Tobias Hartmann 7af927f9c1 8141132: JEP 254: Compact Strings
Adopt a more space-efficient internal representation for strings.

Co-authored-by: Brent Christian <brent.christian@oracle.com>
Co-authored-by: Vivek Deshpande <vivek.r.deshpande@intel.com>
Co-authored-by: Charlie Hunt <charlie.hunt@oracle.com>
Co-authored-by: Vladimir Kozlov <vladimir.kozlov@oracle.com>
Co-authored-by: Roger Riggs <roger.riggs@oracle.com>
Co-authored-by: Xueming Shen <xueming.shen@oracle.com>
Co-authored-by: Aleksey Shipilev <aleksey.shipilev@oracle.com>
Co-authored-by: Sandhya Viswanathan <sandhya.viswanathan@intel.com>
Reviewed-by: alanb, bdelsart, coleenp, iklam, jiangli, jrose, kevinw, naoto, pliden, roland, smarks, twisti
2015-11-03 09:41:03 +01:00

515 lines
15 KiB
C++

/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "utilities/utf8.hpp"
// Assume the utf8 string is in legal form and has been
// checked in the class file parser/format checker.
template<typename T> char* UTF8::next(const char* str, T* value) {
unsigned const char *ptr = (const unsigned char *)str;
unsigned char ch, ch2, ch3;
int length = -1; /* bad length */
jchar result;
switch ((ch = ptr[0]) >> 4) {
default:
result = ch;
length = 1;
break;
case 0x8: case 0x9: case 0xA: case 0xB: case 0xF:
/* Shouldn't happen. */
break;
case 0xC: case 0xD:
/* 110xxxxx 10xxxxxx */
if (((ch2 = ptr[1]) & 0xC0) == 0x80) {
unsigned char high_five = ch & 0x1F;
unsigned char low_six = ch2 & 0x3F;
result = (high_five << 6) + low_six;
length = 2;
break;
}
break;
case 0xE:
/* 1110xxxx 10xxxxxx 10xxxxxx */
if (((ch2 = ptr[1]) & 0xC0) == 0x80) {
if (((ch3 = ptr[2]) & 0xC0) == 0x80) {
unsigned char high_four = ch & 0x0f;
unsigned char mid_six = ch2 & 0x3f;
unsigned char low_six = ch3 & 0x3f;
result = (((high_four << 6) + mid_six) << 6) + low_six;
length = 3;
}
}
break;
} /* end of switch */
if (length <= 0) {
*value = (T)ptr[0]; /* default bad result; */
return (char*)(ptr + 1); // make progress somehow
}
*value = (T)result;
// The assert is correct but the .class file is wrong
// assert(UNICODE::utf8_size(result) == length, "checking reverse computation");
return (char *)(ptr + length);
}
char* UTF8::next_character(const char* str, jint* value) {
unsigned const char *ptr = (const unsigned char *)str;
/* See if it's legal supplementary character:
11101101 1010xxxx 10xxxxxx 11101101 1011xxxx 10xxxxxx */
if (is_supplementary_character(ptr)) {
*value = get_supplementary_character(ptr);
return (char *)(ptr + 6);
}
jchar result;
char* next_ch = next(str, &result);
*value = result;
return next_ch;
}
// Count bytes of the form 10xxxxxx and deduct this count
// from the total byte count. The utf8 string must be in
// legal form which has been verified in the format checker.
int UTF8::unicode_length(const char* str, int len, bool& is_latin1, bool& has_multibyte) {
int num_chars = len;
has_multibyte = false;
is_latin1 = true;
unsigned char prev = 0;
for (int i = 0; i < len; i++) {
unsigned char c = str[i];
if ((c & 0xC0) == 0x80) {
// Multibyte, check if valid latin1 character.
has_multibyte = true;
if (prev > 0xC3) {
is_latin1 = false;
}
--num_chars;
}
prev = c;
}
return num_chars;
}
// Count bytes of the utf8 string except those in form
// 10xxxxxx which only appear in multibyte characters.
// The utf8 string must be in legal form and has been
// verified in the format checker.
int UTF8::unicode_length(const char* str, bool& is_latin1, bool& has_multibyte) {
int num_chars = 0;
has_multibyte = false;
is_latin1 = true;
unsigned char prev = 0;
for (const char* p = str; *p; p++) {
unsigned char c = (*p);
if ((c & 0xC0) == 0x80) {
// Multibyte, check if valid latin1 character.
has_multibyte = true;
if (prev > 0xC3) {
is_latin1 = false;
}
} else {
num_chars++;
}
prev = c;
}
return num_chars;
}
// Writes a jchar as utf8 and returns the end
static u_char* utf8_write(u_char* base, jchar ch) {
if ((ch != 0) && (ch <=0x7f)) {
base[0] = (u_char) ch;
return base + 1;
}
if (ch <= 0x7FF) {
/* 11 bits or less. */
unsigned char high_five = ch >> 6;
unsigned char low_six = ch & 0x3F;
base[0] = high_five | 0xC0; /* 110xxxxx */
base[1] = low_six | 0x80; /* 10xxxxxx */
return base + 2;
}
/* possibly full 16 bits. */
char high_four = ch >> 12;
char mid_six = (ch >> 6) & 0x3F;
char low_six = ch & 0x3f;
base[0] = high_four | 0xE0; /* 1110xxxx */
base[1] = mid_six | 0x80; /* 10xxxxxx */
base[2] = low_six | 0x80; /* 10xxxxxx */
return base + 3;
}
template<typename T> void UTF8::convert_to_unicode(const char* utf8_str, T* unicode_str, int unicode_length) {
unsigned char ch;
const char *ptr = utf8_str;
int index = 0;
/* ASCII case loop optimization */
for (; index < unicode_length; index++) {
if((ch = ptr[0]) > 0x7F) { break; }
unicode_str[index] = (T)ch;
ptr = (const char *)(ptr + 1);
}
for (; index < unicode_length; index++) {
ptr = UTF8::next(ptr, &unicode_str[index]);
}
}
// Explicit instantiation for all supported string types.
template char* UTF8::next<jchar>(const char* str, jchar* value);
template char* UTF8::next<jbyte>(const char* str, jbyte* value);
template void UTF8::convert_to_unicode<jchar>(const char* utf8_str, jchar* unicode_str, int unicode_length);
template void UTF8::convert_to_unicode<jbyte>(const char* utf8_str, jbyte* unicode_str, int unicode_length);
// returns the quoted ascii length of a 0-terminated utf8 string
int UTF8::quoted_ascii_length(const char* utf8_str, int utf8_length) {
const char *ptr = utf8_str;
const char* end = ptr + utf8_length;
int result = 0;
while (ptr < end) {
jchar c;
ptr = UTF8::next(ptr, &c);
if (c >= 32 && c < 127) {
result++;
} else {
result += 6;
}
}
return result;
}
// converts a utf8 string to quoted ascii
void UTF8::as_quoted_ascii(const char* utf8_str, int utf8_length, char* buf, int buflen) {
const char *ptr = utf8_str;
const char *utf8_end = ptr + utf8_length;
char* p = buf;
char* end = buf + buflen;
while (ptr < utf8_end) {
jchar c;
ptr = UTF8::next(ptr, &c);
if (c >= 32 && c < 127) {
if (p + 1 >= end) break; // string is truncated
*p++ = (char)c;
} else {
if (p + 6 >= end) break; // string is truncated
sprintf(p, "\\u%04x", c);
p += 6;
}
}
assert(p < end, "sanity");
*p = '\0';
}
const char* UTF8::from_quoted_ascii(const char* quoted_ascii_str) {
const char *ptr = quoted_ascii_str;
char* result = NULL;
while (*ptr != '\0') {
char c = *ptr;
if (c < 32 || c >= 127) break;
}
if (*ptr == '\0') {
// nothing to do so return original string
return quoted_ascii_str;
}
// everything up to this point was ok.
int length = ptr - quoted_ascii_str;
char* buffer = NULL;
for (int round = 0; round < 2; round++) {
while (*ptr != '\0') {
if (*ptr != '\\') {
if (buffer != NULL) {
buffer[length] = *ptr;
}
length++;
} else {
switch (ptr[1]) {
case 'u': {
ptr += 2;
jchar value=0;
for (int i=0; i<4; i++) {
char c = *ptr++;
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
value = (value << 4) + c - '0';
break;
case 'a': case 'b': case 'c':
case 'd': case 'e': case 'f':
value = (value << 4) + 10 + c - 'a';
break;
case 'A': case 'B': case 'C':
case 'D': case 'E': case 'F':
value = (value << 4) + 10 + c - 'A';
break;
default:
ShouldNotReachHere();
}
}
if (buffer == NULL) {
char utf8_buffer[4];
char* next = (char*)utf8_write((u_char*)utf8_buffer, value);
length += next - utf8_buffer;
} else {
char* next = (char*)utf8_write((u_char*)&buffer[length], value);
length += next - &buffer[length];
}
break;
}
case 't': if (buffer != NULL) buffer[length] = '\t'; ptr += 2; length++; break;
case 'n': if (buffer != NULL) buffer[length] = '\n'; ptr += 2; length++; break;
case 'r': if (buffer != NULL) buffer[length] = '\r'; ptr += 2; length++; break;
case 'f': if (buffer != NULL) buffer[length] = '\f'; ptr += 2; length++; break;
default:
ShouldNotReachHere();
}
}
}
if (round == 0) {
buffer = NEW_RESOURCE_ARRAY(char, length + 1);
ptr = quoted_ascii_str;
} else {
buffer[length] = '\0';
}
}
return buffer;
}
// Returns NULL if 'c' it not found. This only works as long
// as 'c' is an ASCII character
const jbyte* UTF8::strrchr(const jbyte* base, int length, jbyte c) {
assert(length >= 0, "sanity check");
assert(c >= 0, "does not work for non-ASCII characters");
// Skip backwards in string until 'c' is found or end is reached
while(--length >= 0 && base[length] != c);
return (length < 0) ? NULL : &base[length];
}
bool UTF8::equal(const jbyte* base1, int length1, const jbyte* base2, int length2) {
// Length must be the same
if (length1 != length2) return false;
for (int i = 0; i < length1; i++) {
if (base1[i] != base2[i]) return false;
}
return true;
}
bool UTF8::is_supplementary_character(const unsigned char* str) {
return ((str[0] & 0xFF) == 0xED) && ((str[1] & 0xF0) == 0xA0) && ((str[2] & 0xC0) == 0x80)
&& ((str[3] & 0xFF) == 0xED) && ((str[4] & 0xF0) == 0xB0) && ((str[5] & 0xC0) == 0x80);
}
jint UTF8::get_supplementary_character(const unsigned char* str) {
return 0x10000 + ((str[1] & 0x0f) << 16) + ((str[2] & 0x3f) << 10)
+ ((str[4] & 0x0f) << 6) + (str[5] & 0x3f);
}
//-------------------------------------------------------------------------------------
bool UNICODE::is_latin1(jchar c) {
return (c <= 0x00FF);
}
bool UNICODE::is_latin1(jchar* base, int length) {
for (int index = 0; index < length; index++) {
if (base[index] > 0x00FF) {
return false;
}
}
return true;
}
int UNICODE::utf8_size(jchar c) {
if ((0x0001 <= c) && (c <= 0x007F)) return 1;
if (c <= 0x07FF) return 2;
return 3;
}
int UNICODE::utf8_size(jbyte c) {
if (c >= 0x0001) return 1;
return 2;
}
int UNICODE::utf8_length(jchar* base, int length) {
int result = 0;
for (int index = 0; index < length; index++) {
jchar c = base[index];
if ((0x0001 <= c) && (c <= 0x007F)) result += 1;
else if (c <= 0x07FF) result += 2;
else result += 3;
}
return result;
}
int UNICODE::utf8_length(jbyte* base, int length) {
int result = 0;
for (int index = 0; index < length; index++) {
jbyte c = base[index];
result += utf8_size(c);
}
return result;
}
char* UNICODE::as_utf8(jchar* base, int length) {
int utf8_len = utf8_length(base, length);
u_char* buf = NEW_RESOURCE_ARRAY(u_char, utf8_len + 1);
char* result = as_utf8(base, length, (char*) buf, utf8_len + 1);
assert((int) strlen(result) == utf8_len, "length prediction must be correct");
return result;
}
char* UNICODE::as_utf8(jbyte* base, int length) {
int utf8_len = utf8_length(base, length);
u_char* result = NEW_RESOURCE_ARRAY(u_char, utf8_len + 1);
u_char* p = result;
if (utf8_len == length) {
for (int index = 0; index < length; index++) {
*p++ = base[index];
}
} else {
// Unicode string contains U+0000 which should
// be encoded as 0xC080 in "modified" UTF8.
for (int index = 0; index < length; index++) {
p = utf8_write(p, ((jchar) base[index]) & 0xff);
}
}
*p = '\0';
assert(p == &result[utf8_len], "length prediction must be correct");
return (char*) result;
}
char* UNICODE::as_utf8(jchar* base, int length, char* buf, int buflen) {
u_char* p = (u_char*)buf;
for (int index = 0; index < length; index++) {
jchar c = base[index];
buflen -= utf8_size(c);
if (buflen <= 0) break; // string is truncated
p = utf8_write(p, c);
}
*p = '\0';
return buf;
}
char* UNICODE::as_utf8(jbyte* base, int length, char* buf, int buflen) {
u_char* p = (u_char*)buf;
u_char* end = (u_char*)buf + buflen;
for (int index = 0; index < length; index++) {
jbyte c = base[index];
int sz = utf8_size(c);
buflen -= sz;
if (buflen <= 0) break; // string is truncated
if (sz == 1) {
*p++ = c;
} else {
// Unicode string contains U+0000 which should
// be encoded as 0xC080 in "modified" UTF8.
p = utf8_write(p, ((jchar) c) & 0xff);
}
}
*p = '\0';
return buf;
}
void UNICODE::convert_to_utf8(const jchar* base, int length, char* utf8_buffer) {
for(int index = 0; index < length; index++) {
utf8_buffer = (char*)utf8_write((u_char*)utf8_buffer, base[index]);
}
*utf8_buffer = '\0';
}
// returns the quoted ascii length of a unicode string
template<typename T>
int UNICODE::quoted_ascii_length(T* base, int length) {
int result = 0;
for (int i = 0; i < length; i++) {
T c = base[i];
if (c >= 32 && c < 127) {
result++;
} else {
result += 6;
}
}
return result;
}
// converts a unicode string to quoted ascii
template<typename T>
void UNICODE::as_quoted_ascii(const T* base, int length, char* buf, int buflen) {
char* p = buf;
char* end = buf + buflen;
for (int index = 0; index < length; index++) {
T c = base[index];
if (c >= 32 && c < 127) {
if (p + 1 >= end) break; // string is truncated
*p++ = (char)c;
} else {
if (p + 6 >= end) break; // string is truncated
sprintf(p, "\\u%04x", c);
p += 6;
}
}
*p = '\0';
}
// Explicit instantiation for all supported types.
template int UNICODE::quoted_ascii_length<jbyte>(jbyte* base, int length);
template int UNICODE::quoted_ascii_length<jchar>(jchar* base, int length);
template void UNICODE::as_quoted_ascii<jbyte>(const jbyte* base, int length, char* buf, int buflen);
template void UNICODE::as_quoted_ascii<jchar>(const jchar* base, int length, char* buf, int buflen);
#ifndef PRODUCT
void TestAsUtf8() {
char res[60];
jchar str[20];
for (int i = 0; i < 20; i++) {
str[i] = 0x0800; // char that is 2B in UTF-16 but 3B in UTF-8
}
str[19] = (jchar)'\0';
// The resulting string in UTF-8 is 3*19 bytes long, but should be truncated
UNICODE::as_utf8(str, 19, res, 10);
assert(strlen(res) == 9, "string should be truncated here");
UNICODE::as_utf8(str, 19, res, 18);
assert(strlen(res) == 15, "string should be truncated here");
UNICODE::as_utf8(str, 19, res, 20);
assert(strlen(res) == 18, "string should be truncated here");
// Test with an "unbounded" buffer
UNICODE::as_utf8(str, 19, res, INT_MAX);
assert(strlen(res) == 3*19, "string should end here");
}
#endif