etype=%s ismask=%d",
cond->get_con(), num_elem, type2name(elem_bt),
is_vector_mask(vbox_klass));
}
return false;
}
Node* opd1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
Node* opd2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem);
if (opd1 == NULL || opd2 == NULL) {
return false; // operand unboxing failed
}
Node* test = new VectorTestNode(opd1, opd2, booltest);
test = gvn().transform(test);
set_result(test);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// public static
// <V extends Vector, M extends Mask>
// V blend(Class<V> vectorClass, Class<M> maskClass, Class<?> elementType, int vlen,
// V v1, V v2, M m,
// VectorBlendOp<V,M> defaultImpl) { ...
//
bool LibraryCallKit::inline_vector_blend() {
const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr();
const TypeInstPtr* mask_klass = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(3))->isa_int();
if (mask_klass == NULL || vector_klass == NULL || elem_klass == NULL || vlen == NULL) {
return false; // dead code
}
if (mask_klass->const_oop() == NULL || vector_klass->const_oop() == NULL ||
elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: vclass=%s mclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass) || !is_klass_initialized(mask_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
BasicType mask_bt = elem_bt;
int num_elem = vlen->get_con();
if (!arch_supports_vector(Op_VectorBlend, num_elem, elem_bt, VecMaskUseLoad)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=2 op=blend vlen=%d etype=%s ismask=useload",
num_elem, type2name(elem_bt));
}
return false; // not supported
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass);
Node* v1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
Node* v2 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem);
Node* mask = unbox_vector(argument(6), mbox_type, mask_bt, num_elem);
if (v1 == NULL || v2 == NULL || mask == NULL) {
return false; // operand unboxing failed
}
Node* blend = gvn().transform(new VectorBlendNode(v1, v2, mask));
Node* box = box_vector(blend, vbox_type, elem_bt, num_elem);
set_result(box);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// public static <V extends Vector<E,S>,
// M extends Vector.Mask<E,S>,
// S extends Vector.Shape, E>
// M compare(int cond, Class<V> vectorClass, Class<M> maskClass, Class<?> elementType, int vlen,
// V v1, V v2,
// VectorCompareOp<V,M> defaultImpl) { ...
//
bool LibraryCallKit::inline_vector_compare() {
const TypeInt* cond = gvn().type(argument(0))->isa_int();
const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* mask_klass = gvn().type(argument(2))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(3))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(4))->isa_int();
if (cond == NULL || vector_klass == NULL || mask_klass == NULL || elem_klass == NULL || vlen == NULL) {
return false; // dead code
}
if (!cond->is_con() || vector_klass->const_oop() == NULL || mask_klass->const_oop() == NULL ||
elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: cond=%s vclass=%s mclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()],
NodeClassNames[argument(4)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass) || !is_klass_initialized(mask_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
int num_elem = vlen->get_con();
BasicType elem_bt = elem_type->basic_type();
BasicType mask_bt = elem_bt;
if (!arch_supports_vector(Op_VectorMaskCmp, num_elem, elem_bt, VecMaskUseStore)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=2 op=comp/%d vlen=%d etype=%s ismask=usestore",
cond->get_con(), num_elem, type2name(elem_bt));
}
return false;
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
ciKlass* mbox_klass = mask_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* mbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, mbox_klass);
Node* v1 = unbox_vector(argument(5), vbox_type, elem_bt, num_elem);
Node* v2 = unbox_vector(argument(6), vbox_type, elem_bt, num_elem);
if (v1 == NULL || v2 == NULL) {
return false; // operand unboxing failed
}
BoolTest::mask pred = (BoolTest::mask)cond->get_con();
ConINode* pred_node = (ConINode*)gvn().makecon(cond);
const TypeVect* vt = TypeVect::make(mask_bt, num_elem);
Node* operation = gvn().transform(new VectorMaskCmpNode(pred, v1, v2, pred_node, vt));
Node* box = box_vector(operation, mbox_type, mask_bt, num_elem);
set_result(box);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// public static
// <V extends Vector, Sh extends Shuffle>
// V rearrangeOp(Class<V> vectorClass, Class<Sh> shuffleClass, Class< ? > elementType, int vlen,
// V v1, Sh sh,
// VectorSwizzleOp<V, Sh, S, E> defaultImpl) { ...
bool LibraryCallKit::inline_vector_rearrange() {
const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr();
const TypeInstPtr* shuffle_klass = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(3))->isa_int();
if (vector_klass == NULL || shuffle_klass == NULL || elem_klass == NULL || vlen == NULL) {
return false; // dead code
}
if (shuffle_klass->const_oop() == NULL || vector_klass->const_oop() == NULL ||
elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: vclass=%s sclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass) || !is_klass_initialized(shuffle_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
BasicType shuffle_bt = elem_bt;
int num_elem = vlen->get_con();
if (!arch_supports_vector(Op_VectorLoadShuffle, num_elem, elem_bt, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=0 op=load/shuffle vlen=%d etype=%s ismask=no",
num_elem, type2name(elem_bt));
}
return false; // not supported
}
if (!arch_supports_vector(Op_VectorRearrange, num_elem, elem_bt, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=2 op=shuffle/rearrange vlen=%d etype=%s ismask=no",
num_elem, type2name(elem_bt));
}
return false; // not supported
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
ciKlass* shbox_klass = shuffle_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* shbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, shbox_klass);
Node* v1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
Node* shuffle = unbox_vector(argument(5), shbox_type, shuffle_bt, num_elem);
if (v1 == NULL || shuffle == NULL) {
return false; // operand unboxing failed
}
Node* rearrange = gvn().transform(new VectorRearrangeNode(v1, shuffle));
Node* box = box_vector(rearrange, vbox_type, elem_bt, num_elem);
set_result(box);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// public static
// <V extends Vector<?,?>>
// V broadcastInt(int opr, Class<V> vectorClass, Class<?> elementType, int vlen,
// V v, int i,
// VectorBroadcastIntOp<V> defaultImpl) {
//
bool LibraryCallKit::inline_vector_broadcast_int() {
const TypeInt* opr = gvn().type(argument(0))->isa_int();
const TypeInstPtr* vector_klass = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(2))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(3))->isa_int();
if (opr == NULL || vector_klass == NULL || elem_klass == NULL || vlen == NULL) {
return false; // dead code
}
if (!opr->is_con() || vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: opr=%s vclass=%s etype=%s vlen=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
int opc = VectorSupport::vop2ideal(opr->get_con(), elem_bt);
if (opc == 0 || !VectorNode::is_shift_opcode(opc)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** operation not supported: op=%d bt=%s", opr->get_con(), type2name(elem_bt));
}
return false; // operation not supported
}
int sopc = VectorNode::opcode(opc, elem_bt);
if (sopc == 0) {
if (C->print_intrinsics()) {
tty->print_cr(" ** operation not supported: opc=%s bt=%s", NodeClassNames[opc], type2name(elem_bt));
}
return false; // operation not supported
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
if (!arch_supports_vector(sopc, num_elem, elem_bt, VecMaskNotUsed, true /*has_scalar_args*/)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=0 op=int/%d vlen=%d etype=%s ismask=no",
sopc, num_elem, type2name(elem_bt));
}
return false; // not supported
}
Node* opd1 = unbox_vector(argument(4), vbox_type, elem_bt, num_elem);
Node* opd2 = vector_shift_count(argument(5), opc, elem_bt, num_elem);
if (opd1 == NULL || opd2 == NULL) {
return false;
}
Node* operation = gvn().transform(VectorNode::make(opc, opd1, opd2, num_elem, elem_bt));
Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem);
set_result(vbox);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// public static <VOUT extends VectorPayload,
// VIN extends VectorPayload,
// S extends VectorSpecies>
// VOUT convert(int oprId,
// Class<?> fromVectorClass, Class<?> fromElementType, int fromVLen,
// Class<?> toVectorClass, Class<?> toElementType, int toVLen,
// VIN v, S s,
// VectorConvertOp<VOUT, VIN, S> defaultImpl) {
//
bool LibraryCallKit::inline_vector_convert() {
const TypeInt* opr = gvn().type(argument(0))->isa_int();
const TypeInstPtr* vector_klass_from = gvn().type(argument(1))->isa_instptr();
const TypeInstPtr* elem_klass_from = gvn().type(argument(2))->isa_instptr();
const TypeInt* vlen_from = gvn().type(argument(3))->isa_int();
const TypeInstPtr* vector_klass_to = gvn().type(argument(4))->isa_instptr();
const TypeInstPtr* elem_klass_to = gvn().type(argument(5))->isa_instptr();
const TypeInt* vlen_to = gvn().type(argument(6))->isa_int();
if (opr == NULL ||
vector_klass_from == NULL || elem_klass_from == NULL || vlen_from == NULL ||
vector_klass_to == NULL || elem_klass_to == NULL || vlen_to == NULL) {
return false; // dead code
}
if (!opr->is_con() ||
vector_klass_from->const_oop() == NULL || elem_klass_from->const_oop() == NULL || !vlen_from->is_con() ||
vector_klass_to->const_oop() == NULL || elem_klass_to->const_oop() == NULL || !vlen_to->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: opr=%s vclass_from=%s etype_from=%s vlen_from=%s vclass_to=%s etype_to=%s vlen_to=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(3)->Opcode()],
NodeClassNames[argument(4)->Opcode()],
NodeClassNames[argument(5)->Opcode()],
NodeClassNames[argument(6)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass_from) || !is_klass_initialized(vector_klass_to)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
assert(opr->get_con() == VectorSupport::VECTOR_OP_CAST ||
opr->get_con() == VectorSupport::VECTOR_OP_REINTERPRET, "wrong opcode");
bool is_cast = (opr->get_con() == VectorSupport::VECTOR_OP_CAST);
ciKlass* vbox_klass_from = vector_klass_from->const_oop()->as_instance()->java_lang_Class_klass();
ciKlass* vbox_klass_to = vector_klass_to->const_oop()->as_instance()->java_lang_Class_klass();
if (is_vector_shuffle(vbox_klass_from) || is_vector_shuffle(vbox_klass_to)) {
return false; // vector shuffles aren't supported
}
bool is_mask = is_vector_mask(vbox_klass_from);
ciType* elem_type_from = elem_klass_from->const_oop()->as_instance()->java_mirror_type();
if (!elem_type_from->is_primitive_type()) {
return false; // should be primitive type
}
BasicType elem_bt_from = elem_type_from->basic_type();
ciType* elem_type_to = elem_klass_to->const_oop()->as_instance()->java_mirror_type();
if (!elem_type_to->is_primitive_type()) {
return false; // should be primitive type
}
BasicType elem_bt_to = elem_type_to->basic_type();
if (is_mask && elem_bt_from != elem_bt_to) {
return false; // type mismatch
}
int num_elem_from = vlen_from->get_con();
int num_elem_to = vlen_to->get_con();
// Check whether we can unbox to appropriate size. Even with casting, checking for reinterpret is needed
// since we may need to change size.
if (!arch_supports_vector(Op_VectorReinterpret,
num_elem_from,
elem_bt_from,
is_mask ? VecMaskUseAll : VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=%s/1 vlen1=%d etype1=%s ismask=%d",
is_cast ? "cast" : "reinterpret",
num_elem_from, type2name(elem_bt_from), is_mask);
}
return false;
}
// Check whether we can support resizing/reinterpreting to the new size.
if (!arch_supports_vector(Op_VectorReinterpret,
num_elem_to,
elem_bt_to,
is_mask ? VecMaskUseAll : VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=%s/2 vlen2=%d etype2=%s ismask=%d",
is_cast ? "cast" : "reinterpret",
num_elem_to, type2name(elem_bt_to), is_mask);
}
return false;
}
// At this point, we know that both input and output vector registers are supported
// by the architecture. Next check if the casted type is simply to same type - which means
// that it is actually a resize and not a cast.
if (is_cast && elem_bt_from == elem_bt_to) {
is_cast = false;
}
const TypeInstPtr* vbox_type_from = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass_from);
Node* opd1 = unbox_vector(argument(7), vbox_type_from, elem_bt_from, num_elem_from);
if (opd1 == NULL) {
return false;
}
const TypeVect* src_type = TypeVect::make(elem_bt_from, num_elem_from);
const TypeVect* dst_type = TypeVect::make(elem_bt_to, num_elem_to);
Node* op = opd1;
if (is_cast) {
assert(!is_mask, "masks cannot be casted");
int cast_vopc = VectorCastNode::opcode(elem_bt_from);
// Make sure that cast is implemented to particular type/size combination.
if (!arch_supports_vector(cast_vopc, num_elem_to, elem_bt_to, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=cast#%d/3 vlen2=%d etype2=%s ismask=%d",
cast_vopc,
num_elem_to, type2name(elem_bt_to), is_mask);
}
return false;
}
if (num_elem_from < num_elem_to) {
// Since input and output number of elements are not consistent, we need to make sure we
// properly size. Thus, first make a cast that retains the number of elements from source.
// In case the size exceeds the arch size, we do the minimum.
int num_elem_for_cast = MIN2(num_elem_from, Matcher::max_vector_size(elem_bt_to));
// It is possible that arch does not support this intermediate vector size
// TODO More complex logic required here to handle this corner case for the sizes.
if (!arch_supports_vector(cast_vopc, num_elem_for_cast, elem_bt_to, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=cast#%d/4 vlen1=%d etype2=%s ismask=%d",
cast_vopc,
num_elem_for_cast, type2name(elem_bt_to), is_mask);
}
return false;
}
op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_for_cast));
// Now ensure that the destination gets properly resized to needed size.
op = gvn().transform(new VectorReinterpretNode(op, op->bottom_type()->is_vect(), dst_type));
} else if (num_elem_from > num_elem_to) {
// Since number elements from input is larger than output, simply reduce size of input (we are supposed to
// drop top elements anyway).
int num_elem_for_resize = MAX2(num_elem_to, Matcher::min_vector_size(elem_bt_from));
// It is possible that arch does not support this intermediate vector size
// TODO More complex logic required here to handle this corner case for the sizes.
if (!arch_supports_vector(Op_VectorReinterpret,
num_elem_for_resize,
elem_bt_from,
VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=cast/5 vlen2=%d etype1=%s ismask=%d",
num_elem_for_resize, type2name(elem_bt_from), is_mask);
}
return false;
}
op = gvn().transform(new VectorReinterpretNode(op,
src_type,
TypeVect::make(elem_bt_from,
num_elem_for_resize)));
op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_to));
} else {
// Since input and output number of elements match, and since we know this vector size is
// supported, simply do a cast with no resize needed.
op = gvn().transform(VectorCastNode::make(cast_vopc, op, elem_bt_to, num_elem_to));
}
} else if (Type::cmp(src_type, dst_type) != 0) {
assert(!is_cast, "must be reinterpret");
op = gvn().transform(new VectorReinterpretNode(op, src_type, dst_type));
}
const TypeInstPtr* vbox_type_to = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass_to);
Node* vbox = box_vector(op, vbox_type_to, elem_bt_to, num_elem_to);
set_result(vbox);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem_to * type2aelembytes(elem_bt_to))));
return true;
}
// public static
// <V extends Vector<?>>
// V insert(Class<? extends V> vectorClass, Class<?> elementType, int vlen,
// V vec, int ix, long val,
// VecInsertOp<V> defaultImpl) {
//
bool LibraryCallKit::inline_vector_insert() {
const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(2))->isa_int();
const TypeInt* idx = gvn().type(argument(4))->isa_int();
if (vector_klass == NULL || elem_klass == NULL || vlen == NULL || idx == NULL) {
return false; // dead code
}
if (vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con() || !idx->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s idx=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(4)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
if (!arch_supports_vector(Op_VectorInsert, num_elem, elem_bt, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=insert vlen=%d etype=%s ismask=no",
num_elem, type2name(elem_bt));
}
return false; // not supported
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem);
if (opd == NULL) {
return false;
}
Node* insert_val = argument(5);
assert(gvn().type(insert_val)->isa_long() != NULL, "expected to be long");
// Convert insert value back to its appropriate type.
switch (elem_bt) {
case T_BYTE:
insert_val = gvn().transform(new ConvL2INode(insert_val));
insert_val = gvn().transform(new CastIINode(insert_val, TypeInt::BYTE));
break;
case T_SHORT:
insert_val = gvn().transform(new ConvL2INode(insert_val));
insert_val = gvn().transform(new CastIINode(insert_val, TypeInt::SHORT));
break;
case T_INT:
insert_val = gvn().transform(new ConvL2INode(insert_val));
break;
case T_FLOAT:
insert_val = gvn().transform(new ConvL2INode(insert_val));
insert_val = gvn().transform(new MoveI2FNode(insert_val));
break;
case T_DOUBLE:
insert_val = gvn().transform(new MoveL2DNode(insert_val));
break;
case T_LONG:
// no conversion needed
break;
default: fatal("%s", type2name(elem_bt)); break;
}
Node* operation = gvn().transform(VectorInsertNode::make(opd, insert_val, idx->get_con()));
Node* vbox = box_vector(operation, vbox_type, elem_bt, num_elem);
set_result(vbox);
C->set_max_vector_size(MAX2(C->max_vector_size(), (uint)(num_elem * type2aelembytes(elem_bt))));
return true;
}
// public static
// <V extends Vector<?>>
// long extract(Class<?> vectorClass, Class<?> elementType, int vlen,
// V vec, int ix,
// VecExtractOp<V> defaultImpl) {
//
bool LibraryCallKit::inline_vector_extract() {
const TypeInstPtr* vector_klass = gvn().type(argument(0))->isa_instptr();
const TypeInstPtr* elem_klass = gvn().type(argument(1))->isa_instptr();
const TypeInt* vlen = gvn().type(argument(2))->isa_int();
const TypeInt* idx = gvn().type(argument(4))->isa_int();
if (vector_klass == NULL || elem_klass == NULL || vlen == NULL || idx == NULL) {
return false; // dead code
}
if (vector_klass->const_oop() == NULL || elem_klass->const_oop() == NULL || !vlen->is_con() || !idx->is_con()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** missing constant: vclass=%s etype=%s vlen=%s idx=%s",
NodeClassNames[argument(0)->Opcode()],
NodeClassNames[argument(1)->Opcode()],
NodeClassNames[argument(2)->Opcode()],
NodeClassNames[argument(4)->Opcode()]);
}
return false; // not enough info for intrinsification
}
if (!is_klass_initialized(vector_klass)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** klass argument not initialized");
}
return false;
}
ciType* elem_type = elem_klass->const_oop()->as_instance()->java_mirror_type();
if (!elem_type->is_primitive_type()) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not a primitive bt=%d", elem_type->basic_type());
}
return false; // should be primitive type
}
BasicType elem_bt = elem_type->basic_type();
int num_elem = vlen->get_con();
int vopc = ExtractNode::opcode(elem_bt);
if (!arch_supports_vector(vopc, num_elem, elem_bt, VecMaskNotUsed)) {
if (C->print_intrinsics()) {
tty->print_cr(" ** not supported: arity=1 op=extract vlen=%d etype=%s ismask=no",
num_elem, type2name(elem_bt));
}
return false; // not supported
}
ciKlass* vbox_klass = vector_klass->const_oop()->as_instance()->java_lang_Class_klass();
const TypeInstPtr* vbox_type = TypeInstPtr::make_exact(TypePtr::NotNull, vbox_klass);
Node* opd = unbox_vector(argument(3), vbox_type, elem_bt, num_elem);
if (opd == NULL) {
return false;
}
Node* operation = gvn().transform(ExtractNode::make(opd, idx->get_con(), elem_bt));
Node* bits = NULL;
switch (elem_bt) {
case T_BYTE:
case T_SHORT:
case T_INT: {
bits = gvn().transform(new ConvI2LNode(operation));
break;
}
case T_FLOAT: {
bits = gvn().transform(new MoveF2INode(operation));
bits = gvn().transform(new ConvI2LNode(bits));
break;
}
case T_DOUBLE: {
bits = gvn().transform(new MoveD2LNode(operation));
break;
}
case T_LONG: {
bits = operation; // no conversion needed
break;
}
default: fatal("%s", type2name(elem_bt));
}
set_result(bits);
return true;
}