jdk-24/src/hotspot/share/utilities/globalDefinitions.hpp
Kim Barrett e648a907b3 8250597: G1: Improve inlining around trim_queue
Refactor, using NOINLINE and (new) ATTRIBUTE_FLATTEN for control.

Reviewed-by: tschatzl, sjohanss
2020-08-13 10:02:35 -04:00

1212 lines
44 KiB
C++

/*
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
#define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
#include "utilities/compilerWarnings.hpp"
#include "utilities/debug.hpp"
#include "utilities/macros.hpp"
// Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>.
#include "classfile_constants.h"
#include COMPILER_HEADER(utilities/globalDefinitions)
// Defaults for macros that might be defined per compiler.
#ifndef NOINLINE
#define NOINLINE
#endif
#ifndef ALWAYSINLINE
#define ALWAYSINLINE inline
#endif
#ifndef ATTRIBUTE_ALIGNED
#define ATTRIBUTE_ALIGNED(x)
#endif
#ifndef ATTRIBUTE_FLATTEN
#define ATTRIBUTE_FLATTEN
#endif
// These are #defines to selectively turn on/off the Print(Opto)Assembly
// capabilities. Choices should be led by a tradeoff between
// code size and improved supportability.
// if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
// to have a fallback in case hsdis is not available.
#if defined(PRODUCT)
#define SUPPORT_ABSTRACT_ASSEMBLY
#define SUPPORT_ASSEMBLY
#undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing.
#undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty.
#else
#define SUPPORT_ABSTRACT_ASSEMBLY
#define SUPPORT_ASSEMBLY
#define SUPPORT_OPTO_ASSEMBLY
#define SUPPORT_DATA_STRUCTS
#endif
#if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
#define SUPPORT_ABSTRACT_ASSEMBLY
#endif
// This file holds all globally used constants & types, class (forward)
// declarations and a few frequently used utility functions.
// Declare the named class to be noncopyable. This macro must be used in
// a private part of the class's definition, followed by a semi-colon.
// Doing so provides private declarations for the class's copy constructor
// and assignment operator. Because these operations are private, most
// potential callers will fail to compile because they are inaccessible.
// The operations intentionally lack a definition, to provoke link-time
// failures for calls from contexts where they are accessible, e.g. from
// within the class or from a friend of the class.
// Note: The lack of definitions is still not completely bullet-proof, as
// an apparent call might be optimized away by copy elision.
// For C++11 the declarations should be changed to deleted definitions.
#define NONCOPYABLE(C) C(C const&); C& operator=(C const&) /* next token must be ; */
//----------------------------------------------------------------------------------------------------
// Printf-style formatters for fixed- and variable-width types as pointers and
// integers. These are derived from the definitions in inttypes.h. If the platform
// doesn't provide appropriate definitions, they should be provided in
// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
// Format 32-bit quantities.
#define INT32_FORMAT "%" PRId32
#define UINT32_FORMAT "%" PRIu32
#define INT32_FORMAT_W(width) "%" #width PRId32
#define UINT32_FORMAT_W(width) "%" #width PRIu32
#define PTR32_FORMAT "0x%08" PRIx32
#define PTR32_FORMAT_W(width) "0x%" #width PRIx32
// Format 64-bit quantities.
#define INT64_FORMAT "%" PRId64
#define UINT64_FORMAT "%" PRIu64
#define UINT64_FORMAT_X "%" PRIx64
#define INT64_FORMAT_W(width) "%" #width PRId64
#define UINT64_FORMAT_W(width) "%" #width PRIu64
#define UINT64_FORMAT_X_W(width) "%" #width PRIx64
#define PTR64_FORMAT "0x%016" PRIx64
// Format jlong, if necessary
#ifndef JLONG_FORMAT
#define JLONG_FORMAT INT64_FORMAT
#endif
#ifndef JLONG_FORMAT_W
#define JLONG_FORMAT_W(width) INT64_FORMAT_W(width)
#endif
#ifndef JULONG_FORMAT
#define JULONG_FORMAT UINT64_FORMAT
#endif
#ifndef JULONG_FORMAT_X
#define JULONG_FORMAT_X UINT64_FORMAT_X
#endif
// Format pointers which change size between 32- and 64-bit.
#ifdef _LP64
#define INTPTR_FORMAT "0x%016" PRIxPTR
#define PTR_FORMAT "0x%016" PRIxPTR
#else // !_LP64
#define INTPTR_FORMAT "0x%08" PRIxPTR
#define PTR_FORMAT "0x%08" PRIxPTR
#endif // _LP64
// Format pointers without leading zeros
#define INTPTRNZ_FORMAT "0x%" PRIxPTR
#define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
#define SSIZE_FORMAT "%" PRIdPTR
#define SIZE_FORMAT "%" PRIuPTR
#define SIZE_FORMAT_HEX "0x%" PRIxPTR
#define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
#define SIZE_FORMAT_W(width) "%" #width PRIuPTR
#define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
#define INTX_FORMAT "%" PRIdPTR
#define UINTX_FORMAT "%" PRIuPTR
#define INTX_FORMAT_W(width) "%" #width PRIdPTR
#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
//----------------------------------------------------------------------------------------------------
// Constants
const int LogBytesPerShort = 1;
const int LogBytesPerInt = 2;
#ifdef _LP64
const int LogBytesPerWord = 3;
#else
const int LogBytesPerWord = 2;
#endif
const int LogBytesPerLong = 3;
const int BytesPerShort = 1 << LogBytesPerShort;
const int BytesPerInt = 1 << LogBytesPerInt;
const int BytesPerWord = 1 << LogBytesPerWord;
const int BytesPerLong = 1 << LogBytesPerLong;
const int LogBitsPerByte = 3;
const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
const int BitsPerByte = 1 << LogBitsPerByte;
const int BitsPerShort = 1 << LogBitsPerShort;
const int BitsPerInt = 1 << LogBitsPerInt;
const int BitsPerWord = 1 << LogBitsPerWord;
const int BitsPerLong = 1 << LogBitsPerLong;
const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
const int WordsPerLong = 2; // Number of stack entries for longs
const int oopSize = sizeof(char*); // Full-width oop
extern int heapOopSize; // Oop within a java object
const int wordSize = sizeof(char*);
const int longSize = sizeof(jlong);
const int jintSize = sizeof(jint);
const int size_tSize = sizeof(size_t);
const int BytesPerOop = BytesPerWord; // Full-width oop
extern int LogBytesPerHeapOop; // Oop within a java object
extern int LogBitsPerHeapOop;
extern int BytesPerHeapOop;
extern int BitsPerHeapOop;
const int BitsPerJavaInteger = 32;
const int BitsPerJavaLong = 64;
const int BitsPerSize_t = size_tSize * BitsPerByte;
// Size of a char[] needed to represent a jint as a string in decimal.
const int jintAsStringSize = 12;
// An opaque type, so that HeapWord* can be a generic pointer into the heap.
// We require that object sizes be measured in units of heap words (e.g.
// pointer-sized values), so that given HeapWord* hw,
// hw += oop(hw)->foo();
// works, where foo is a method (like size or scavenge) that returns the
// object size.
class HeapWordImpl; // Opaque, never defined.
typedef HeapWordImpl* HeapWord;
// Analogous opaque struct for metadata allocated from metaspaces.
class MetaWordImpl; // Opaque, never defined.
typedef MetaWordImpl* MetaWord;
// HeapWordSize must be 2^LogHeapWordSize.
const int HeapWordSize = sizeof(HeapWord);
#ifdef _LP64
const int LogHeapWordSize = 3;
#else
const int LogHeapWordSize = 2;
#endif
const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
// The minimum number of native machine words necessary to contain "byte_size"
// bytes.
inline size_t heap_word_size(size_t byte_size) {
return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
}
//-------------------------------------------
// Constant for jlong (standardized by C++11)
// Build a 64bit integer constant
#define CONST64(x) (x ## LL)
#define UCONST64(x) (x ## ULL)
const jlong min_jlong = CONST64(0x8000000000000000);
const jlong max_jlong = CONST64(0x7fffffffffffffff);
const size_t K = 1024;
const size_t M = K*K;
const size_t G = M*K;
const size_t HWperKB = K / sizeof(HeapWord);
// Constants for converting from a base unit to milli-base units. For
// example from seconds to milliseconds and microseconds
const int MILLIUNITS = 1000; // milli units per base unit
const int MICROUNITS = 1000000; // micro units per base unit
const int NANOUNITS = 1000000000; // nano units per base unit
const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS;
const jlong NANOSECS_PER_SEC = CONST64(1000000000);
const jint NANOSECS_PER_MILLISEC = 1000000;
// Unit conversion functions
// The caller is responsible for considering overlow.
inline int64_t nanos_to_millis(int64_t nanos) {
return nanos / NANOUNITS_PER_MILLIUNIT;
}
inline int64_t millis_to_nanos(int64_t millis) {
return millis * NANOUNITS_PER_MILLIUNIT;
}
// Proper units routines try to maintain at least three significant digits.
// In worst case, it would print five significant digits with lower prefix.
// G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
// and therefore we need to be careful.
inline const char* proper_unit_for_byte_size(size_t s) {
#ifdef _LP64
if (s >= 100*G) {
return "G";
}
#endif
if (s >= 100*M) {
return "M";
} else if (s >= 100*K) {
return "K";
} else {
return "B";
}
}
template <class T>
inline T byte_size_in_proper_unit(T s) {
#ifdef _LP64
if (s >= 100*G) {
return (T)(s/G);
}
#endif
if (s >= 100*M) {
return (T)(s/M);
} else if (s >= 100*K) {
return (T)(s/K);
} else {
return s;
}
}
inline const char* exact_unit_for_byte_size(size_t s) {
#ifdef _LP64
if (s >= G && (s % G) == 0) {
return "G";
}
#endif
if (s >= M && (s % M) == 0) {
return "M";
}
if (s >= K && (s % K) == 0) {
return "K";
}
return "B";
}
inline size_t byte_size_in_exact_unit(size_t s) {
#ifdef _LP64
if (s >= G && (s % G) == 0) {
return s / G;
}
#endif
if (s >= M && (s % M) == 0) {
return s / M;
}
if (s >= K && (s % K) == 0) {
return s / K;
}
return s;
}
// Memory size transition formatting.
#define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)"
#define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
(_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
//----------------------------------------------------------------------------------------------------
// VM type definitions
// intx and uintx are the 'extended' int and 'extended' unsigned int types;
// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
typedef intptr_t intx;
typedef uintptr_t uintx;
const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
const intx max_intx = (uintx)min_intx - 1;
const uintx max_uintx = (uintx)-1;
// Table of values:
// sizeof intx 4 8
// min_intx 0x80000000 0x8000000000000000
// max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
// max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
typedef unsigned int uint; NEEDS_CLEANUP
//----------------------------------------------------------------------------------------------------
// Java type definitions
// All kinds of 'plain' byte addresses
typedef signed char s_char;
typedef unsigned char u_char;
typedef u_char* address;
typedef uintptr_t address_word; // unsigned integer which will hold a pointer
// except for some implementations of a C++
// linkage pointer to function. Should never
// need one of those to be placed in this
// type anyway.
// Utility functions to "portably" (?) bit twiddle pointers
// Where portable means keep ANSI C++ compilers quiet
inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
// Utility functions to "portably" make cast to/from function pointers.
inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
inline address_word castable_address(address x) { return address_word(x) ; }
inline address_word castable_address(void* x) { return address_word(x) ; }
// Pointer subtraction.
// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
// the range we might need to find differences from one end of the heap
// to the other.
// A typical use might be:
// if (pointer_delta(end(), top()) >= size) {
// // enough room for an object of size
// ...
// and then additions like
// ... top() + size ...
// are safe because we know that top() is at least size below end().
inline size_t pointer_delta(const volatile void* left,
const volatile void* right,
size_t element_size) {
return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
}
// A version specialized for HeapWord*'s.
inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
return pointer_delta(left, right, sizeof(HeapWord));
}
// A version specialized for MetaWord*'s.
inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
return pointer_delta(left, right, sizeof(MetaWord));
}
//
// ANSI C++ does not allow casting from one pointer type to a function pointer
// directly without at best a warning. This macro accomplishes it silently
// In every case that is present at this point the value be cast is a pointer
// to a C linkage function. In some case the type used for the cast reflects
// that linkage and a picky compiler would not complain. In other cases because
// there is no convenient place to place a typedef with extern C linkage (i.e
// a platform dependent header file) it doesn't. At this point no compiler seems
// picky enough to catch these instances (which are few). It is possible that
// using templates could fix these for all cases. This use of templates is likely
// so far from the middle of the road that it is likely to be problematic in
// many C++ compilers.
//
#define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
// Need the correct linkage to call qsort without warnings
extern "C" {
typedef int (*_sort_Fn)(const void *, const void *);
}
// Unsigned byte types for os and stream.hpp
// Unsigned one, two, four and eigth byte quantities used for describing
// the .class file format. See JVM book chapter 4.
typedef jubyte u1;
typedef jushort u2;
typedef juint u4;
typedef julong u8;
const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
const julong max_julong = (julong)-1; // 0xFF....FF largest julong
typedef jbyte s1;
typedef jshort s2;
typedef jint s4;
typedef jlong s8;
const jbyte min_jbyte = -(1 << 7); // smallest jbyte
const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte
const jshort min_jshort = -(1 << 15); // smallest jshort
const jshort max_jshort = (1 << 15) - 1; // largest jshort
const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
//----------------------------------------------------------------------------------------------------
// JVM spec restrictions
const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
//----------------------------------------------------------------------------------------------------
// Object alignment, in units of HeapWords.
//
// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
// reference fields can be naturally aligned.
extern int MinObjAlignment;
extern int MinObjAlignmentInBytes;
extern int MinObjAlignmentInBytesMask;
extern int LogMinObjAlignment;
extern int LogMinObjAlignmentInBytes;
const int LogKlassAlignmentInBytes = 3;
const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
// Maximal size of heap where unscaled compression can be used. Also upper bound
// for heap placement: 4GB.
const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
// Maximal size of heap where compressed oops can be used. Also upper bound for heap
// placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
extern uint64_t OopEncodingHeapMax;
// Maximal size of compressed class space. Above this limit compression is not possible.
// Also upper bound for placement of zero based class space. (Class space is further limited
// to be < 3G, see arguments.cpp.)
const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
// Machine dependent stuff
// The maximum size of the code cache. Can be overridden by targets.
#define CODE_CACHE_SIZE_LIMIT (2*G)
// Allow targets to reduce the default size of the code cache.
#define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
#include CPU_HEADER(globalDefinitions)
// To assure the IRIW property on processors that are not multiple copy
// atomic, sync instructions must be issued between volatile reads to
// assure their ordering, instead of after volatile stores.
// (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
// by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
#ifdef CPU_MULTI_COPY_ATOMIC
// Not needed.
const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
#else
// From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
// Final decision is subject to JEP 188: Java Memory Model Update.
const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
#endif
// The expected size in bytes of a cache line, used to pad data structures.
#ifndef DEFAULT_CACHE_LINE_SIZE
#define DEFAULT_CACHE_LINE_SIZE 64
#endif
//----------------------------------------------------------------------------------------------------
// Utility macros for compilers
// used to silence compiler warnings
#define Unused_Variable(var) var
//----------------------------------------------------------------------------------------------------
// Miscellaneous
// 6302670 Eliminate Hotspot __fabsf dependency
// All fabs() callers should call this function instead, which will implicitly
// convert the operand to double, avoiding a dependency on __fabsf which
// doesn't exist in early versions of Solaris 8.
inline double fabsd(double value) {
return fabs(value);
}
// Returns numerator/denominator as percentage value from 0 to 100. If denominator
// is zero, return 0.0.
template<typename T>
inline double percent_of(T numerator, T denominator) {
return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
}
//----------------------------------------------------------------------------------------------------
// Special casts
// Cast floats into same-size integers and vice-versa w/o changing bit-pattern
typedef union {
jfloat f;
jint i;
} FloatIntConv;
typedef union {
jdouble d;
jlong l;
julong ul;
} DoubleLongConv;
inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
inline jint low (jlong value) { return jint(value); }
inline jint high(jlong value) { return jint(value >> 32); }
// the fancy casts are a hopefully portable way
// to do unsigned 32 to 64 bit type conversion
inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
*value |= (jlong)(julong)(juint)low; }
inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
*value |= (jlong)high << 32; }
inline jlong jlong_from(jint h, jint l) {
jlong result = 0; // initialization to avoid warning
set_high(&result, h);
set_low(&result, l);
return result;
}
union jlong_accessor {
jint words[2];
jlong long_value;
};
void basic_types_init(); // cannot define here; uses assert
// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
enum BasicType {
// The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
T_BOOLEAN = JVM_T_BOOLEAN,
T_CHAR = JVM_T_CHAR,
T_FLOAT = JVM_T_FLOAT,
T_DOUBLE = JVM_T_DOUBLE,
T_BYTE = JVM_T_BYTE,
T_SHORT = JVM_T_SHORT,
T_INT = JVM_T_INT,
T_LONG = JVM_T_LONG,
// The remaining values are not part of any standard.
// T_OBJECT and T_VOID denote two more semantic choices
// for method return values.
// T_OBJECT and T_ARRAY describe signature syntax.
// T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
// internal references within the JVM as if they were Java
// types in their own right.
T_OBJECT = 12,
T_ARRAY = 13,
T_VOID = 14,
T_ADDRESS = 15,
T_NARROWOOP = 16,
T_METADATA = 17,
T_NARROWKLASS = 18,
T_CONFLICT = 19, // for stack value type with conflicting contents
T_ILLEGAL = 99
};
#define SIGNATURE_TYPES_DO(F, N) \
F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N) \
F(JVM_SIGNATURE_CHAR, T_CHAR, N) \
F(JVM_SIGNATURE_FLOAT, T_FLOAT, N) \
F(JVM_SIGNATURE_DOUBLE, T_DOUBLE, N) \
F(JVM_SIGNATURE_BYTE, T_BYTE, N) \
F(JVM_SIGNATURE_SHORT, T_SHORT, N) \
F(JVM_SIGNATURE_INT, T_INT, N) \
F(JVM_SIGNATURE_LONG, T_LONG, N) \
F(JVM_SIGNATURE_CLASS, T_OBJECT, N) \
F(JVM_SIGNATURE_ARRAY, T_ARRAY, N) \
F(JVM_SIGNATURE_VOID, T_VOID, N) \
/*end*/
inline bool is_java_type(BasicType t) {
return T_BOOLEAN <= t && t <= T_VOID;
}
inline bool is_java_primitive(BasicType t) {
return T_BOOLEAN <= t && t <= T_LONG;
}
inline bool is_subword_type(BasicType t) {
// these guys are processed exactly like T_INT in calling sequences:
return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
}
inline bool is_signed_subword_type(BasicType t) {
return (t == T_BYTE || t == T_SHORT);
}
inline bool is_double_word_type(BasicType t) {
return (t == T_DOUBLE || t == T_LONG);
}
inline bool is_reference_type(BasicType t) {
return (t == T_OBJECT || t == T_ARRAY);
}
extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
extern BasicType name2type(const char* name);
// Auxiliary math routines
// least common multiple
extern size_t lcm(size_t a, size_t b);
// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
enum BasicTypeSize {
T_BOOLEAN_size = 1,
T_CHAR_size = 1,
T_FLOAT_size = 1,
T_DOUBLE_size = 2,
T_BYTE_size = 1,
T_SHORT_size = 1,
T_INT_size = 1,
T_LONG_size = 2,
T_OBJECT_size = 1,
T_ARRAY_size = 1,
T_NARROWOOP_size = 1,
T_NARROWKLASS_size = 1,
T_VOID_size = 0
};
// this works on valid parameter types but not T_VOID, T_CONFLICT, etc.
inline int parameter_type_word_count(BasicType t) {
if (is_double_word_type(t)) return 2;
assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please");
assert(type2size[t] == 1, "must be");
return 1;
}
// maps a BasicType to its instance field storage type:
// all sub-word integral types are widened to T_INT
extern BasicType type2field[T_CONFLICT+1];
extern BasicType type2wfield[T_CONFLICT+1];
// size in bytes
enum ArrayElementSize {
T_BOOLEAN_aelem_bytes = 1,
T_CHAR_aelem_bytes = 2,
T_FLOAT_aelem_bytes = 4,
T_DOUBLE_aelem_bytes = 8,
T_BYTE_aelem_bytes = 1,
T_SHORT_aelem_bytes = 2,
T_INT_aelem_bytes = 4,
T_LONG_aelem_bytes = 8,
#ifdef _LP64
T_OBJECT_aelem_bytes = 8,
T_ARRAY_aelem_bytes = 8,
#else
T_OBJECT_aelem_bytes = 4,
T_ARRAY_aelem_bytes = 4,
#endif
T_NARROWOOP_aelem_bytes = 4,
T_NARROWKLASS_aelem_bytes = 4,
T_VOID_aelem_bytes = 0
};
extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
#ifdef ASSERT
extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
#else
inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
#endif
// JavaValue serves as a container for arbitrary Java values.
class JavaValue {
public:
typedef union JavaCallValue {
jfloat f;
jdouble d;
jint i;
jlong l;
jobject h;
} JavaCallValue;
private:
BasicType _type;
JavaCallValue _value;
public:
JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
JavaValue(jfloat value) {
_type = T_FLOAT;
_value.f = value;
}
JavaValue(jdouble value) {
_type = T_DOUBLE;
_value.d = value;
}
jfloat get_jfloat() const { return _value.f; }
jdouble get_jdouble() const { return _value.d; }
jint get_jint() const { return _value.i; }
jlong get_jlong() const { return _value.l; }
jobject get_jobject() const { return _value.h; }
JavaCallValue* get_value_addr() { return &_value; }
BasicType get_type() const { return _type; }
void set_jfloat(jfloat f) { _value.f = f;}
void set_jdouble(jdouble d) { _value.d = d;}
void set_jint(jint i) { _value.i = i;}
void set_jlong(jlong l) { _value.l = l;}
void set_jobject(jobject h) { _value.h = h;}
void set_type(BasicType t) { _type = t; }
jboolean get_jboolean() const { return (jboolean) (_value.i);}
jbyte get_jbyte() const { return (jbyte) (_value.i);}
jchar get_jchar() const { return (jchar) (_value.i);}
jshort get_jshort() const { return (jshort) (_value.i);}
};
// TosState describes the top-of-stack state before and after the execution of
// a bytecode or method. The top-of-stack value may be cached in one or more CPU
// registers. The TosState corresponds to the 'machine representation' of this cached
// value. There's 4 states corresponding to the JAVA types int, long, float & double
// as well as a 5th state in case the top-of-stack value is actually on the top
// of stack (in memory) and thus not cached. The atos state corresponds to the itos
// state when it comes to machine representation but is used separately for (oop)
// type specific operations (e.g. verification code).
enum TosState { // describes the tos cache contents
btos = 0, // byte, bool tos cached
ztos = 1, // byte, bool tos cached
ctos = 2, // char tos cached
stos = 3, // short tos cached
itos = 4, // int tos cached
ltos = 5, // long tos cached
ftos = 6, // float tos cached
dtos = 7, // double tos cached
atos = 8, // object cached
vtos = 9, // tos not cached
number_of_states,
ilgl // illegal state: should not occur
};
inline TosState as_TosState(BasicType type) {
switch (type) {
case T_BYTE : return btos;
case T_BOOLEAN: return ztos;
case T_CHAR : return ctos;
case T_SHORT : return stos;
case T_INT : return itos;
case T_LONG : return ltos;
case T_FLOAT : return ftos;
case T_DOUBLE : return dtos;
case T_VOID : return vtos;
case T_ARRAY : // fall through
case T_OBJECT : return atos;
default : return ilgl;
}
}
inline BasicType as_BasicType(TosState state) {
switch (state) {
case btos : return T_BYTE;
case ztos : return T_BOOLEAN;
case ctos : return T_CHAR;
case stos : return T_SHORT;
case itos : return T_INT;
case ltos : return T_LONG;
case ftos : return T_FLOAT;
case dtos : return T_DOUBLE;
case atos : return T_OBJECT;
case vtos : return T_VOID;
default : return T_ILLEGAL;
}
}
// Helper function to convert BasicType info into TosState
// Note: Cannot define here as it uses global constant at the time being.
TosState as_TosState(BasicType type);
// JavaThreadState keeps track of which part of the code a thread is executing in. This
// information is needed by the safepoint code.
//
// There are 4 essential states:
//
// _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
// _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
// _thread_in_vm : Executing in the vm
// _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
//
// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
// a transition from one state to another. These extra states makes it possible for the safepoint code to
// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
//
// Given a state, the xxxx_trans state can always be found by adding 1.
//
enum JavaThreadState {
_thread_uninitialized = 0, // should never happen (missing initialization)
_thread_new = 2, // just starting up, i.e., in process of being initialized
_thread_new_trans = 3, // corresponding transition state (not used, included for completness)
_thread_in_native = 4, // running in native code
_thread_in_native_trans = 5, // corresponding transition state
_thread_in_vm = 6, // running in VM
_thread_in_vm_trans = 7, // corresponding transition state
_thread_in_Java = 8, // running in Java or in stub code
_thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
_thread_blocked = 10, // blocked in vm
_thread_blocked_trans = 11, // corresponding transition state
_thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
};
//----------------------------------------------------------------------------------------------------
// Special constants for debugging
const jint badInt = -3; // generic "bad int" value
const intptr_t badAddressVal = -2; // generic "bad address" value
const intptr_t badOopVal = -1; // generic "bad oop" value
const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
const int badStackSegVal = 0xCA; // value used to zap stack segments
const int badHandleValue = 0xBC; // value used to zap vm handle area
const int badResourceValue = 0xAB; // value used to zap resource area
const int freeBlockPad = 0xBA; // value used to pad freed blocks.
const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk
const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
// (These must be implemented as #defines because C++ compilers are
// not obligated to inline non-integral constants!)
#define badAddress ((address)::badAddressVal)
#define badOop (cast_to_oop(::badOopVal))
#define badHeapWord (::badHeapWordVal)
// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
//----------------------------------------------------------------------------------------------------
// Utility functions for bitfield manipulations
const intptr_t AllBits = ~0; // all bits set in a word
const intptr_t NoBits = 0; // no bits set in a word
const jlong NoLongBits = 0; // no bits set in a long
const intptr_t OneBit = 1; // only right_most bit set in a word
// get a word with the n.th or the right-most or left-most n bits set
// (note: #define used only so that they can be used in enum constant definitions)
#define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
#define right_n_bits(n) (nth_bit(n) - 1)
#define left_n_bits(n) (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
// bit-operations using a mask m
inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
// bit-operations using the n.th bit
inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
return mask_bits(x >> start_bit_no, right_n_bits(field_length));
}
//----------------------------------------------------------------------------------------------------
// Utility functions for integers
// Avoid use of global min/max macros which may cause unwanted double
// evaluation of arguments.
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
// It is necessary to use templates here. Having normal overloaded
// functions does not work because it is necessary to provide both 32-
// and 64-bit overloaded functions, which does not work, and having
// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
// will be even more error-prone than macros.
template<class T> inline T MAX2(T a, T b) { return (a > b) ? a : b; }
template<class T> inline T MIN2(T a, T b) { return (a < b) ? a : b; }
template<class T> inline T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
template<class T> inline T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
// Return the given value clamped to the range [min ... max]
template<typename T>
inline T clamp(T value, T min, T max) {
assert(min <= max, "must be");
return MIN2(MAX2(value, min), max);
}
// Returns largest i such that 2^i <= x.
// If x == 0, the function returns -1.
inline int log2_intptr(uintptr_t x) {
int i = -1;
uintptr_t p = 1;
while (p != 0 && p <= x) {
// p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
i++; p *= 2;
}
// p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
// If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
return i;
}
//* largest i such that 2^i <= x
inline int log2_long(julong x) {
int i = -1;
julong p = 1;
while (p != 0 && p <= x) {
// p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
i++; p *= 2;
}
// p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
// (if p = 0 then overflow occurred and i = 63)
return i;
}
// If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
inline int log2_intptr(intptr_t x) {
return log2_intptr((uintptr_t)x);
}
inline int log2_int(int x) {
STATIC_ASSERT(sizeof(int) <= sizeof(uintptr_t));
return log2_intptr((uintptr_t)(unsigned int)x);
}
inline int log2_jint(jint x) {
STATIC_ASSERT(sizeof(jint) <= sizeof(uintptr_t));
return log2_intptr((uintptr_t)(juint)x);
}
inline int log2_uint(uint x) {
STATIC_ASSERT(sizeof(uint) <= sizeof(uintptr_t));
return log2_intptr((uintptr_t)x);
}
// A negative value of 'x' will return '63'
inline int log2_jlong(jlong x) {
STATIC_ASSERT(sizeof(jlong) <= sizeof(julong));
return log2_long((julong)x);
}
inline bool is_odd (intx x) { return x & 1; }
inline bool is_even(intx x) { return !is_odd(x); }
// abs methods which cannot overflow and so are well-defined across
// the entire domain of integer types.
static inline unsigned int uabs(unsigned int n) {
union {
unsigned int result;
int value;
};
result = n;
if (value < 0) result = 0-result;
return result;
}
static inline julong uabs(julong n) {
union {
julong result;
jlong value;
};
result = n;
if (value < 0) result = 0-result;
return result;
}
static inline julong uabs(jlong n) { return uabs((julong)n); }
static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
// "to" should be greater than "from."
inline intx byte_size(void* from, void* to) {
return (address)to - (address)from;
}
// Pack and extract shorts to/from ints:
inline int extract_low_short_from_int(jint x) {
return x & 0xffff;
}
inline int extract_high_short_from_int(jint x) {
return (x >> 16) & 0xffff;
}
inline int build_int_from_shorts( jushort low, jushort high ) {
return ((int)((unsigned int)high << 16) | (unsigned int)low);
}
// Convert pointer to intptr_t, for use in printing pointers.
inline intptr_t p2i(const void * p) {
return (intptr_t) p;
}
// swap a & b
template<class T> static void swap(T& a, T& b) {
T tmp = a;
a = b;
b = tmp;
}
// array_size_impl is a function that takes a reference to T[N] and
// returns a reference to char[N]. It is not ODR-used, so not defined.
template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N];
#define ARRAY_SIZE(array) sizeof(array_size_impl(array))
//----------------------------------------------------------------------------------------------------
// Sum and product which can never overflow: they wrap, just like the
// Java operations. Note that we don't intend these to be used for
// general-purpose arithmetic: their purpose is to emulate Java
// operations.
// The goal of this code to avoid undefined or implementation-defined
// behavior. The use of an lvalue to reference cast is explicitly
// permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
// 15 in C++03]
#define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
inline TYPE NAME (TYPE in1, TYPE in2) { \
UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
return reinterpret_cast<TYPE&>(ures); \
}
JAVA_INTEGER_OP(+, java_add, jint, juint)
JAVA_INTEGER_OP(-, java_subtract, jint, juint)
JAVA_INTEGER_OP(*, java_multiply, jint, juint)
JAVA_INTEGER_OP(+, java_add, jlong, julong)
JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
#undef JAVA_INTEGER_OP
// Provide integer shift operations with Java semantics. No overflow
// issues - left shifts simply discard shifted out bits. No undefined
// behavior for large or negative shift quantities; instead the actual
// shift distance is the argument modulo the lhs value's size in bits.
// No undefined or implementation defined behavior for shifting negative
// values; left shift discards bits, right shift sign extends. We use
// the same safe conversion technique as above for java_add and friends.
#define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE) \
inline TYPE NAME (TYPE lhs, jint rhs) { \
const uint rhs_mask = (sizeof(TYPE) * 8) - 1; \
STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63); \
XTYPE xres = static_cast<XTYPE>(lhs); \
xres OP ## = (rhs & rhs_mask); \
return reinterpret_cast<TYPE&>(xres); \
}
JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint)
JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong)
// For signed shift right, assume C++ implementation >> sign extends.
JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint)
JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong)
// For >>> use C++ unsigned >>.
JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint)
JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong)
#undef JAVA_INTEGER_SHIFT_OP
//----------------------------------------------------------------------------------------------------
// The goal of this code is to provide saturating operations for int/uint.
// Checks overflow conditions and saturates the result to min_jint/max_jint.
#define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
inline int NAME (TYPE1 in1, TYPE2 in2) { \
jlong res = static_cast<jlong>(in1); \
res OP ## = static_cast<jlong>(in2); \
if (res > max_jint) { \
res = max_jint; \
} else if (res < min_jint) { \
res = min_jint; \
} \
return static_cast<int>(res); \
}
SATURATED_INTEGER_OP(+, saturated_add, int, int)
SATURATED_INTEGER_OP(+, saturated_add, int, uint)
SATURATED_INTEGER_OP(+, saturated_add, uint, int)
SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
#undef SATURATED_INTEGER_OP
// Dereference vptr
// All C++ compilers that we know of have the vtbl pointer in the first
// word. If there are exceptions, this function needs to be made compiler
// specific.
static inline void* dereference_vptr(const void* addr) {
return *(void**)addr;
}
//----------------------------------------------------------------------------------------------------
// String type aliases used by command line flag declarations and
// processing utilities.
typedef const char* ccstr;
typedef const char* ccstrlist; // represents string arguments which accumulate
//----------------------------------------------------------------------------------------------------
// Default hash/equals functions used by ResourceHashtable and KVHashtable
template<typename K> unsigned primitive_hash(const K& k) {
unsigned hash = (unsigned)((uintptr_t)k);
return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
}
template<typename K> bool primitive_equals(const K& k0, const K& k1) {
return k0 == k1;
}
#endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP