4697cfa4b0
Reviewed-by: lucy, thartmann
2884 lines
110 KiB
C++
2884 lines
110 KiB
C++
/*
|
|
* Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/c2/barrierSetC2.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/compressedOops.hpp"
|
|
#include "opto/ad.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/idealGraphPrinter.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/movenode.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
#include "opto/regmask.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "opto/type.hpp"
|
|
#include "opto/vectornode.hpp"
|
|
#include "runtime/os.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "utilities/align.hpp"
|
|
|
|
OptoReg::Name OptoReg::c_frame_pointer;
|
|
|
|
const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
|
|
RegMask Matcher::mreg2regmask[_last_Mach_Reg];
|
|
RegMask Matcher::caller_save_regmask;
|
|
RegMask Matcher::caller_save_regmask_exclude_soe;
|
|
RegMask Matcher::mh_caller_save_regmask;
|
|
RegMask Matcher::mh_caller_save_regmask_exclude_soe;
|
|
RegMask Matcher::STACK_ONLY_mask;
|
|
RegMask Matcher::c_frame_ptr_mask;
|
|
const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
|
|
const uint Matcher::_end_rematerialize = _END_REMATERIALIZE;
|
|
|
|
//---------------------------Matcher-------------------------------------------
|
|
Matcher::Matcher()
|
|
: PhaseTransform( Phase::Ins_Select ),
|
|
_states_arena(Chunk::medium_size, mtCompiler),
|
|
_visited(&_states_arena),
|
|
_shared(&_states_arena),
|
|
_dontcare(&_states_arena),
|
|
_reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
|
|
_swallowed(swallowed),
|
|
_begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
|
|
_end_inst_chain_rule(_END_INST_CHAIN_RULE),
|
|
_must_clone(must_clone),
|
|
_shared_nodes(C->comp_arena()),
|
|
#ifdef ASSERT
|
|
_old2new_map(C->comp_arena()),
|
|
_new2old_map(C->comp_arena()),
|
|
#endif
|
|
_allocation_started(false),
|
|
_ruleName(ruleName),
|
|
_register_save_policy(register_save_policy),
|
|
_c_reg_save_policy(c_reg_save_policy),
|
|
_register_save_type(register_save_type) {
|
|
C->set_matcher(this);
|
|
|
|
idealreg2spillmask [Op_RegI] = NULL;
|
|
idealreg2spillmask [Op_RegN] = NULL;
|
|
idealreg2spillmask [Op_RegL] = NULL;
|
|
idealreg2spillmask [Op_RegF] = NULL;
|
|
idealreg2spillmask [Op_RegD] = NULL;
|
|
idealreg2spillmask [Op_RegP] = NULL;
|
|
idealreg2spillmask [Op_VecA] = NULL;
|
|
idealreg2spillmask [Op_VecS] = NULL;
|
|
idealreg2spillmask [Op_VecD] = NULL;
|
|
idealreg2spillmask [Op_VecX] = NULL;
|
|
idealreg2spillmask [Op_VecY] = NULL;
|
|
idealreg2spillmask [Op_VecZ] = NULL;
|
|
idealreg2spillmask [Op_RegFlags] = NULL;
|
|
|
|
idealreg2debugmask [Op_RegI] = NULL;
|
|
idealreg2debugmask [Op_RegN] = NULL;
|
|
idealreg2debugmask [Op_RegL] = NULL;
|
|
idealreg2debugmask [Op_RegF] = NULL;
|
|
idealreg2debugmask [Op_RegD] = NULL;
|
|
idealreg2debugmask [Op_RegP] = NULL;
|
|
idealreg2debugmask [Op_VecA] = NULL;
|
|
idealreg2debugmask [Op_VecS] = NULL;
|
|
idealreg2debugmask [Op_VecD] = NULL;
|
|
idealreg2debugmask [Op_VecX] = NULL;
|
|
idealreg2debugmask [Op_VecY] = NULL;
|
|
idealreg2debugmask [Op_VecZ] = NULL;
|
|
idealreg2debugmask [Op_RegFlags] = NULL;
|
|
|
|
idealreg2mhdebugmask[Op_RegI] = NULL;
|
|
idealreg2mhdebugmask[Op_RegN] = NULL;
|
|
idealreg2mhdebugmask[Op_RegL] = NULL;
|
|
idealreg2mhdebugmask[Op_RegF] = NULL;
|
|
idealreg2mhdebugmask[Op_RegD] = NULL;
|
|
idealreg2mhdebugmask[Op_RegP] = NULL;
|
|
idealreg2mhdebugmask[Op_VecA] = NULL;
|
|
idealreg2mhdebugmask[Op_VecS] = NULL;
|
|
idealreg2mhdebugmask[Op_VecD] = NULL;
|
|
idealreg2mhdebugmask[Op_VecX] = NULL;
|
|
idealreg2mhdebugmask[Op_VecY] = NULL;
|
|
idealreg2mhdebugmask[Op_VecZ] = NULL;
|
|
idealreg2mhdebugmask[Op_RegFlags] = NULL;
|
|
|
|
debug_only(_mem_node = NULL;) // Ideal memory node consumed by mach node
|
|
}
|
|
|
|
//------------------------------warp_incoming_stk_arg------------------------
|
|
// This warps a VMReg into an OptoReg::Name
|
|
OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
|
|
OptoReg::Name warped;
|
|
if( reg->is_stack() ) { // Stack slot argument?
|
|
warped = OptoReg::add(_old_SP, reg->reg2stack() );
|
|
warped = OptoReg::add(warped, C->out_preserve_stack_slots());
|
|
if( warped >= _in_arg_limit )
|
|
_in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
|
|
if (!RegMask::can_represent_arg(warped)) {
|
|
// the compiler cannot represent this method's calling sequence
|
|
C->record_method_not_compilable("unsupported incoming calling sequence");
|
|
return OptoReg::Bad;
|
|
}
|
|
return warped;
|
|
}
|
|
return OptoReg::as_OptoReg(reg);
|
|
}
|
|
|
|
//---------------------------compute_old_SP------------------------------------
|
|
OptoReg::Name Compile::compute_old_SP() {
|
|
int fixed = fixed_slots();
|
|
int preserve = in_preserve_stack_slots();
|
|
return OptoReg::stack2reg(align_up(fixed + preserve, (int)Matcher::stack_alignment_in_slots()));
|
|
}
|
|
|
|
|
|
|
|
#ifdef ASSERT
|
|
void Matcher::verify_new_nodes_only(Node* xroot) {
|
|
// Make sure that the new graph only references new nodes
|
|
ResourceMark rm;
|
|
Unique_Node_List worklist;
|
|
VectorSet visited;
|
|
worklist.push(xroot);
|
|
while (worklist.size() > 0) {
|
|
Node* n = worklist.pop();
|
|
visited.set(n->_idx);
|
|
assert(C->node_arena()->contains(n), "dead node");
|
|
for (uint j = 0; j < n->req(); j++) {
|
|
Node* in = n->in(j);
|
|
if (in != NULL) {
|
|
assert(C->node_arena()->contains(in), "dead node");
|
|
if (!visited.test(in->_idx)) {
|
|
worklist.push(in);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
//---------------------------match---------------------------------------------
|
|
void Matcher::match( ) {
|
|
if( MaxLabelRootDepth < 100 ) { // Too small?
|
|
assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
|
|
MaxLabelRootDepth = 100;
|
|
}
|
|
// One-time initialization of some register masks.
|
|
init_spill_mask( C->root()->in(1) );
|
|
_return_addr_mask = return_addr();
|
|
#ifdef _LP64
|
|
// Pointers take 2 slots in 64-bit land
|
|
_return_addr_mask.Insert(OptoReg::add(return_addr(),1));
|
|
#endif
|
|
|
|
// Map a Java-signature return type into return register-value
|
|
// machine registers for 0, 1 and 2 returned values.
|
|
const TypeTuple *range = C->tf()->range();
|
|
if( range->cnt() > TypeFunc::Parms ) { // If not a void function
|
|
// Get ideal-register return type
|
|
uint ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
|
|
// Get machine return register
|
|
uint sop = C->start()->Opcode();
|
|
OptoRegPair regs = return_value(ireg);
|
|
|
|
// And mask for same
|
|
_return_value_mask = RegMask(regs.first());
|
|
if( OptoReg::is_valid(regs.second()) )
|
|
_return_value_mask.Insert(regs.second());
|
|
}
|
|
|
|
// ---------------
|
|
// Frame Layout
|
|
|
|
// Need the method signature to determine the incoming argument types,
|
|
// because the types determine which registers the incoming arguments are
|
|
// in, and this affects the matched code.
|
|
const TypeTuple *domain = C->tf()->domain();
|
|
uint argcnt = domain->cnt() - TypeFunc::Parms;
|
|
BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
|
|
VMRegPair *vm_parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
|
|
_parm_regs = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
|
|
_calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
|
|
uint i;
|
|
for( i = 0; i<argcnt; i++ ) {
|
|
sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
|
|
}
|
|
|
|
// Pass array of ideal registers and length to USER code (from the AD file)
|
|
// that will convert this to an array of register numbers.
|
|
const StartNode *start = C->start();
|
|
start->calling_convention( sig_bt, vm_parm_regs, argcnt );
|
|
#ifdef ASSERT
|
|
// Sanity check users' calling convention. Real handy while trying to
|
|
// get the initial port correct.
|
|
{ for (uint i = 0; i<argcnt; i++) {
|
|
if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
|
|
assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
|
|
_parm_regs[i].set_bad();
|
|
continue;
|
|
}
|
|
VMReg parm_reg = vm_parm_regs[i].first();
|
|
assert(parm_reg->is_valid(), "invalid arg?");
|
|
if (parm_reg->is_reg()) {
|
|
OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
|
|
assert(can_be_java_arg(opto_parm_reg) ||
|
|
C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
|
|
opto_parm_reg == inline_cache_reg(),
|
|
"parameters in register must be preserved by runtime stubs");
|
|
}
|
|
for (uint j = 0; j < i; j++) {
|
|
assert(parm_reg != vm_parm_regs[j].first(),
|
|
"calling conv. must produce distinct regs");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Do some initial frame layout.
|
|
|
|
// Compute the old incoming SP (may be called FP) as
|
|
// OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
|
|
_old_SP = C->compute_old_SP();
|
|
assert( is_even(_old_SP), "must be even" );
|
|
|
|
// Compute highest incoming stack argument as
|
|
// _old_SP + out_preserve_stack_slots + incoming argument size.
|
|
_in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
|
|
assert( is_even(_in_arg_limit), "out_preserve must be even" );
|
|
for( i = 0; i < argcnt; i++ ) {
|
|
// Permit args to have no register
|
|
_calling_convention_mask[i].Clear();
|
|
if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
|
|
continue;
|
|
}
|
|
// calling_convention returns stack arguments as a count of
|
|
// slots beyond OptoReg::stack0()/VMRegImpl::stack0. We need to convert this to
|
|
// the allocators point of view, taking into account all the
|
|
// preserve area, locks & pad2.
|
|
|
|
OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
|
|
if( OptoReg::is_valid(reg1))
|
|
_calling_convention_mask[i].Insert(reg1);
|
|
|
|
OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
|
|
if( OptoReg::is_valid(reg2))
|
|
_calling_convention_mask[i].Insert(reg2);
|
|
|
|
// Saved biased stack-slot register number
|
|
_parm_regs[i].set_pair(reg2, reg1);
|
|
}
|
|
|
|
// Finally, make sure the incoming arguments take up an even number of
|
|
// words, in case the arguments or locals need to contain doubleword stack
|
|
// slots. The rest of the system assumes that stack slot pairs (in
|
|
// particular, in the spill area) which look aligned will in fact be
|
|
// aligned relative to the stack pointer in the target machine. Double
|
|
// stack slots will always be allocated aligned.
|
|
_new_SP = OptoReg::Name(align_up(_in_arg_limit, (int)RegMask::SlotsPerLong));
|
|
|
|
// Compute highest outgoing stack argument as
|
|
// _new_SP + out_preserve_stack_slots + max(outgoing argument size).
|
|
_out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
|
|
assert( is_even(_out_arg_limit), "out_preserve must be even" );
|
|
|
|
if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
|
|
// the compiler cannot represent this method's calling sequence
|
|
C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
|
|
}
|
|
|
|
if (C->failing()) return; // bailed out on incoming arg failure
|
|
|
|
// ---------------
|
|
// Collect roots of matcher trees. Every node for which
|
|
// _shared[_idx] is cleared is guaranteed to not be shared, and thus
|
|
// can be a valid interior of some tree.
|
|
find_shared( C->root() );
|
|
find_shared( C->top() );
|
|
|
|
C->print_method(PHASE_BEFORE_MATCHING);
|
|
|
|
// Create new ideal node ConP #NULL even if it does exist in old space
|
|
// to avoid false sharing if the corresponding mach node is not used.
|
|
// The corresponding mach node is only used in rare cases for derived
|
|
// pointers.
|
|
Node* new_ideal_null = ConNode::make(TypePtr::NULL_PTR);
|
|
|
|
// Swap out to old-space; emptying new-space
|
|
Arena *old = C->node_arena()->move_contents(C->old_arena());
|
|
|
|
// Save debug and profile information for nodes in old space:
|
|
_old_node_note_array = C->node_note_array();
|
|
if (_old_node_note_array != NULL) {
|
|
C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
|
|
(C->comp_arena(), _old_node_note_array->length(),
|
|
0, NULL));
|
|
}
|
|
|
|
// Pre-size the new_node table to avoid the need for range checks.
|
|
grow_new_node_array(C->unique());
|
|
|
|
// Reset node counter so MachNodes start with _idx at 0
|
|
int live_nodes = C->live_nodes();
|
|
C->set_unique(0);
|
|
C->reset_dead_node_list();
|
|
|
|
// Recursively match trees from old space into new space.
|
|
// Correct leaves of new-space Nodes; they point to old-space.
|
|
_visited.clear();
|
|
C->set_cached_top_node(xform( C->top(), live_nodes ));
|
|
if (!C->failing()) {
|
|
Node* xroot = xform( C->root(), 1 );
|
|
if (xroot == NULL) {
|
|
Matcher::soft_match_failure(); // recursive matching process failed
|
|
C->record_method_not_compilable("instruction match failed");
|
|
} else {
|
|
// During matching shared constants were attached to C->root()
|
|
// because xroot wasn't available yet, so transfer the uses to
|
|
// the xroot.
|
|
for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
|
|
Node* n = C->root()->fast_out(j);
|
|
if (C->node_arena()->contains(n)) {
|
|
assert(n->in(0) == C->root(), "should be control user");
|
|
n->set_req(0, xroot);
|
|
--j;
|
|
--jmax;
|
|
}
|
|
}
|
|
|
|
// Generate new mach node for ConP #NULL
|
|
assert(new_ideal_null != NULL, "sanity");
|
|
_mach_null = match_tree(new_ideal_null);
|
|
// Don't set control, it will confuse GCM since there are no uses.
|
|
// The control will be set when this node is used first time
|
|
// in find_base_for_derived().
|
|
assert(_mach_null != NULL, "");
|
|
|
|
C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
|
|
|
|
#ifdef ASSERT
|
|
verify_new_nodes_only(xroot);
|
|
#endif
|
|
}
|
|
}
|
|
if (C->top() == NULL || C->root() == NULL) {
|
|
C->record_method_not_compilable("graph lost"); // %%% cannot happen?
|
|
}
|
|
if (C->failing()) {
|
|
// delete old;
|
|
old->destruct_contents();
|
|
return;
|
|
}
|
|
assert( C->top(), "" );
|
|
assert( C->root(), "" );
|
|
validate_null_checks();
|
|
|
|
// Now smoke old-space
|
|
NOT_DEBUG( old->destruct_contents() );
|
|
|
|
// ------------------------
|
|
// Set up save-on-entry registers.
|
|
Fixup_Save_On_Entry( );
|
|
|
|
{ // Cleanup mach IR after selection phase is over.
|
|
Compile::TracePhase tp("postselect_cleanup", &timers[_t_postselect_cleanup]);
|
|
do_postselect_cleanup();
|
|
if (C->failing()) return;
|
|
assert(verify_after_postselect_cleanup(), "");
|
|
}
|
|
}
|
|
|
|
//------------------------------Fixup_Save_On_Entry----------------------------
|
|
// The stated purpose of this routine is to take care of save-on-entry
|
|
// registers. However, the overall goal of the Match phase is to convert into
|
|
// machine-specific instructions which have RegMasks to guide allocation.
|
|
// So what this procedure really does is put a valid RegMask on each input
|
|
// to the machine-specific variations of all Return, TailCall and Halt
|
|
// instructions. It also adds edgs to define the save-on-entry values (and of
|
|
// course gives them a mask).
|
|
|
|
static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
|
|
RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
|
|
// Do all the pre-defined register masks
|
|
rms[TypeFunc::Control ] = RegMask::Empty;
|
|
rms[TypeFunc::I_O ] = RegMask::Empty;
|
|
rms[TypeFunc::Memory ] = RegMask::Empty;
|
|
rms[TypeFunc::ReturnAdr] = ret_adr;
|
|
rms[TypeFunc::FramePtr ] = fp;
|
|
return rms;
|
|
}
|
|
|
|
#define NOF_STACK_MASKS (3*12)
|
|
|
|
// Create the initial stack mask used by values spilling to the stack.
|
|
// Disallow any debug info in outgoing argument areas by setting the
|
|
// initial mask accordingly.
|
|
void Matcher::init_first_stack_mask() {
|
|
|
|
// Allocate storage for spill masks as masks for the appropriate load type.
|
|
RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * NOF_STACK_MASKS);
|
|
|
|
// Initialize empty placeholder masks into the newly allocated arena
|
|
for (int i = 0; i < NOF_STACK_MASKS; i++) {
|
|
new (rms + i) RegMask();
|
|
}
|
|
|
|
idealreg2spillmask [Op_RegN] = &rms[0];
|
|
idealreg2spillmask [Op_RegI] = &rms[1];
|
|
idealreg2spillmask [Op_RegL] = &rms[2];
|
|
idealreg2spillmask [Op_RegF] = &rms[3];
|
|
idealreg2spillmask [Op_RegD] = &rms[4];
|
|
idealreg2spillmask [Op_RegP] = &rms[5];
|
|
|
|
idealreg2debugmask [Op_RegN] = &rms[6];
|
|
idealreg2debugmask [Op_RegI] = &rms[7];
|
|
idealreg2debugmask [Op_RegL] = &rms[8];
|
|
idealreg2debugmask [Op_RegF] = &rms[9];
|
|
idealreg2debugmask [Op_RegD] = &rms[10];
|
|
idealreg2debugmask [Op_RegP] = &rms[11];
|
|
|
|
idealreg2mhdebugmask[Op_RegN] = &rms[12];
|
|
idealreg2mhdebugmask[Op_RegI] = &rms[13];
|
|
idealreg2mhdebugmask[Op_RegL] = &rms[14];
|
|
idealreg2mhdebugmask[Op_RegF] = &rms[15];
|
|
idealreg2mhdebugmask[Op_RegD] = &rms[16];
|
|
idealreg2mhdebugmask[Op_RegP] = &rms[17];
|
|
|
|
idealreg2spillmask [Op_VecA] = &rms[18];
|
|
idealreg2spillmask [Op_VecS] = &rms[19];
|
|
idealreg2spillmask [Op_VecD] = &rms[20];
|
|
idealreg2spillmask [Op_VecX] = &rms[21];
|
|
idealreg2spillmask [Op_VecY] = &rms[22];
|
|
idealreg2spillmask [Op_VecZ] = &rms[23];
|
|
|
|
idealreg2debugmask [Op_VecA] = &rms[24];
|
|
idealreg2debugmask [Op_VecS] = &rms[25];
|
|
idealreg2debugmask [Op_VecD] = &rms[26];
|
|
idealreg2debugmask [Op_VecX] = &rms[27];
|
|
idealreg2debugmask [Op_VecY] = &rms[28];
|
|
idealreg2debugmask [Op_VecZ] = &rms[29];
|
|
|
|
idealreg2mhdebugmask[Op_VecA] = &rms[30];
|
|
idealreg2mhdebugmask[Op_VecS] = &rms[31];
|
|
idealreg2mhdebugmask[Op_VecD] = &rms[32];
|
|
idealreg2mhdebugmask[Op_VecX] = &rms[33];
|
|
idealreg2mhdebugmask[Op_VecY] = &rms[34];
|
|
idealreg2mhdebugmask[Op_VecZ] = &rms[35];
|
|
|
|
OptoReg::Name i;
|
|
|
|
// At first, start with the empty mask
|
|
C->FIRST_STACK_mask().Clear();
|
|
|
|
// Add in the incoming argument area
|
|
OptoReg::Name init_in = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
|
|
for (i = init_in; i < _in_arg_limit; i = OptoReg::add(i,1)) {
|
|
C->FIRST_STACK_mask().Insert(i);
|
|
}
|
|
// Add in all bits past the outgoing argument area
|
|
guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
|
|
"must be able to represent all call arguments in reg mask");
|
|
OptoReg::Name init = _out_arg_limit;
|
|
for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1)) {
|
|
C->FIRST_STACK_mask().Insert(i);
|
|
}
|
|
// Finally, set the "infinite stack" bit.
|
|
C->FIRST_STACK_mask().set_AllStack();
|
|
|
|
// Make spill masks. Registers for their class, plus FIRST_STACK_mask.
|
|
RegMask aligned_stack_mask = C->FIRST_STACK_mask();
|
|
// Keep spill masks aligned.
|
|
aligned_stack_mask.clear_to_pairs();
|
|
assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
|
|
RegMask scalable_stack_mask = aligned_stack_mask;
|
|
|
|
*idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
|
|
#ifdef _LP64
|
|
*idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
|
|
idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
|
|
idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
|
|
#else
|
|
idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
|
|
#endif
|
|
*idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
|
|
idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
|
|
*idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
|
|
idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
|
|
*idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
|
|
idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
|
|
*idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
|
|
idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
|
|
|
|
if (Matcher::vector_size_supported(T_BYTE,4)) {
|
|
*idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
|
|
idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
|
|
} else {
|
|
*idealreg2spillmask[Op_VecS] = RegMask::Empty;
|
|
}
|
|
|
|
if (Matcher::vector_size_supported(T_FLOAT,2)) {
|
|
// For VecD we need dual alignment and 8 bytes (2 slots) for spills.
|
|
// RA guarantees such alignment since it is needed for Double and Long values.
|
|
*idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
|
|
idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
|
|
} else {
|
|
*idealreg2spillmask[Op_VecD] = RegMask::Empty;
|
|
}
|
|
|
|
if (Matcher::vector_size_supported(T_FLOAT,4)) {
|
|
// For VecX we need quadro alignment and 16 bytes (4 slots) for spills.
|
|
//
|
|
// RA can use input arguments stack slots for spills but until RA
|
|
// we don't know frame size and offset of input arg stack slots.
|
|
//
|
|
// Exclude last input arg stack slots to avoid spilling vectors there
|
|
// otherwise vector spills could stomp over stack slots in caller frame.
|
|
OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
|
|
for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecX); k++) {
|
|
aligned_stack_mask.Remove(in);
|
|
in = OptoReg::add(in, -1);
|
|
}
|
|
aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
|
|
assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
|
|
*idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
|
|
idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
|
|
} else {
|
|
*idealreg2spillmask[Op_VecX] = RegMask::Empty;
|
|
}
|
|
|
|
if (Matcher::vector_size_supported(T_FLOAT,8)) {
|
|
// For VecY we need octo alignment and 32 bytes (8 slots) for spills.
|
|
OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
|
|
for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecY); k++) {
|
|
aligned_stack_mask.Remove(in);
|
|
in = OptoReg::add(in, -1);
|
|
}
|
|
aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
|
|
assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
|
|
*idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
|
|
idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
|
|
} else {
|
|
*idealreg2spillmask[Op_VecY] = RegMask::Empty;
|
|
}
|
|
|
|
if (Matcher::vector_size_supported(T_FLOAT,16)) {
|
|
// For VecZ we need enough alignment and 64 bytes (16 slots) for spills.
|
|
OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
|
|
for (int k = 1; (in >= init_in) && (k < RegMask::SlotsPerVecZ); k++) {
|
|
aligned_stack_mask.Remove(in);
|
|
in = OptoReg::add(in, -1);
|
|
}
|
|
aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecZ);
|
|
assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
|
|
*idealreg2spillmask[Op_VecZ] = *idealreg2regmask[Op_VecZ];
|
|
idealreg2spillmask[Op_VecZ]->OR(aligned_stack_mask);
|
|
} else {
|
|
*idealreg2spillmask[Op_VecZ] = RegMask::Empty;
|
|
}
|
|
|
|
if (Matcher::supports_scalable_vector()) {
|
|
int k = 1;
|
|
OptoReg::Name in = OptoReg::add(_in_arg_limit, -1);
|
|
// Exclude last input arg stack slots to avoid spilling vector register there,
|
|
// otherwise vector spills could stomp over stack slots in caller frame.
|
|
for (; (in >= init_in) && (k < scalable_vector_reg_size(T_FLOAT)); k++) {
|
|
scalable_stack_mask.Remove(in);
|
|
in = OptoReg::add(in, -1);
|
|
}
|
|
|
|
// For VecA
|
|
scalable_stack_mask.clear_to_sets(RegMask::SlotsPerVecA);
|
|
assert(scalable_stack_mask.is_AllStack(), "should be infinite stack");
|
|
*idealreg2spillmask[Op_VecA] = *idealreg2regmask[Op_VecA];
|
|
idealreg2spillmask[Op_VecA]->OR(scalable_stack_mask);
|
|
} else {
|
|
*idealreg2spillmask[Op_VecA] = RegMask::Empty;
|
|
}
|
|
|
|
if (UseFPUForSpilling) {
|
|
// This mask logic assumes that the spill operations are
|
|
// symmetric and that the registers involved are the same size.
|
|
// On sparc for instance we may have to use 64 bit moves will
|
|
// kill 2 registers when used with F0-F31.
|
|
idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
|
|
idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
|
|
#ifdef _LP64
|
|
idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
|
|
idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
|
|
idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
|
|
idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
|
|
#else
|
|
idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
|
|
#ifdef ARM
|
|
// ARM has support for moving 64bit values between a pair of
|
|
// integer registers and a double register
|
|
idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
|
|
idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// Make up debug masks. Any spill slot plus callee-save (SOE) registers.
|
|
// Caller-save (SOC, AS) registers are assumed to be trashable by the various
|
|
// inline-cache fixup routines.
|
|
*idealreg2debugmask [Op_RegN] = *idealreg2spillmask[Op_RegN];
|
|
*idealreg2debugmask [Op_RegI] = *idealreg2spillmask[Op_RegI];
|
|
*idealreg2debugmask [Op_RegL] = *idealreg2spillmask[Op_RegL];
|
|
*idealreg2debugmask [Op_RegF] = *idealreg2spillmask[Op_RegF];
|
|
*idealreg2debugmask [Op_RegD] = *idealreg2spillmask[Op_RegD];
|
|
*idealreg2debugmask [Op_RegP] = *idealreg2spillmask[Op_RegP];
|
|
|
|
*idealreg2debugmask [Op_VecA] = *idealreg2spillmask[Op_VecA];
|
|
*idealreg2debugmask [Op_VecS] = *idealreg2spillmask[Op_VecS];
|
|
*idealreg2debugmask [Op_VecD] = *idealreg2spillmask[Op_VecD];
|
|
*idealreg2debugmask [Op_VecX] = *idealreg2spillmask[Op_VecX];
|
|
*idealreg2debugmask [Op_VecY] = *idealreg2spillmask[Op_VecY];
|
|
*idealreg2debugmask [Op_VecZ] = *idealreg2spillmask[Op_VecZ];
|
|
|
|
*idealreg2mhdebugmask[Op_RegN] = *idealreg2spillmask[Op_RegN];
|
|
*idealreg2mhdebugmask[Op_RegI] = *idealreg2spillmask[Op_RegI];
|
|
*idealreg2mhdebugmask[Op_RegL] = *idealreg2spillmask[Op_RegL];
|
|
*idealreg2mhdebugmask[Op_RegF] = *idealreg2spillmask[Op_RegF];
|
|
*idealreg2mhdebugmask[Op_RegD] = *idealreg2spillmask[Op_RegD];
|
|
*idealreg2mhdebugmask[Op_RegP] = *idealreg2spillmask[Op_RegP];
|
|
|
|
*idealreg2mhdebugmask[Op_VecA] = *idealreg2spillmask[Op_VecA];
|
|
*idealreg2mhdebugmask[Op_VecS] = *idealreg2spillmask[Op_VecS];
|
|
*idealreg2mhdebugmask[Op_VecD] = *idealreg2spillmask[Op_VecD];
|
|
*idealreg2mhdebugmask[Op_VecX] = *idealreg2spillmask[Op_VecX];
|
|
*idealreg2mhdebugmask[Op_VecY] = *idealreg2spillmask[Op_VecY];
|
|
*idealreg2mhdebugmask[Op_VecZ] = *idealreg2spillmask[Op_VecZ];
|
|
|
|
// Prevent stub compilations from attempting to reference
|
|
// callee-saved (SOE) registers from debug info
|
|
bool exclude_soe = !Compile::current()->is_method_compilation();
|
|
RegMask* caller_save_mask = exclude_soe ? &caller_save_regmask_exclude_soe : &caller_save_regmask;
|
|
RegMask* mh_caller_save_mask = exclude_soe ? &mh_caller_save_regmask_exclude_soe : &mh_caller_save_regmask;
|
|
|
|
idealreg2debugmask[Op_RegN]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_RegI]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_RegL]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_RegF]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_RegD]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_RegP]->SUBTRACT(*caller_save_mask);
|
|
|
|
idealreg2debugmask[Op_VecA]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_VecS]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_VecD]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_VecX]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_VecY]->SUBTRACT(*caller_save_mask);
|
|
idealreg2debugmask[Op_VecZ]->SUBTRACT(*caller_save_mask);
|
|
|
|
idealreg2mhdebugmask[Op_RegN]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_RegI]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_RegL]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_RegF]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_RegD]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_RegP]->SUBTRACT(*mh_caller_save_mask);
|
|
|
|
idealreg2mhdebugmask[Op_VecA]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_VecS]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_VecD]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_VecX]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_VecY]->SUBTRACT(*mh_caller_save_mask);
|
|
idealreg2mhdebugmask[Op_VecZ]->SUBTRACT(*mh_caller_save_mask);
|
|
}
|
|
|
|
//---------------------------is_save_on_entry----------------------------------
|
|
bool Matcher::is_save_on_entry( int reg ) {
|
|
return
|
|
_register_save_policy[reg] == 'E' ||
|
|
_register_save_policy[reg] == 'A' || // Save-on-entry register?
|
|
// Also save argument registers in the trampolining stubs
|
|
(C->save_argument_registers() && is_spillable_arg(reg));
|
|
}
|
|
|
|
//---------------------------Fixup_Save_On_Entry-------------------------------
|
|
void Matcher::Fixup_Save_On_Entry( ) {
|
|
init_first_stack_mask();
|
|
|
|
Node *root = C->root(); // Short name for root
|
|
// Count number of save-on-entry registers.
|
|
uint soe_cnt = number_of_saved_registers();
|
|
uint i;
|
|
|
|
// Find the procedure Start Node
|
|
StartNode *start = C->start();
|
|
assert( start, "Expect a start node" );
|
|
|
|
// Save argument registers in the trampolining stubs
|
|
if( C->save_argument_registers() )
|
|
for( i = 0; i < _last_Mach_Reg; i++ )
|
|
if( is_spillable_arg(i) )
|
|
soe_cnt++;
|
|
|
|
// Input RegMask array shared by all Returns.
|
|
// The type for doubles and longs has a count of 2, but
|
|
// there is only 1 returned value
|
|
uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
|
|
RegMask *ret_rms = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
|
|
// Returns have 0 or 1 returned values depending on call signature.
|
|
// Return register is specified by return_value in the AD file.
|
|
if (ret_edge_cnt > TypeFunc::Parms)
|
|
ret_rms[TypeFunc::Parms+0] = _return_value_mask;
|
|
|
|
// Input RegMask array shared by all Rethrows.
|
|
uint reth_edge_cnt = TypeFunc::Parms+1;
|
|
RegMask *reth_rms = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
|
|
// Rethrow takes exception oop only, but in the argument 0 slot.
|
|
OptoReg::Name reg = find_receiver();
|
|
if (reg >= 0) {
|
|
reth_rms[TypeFunc::Parms] = mreg2regmask[reg];
|
|
#ifdef _LP64
|
|
// Need two slots for ptrs in 64-bit land
|
|
reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(reg), 1));
|
|
#endif
|
|
}
|
|
|
|
// Input RegMask array shared by all TailCalls
|
|
uint tail_call_edge_cnt = TypeFunc::Parms+2;
|
|
RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
|
|
|
|
// Input RegMask array shared by all TailJumps
|
|
uint tail_jump_edge_cnt = TypeFunc::Parms+2;
|
|
RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
|
|
|
|
// TailCalls have 2 returned values (target & moop), whose masks come
|
|
// from the usual MachNode/MachOper mechanism. Find a sample
|
|
// TailCall to extract these masks and put the correct masks into
|
|
// the tail_call_rms array.
|
|
for( i=1; i < root->req(); i++ ) {
|
|
MachReturnNode *m = root->in(i)->as_MachReturn();
|
|
if( m->ideal_Opcode() == Op_TailCall ) {
|
|
tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
|
|
tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// TailJumps have 2 returned values (target & ex_oop), whose masks come
|
|
// from the usual MachNode/MachOper mechanism. Find a sample
|
|
// TailJump to extract these masks and put the correct masks into
|
|
// the tail_jump_rms array.
|
|
for( i=1; i < root->req(); i++ ) {
|
|
MachReturnNode *m = root->in(i)->as_MachReturn();
|
|
if( m->ideal_Opcode() == Op_TailJump ) {
|
|
tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
|
|
tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Input RegMask array shared by all Halts
|
|
uint halt_edge_cnt = TypeFunc::Parms;
|
|
RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
|
|
|
|
// Capture the return input masks into each exit flavor
|
|
for( i=1; i < root->req(); i++ ) {
|
|
MachReturnNode *exit = root->in(i)->as_MachReturn();
|
|
switch( exit->ideal_Opcode() ) {
|
|
case Op_Return : exit->_in_rms = ret_rms; break;
|
|
case Op_Rethrow : exit->_in_rms = reth_rms; break;
|
|
case Op_TailCall : exit->_in_rms = tail_call_rms; break;
|
|
case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
|
|
case Op_Halt : exit->_in_rms = halt_rms; break;
|
|
default : ShouldNotReachHere();
|
|
}
|
|
}
|
|
|
|
// Next unused projection number from Start.
|
|
int proj_cnt = C->tf()->domain()->cnt();
|
|
|
|
// Do all the save-on-entry registers. Make projections from Start for
|
|
// them, and give them a use at the exit points. To the allocator, they
|
|
// look like incoming register arguments.
|
|
for( i = 0; i < _last_Mach_Reg; i++ ) {
|
|
if( is_save_on_entry(i) ) {
|
|
|
|
// Add the save-on-entry to the mask array
|
|
ret_rms [ ret_edge_cnt] = mreg2regmask[i];
|
|
reth_rms [ reth_edge_cnt] = mreg2regmask[i];
|
|
tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
|
|
tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
|
|
// Halts need the SOE registers, but only in the stack as debug info.
|
|
// A just-prior uncommon-trap or deoptimization will use the SOE regs.
|
|
halt_rms [ halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
|
|
|
|
Node *mproj;
|
|
|
|
// Is this a RegF low half of a RegD? Double up 2 adjacent RegF's
|
|
// into a single RegD.
|
|
if( (i&1) == 0 &&
|
|
_register_save_type[i ] == Op_RegF &&
|
|
_register_save_type[i+1] == Op_RegF &&
|
|
is_save_on_entry(i+1) ) {
|
|
// Add other bit for double
|
|
ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
|
|
proj_cnt += 2; // Skip 2 for doubles
|
|
}
|
|
else if( (i&1) == 1 && // Else check for high half of double
|
|
_register_save_type[i-1] == Op_RegF &&
|
|
_register_save_type[i ] == Op_RegF &&
|
|
is_save_on_entry(i-1) ) {
|
|
ret_rms [ ret_edge_cnt] = RegMask::Empty;
|
|
reth_rms [ reth_edge_cnt] = RegMask::Empty;
|
|
tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
|
|
tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
|
|
halt_rms [ halt_edge_cnt] = RegMask::Empty;
|
|
mproj = C->top();
|
|
}
|
|
// Is this a RegI low half of a RegL? Double up 2 adjacent RegI's
|
|
// into a single RegL.
|
|
else if( (i&1) == 0 &&
|
|
_register_save_type[i ] == Op_RegI &&
|
|
_register_save_type[i+1] == Op_RegI &&
|
|
is_save_on_entry(i+1) ) {
|
|
// Add other bit for long
|
|
ret_rms [ ret_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
reth_rms [ reth_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
halt_rms [ halt_edge_cnt].Insert(OptoReg::Name(i+1));
|
|
mproj = new MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
|
|
proj_cnt += 2; // Skip 2 for longs
|
|
}
|
|
else if( (i&1) == 1 && // Else check for high half of long
|
|
_register_save_type[i-1] == Op_RegI &&
|
|
_register_save_type[i ] == Op_RegI &&
|
|
is_save_on_entry(i-1) ) {
|
|
ret_rms [ ret_edge_cnt] = RegMask::Empty;
|
|
reth_rms [ reth_edge_cnt] = RegMask::Empty;
|
|
tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
|
|
tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
|
|
halt_rms [ halt_edge_cnt] = RegMask::Empty;
|
|
mproj = C->top();
|
|
} else {
|
|
// Make a projection for it off the Start
|
|
mproj = new MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
|
|
}
|
|
|
|
ret_edge_cnt ++;
|
|
reth_edge_cnt ++;
|
|
tail_call_edge_cnt ++;
|
|
tail_jump_edge_cnt ++;
|
|
halt_edge_cnt ++;
|
|
|
|
// Add a use of the SOE register to all exit paths
|
|
for( uint j=1; j < root->req(); j++ )
|
|
root->in(j)->add_req(mproj);
|
|
} // End of if a save-on-entry register
|
|
} // End of for all machine registers
|
|
}
|
|
|
|
//------------------------------init_spill_mask--------------------------------
|
|
void Matcher::init_spill_mask( Node *ret ) {
|
|
if( idealreg2regmask[Op_RegI] ) return; // One time only init
|
|
|
|
OptoReg::c_frame_pointer = c_frame_pointer();
|
|
c_frame_ptr_mask = c_frame_pointer();
|
|
#ifdef _LP64
|
|
// pointers are twice as big
|
|
c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
|
|
#endif
|
|
|
|
// Start at OptoReg::stack0()
|
|
STACK_ONLY_mask.Clear();
|
|
OptoReg::Name init = OptoReg::stack2reg(0);
|
|
// STACK_ONLY_mask is all stack bits
|
|
OptoReg::Name i;
|
|
for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
|
|
STACK_ONLY_mask.Insert(i);
|
|
// Also set the "infinite stack" bit.
|
|
STACK_ONLY_mask.set_AllStack();
|
|
|
|
for (i = OptoReg::Name(0); i < OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i, 1)) {
|
|
// Copy the register names over into the shared world.
|
|
// SharedInfo::regName[i] = regName[i];
|
|
// Handy RegMasks per machine register
|
|
mreg2regmask[i].Insert(i);
|
|
|
|
// Set up regmasks used to exclude save-on-call (and always-save) registers from debug masks.
|
|
if (_register_save_policy[i] == 'C' ||
|
|
_register_save_policy[i] == 'A') {
|
|
caller_save_regmask.Insert(i);
|
|
mh_caller_save_regmask.Insert(i);
|
|
}
|
|
// Exclude save-on-entry registers from debug masks for stub compilations.
|
|
if (_register_save_policy[i] == 'C' ||
|
|
_register_save_policy[i] == 'A' ||
|
|
_register_save_policy[i] == 'E') {
|
|
caller_save_regmask_exclude_soe.Insert(i);
|
|
mh_caller_save_regmask_exclude_soe.Insert(i);
|
|
}
|
|
}
|
|
|
|
// Also exclude the register we use to save the SP for MethodHandle
|
|
// invokes to from the corresponding MH debug masks
|
|
const RegMask sp_save_mask = method_handle_invoke_SP_save_mask();
|
|
mh_caller_save_regmask.OR(sp_save_mask);
|
|
mh_caller_save_regmask_exclude_soe.OR(sp_save_mask);
|
|
|
|
// Grab the Frame Pointer
|
|
Node *fp = ret->in(TypeFunc::FramePtr);
|
|
// Share frame pointer while making spill ops
|
|
set_shared(fp);
|
|
|
|
// Get the ADLC notion of the right regmask, for each basic type.
|
|
#ifdef _LP64
|
|
idealreg2regmask[Op_RegN] = regmask_for_ideal_register(Op_RegN, ret);
|
|
#endif
|
|
idealreg2regmask[Op_RegI] = regmask_for_ideal_register(Op_RegI, ret);
|
|
idealreg2regmask[Op_RegP] = regmask_for_ideal_register(Op_RegP, ret);
|
|
idealreg2regmask[Op_RegF] = regmask_for_ideal_register(Op_RegF, ret);
|
|
idealreg2regmask[Op_RegD] = regmask_for_ideal_register(Op_RegD, ret);
|
|
idealreg2regmask[Op_RegL] = regmask_for_ideal_register(Op_RegL, ret);
|
|
idealreg2regmask[Op_VecA] = regmask_for_ideal_register(Op_VecA, ret);
|
|
idealreg2regmask[Op_VecS] = regmask_for_ideal_register(Op_VecS, ret);
|
|
idealreg2regmask[Op_VecD] = regmask_for_ideal_register(Op_VecD, ret);
|
|
idealreg2regmask[Op_VecX] = regmask_for_ideal_register(Op_VecX, ret);
|
|
idealreg2regmask[Op_VecY] = regmask_for_ideal_register(Op_VecY, ret);
|
|
idealreg2regmask[Op_VecZ] = regmask_for_ideal_register(Op_VecZ, ret);
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
static void match_alias_type(Compile* C, Node* n, Node* m) {
|
|
if (!VerifyAliases) return; // do not go looking for trouble by default
|
|
const TypePtr* nat = n->adr_type();
|
|
const TypePtr* mat = m->adr_type();
|
|
int nidx = C->get_alias_index(nat);
|
|
int midx = C->get_alias_index(mat);
|
|
// Detune the assert for cases like (AndI 0xFF (LoadB p)).
|
|
if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
|
|
for (uint i = 1; i < n->req(); i++) {
|
|
Node* n1 = n->in(i);
|
|
const TypePtr* n1at = n1->adr_type();
|
|
if (n1at != NULL) {
|
|
nat = n1at;
|
|
nidx = C->get_alias_index(n1at);
|
|
}
|
|
}
|
|
}
|
|
// %%% Kludgery. Instead, fix ideal adr_type methods for all these cases:
|
|
if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
|
|
switch (n->Opcode()) {
|
|
case Op_PrefetchAllocation:
|
|
nidx = Compile::AliasIdxRaw;
|
|
nat = TypeRawPtr::BOTTOM;
|
|
break;
|
|
}
|
|
}
|
|
if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
|
|
switch (n->Opcode()) {
|
|
case Op_ClearArray:
|
|
midx = Compile::AliasIdxRaw;
|
|
mat = TypeRawPtr::BOTTOM;
|
|
break;
|
|
}
|
|
}
|
|
if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
|
|
switch (n->Opcode()) {
|
|
case Op_Return:
|
|
case Op_Rethrow:
|
|
case Op_Halt:
|
|
case Op_TailCall:
|
|
case Op_TailJump:
|
|
nidx = Compile::AliasIdxBot;
|
|
nat = TypePtr::BOTTOM;
|
|
break;
|
|
}
|
|
}
|
|
if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
|
|
switch (n->Opcode()) {
|
|
case Op_StrComp:
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOf:
|
|
case Op_StrIndexOfChar:
|
|
case Op_AryEq:
|
|
case Op_HasNegatives:
|
|
case Op_MemBarVolatile:
|
|
case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
|
|
case Op_StrInflatedCopy:
|
|
case Op_StrCompressedCopy:
|
|
case Op_OnSpinWait:
|
|
case Op_EncodeISOArray:
|
|
nidx = Compile::AliasIdxTop;
|
|
nat = NULL;
|
|
break;
|
|
}
|
|
}
|
|
if (nidx != midx) {
|
|
if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
|
|
tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
|
|
n->dump();
|
|
m->dump();
|
|
}
|
|
assert(C->subsume_loads() && C->must_alias(nat, midx),
|
|
"must not lose alias info when matching");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//------------------------------xform------------------------------------------
|
|
// Given a Node in old-space, Match him (Label/Reduce) to produce a machine
|
|
// Node in new-space. Given a new-space Node, recursively walk his children.
|
|
Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
|
|
Node *Matcher::xform( Node *n, int max_stack ) {
|
|
// Use one stack to keep both: child's node/state and parent's node/index
|
|
MStack mstack(max_stack * 2 * 2); // usually: C->live_nodes() * 2 * 2
|
|
mstack.push(n, Visit, NULL, -1); // set NULL as parent to indicate root
|
|
while (mstack.is_nonempty()) {
|
|
C->check_node_count(NodeLimitFudgeFactor, "too many nodes matching instructions");
|
|
if (C->failing()) return NULL;
|
|
n = mstack.node(); // Leave node on stack
|
|
Node_State nstate = mstack.state();
|
|
if (nstate == Visit) {
|
|
mstack.set_state(Post_Visit);
|
|
Node *oldn = n;
|
|
// Old-space or new-space check
|
|
if (!C->node_arena()->contains(n)) {
|
|
// Old space!
|
|
Node* m;
|
|
if (has_new_node(n)) { // Not yet Label/Reduced
|
|
m = new_node(n);
|
|
} else {
|
|
if (!is_dontcare(n)) { // Matcher can match this guy
|
|
// Calls match special. They match alone with no children.
|
|
// Their children, the incoming arguments, match normally.
|
|
m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
|
|
if (C->failing()) return NULL;
|
|
if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
|
|
if (n->is_MemBar()) {
|
|
m->as_MachMemBar()->set_adr_type(n->adr_type());
|
|
}
|
|
} else { // Nothing the matcher cares about
|
|
if (n->is_Proj() && n->in(0) != NULL && n->in(0)->is_Multi()) { // Projections?
|
|
// Convert to machine-dependent projection
|
|
m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
|
|
#ifdef ASSERT
|
|
_new2old_map.map(m->_idx, n);
|
|
#endif
|
|
if (m->in(0) != NULL) // m might be top
|
|
collect_null_checks(m, n);
|
|
} else { // Else just a regular 'ol guy
|
|
m = n->clone(); // So just clone into new-space
|
|
#ifdef ASSERT
|
|
_new2old_map.map(m->_idx, n);
|
|
#endif
|
|
// Def-Use edges will be added incrementally as Uses
|
|
// of this node are matched.
|
|
assert(m->outcnt() == 0, "no Uses of this clone yet");
|
|
}
|
|
}
|
|
|
|
set_new_node(n, m); // Map old to new
|
|
if (_old_node_note_array != NULL) {
|
|
Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
|
|
n->_idx);
|
|
C->set_node_notes_at(m->_idx, nn);
|
|
}
|
|
debug_only(match_alias_type(C, n, m));
|
|
}
|
|
n = m; // n is now a new-space node
|
|
mstack.set_node(n);
|
|
}
|
|
|
|
// New space!
|
|
if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
|
|
|
|
int i;
|
|
// Put precedence edges on stack first (match them last).
|
|
for (i = oldn->req(); (uint)i < oldn->len(); i++) {
|
|
Node *m = oldn->in(i);
|
|
if (m == NULL) break;
|
|
// set -1 to call add_prec() instead of set_req() during Step1
|
|
mstack.push(m, Visit, n, -1);
|
|
}
|
|
|
|
// Handle precedence edges for interior nodes
|
|
for (i = n->len()-1; (uint)i >= n->req(); i--) {
|
|
Node *m = n->in(i);
|
|
if (m == NULL || C->node_arena()->contains(m)) continue;
|
|
n->rm_prec(i);
|
|
// set -1 to call add_prec() instead of set_req() during Step1
|
|
mstack.push(m, Visit, n, -1);
|
|
}
|
|
|
|
// For constant debug info, I'd rather have unmatched constants.
|
|
int cnt = n->req();
|
|
JVMState* jvms = n->jvms();
|
|
int debug_cnt = jvms ? jvms->debug_start() : cnt;
|
|
|
|
// Now do only debug info. Clone constants rather than matching.
|
|
// Constants are represented directly in the debug info without
|
|
// the need for executable machine instructions.
|
|
// Monitor boxes are also represented directly.
|
|
for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
|
|
Node *m = n->in(i); // Get input
|
|
int op = m->Opcode();
|
|
assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
|
|
if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
|
|
op == Op_ConF || op == Op_ConD || op == Op_ConL
|
|
// || op == Op_BoxLock // %%%% enable this and remove (+++) in chaitin.cpp
|
|
) {
|
|
m = m->clone();
|
|
#ifdef ASSERT
|
|
_new2old_map.map(m->_idx, n);
|
|
#endif
|
|
mstack.push(m, Post_Visit, n, i); // Don't need to visit
|
|
mstack.push(m->in(0), Visit, m, 0);
|
|
} else {
|
|
mstack.push(m, Visit, n, i);
|
|
}
|
|
}
|
|
|
|
// And now walk his children, and convert his inputs to new-space.
|
|
for( ; i >= 0; --i ) { // For all normal inputs do
|
|
Node *m = n->in(i); // Get input
|
|
if(m != NULL)
|
|
mstack.push(m, Visit, n, i);
|
|
}
|
|
|
|
}
|
|
else if (nstate == Post_Visit) {
|
|
// Set xformed input
|
|
Node *p = mstack.parent();
|
|
if (p != NULL) { // root doesn't have parent
|
|
int i = (int)mstack.index();
|
|
if (i >= 0)
|
|
p->set_req(i, n); // required input
|
|
else if (i == -1)
|
|
p->add_prec(n); // precedence input
|
|
else
|
|
ShouldNotReachHere();
|
|
}
|
|
mstack.pop(); // remove processed node from stack
|
|
}
|
|
else {
|
|
ShouldNotReachHere();
|
|
}
|
|
} // while (mstack.is_nonempty())
|
|
return n; // Return new-space Node
|
|
}
|
|
|
|
//------------------------------warp_outgoing_stk_arg------------------------
|
|
OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
|
|
// Convert outgoing argument location to a pre-biased stack offset
|
|
if (reg->is_stack()) {
|
|
OptoReg::Name warped = reg->reg2stack();
|
|
// Adjust the stack slot offset to be the register number used
|
|
// by the allocator.
|
|
warped = OptoReg::add(begin_out_arg_area, warped);
|
|
// Keep track of the largest numbered stack slot used for an arg.
|
|
// Largest used slot per call-site indicates the amount of stack
|
|
// that is killed by the call.
|
|
if( warped >= out_arg_limit_per_call )
|
|
out_arg_limit_per_call = OptoReg::add(warped,1);
|
|
if (!RegMask::can_represent_arg(warped)) {
|
|
C->record_method_not_compilable("unsupported calling sequence");
|
|
return OptoReg::Bad;
|
|
}
|
|
return warped;
|
|
}
|
|
return OptoReg::as_OptoReg(reg);
|
|
}
|
|
|
|
|
|
//------------------------------match_sfpt-------------------------------------
|
|
// Helper function to match call instructions. Calls match special.
|
|
// They match alone with no children. Their children, the incoming
|
|
// arguments, match normally.
|
|
MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
|
|
MachSafePointNode *msfpt = NULL;
|
|
MachCallNode *mcall = NULL;
|
|
uint cnt;
|
|
// Split out case for SafePoint vs Call
|
|
CallNode *call;
|
|
const TypeTuple *domain;
|
|
ciMethod* method = NULL;
|
|
bool is_method_handle_invoke = false; // for special kill effects
|
|
if( sfpt->is_Call() ) {
|
|
call = sfpt->as_Call();
|
|
domain = call->tf()->domain();
|
|
cnt = domain->cnt();
|
|
|
|
// Match just the call, nothing else
|
|
MachNode *m = match_tree(call);
|
|
if (C->failing()) return NULL;
|
|
if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
|
|
|
|
// Copy data from the Ideal SafePoint to the machine version
|
|
mcall = m->as_MachCall();
|
|
|
|
mcall->set_tf( call->tf());
|
|
mcall->set_entry_point( call->entry_point());
|
|
mcall->set_cnt( call->cnt());
|
|
mcall->set_guaranteed_safepoint(call->guaranteed_safepoint());
|
|
|
|
if( mcall->is_MachCallJava() ) {
|
|
MachCallJavaNode *mcall_java = mcall->as_MachCallJava();
|
|
const CallJavaNode *call_java = call->as_CallJava();
|
|
assert(call_java->validate_symbolic_info(), "inconsistent info");
|
|
method = call_java->method();
|
|
mcall_java->_method = method;
|
|
mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
|
|
is_method_handle_invoke = call_java->is_method_handle_invoke();
|
|
mcall_java->_method_handle_invoke = is_method_handle_invoke;
|
|
mcall_java->_override_symbolic_info = call_java->override_symbolic_info();
|
|
mcall_java->_arg_escape = call_java->arg_escape();
|
|
if (is_method_handle_invoke) {
|
|
C->set_has_method_handle_invokes(true);
|
|
}
|
|
if( mcall_java->is_MachCallStaticJava() )
|
|
mcall_java->as_MachCallStaticJava()->_name =
|
|
call_java->as_CallStaticJava()->_name;
|
|
if( mcall_java->is_MachCallDynamicJava() )
|
|
mcall_java->as_MachCallDynamicJava()->_vtable_index =
|
|
call_java->as_CallDynamicJava()->_vtable_index;
|
|
}
|
|
else if( mcall->is_MachCallRuntime() ) {
|
|
MachCallRuntimeNode* mach_call_rt = mcall->as_MachCallRuntime();
|
|
mach_call_rt->_name = call->as_CallRuntime()->_name;
|
|
mach_call_rt->_leaf_no_fp = call->is_CallLeafNoFP();
|
|
}
|
|
else if( mcall->is_MachCallNative() ) {
|
|
MachCallNativeNode* mach_call_native = mcall->as_MachCallNative();
|
|
CallNativeNode* call_native = call->as_CallNative();
|
|
mach_call_native->_name = call_native->_name;
|
|
mach_call_native->_arg_regs = call_native->_arg_regs;
|
|
mach_call_native->_ret_regs = call_native->_ret_regs;
|
|
}
|
|
msfpt = mcall;
|
|
}
|
|
// This is a non-call safepoint
|
|
else {
|
|
call = NULL;
|
|
domain = NULL;
|
|
MachNode *mn = match_tree(sfpt);
|
|
if (C->failing()) return NULL;
|
|
msfpt = mn->as_MachSafePoint();
|
|
cnt = TypeFunc::Parms;
|
|
}
|
|
msfpt->_has_ea_local_in_scope = sfpt->has_ea_local_in_scope();
|
|
|
|
// Advertise the correct memory effects (for anti-dependence computation).
|
|
msfpt->set_adr_type(sfpt->adr_type());
|
|
|
|
// Allocate a private array of RegMasks. These RegMasks are not shared.
|
|
msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
|
|
// Empty them all.
|
|
for (uint i = 0; i < cnt; i++) ::new (&(msfpt->_in_rms[i])) RegMask();
|
|
|
|
// Do all the pre-defined non-Empty register masks
|
|
msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
|
|
msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
|
|
|
|
// Place first outgoing argument can possibly be put.
|
|
OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
|
|
assert( is_even(begin_out_arg_area), "" );
|
|
// Compute max outgoing register number per call site.
|
|
OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
|
|
// Calls to C may hammer extra stack slots above and beyond any arguments.
|
|
// These are usually backing store for register arguments for varargs.
|
|
if( call != NULL && call->is_CallRuntime() )
|
|
out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
|
|
if( call != NULL && call->is_CallNative() )
|
|
out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call, call->as_CallNative()->_shadow_space_bytes);
|
|
|
|
|
|
// Do the normal argument list (parameters) register masks
|
|
int argcnt = cnt - TypeFunc::Parms;
|
|
if( argcnt > 0 ) { // Skip it all if we have no args
|
|
BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, argcnt );
|
|
VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
|
|
int i;
|
|
for( i = 0; i < argcnt; i++ ) {
|
|
sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
|
|
}
|
|
// V-call to pick proper calling convention
|
|
call->calling_convention( sig_bt, parm_regs, argcnt );
|
|
|
|
#ifdef ASSERT
|
|
// Sanity check users' calling convention. Really handy during
|
|
// the initial porting effort. Fairly expensive otherwise.
|
|
{ for (int i = 0; i<argcnt; i++) {
|
|
if( !parm_regs[i].first()->is_valid() &&
|
|
!parm_regs[i].second()->is_valid() ) continue;
|
|
VMReg reg1 = parm_regs[i].first();
|
|
VMReg reg2 = parm_regs[i].second();
|
|
for (int j = 0; j < i; j++) {
|
|
if( !parm_regs[j].first()->is_valid() &&
|
|
!parm_regs[j].second()->is_valid() ) continue;
|
|
VMReg reg3 = parm_regs[j].first();
|
|
VMReg reg4 = parm_regs[j].second();
|
|
if( !reg1->is_valid() ) {
|
|
assert( !reg2->is_valid(), "valid halvsies" );
|
|
} else if( !reg3->is_valid() ) {
|
|
assert( !reg4->is_valid(), "valid halvsies" );
|
|
} else {
|
|
assert( reg1 != reg2, "calling conv. must produce distinct regs");
|
|
assert( reg1 != reg3, "calling conv. must produce distinct regs");
|
|
assert( reg1 != reg4, "calling conv. must produce distinct regs");
|
|
assert( reg2 != reg3, "calling conv. must produce distinct regs");
|
|
assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
|
|
assert( reg3 != reg4, "calling conv. must produce distinct regs");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Visit each argument. Compute its outgoing register mask.
|
|
// Return results now can have 2 bits returned.
|
|
// Compute max over all outgoing arguments both per call-site
|
|
// and over the entire method.
|
|
for( i = 0; i < argcnt; i++ ) {
|
|
// Address of incoming argument mask to fill in
|
|
RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
|
|
if( !parm_regs[i].first()->is_valid() &&
|
|
!parm_regs[i].second()->is_valid() ) {
|
|
continue; // Avoid Halves
|
|
}
|
|
// Grab first register, adjust stack slots and insert in mask.
|
|
OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
|
|
if (OptoReg::is_valid(reg1))
|
|
rm->Insert( reg1 );
|
|
// Grab second register (if any), adjust stack slots and insert in mask.
|
|
OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
|
|
if (OptoReg::is_valid(reg2))
|
|
rm->Insert( reg2 );
|
|
} // End of for all arguments
|
|
}
|
|
|
|
// Compute the max stack slot killed by any call. These will not be
|
|
// available for debug info, and will be used to adjust FIRST_STACK_mask
|
|
// after all call sites have been visited.
|
|
if( _out_arg_limit < out_arg_limit_per_call)
|
|
_out_arg_limit = out_arg_limit_per_call;
|
|
|
|
if (mcall) {
|
|
// Kill the outgoing argument area, including any non-argument holes and
|
|
// any legacy C-killed slots. Use Fat-Projections to do the killing.
|
|
// Since the max-per-method covers the max-per-call-site and debug info
|
|
// is excluded on the max-per-method basis, debug info cannot land in
|
|
// this killed area.
|
|
uint r_cnt = mcall->tf()->range()->cnt();
|
|
MachProjNode *proj = new MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
|
|
if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
|
|
C->record_method_not_compilable("unsupported outgoing calling sequence");
|
|
} else {
|
|
for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
|
|
proj->_rout.Insert(OptoReg::Name(i));
|
|
}
|
|
if (proj->_rout.is_NotEmpty()) {
|
|
push_projection(proj);
|
|
}
|
|
}
|
|
// Transfer the safepoint information from the call to the mcall
|
|
// Move the JVMState list
|
|
msfpt->set_jvms(sfpt->jvms());
|
|
for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
|
|
jvms->set_map(sfpt);
|
|
}
|
|
|
|
// Debug inputs begin just after the last incoming parameter
|
|
assert((mcall == NULL) || (mcall->jvms() == NULL) ||
|
|
(mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "");
|
|
|
|
// Add additional edges.
|
|
if (msfpt->mach_constant_base_node_input() != (uint)-1 && !msfpt->is_MachCallLeaf()) {
|
|
// For these calls we can not add MachConstantBase in expand(), as the
|
|
// ins are not complete then.
|
|
msfpt->ins_req(msfpt->mach_constant_base_node_input(), C->mach_constant_base_node());
|
|
if (msfpt->jvms() &&
|
|
msfpt->mach_constant_base_node_input() <= msfpt->jvms()->debug_start() + msfpt->_jvmadj) {
|
|
// We added an edge before jvms, so we must adapt the position of the ins.
|
|
msfpt->jvms()->adapt_position(+1);
|
|
}
|
|
}
|
|
|
|
// Registers killed by the call are set in the local scheduling pass
|
|
// of Global Code Motion.
|
|
return msfpt;
|
|
}
|
|
|
|
//---------------------------match_tree----------------------------------------
|
|
// Match a Ideal Node DAG - turn it into a tree; Label & Reduce. Used as part
|
|
// of the whole-sale conversion from Ideal to Mach Nodes. Also used for
|
|
// making GotoNodes while building the CFG and in init_spill_mask() to identify
|
|
// a Load's result RegMask for memoization in idealreg2regmask[]
|
|
MachNode *Matcher::match_tree( const Node *n ) {
|
|
assert( n->Opcode() != Op_Phi, "cannot match" );
|
|
assert( !n->is_block_start(), "cannot match" );
|
|
// Set the mark for all locally allocated State objects.
|
|
// When this call returns, the _states_arena arena will be reset
|
|
// freeing all State objects.
|
|
ResourceMark rm( &_states_arena );
|
|
|
|
LabelRootDepth = 0;
|
|
|
|
// StoreNodes require their Memory input to match any LoadNodes
|
|
Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
|
|
#ifdef ASSERT
|
|
Node* save_mem_node = _mem_node;
|
|
_mem_node = n->is_Store() ? (Node*)n : NULL;
|
|
#endif
|
|
// State object for root node of match tree
|
|
// Allocate it on _states_arena - stack allocation can cause stack overflow.
|
|
State *s = new (&_states_arena) State;
|
|
s->_kids[0] = NULL;
|
|
s->_kids[1] = NULL;
|
|
s->_leaf = (Node*)n;
|
|
// Label the input tree, allocating labels from top-level arena
|
|
Node* root_mem = mem;
|
|
Label_Root(n, s, n->in(0), root_mem);
|
|
if (C->failing()) return NULL;
|
|
|
|
// The minimum cost match for the whole tree is found at the root State
|
|
uint mincost = max_juint;
|
|
uint cost = max_juint;
|
|
uint i;
|
|
for (i = 0; i < NUM_OPERANDS; i++) {
|
|
if (s->valid(i) && // valid entry and
|
|
s->cost(i) < cost && // low cost and
|
|
s->rule(i) >= NUM_OPERANDS) {// not an operand
|
|
mincost = i;
|
|
cost = s->cost(i);
|
|
}
|
|
}
|
|
if (mincost == max_juint) {
|
|
#ifndef PRODUCT
|
|
tty->print("No matching rule for:");
|
|
s->dump();
|
|
#endif
|
|
Matcher::soft_match_failure();
|
|
return NULL;
|
|
}
|
|
// Reduce input tree based upon the state labels to machine Nodes
|
|
MachNode *m = ReduceInst(s, s->rule(mincost), mem);
|
|
#ifdef ASSERT
|
|
_old2new_map.map(n->_idx, m);
|
|
_new2old_map.map(m->_idx, (Node*)n);
|
|
#endif
|
|
|
|
// Add any Matcher-ignored edges
|
|
uint cnt = n->req();
|
|
uint start = 1;
|
|
if( mem != (Node*)1 ) start = MemNode::Memory+1;
|
|
if( n->is_AddP() ) {
|
|
assert( mem == (Node*)1, "" );
|
|
start = AddPNode::Base+1;
|
|
}
|
|
for( i = start; i < cnt; i++ ) {
|
|
if( !n->match_edge(i) ) {
|
|
if( i < m->req() )
|
|
m->ins_req( i, n->in(i) );
|
|
else
|
|
m->add_req( n->in(i) );
|
|
}
|
|
}
|
|
|
|
debug_only( _mem_node = save_mem_node; )
|
|
return m;
|
|
}
|
|
|
|
|
|
//------------------------------match_into_reg---------------------------------
|
|
// Choose to either match this Node in a register or part of the current
|
|
// match tree. Return true for requiring a register and false for matching
|
|
// as part of the current match tree.
|
|
static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
|
|
|
|
const Type *t = m->bottom_type();
|
|
|
|
if (t->singleton()) {
|
|
// Never force constants into registers. Allow them to match as
|
|
// constants or registers. Copies of the same value will share
|
|
// the same register. See find_shared_node.
|
|
return false;
|
|
} else { // Not a constant
|
|
// Stop recursion if they have different Controls.
|
|
Node* m_control = m->in(0);
|
|
// Control of load's memory can post-dominates load's control.
|
|
// So use it since load can't float above its memory.
|
|
Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
|
|
if (control && m_control && control != m_control && control != mem_control) {
|
|
|
|
// Actually, we can live with the most conservative control we
|
|
// find, if it post-dominates the others. This allows us to
|
|
// pick up load/op/store trees where the load can float a little
|
|
// above the store.
|
|
Node *x = control;
|
|
const uint max_scan = 6; // Arbitrary scan cutoff
|
|
uint j;
|
|
for (j=0; j<max_scan; j++) {
|
|
if (x->is_Region()) // Bail out at merge points
|
|
return true;
|
|
x = x->in(0);
|
|
if (x == m_control) // Does 'control' post-dominate
|
|
break; // m->in(0)? If so, we can use it
|
|
if (x == mem_control) // Does 'control' post-dominate
|
|
break; // mem_control? If so, we can use it
|
|
}
|
|
if (j == max_scan) // No post-domination before scan end?
|
|
return true; // Then break the match tree up
|
|
}
|
|
if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
|
|
(m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
|
|
// These are commonly used in address expressions and can
|
|
// efficiently fold into them on X64 in some cases.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Not forceable cloning. If shared, put it into a register.
|
|
return shared;
|
|
}
|
|
|
|
|
|
//------------------------------Instruction Selection--------------------------
|
|
// Label method walks a "tree" of nodes, using the ADLC generated DFA to match
|
|
// ideal nodes to machine instructions. Trees are delimited by shared Nodes,
|
|
// things the Matcher does not match (e.g., Memory), and things with different
|
|
// Controls (hence forced into different blocks). We pass in the Control
|
|
// selected for this entire State tree.
|
|
|
|
// The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
|
|
// Store and the Load must have identical Memories (as well as identical
|
|
// pointers). Since the Matcher does not have anything for Memory (and
|
|
// does not handle DAGs), I have to match the Memory input myself. If the
|
|
// Tree root is a Store or if there are multiple Loads in the tree, I require
|
|
// all Loads to have the identical memory.
|
|
Node* Matcher::Label_Root(const Node* n, State* svec, Node* control, Node*& mem) {
|
|
// Since Label_Root is a recursive function, its possible that we might run
|
|
// out of stack space. See bugs 6272980 & 6227033 for more info.
|
|
LabelRootDepth++;
|
|
if (LabelRootDepth > MaxLabelRootDepth) {
|
|
C->record_method_not_compilable("Out of stack space, increase MaxLabelRootDepth");
|
|
return NULL;
|
|
}
|
|
uint care = 0; // Edges matcher cares about
|
|
uint cnt = n->req();
|
|
uint i = 0;
|
|
|
|
// Examine children for memory state
|
|
// Can only subsume a child into your match-tree if that child's memory state
|
|
// is not modified along the path to another input.
|
|
// It is unsafe even if the other inputs are separate roots.
|
|
Node *input_mem = NULL;
|
|
for( i = 1; i < cnt; i++ ) {
|
|
if( !n->match_edge(i) ) continue;
|
|
Node *m = n->in(i); // Get ith input
|
|
assert( m, "expect non-null children" );
|
|
if( m->is_Load() ) {
|
|
if( input_mem == NULL ) {
|
|
input_mem = m->in(MemNode::Memory);
|
|
if (mem == (Node*)1) {
|
|
// Save this memory to bail out if there's another memory access
|
|
// to a different memory location in the same tree.
|
|
mem = input_mem;
|
|
}
|
|
} else if( input_mem != m->in(MemNode::Memory) ) {
|
|
input_mem = NodeSentinel;
|
|
}
|
|
}
|
|
}
|
|
|
|
for( i = 1; i < cnt; i++ ){// For my children
|
|
if( !n->match_edge(i) ) continue;
|
|
Node *m = n->in(i); // Get ith input
|
|
// Allocate states out of a private arena
|
|
State *s = new (&_states_arena) State;
|
|
svec->_kids[care++] = s;
|
|
assert( care <= 2, "binary only for now" );
|
|
|
|
// Recursively label the State tree.
|
|
s->_kids[0] = NULL;
|
|
s->_kids[1] = NULL;
|
|
s->_leaf = m;
|
|
|
|
// Check for leaves of the State Tree; things that cannot be a part of
|
|
// the current tree. If it finds any, that value is matched as a
|
|
// register operand. If not, then the normal matching is used.
|
|
if( match_into_reg(n, m, control, i, is_shared(m)) ||
|
|
// Stop recursion if this is a LoadNode and there is another memory access
|
|
// to a different memory location in the same tree (for example, a StoreNode
|
|
// at the root of this tree or another LoadNode in one of the children).
|
|
((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
|
|
// Can NOT include the match of a subtree when its memory state
|
|
// is used by any of the other subtrees
|
|
(input_mem == NodeSentinel) ) {
|
|
// Print when we exclude matching due to different memory states at input-loads
|
|
if (PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
|
|
&& !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem)) {
|
|
tty->print_cr("invalid input_mem");
|
|
}
|
|
// Switch to a register-only opcode; this value must be in a register
|
|
// and cannot be subsumed as part of a larger instruction.
|
|
s->DFA( m->ideal_reg(), m );
|
|
|
|
} else {
|
|
// If match tree has no control and we do, adopt it for entire tree
|
|
if( control == NULL && m->in(0) != NULL && m->req() > 1 )
|
|
control = m->in(0); // Pick up control
|
|
// Else match as a normal part of the match tree.
|
|
control = Label_Root(m, s, control, mem);
|
|
if (C->failing()) return NULL;
|
|
}
|
|
}
|
|
|
|
// Call DFA to match this node, and return
|
|
svec->DFA( n->Opcode(), n );
|
|
|
|
#ifdef ASSERT
|
|
uint x;
|
|
for( x = 0; x < _LAST_MACH_OPER; x++ )
|
|
if( svec->valid(x) )
|
|
break;
|
|
|
|
if (x >= _LAST_MACH_OPER) {
|
|
n->dump();
|
|
svec->dump();
|
|
assert( false, "bad AD file" );
|
|
}
|
|
#endif
|
|
return control;
|
|
}
|
|
|
|
|
|
// Con nodes reduced using the same rule can share their MachNode
|
|
// which reduces the number of copies of a constant in the final
|
|
// program. The register allocator is free to split uses later to
|
|
// split live ranges.
|
|
MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
|
|
if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
|
|
|
|
// See if this Con has already been reduced using this rule.
|
|
if (_shared_nodes.Size() <= leaf->_idx) return NULL;
|
|
MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
|
|
if (last != NULL && rule == last->rule()) {
|
|
// Don't expect control change for DecodeN
|
|
if (leaf->is_DecodeNarrowPtr())
|
|
return last;
|
|
// Get the new space root.
|
|
Node* xroot = new_node(C->root());
|
|
if (xroot == NULL) {
|
|
// This shouldn't happen give the order of matching.
|
|
return NULL;
|
|
}
|
|
|
|
// Shared constants need to have their control be root so they
|
|
// can be scheduled properly.
|
|
Node* control = last->in(0);
|
|
if (control != xroot) {
|
|
if (control == NULL || control == C->root()) {
|
|
last->set_req(0, xroot);
|
|
} else {
|
|
assert(false, "unexpected control");
|
|
return NULL;
|
|
}
|
|
}
|
|
return last;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
//------------------------------ReduceInst-------------------------------------
|
|
// Reduce a State tree (with given Control) into a tree of MachNodes.
|
|
// This routine (and it's cohort ReduceOper) convert Ideal Nodes into
|
|
// complicated machine Nodes. Each MachNode covers some tree of Ideal Nodes.
|
|
// Each MachNode has a number of complicated MachOper operands; each
|
|
// MachOper also covers a further tree of Ideal Nodes.
|
|
|
|
// The root of the Ideal match tree is always an instruction, so we enter
|
|
// the recursion here. After building the MachNode, we need to recurse
|
|
// the tree checking for these cases:
|
|
// (1) Child is an instruction -
|
|
// Build the instruction (recursively), add it as an edge.
|
|
// Build a simple operand (register) to hold the result of the instruction.
|
|
// (2) Child is an interior part of an instruction -
|
|
// Skip over it (do nothing)
|
|
// (3) Child is the start of a operand -
|
|
// Build the operand, place it inside the instruction
|
|
// Call ReduceOper.
|
|
MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
|
|
assert( rule >= NUM_OPERANDS, "called with operand rule" );
|
|
|
|
MachNode* shared_node = find_shared_node(s->_leaf, rule);
|
|
if (shared_node != NULL) {
|
|
return shared_node;
|
|
}
|
|
|
|
// Build the object to represent this state & prepare for recursive calls
|
|
MachNode *mach = s->MachNodeGenerator(rule);
|
|
guarantee(mach != NULL, "Missing MachNode");
|
|
mach->_opnds[0] = s->MachOperGenerator(_reduceOp[rule]);
|
|
assert( mach->_opnds[0] != NULL, "Missing result operand" );
|
|
Node *leaf = s->_leaf;
|
|
// Check for instruction or instruction chain rule
|
|
if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
|
|
assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
|
|
"duplicating node that's already been matched");
|
|
// Instruction
|
|
mach->add_req( leaf->in(0) ); // Set initial control
|
|
// Reduce interior of complex instruction
|
|
ReduceInst_Interior( s, rule, mem, mach, 1 );
|
|
} else {
|
|
// Instruction chain rules are data-dependent on their inputs
|
|
mach->add_req(0); // Set initial control to none
|
|
ReduceInst_Chain_Rule( s, rule, mem, mach );
|
|
}
|
|
|
|
// If a Memory was used, insert a Memory edge
|
|
if( mem != (Node*)1 ) {
|
|
mach->ins_req(MemNode::Memory,mem);
|
|
#ifdef ASSERT
|
|
// Verify adr type after matching memory operation
|
|
const MachOper* oper = mach->memory_operand();
|
|
if (oper != NULL && oper != (MachOper*)-1) {
|
|
// It has a unique memory operand. Find corresponding ideal mem node.
|
|
Node* m = NULL;
|
|
if (leaf->is_Mem()) {
|
|
m = leaf;
|
|
} else {
|
|
m = _mem_node;
|
|
assert(m != NULL && m->is_Mem(), "expecting memory node");
|
|
}
|
|
const Type* mach_at = mach->adr_type();
|
|
// DecodeN node consumed by an address may have different type
|
|
// than its input. Don't compare types for such case.
|
|
if (m->adr_type() != mach_at &&
|
|
(m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
|
|
(m->in(MemNode::Address)->is_AddP() &&
|
|
m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()) ||
|
|
(m->in(MemNode::Address)->is_AddP() &&
|
|
m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
|
|
m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr()))) {
|
|
mach_at = m->adr_type();
|
|
}
|
|
if (m->adr_type() != mach_at) {
|
|
m->dump();
|
|
tty->print_cr("mach:");
|
|
mach->dump(1);
|
|
}
|
|
assert(m->adr_type() == mach_at, "matcher should not change adr type");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// If the _leaf is an AddP, insert the base edge
|
|
if (leaf->is_AddP()) {
|
|
mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
|
|
}
|
|
|
|
uint number_of_projections_prior = number_of_projections();
|
|
|
|
// Perform any 1-to-many expansions required
|
|
MachNode *ex = mach->Expand(s, _projection_list, mem);
|
|
if (ex != mach) {
|
|
assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
|
|
if( ex->in(1)->is_Con() )
|
|
ex->in(1)->set_req(0, C->root());
|
|
// Remove old node from the graph
|
|
for( uint i=0; i<mach->req(); i++ ) {
|
|
mach->set_req(i,NULL);
|
|
}
|
|
#ifdef ASSERT
|
|
_new2old_map.map(ex->_idx, s->_leaf);
|
|
#endif
|
|
}
|
|
|
|
// PhaseChaitin::fixup_spills will sometimes generate spill code
|
|
// via the matcher. By the time, nodes have been wired into the CFG,
|
|
// and any further nodes generated by expand rules will be left hanging
|
|
// in space, and will not get emitted as output code. Catch this.
|
|
// Also, catch any new register allocation constraints ("projections")
|
|
// generated belatedly during spill code generation.
|
|
if (_allocation_started) {
|
|
guarantee(ex == mach, "no expand rules during spill generation");
|
|
guarantee(number_of_projections_prior == number_of_projections(), "no allocation during spill generation");
|
|
}
|
|
|
|
if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
|
|
// Record the con for sharing
|
|
_shared_nodes.map(leaf->_idx, ex);
|
|
}
|
|
|
|
// Have mach nodes inherit GC barrier data
|
|
if (leaf->is_LoadStore()) {
|
|
mach->set_barrier_data(leaf->as_LoadStore()->barrier_data());
|
|
} else if (leaf->is_Mem()) {
|
|
mach->set_barrier_data(leaf->as_Mem()->barrier_data());
|
|
}
|
|
|
|
return ex;
|
|
}
|
|
|
|
void Matcher::handle_precedence_edges(Node* n, MachNode *mach) {
|
|
for (uint i = n->req(); i < n->len(); i++) {
|
|
if (n->in(i) != NULL) {
|
|
mach->add_prec(n->in(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
void Matcher::ReduceInst_Chain_Rule(State* s, int rule, Node* &mem, MachNode* mach) {
|
|
// 'op' is what I am expecting to receive
|
|
int op = _leftOp[rule];
|
|
// Operand type to catch childs result
|
|
// This is what my child will give me.
|
|
unsigned int opnd_class_instance = s->rule(op);
|
|
// Choose between operand class or not.
|
|
// This is what I will receive.
|
|
int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
|
|
// New rule for child. Chase operand classes to get the actual rule.
|
|
unsigned int newrule = s->rule(catch_op);
|
|
|
|
if (newrule < NUM_OPERANDS) {
|
|
// Chain from operand or operand class, may be output of shared node
|
|
assert(opnd_class_instance < NUM_OPERANDS, "Bad AD file: Instruction chain rule must chain from operand");
|
|
// Insert operand into array of operands for this instruction
|
|
mach->_opnds[1] = s->MachOperGenerator(opnd_class_instance);
|
|
|
|
ReduceOper(s, newrule, mem, mach);
|
|
} else {
|
|
// Chain from the result of an instruction
|
|
assert(newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
|
|
mach->_opnds[1] = s->MachOperGenerator(_reduceOp[catch_op]);
|
|
Node *mem1 = (Node*)1;
|
|
debug_only(Node *save_mem_node = _mem_node;)
|
|
mach->add_req( ReduceInst(s, newrule, mem1) );
|
|
debug_only(_mem_node = save_mem_node;)
|
|
}
|
|
return;
|
|
}
|
|
|
|
|
|
uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
|
|
handle_precedence_edges(s->_leaf, mach);
|
|
|
|
if( s->_leaf->is_Load() ) {
|
|
Node *mem2 = s->_leaf->in(MemNode::Memory);
|
|
assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
|
|
debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
|
|
mem = mem2;
|
|
}
|
|
if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
|
|
if( mach->in(0) == NULL )
|
|
mach->set_req(0, s->_leaf->in(0));
|
|
}
|
|
|
|
// Now recursively walk the state tree & add operand list.
|
|
for( uint i=0; i<2; i++ ) { // binary tree
|
|
State *newstate = s->_kids[i];
|
|
if( newstate == NULL ) break; // Might only have 1 child
|
|
// 'op' is what I am expecting to receive
|
|
int op;
|
|
if( i == 0 ) {
|
|
op = _leftOp[rule];
|
|
} else {
|
|
op = _rightOp[rule];
|
|
}
|
|
// Operand type to catch childs result
|
|
// This is what my child will give me.
|
|
int opnd_class_instance = newstate->rule(op);
|
|
// Choose between operand class or not.
|
|
// This is what I will receive.
|
|
int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
|
|
// New rule for child. Chase operand classes to get the actual rule.
|
|
int newrule = newstate->rule(catch_op);
|
|
|
|
if (newrule < NUM_OPERANDS) { // Operand/operandClass or internalOp/instruction?
|
|
// Operand/operandClass
|
|
// Insert operand into array of operands for this instruction
|
|
mach->_opnds[num_opnds++] = newstate->MachOperGenerator(opnd_class_instance);
|
|
ReduceOper(newstate, newrule, mem, mach);
|
|
|
|
} else { // Child is internal operand or new instruction
|
|
if (newrule < _LAST_MACH_OPER) { // internal operand or instruction?
|
|
// internal operand --> call ReduceInst_Interior
|
|
// Interior of complex instruction. Do nothing but recurse.
|
|
num_opnds = ReduceInst_Interior(newstate, newrule, mem, mach, num_opnds);
|
|
} else {
|
|
// instruction --> call build operand( ) to catch result
|
|
// --> ReduceInst( newrule )
|
|
mach->_opnds[num_opnds++] = s->MachOperGenerator(_reduceOp[catch_op]);
|
|
Node *mem1 = (Node*)1;
|
|
debug_only(Node *save_mem_node = _mem_node;)
|
|
mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
|
|
debug_only(_mem_node = save_mem_node;)
|
|
}
|
|
}
|
|
assert( mach->_opnds[num_opnds-1], "" );
|
|
}
|
|
return num_opnds;
|
|
}
|
|
|
|
// This routine walks the interior of possible complex operands.
|
|
// At each point we check our children in the match tree:
|
|
// (1) No children -
|
|
// We are a leaf; add _leaf field as an input to the MachNode
|
|
// (2) Child is an internal operand -
|
|
// Skip over it ( do nothing )
|
|
// (3) Child is an instruction -
|
|
// Call ReduceInst recursively and
|
|
// and instruction as an input to the MachNode
|
|
void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
|
|
assert( rule < _LAST_MACH_OPER, "called with operand rule" );
|
|
State *kid = s->_kids[0];
|
|
assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
|
|
|
|
// Leaf? And not subsumed?
|
|
if( kid == NULL && !_swallowed[rule] ) {
|
|
mach->add_req( s->_leaf ); // Add leaf pointer
|
|
return; // Bail out
|
|
}
|
|
|
|
if( s->_leaf->is_Load() ) {
|
|
assert( mem == (Node*)1, "multiple Memories being matched at once?" );
|
|
mem = s->_leaf->in(MemNode::Memory);
|
|
debug_only(_mem_node = s->_leaf;)
|
|
}
|
|
|
|
handle_precedence_edges(s->_leaf, mach);
|
|
|
|
if( s->_leaf->in(0) && s->_leaf->req() > 1) {
|
|
if( !mach->in(0) )
|
|
mach->set_req(0,s->_leaf->in(0));
|
|
else {
|
|
assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
|
|
}
|
|
}
|
|
|
|
for (uint i = 0; kid != NULL && i < 2; kid = s->_kids[1], i++) { // binary tree
|
|
int newrule;
|
|
if( i == 0) {
|
|
newrule = kid->rule(_leftOp[rule]);
|
|
} else {
|
|
newrule = kid->rule(_rightOp[rule]);
|
|
}
|
|
|
|
if (newrule < _LAST_MACH_OPER) { // Operand or instruction?
|
|
// Internal operand; recurse but do nothing else
|
|
ReduceOper(kid, newrule, mem, mach);
|
|
|
|
} else { // Child is a new instruction
|
|
// Reduce the instruction, and add a direct pointer from this
|
|
// machine instruction to the newly reduced one.
|
|
Node *mem1 = (Node*)1;
|
|
debug_only(Node *save_mem_node = _mem_node;)
|
|
mach->add_req( ReduceInst( kid, newrule, mem1 ) );
|
|
debug_only(_mem_node = save_mem_node;)
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
// Java-Java calling convention
|
|
// (what you use when Java calls Java)
|
|
|
|
//------------------------------find_receiver----------------------------------
|
|
// For a given signature, return the OptoReg for parameter 0.
|
|
OptoReg::Name Matcher::find_receiver() {
|
|
VMRegPair regs;
|
|
BasicType sig_bt = T_OBJECT;
|
|
SharedRuntime::java_calling_convention(&sig_bt, ®s, 1);
|
|
// Return argument 0 register. In the LP64 build pointers
|
|
// take 2 registers, but the VM wants only the 'main' name.
|
|
return OptoReg::as_OptoReg(regs.first());
|
|
}
|
|
|
|
bool Matcher::is_vshift_con_pattern(Node *n, Node *m) {
|
|
if (n != NULL && m != NULL) {
|
|
return VectorNode::is_vector_shift(n) &&
|
|
VectorNode::is_vector_shift_count(m) && m->in(1)->is_Con();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Matcher::clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
|
|
// Must clone all producers of flags, or we will not match correctly.
|
|
// Suppose a compare setting int-flags is shared (e.g., a switch-tree)
|
|
// then it will match into an ideal Op_RegFlags. Alas, the fp-flags
|
|
// are also there, so we may match a float-branch to int-flags and
|
|
// expect the allocator to haul the flags from the int-side to the
|
|
// fp-side. No can do.
|
|
if (_must_clone[m->Opcode()]) {
|
|
mstack.push(m, Visit);
|
|
return true;
|
|
}
|
|
return pd_clone_node(n, m, mstack);
|
|
}
|
|
|
|
bool Matcher::clone_base_plus_offset_address(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
|
|
Node *off = m->in(AddPNode::Offset);
|
|
if (off->is_Con()) {
|
|
address_visited.test_set(m->_idx); // Flag as address_visited
|
|
mstack.push(m->in(AddPNode::Address), Pre_Visit);
|
|
// Clone X+offset as it also folds into most addressing expressions
|
|
mstack.push(off, Visit);
|
|
mstack.push(m->in(AddPNode::Base), Pre_Visit);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// A method-klass-holder may be passed in the inline_cache_reg
|
|
// and then expanded into the inline_cache_reg and a method_ptr register
|
|
// defined in ad_<arch>.cpp
|
|
|
|
//------------------------------find_shared------------------------------------
|
|
// Set bits if Node is shared or otherwise a root
|
|
void Matcher::find_shared(Node* n) {
|
|
// Allocate stack of size C->live_nodes() * 2 to avoid frequent realloc
|
|
MStack mstack(C->live_nodes() * 2);
|
|
// Mark nodes as address_visited if they are inputs to an address expression
|
|
VectorSet address_visited;
|
|
mstack.push(n, Visit); // Don't need to pre-visit root node
|
|
while (mstack.is_nonempty()) {
|
|
n = mstack.node(); // Leave node on stack
|
|
Node_State nstate = mstack.state();
|
|
uint nop = n->Opcode();
|
|
if (nstate == Pre_Visit) {
|
|
if (address_visited.test(n->_idx)) { // Visited in address already?
|
|
// Flag as visited and shared now.
|
|
set_visited(n);
|
|
}
|
|
if (is_visited(n)) { // Visited already?
|
|
// Node is shared and has no reason to clone. Flag it as shared.
|
|
// This causes it to match into a register for the sharing.
|
|
set_shared(n); // Flag as shared and
|
|
if (n->is_DecodeNarrowPtr()) {
|
|
// Oop field/array element loads must be shared but since
|
|
// they are shared through a DecodeN they may appear to have
|
|
// a single use so force sharing here.
|
|
set_shared(n->in(1));
|
|
}
|
|
mstack.pop(); // remove node from stack
|
|
continue;
|
|
}
|
|
nstate = Visit; // Not already visited; so visit now
|
|
}
|
|
if (nstate == Visit) {
|
|
mstack.set_state(Post_Visit);
|
|
set_visited(n); // Flag as visited now
|
|
bool mem_op = false;
|
|
int mem_addr_idx = MemNode::Address;
|
|
if (find_shared_visit(mstack, n, nop, mem_op, mem_addr_idx)) {
|
|
continue;
|
|
}
|
|
for (int i = n->req() - 1; i >= 0; --i) { // For my children
|
|
Node* m = n->in(i); // Get ith input
|
|
if (m == NULL) {
|
|
continue; // Ignore NULLs
|
|
}
|
|
if (clone_node(n, m, mstack)) {
|
|
continue;
|
|
}
|
|
|
|
// Clone addressing expressions as they are "free" in memory access instructions
|
|
if (mem_op && i == mem_addr_idx && m->is_AddP() &&
|
|
// When there are other uses besides address expressions
|
|
// put it on stack and mark as shared.
|
|
!is_visited(m)) {
|
|
// Some inputs for address expression are not put on stack
|
|
// to avoid marking them as shared and forcing them into register
|
|
// if they are used only in address expressions.
|
|
// But they should be marked as shared if there are other uses
|
|
// besides address expressions.
|
|
|
|
if (pd_clone_address_expressions(m->as_AddP(), mstack, address_visited)) {
|
|
continue;
|
|
}
|
|
} // if( mem_op &&
|
|
mstack.push(m, Pre_Visit);
|
|
} // for(int i = ...)
|
|
}
|
|
else if (nstate == Alt_Post_Visit) {
|
|
mstack.pop(); // Remove node from stack
|
|
// We cannot remove the Cmp input from the Bool here, as the Bool may be
|
|
// shared and all users of the Bool need to move the Cmp in parallel.
|
|
// This leaves both the Bool and the If pointing at the Cmp. To
|
|
// prevent the Matcher from trying to Match the Cmp along both paths
|
|
// BoolNode::match_edge always returns a zero.
|
|
|
|
// We reorder the Op_If in a pre-order manner, so we can visit without
|
|
// accidentally sharing the Cmp (the Bool and the If make 2 users).
|
|
n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
|
|
}
|
|
else if (nstate == Post_Visit) {
|
|
mstack.pop(); // Remove node from stack
|
|
|
|
// Now hack a few special opcodes
|
|
uint opcode = n->Opcode();
|
|
bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->matcher_find_shared_post_visit(this, n, opcode);
|
|
if (!gc_handled) {
|
|
find_shared_post_visit(n, opcode);
|
|
}
|
|
}
|
|
else {
|
|
ShouldNotReachHere();
|
|
}
|
|
} // end of while (mstack.is_nonempty())
|
|
}
|
|
|
|
bool Matcher::find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx) {
|
|
switch(opcode) { // Handle some opcodes special
|
|
case Op_Phi: // Treat Phis as shared roots
|
|
case Op_Parm:
|
|
case Op_Proj: // All handled specially during matching
|
|
case Op_SafePointScalarObject:
|
|
set_shared(n);
|
|
set_dontcare(n);
|
|
break;
|
|
case Op_If:
|
|
case Op_CountedLoopEnd:
|
|
mstack.set_state(Alt_Post_Visit); // Alternative way
|
|
// Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)). Helps
|
|
// with matching cmp/branch in 1 instruction. The Matcher needs the
|
|
// Bool and CmpX side-by-side, because it can only get at constants
|
|
// that are at the leaves of Match trees, and the Bool's condition acts
|
|
// as a constant here.
|
|
mstack.push(n->in(1), Visit); // Clone the Bool
|
|
mstack.push(n->in(0), Pre_Visit); // Visit control input
|
|
return true; // while (mstack.is_nonempty())
|
|
case Op_ConvI2D: // These forms efficiently match with a prior
|
|
case Op_ConvI2F: // Load but not a following Store
|
|
if( n->in(1)->is_Load() && // Prior load
|
|
n->outcnt() == 1 && // Not already shared
|
|
n->unique_out()->is_Store() ) // Following store
|
|
set_shared(n); // Force it to be a root
|
|
break;
|
|
case Op_ReverseBytesI:
|
|
case Op_ReverseBytesL:
|
|
if( n->in(1)->is_Load() && // Prior load
|
|
n->outcnt() == 1 ) // Not already shared
|
|
set_shared(n); // Force it to be a root
|
|
break;
|
|
case Op_BoxLock: // Cant match until we get stack-regs in ADLC
|
|
case Op_IfFalse:
|
|
case Op_IfTrue:
|
|
case Op_MachProj:
|
|
case Op_MergeMem:
|
|
case Op_Catch:
|
|
case Op_CatchProj:
|
|
case Op_CProj:
|
|
case Op_JumpProj:
|
|
case Op_JProj:
|
|
case Op_NeverBranch:
|
|
set_dontcare(n);
|
|
break;
|
|
case Op_Jump:
|
|
mstack.push(n->in(1), Pre_Visit); // Switch Value (could be shared)
|
|
mstack.push(n->in(0), Pre_Visit); // Visit Control input
|
|
return true; // while (mstack.is_nonempty())
|
|
case Op_StrComp:
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOf:
|
|
case Op_StrIndexOfChar:
|
|
case Op_AryEq:
|
|
case Op_HasNegatives:
|
|
case Op_StrInflatedCopy:
|
|
case Op_StrCompressedCopy:
|
|
case Op_EncodeISOArray:
|
|
case Op_FmaD:
|
|
case Op_FmaF:
|
|
case Op_FmaVD:
|
|
case Op_FmaVF:
|
|
case Op_MacroLogicV:
|
|
case Op_LoadVectorMasked:
|
|
set_shared(n); // Force result into register (it will be anyways)
|
|
break;
|
|
case Op_ConP: { // Convert pointers above the centerline to NUL
|
|
TypeNode *tn = n->as_Type(); // Constants derive from type nodes
|
|
const TypePtr* tp = tn->type()->is_ptr();
|
|
if (tp->_ptr == TypePtr::AnyNull) {
|
|
tn->set_type(TypePtr::NULL_PTR);
|
|
}
|
|
break;
|
|
}
|
|
case Op_ConN: { // Convert narrow pointers above the centerline to NUL
|
|
TypeNode *tn = n->as_Type(); // Constants derive from type nodes
|
|
const TypePtr* tp = tn->type()->make_ptr();
|
|
if (tp && tp->_ptr == TypePtr::AnyNull) {
|
|
tn->set_type(TypeNarrowOop::NULL_PTR);
|
|
}
|
|
break;
|
|
}
|
|
case Op_Binary: // These are introduced in the Post_Visit state.
|
|
ShouldNotReachHere();
|
|
break;
|
|
case Op_ClearArray:
|
|
case Op_SafePoint:
|
|
mem_op = true;
|
|
break;
|
|
default:
|
|
if( n->is_Store() ) {
|
|
// Do match stores, despite no ideal reg
|
|
mem_op = true;
|
|
break;
|
|
}
|
|
if( n->is_Mem() ) { // Loads and LoadStores
|
|
mem_op = true;
|
|
// Loads must be root of match tree due to prior load conflict
|
|
if( C->subsume_loads() == false )
|
|
set_shared(n);
|
|
}
|
|
// Fall into default case
|
|
if( !n->ideal_reg() )
|
|
set_dontcare(n); // Unmatchable Nodes
|
|
} // end_switch
|
|
return false;
|
|
}
|
|
|
|
void Matcher::find_shared_post_visit(Node* n, uint opcode) {
|
|
switch(opcode) { // Handle some opcodes special
|
|
case Op_StorePConditional:
|
|
case Op_StoreIConditional:
|
|
case Op_StoreLConditional:
|
|
case Op_CompareAndExchangeB:
|
|
case Op_CompareAndExchangeS:
|
|
case Op_CompareAndExchangeI:
|
|
case Op_CompareAndExchangeL:
|
|
case Op_CompareAndExchangeP:
|
|
case Op_CompareAndExchangeN:
|
|
case Op_WeakCompareAndSwapB:
|
|
case Op_WeakCompareAndSwapS:
|
|
case Op_WeakCompareAndSwapI:
|
|
case Op_WeakCompareAndSwapL:
|
|
case Op_WeakCompareAndSwapP:
|
|
case Op_WeakCompareAndSwapN:
|
|
case Op_CompareAndSwapB:
|
|
case Op_CompareAndSwapS:
|
|
case Op_CompareAndSwapI:
|
|
case Op_CompareAndSwapL:
|
|
case Op_CompareAndSwapP:
|
|
case Op_CompareAndSwapN: { // Convert trinary to binary-tree
|
|
Node* newval = n->in(MemNode::ValueIn);
|
|
Node* oldval = n->in(LoadStoreConditionalNode::ExpectedIn);
|
|
Node* pair = new BinaryNode(oldval, newval);
|
|
n->set_req(MemNode::ValueIn, pair);
|
|
n->del_req(LoadStoreConditionalNode::ExpectedIn);
|
|
break;
|
|
}
|
|
case Op_CMoveD: // Convert trinary to binary-tree
|
|
case Op_CMoveF:
|
|
case Op_CMoveI:
|
|
case Op_CMoveL:
|
|
case Op_CMoveN:
|
|
case Op_CMoveP:
|
|
case Op_CMoveVF:
|
|
case Op_CMoveVD: {
|
|
// Restructure into a binary tree for Matching. It's possible that
|
|
// we could move this code up next to the graph reshaping for IfNodes
|
|
// or vice-versa, but I do not want to debug this for Ladybird.
|
|
// 10/2/2000 CNC.
|
|
Node* pair1 = new BinaryNode(n->in(1), n->in(1)->in(1));
|
|
n->set_req(1, pair1);
|
|
Node* pair2 = new BinaryNode(n->in(2), n->in(3));
|
|
n->set_req(2, pair2);
|
|
n->del_req(3);
|
|
break;
|
|
}
|
|
case Op_MacroLogicV: {
|
|
Node* pair1 = new BinaryNode(n->in(1), n->in(2));
|
|
Node* pair2 = new BinaryNode(n->in(3), n->in(4));
|
|
n->set_req(1, pair1);
|
|
n->set_req(2, pair2);
|
|
n->del_req(4);
|
|
n->del_req(3);
|
|
break;
|
|
}
|
|
case Op_StoreVectorMasked: {
|
|
Node* pair = new BinaryNode(n->in(3), n->in(4));
|
|
n->set_req(3, pair);
|
|
n->del_req(4);
|
|
break;
|
|
}
|
|
case Op_LoopLimit: {
|
|
Node* pair1 = new BinaryNode(n->in(1), n->in(2));
|
|
n->set_req(1, pair1);
|
|
n->set_req(2, n->in(3));
|
|
n->del_req(3);
|
|
break;
|
|
}
|
|
case Op_StrEquals:
|
|
case Op_StrIndexOfChar: {
|
|
Node* pair1 = new BinaryNode(n->in(2), n->in(3));
|
|
n->set_req(2, pair1);
|
|
n->set_req(3, n->in(4));
|
|
n->del_req(4);
|
|
break;
|
|
}
|
|
case Op_StrComp:
|
|
case Op_StrIndexOf: {
|
|
Node* pair1 = new BinaryNode(n->in(2), n->in(3));
|
|
n->set_req(2, pair1);
|
|
Node* pair2 = new BinaryNode(n->in(4),n->in(5));
|
|
n->set_req(3, pair2);
|
|
n->del_req(5);
|
|
n->del_req(4);
|
|
break;
|
|
}
|
|
case Op_StrCompressedCopy:
|
|
case Op_StrInflatedCopy:
|
|
case Op_EncodeISOArray: {
|
|
// Restructure into a binary tree for Matching.
|
|
Node* pair = new BinaryNode(n->in(3), n->in(4));
|
|
n->set_req(3, pair);
|
|
n->del_req(4);
|
|
break;
|
|
}
|
|
case Op_FmaD:
|
|
case Op_FmaF:
|
|
case Op_FmaVD:
|
|
case Op_FmaVF: {
|
|
// Restructure into a binary tree for Matching.
|
|
Node* pair = new BinaryNode(n->in(1), n->in(2));
|
|
n->set_req(2, pair);
|
|
n->set_req(1, n->in(3));
|
|
n->del_req(3);
|
|
break;
|
|
}
|
|
case Op_MulAddS2I: {
|
|
Node* pair1 = new BinaryNode(n->in(1), n->in(2));
|
|
Node* pair2 = new BinaryNode(n->in(3), n->in(4));
|
|
n->set_req(1, pair1);
|
|
n->set_req(2, pair2);
|
|
n->del_req(4);
|
|
n->del_req(3);
|
|
break;
|
|
}
|
|
case Op_CopySignD:
|
|
case Op_SignumF:
|
|
case Op_SignumD: {
|
|
Node* pair = new BinaryNode(n->in(2), n->in(3));
|
|
n->set_req(2, pair);
|
|
n->del_req(3);
|
|
break;
|
|
}
|
|
case Op_VectorBlend:
|
|
case Op_VectorInsert: {
|
|
Node* pair = new BinaryNode(n->in(1), n->in(2));
|
|
n->set_req(1, pair);
|
|
n->set_req(2, n->in(3));
|
|
n->del_req(3);
|
|
break;
|
|
}
|
|
case Op_StoreVectorScatter: {
|
|
Node* pair = new BinaryNode(n->in(MemNode::ValueIn), n->in(MemNode::ValueIn+1));
|
|
n->set_req(MemNode::ValueIn, pair);
|
|
n->del_req(MemNode::ValueIn+1);
|
|
break;
|
|
}
|
|
case Op_VectorMaskCmp: {
|
|
n->set_req(1, new BinaryNode(n->in(1), n->in(2)));
|
|
n->set_req(2, n->in(3));
|
|
n->del_req(3);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// machine-independent root to machine-dependent root
|
|
void Matcher::dump_old2new_map() {
|
|
_old2new_map.dump();
|
|
}
|
|
#endif
|
|
|
|
//---------------------------collect_null_checks-------------------------------
|
|
// Find null checks in the ideal graph; write a machine-specific node for
|
|
// it. Used by later implicit-null-check handling. Actually collects
|
|
// either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
|
|
// value being tested.
|
|
void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
|
|
Node *iff = proj->in(0);
|
|
if( iff->Opcode() == Op_If ) {
|
|
// During matching If's have Bool & Cmp side-by-side
|
|
BoolNode *b = iff->in(1)->as_Bool();
|
|
Node *cmp = iff->in(2);
|
|
int opc = cmp->Opcode();
|
|
if (opc != Op_CmpP && opc != Op_CmpN) return;
|
|
|
|
const Type* ct = cmp->in(2)->bottom_type();
|
|
if (ct == TypePtr::NULL_PTR ||
|
|
(opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
|
|
|
|
bool push_it = false;
|
|
if( proj->Opcode() == Op_IfTrue ) {
|
|
#ifndef PRODUCT
|
|
extern int all_null_checks_found;
|
|
all_null_checks_found++;
|
|
#endif
|
|
if( b->_test._test == BoolTest::ne ) {
|
|
push_it = true;
|
|
}
|
|
} else {
|
|
assert( proj->Opcode() == Op_IfFalse, "" );
|
|
if( b->_test._test == BoolTest::eq ) {
|
|
push_it = true;
|
|
}
|
|
}
|
|
if( push_it ) {
|
|
_null_check_tests.push(proj);
|
|
Node* val = cmp->in(1);
|
|
#ifdef _LP64
|
|
if (val->bottom_type()->isa_narrowoop() &&
|
|
!Matcher::narrow_oop_use_complex_address()) {
|
|
//
|
|
// Look for DecodeN node which should be pinned to orig_proj.
|
|
// On platforms (Sparc) which can not handle 2 adds
|
|
// in addressing mode we have to keep a DecodeN node and
|
|
// use it to do implicit NULL check in address.
|
|
//
|
|
// DecodeN node was pinned to non-null path (orig_proj) during
|
|
// CastPP transformation in final_graph_reshaping_impl().
|
|
//
|
|
uint cnt = orig_proj->outcnt();
|
|
for (uint i = 0; i < orig_proj->outcnt(); i++) {
|
|
Node* d = orig_proj->raw_out(i);
|
|
if (d->is_DecodeN() && d->in(1) == val) {
|
|
val = d;
|
|
val->set_req(0, NULL); // Unpin now.
|
|
// Mark this as special case to distinguish from
|
|
// a regular case: CmpP(DecodeN, NULL).
|
|
val = (Node*)(((intptr_t)val) | 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
_null_check_tests.push(val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//---------------------------validate_null_checks------------------------------
|
|
// Its possible that the value being NULL checked is not the root of a match
|
|
// tree. If so, I cannot use the value in an implicit null check.
|
|
void Matcher::validate_null_checks( ) {
|
|
uint cnt = _null_check_tests.size();
|
|
for( uint i=0; i < cnt; i+=2 ) {
|
|
Node *test = _null_check_tests[i];
|
|
Node *val = _null_check_tests[i+1];
|
|
bool is_decoden = ((intptr_t)val) & 1;
|
|
val = (Node*)(((intptr_t)val) & ~1);
|
|
if (has_new_node(val)) {
|
|
Node* new_val = new_node(val);
|
|
if (is_decoden) {
|
|
assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
|
|
// Note: new_val may have a control edge if
|
|
// the original ideal node DecodeN was matched before
|
|
// it was unpinned in Matcher::collect_null_checks().
|
|
// Unpin the mach node and mark it.
|
|
new_val->set_req(0, NULL);
|
|
new_val = (Node*)(((intptr_t)new_val) | 1);
|
|
}
|
|
// Is a match-tree root, so replace with the matched value
|
|
_null_check_tests.map(i+1, new_val);
|
|
} else {
|
|
// Yank from candidate list
|
|
_null_check_tests.map(i+1,_null_check_tests[--cnt]);
|
|
_null_check_tests.map(i,_null_check_tests[--cnt]);
|
|
_null_check_tests.pop();
|
|
_null_check_tests.pop();
|
|
i-=2;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Matcher::gen_narrow_oop_implicit_null_checks() {
|
|
// Advice matcher to perform null checks on the narrow oop side.
|
|
// Implicit checks are not possible on the uncompressed oop side anyway
|
|
// (at least not for read accesses).
|
|
// Performs significantly better (especially on Power 6).
|
|
if (!os::zero_page_read_protected()) {
|
|
return true;
|
|
}
|
|
return CompressedOops::use_implicit_null_checks() &&
|
|
(narrow_oop_use_complex_address() ||
|
|
CompressedOops::base() != NULL);
|
|
}
|
|
|
|
// Compute RegMask for an ideal register.
|
|
const RegMask* Matcher::regmask_for_ideal_register(uint ideal_reg, Node* ret) {
|
|
const Type* t = Type::mreg2type[ideal_reg];
|
|
if (t == NULL) {
|
|
assert(ideal_reg >= Op_VecA && ideal_reg <= Op_VecZ, "not a vector: %d", ideal_reg);
|
|
return NULL; // not supported
|
|
}
|
|
Node* fp = ret->in(TypeFunc::FramePtr);
|
|
Node* mem = ret->in(TypeFunc::Memory);
|
|
const TypePtr* atp = TypePtr::BOTTOM;
|
|
MemNode::MemOrd mo = MemNode::unordered;
|
|
|
|
Node* spill;
|
|
switch (ideal_reg) {
|
|
case Op_RegN: spill = new LoadNNode(NULL, mem, fp, atp, t->is_narrowoop(), mo); break;
|
|
case Op_RegI: spill = new LoadINode(NULL, mem, fp, atp, t->is_int(), mo); break;
|
|
case Op_RegP: spill = new LoadPNode(NULL, mem, fp, atp, t->is_ptr(), mo); break;
|
|
case Op_RegF: spill = new LoadFNode(NULL, mem, fp, atp, t, mo); break;
|
|
case Op_RegD: spill = new LoadDNode(NULL, mem, fp, atp, t, mo); break;
|
|
case Op_RegL: spill = new LoadLNode(NULL, mem, fp, atp, t->is_long(), mo); break;
|
|
|
|
case Op_VecA: // fall-through
|
|
case Op_VecS: // fall-through
|
|
case Op_VecD: // fall-through
|
|
case Op_VecX: // fall-through
|
|
case Op_VecY: // fall-through
|
|
case Op_VecZ: spill = new LoadVectorNode(NULL, mem, fp, atp, t->is_vect()); break;
|
|
|
|
default: ShouldNotReachHere();
|
|
}
|
|
MachNode* mspill = match_tree(spill);
|
|
assert(mspill != NULL, "matching failed: %d", ideal_reg);
|
|
// Handle generic vector operand case
|
|
if (Matcher::supports_generic_vector_operands && t->isa_vect()) {
|
|
specialize_mach_node(mspill);
|
|
}
|
|
return &mspill->out_RegMask();
|
|
}
|
|
|
|
// Process Mach IR right after selection phase is over.
|
|
void Matcher::do_postselect_cleanup() {
|
|
if (supports_generic_vector_operands) {
|
|
specialize_generic_vector_operands();
|
|
if (C->failing()) return;
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// Generic machine operands elision.
|
|
//----------------------------------------------------------------------
|
|
|
|
// Compute concrete vector operand for a generic TEMP vector mach node based on its user info.
|
|
void Matcher::specialize_temp_node(MachTempNode* tmp, MachNode* use, uint idx) {
|
|
assert(use->in(idx) == tmp, "not a user");
|
|
assert(!Matcher::is_generic_vector(use->_opnds[0]), "use not processed yet");
|
|
|
|
if ((uint)idx == use->two_adr()) { // DEF_TEMP case
|
|
tmp->_opnds[0] = use->_opnds[0]->clone();
|
|
} else {
|
|
uint ideal_vreg = vector_ideal_reg(C->max_vector_size());
|
|
tmp->_opnds[0] = Matcher::pd_specialize_generic_vector_operand(tmp->_opnds[0], ideal_vreg, true /*is_temp*/);
|
|
}
|
|
}
|
|
|
|
// Compute concrete vector operand for a generic DEF/USE vector operand (of mach node m at index idx).
|
|
MachOper* Matcher::specialize_vector_operand(MachNode* m, uint opnd_idx) {
|
|
assert(Matcher::is_generic_vector(m->_opnds[opnd_idx]), "repeated updates");
|
|
Node* def = NULL;
|
|
if (opnd_idx == 0) { // DEF
|
|
def = m; // use mach node itself to compute vector operand type
|
|
} else {
|
|
int base_idx = m->operand_index(opnd_idx);
|
|
def = m->in(base_idx);
|
|
if (def->is_Mach()) {
|
|
if (def->is_MachTemp() && Matcher::is_generic_vector(def->as_Mach()->_opnds[0])) {
|
|
specialize_temp_node(def->as_MachTemp(), m, base_idx); // MachTemp node use site
|
|
} else if (is_generic_reg2reg_move(def->as_Mach())) {
|
|
def = def->in(1); // skip over generic reg-to-reg moves
|
|
}
|
|
}
|
|
}
|
|
assert(def->bottom_type()->isa_vect(), "not a vector");
|
|
uint ideal_vreg = def->bottom_type()->ideal_reg();
|
|
return Matcher::pd_specialize_generic_vector_operand(m->_opnds[opnd_idx], ideal_vreg, false /*is_temp*/);
|
|
}
|
|
|
|
void Matcher::specialize_mach_node(MachNode* m) {
|
|
assert(!m->is_MachTemp(), "processed along with its user");
|
|
// For generic use operands pull specific register class operands from
|
|
// its def instruction's output operand (def operand).
|
|
for (uint i = 0; i < m->num_opnds(); i++) {
|
|
if (Matcher::is_generic_vector(m->_opnds[i])) {
|
|
m->_opnds[i] = specialize_vector_operand(m, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace generic vector operands with concrete vector operands and eliminate generic reg-to-reg moves from the graph.
|
|
void Matcher::specialize_generic_vector_operands() {
|
|
assert(supports_generic_vector_operands, "sanity");
|
|
ResourceMark rm;
|
|
|
|
if (C->max_vector_size() == 0) {
|
|
return; // no vector instructions or operands
|
|
}
|
|
// Replace generic vector operands (vec/legVec) with concrete ones (vec[SDXYZ]/legVec[SDXYZ])
|
|
// and remove reg-to-reg vector moves (MoveVec2Leg and MoveLeg2Vec).
|
|
Unique_Node_List live_nodes;
|
|
C->identify_useful_nodes(live_nodes);
|
|
|
|
while (live_nodes.size() > 0) {
|
|
MachNode* m = live_nodes.pop()->isa_Mach();
|
|
if (m != NULL) {
|
|
if (Matcher::is_generic_reg2reg_move(m)) {
|
|
// Register allocator properly handles vec <=> leg moves using register masks.
|
|
int opnd_idx = m->operand_index(1);
|
|
Node* def = m->in(opnd_idx);
|
|
m->subsume_by(def, C);
|
|
} else if (m->is_MachTemp()) {
|
|
// process MachTemp nodes at use site (see Matcher::specialize_vector_operand)
|
|
} else {
|
|
specialize_mach_node(m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
bool Matcher::verify_after_postselect_cleanup() {
|
|
assert(!C->failing(), "sanity");
|
|
if (supports_generic_vector_operands) {
|
|
Unique_Node_List useful;
|
|
C->identify_useful_nodes(useful);
|
|
for (uint i = 0; i < useful.size(); i++) {
|
|
MachNode* m = useful.at(i)->isa_Mach();
|
|
if (m != NULL) {
|
|
assert(!Matcher::is_generic_reg2reg_move(m), "no MoveVec nodes allowed");
|
|
for (uint j = 0; j < m->num_opnds(); j++) {
|
|
assert(!Matcher::is_generic_vector(m->_opnds[j]), "no generic vector operands allowed");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
#endif // ASSERT
|
|
|
|
// Used by the DFA in dfa_xxx.cpp. Check for a following barrier or
|
|
// atomic instruction acting as a store_load barrier without any
|
|
// intervening volatile load, and thus we don't need a barrier here.
|
|
// We retain the Node to act as a compiler ordering barrier.
|
|
bool Matcher::post_store_load_barrier(const Node* vmb) {
|
|
Compile* C = Compile::current();
|
|
assert(vmb->is_MemBar(), "");
|
|
assert(vmb->Opcode() != Op_MemBarAcquire && vmb->Opcode() != Op_LoadFence, "");
|
|
const MemBarNode* membar = vmb->as_MemBar();
|
|
|
|
// Get the Ideal Proj node, ctrl, that can be used to iterate forward
|
|
Node* ctrl = NULL;
|
|
for (DUIterator_Fast imax, i = membar->fast_outs(imax); i < imax; i++) {
|
|
Node* p = membar->fast_out(i);
|
|
assert(p->is_Proj(), "only projections here");
|
|
if ((p->as_Proj()->_con == TypeFunc::Control) &&
|
|
!C->node_arena()->contains(p)) { // Unmatched old-space only
|
|
ctrl = p;
|
|
break;
|
|
}
|
|
}
|
|
assert((ctrl != NULL), "missing control projection");
|
|
|
|
for (DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++) {
|
|
Node *x = ctrl->fast_out(j);
|
|
int xop = x->Opcode();
|
|
|
|
// We don't need current barrier if we see another or a lock
|
|
// before seeing volatile load.
|
|
//
|
|
// Op_Fastunlock previously appeared in the Op_* list below.
|
|
// With the advent of 1-0 lock operations we're no longer guaranteed
|
|
// that a monitor exit operation contains a serializing instruction.
|
|
|
|
if (xop == Op_MemBarVolatile ||
|
|
xop == Op_CompareAndExchangeB ||
|
|
xop == Op_CompareAndExchangeS ||
|
|
xop == Op_CompareAndExchangeI ||
|
|
xop == Op_CompareAndExchangeL ||
|
|
xop == Op_CompareAndExchangeP ||
|
|
xop == Op_CompareAndExchangeN ||
|
|
xop == Op_WeakCompareAndSwapB ||
|
|
xop == Op_WeakCompareAndSwapS ||
|
|
xop == Op_WeakCompareAndSwapL ||
|
|
xop == Op_WeakCompareAndSwapP ||
|
|
xop == Op_WeakCompareAndSwapN ||
|
|
xop == Op_WeakCompareAndSwapI ||
|
|
xop == Op_CompareAndSwapB ||
|
|
xop == Op_CompareAndSwapS ||
|
|
xop == Op_CompareAndSwapL ||
|
|
xop == Op_CompareAndSwapP ||
|
|
xop == Op_CompareAndSwapN ||
|
|
xop == Op_CompareAndSwapI ||
|
|
BarrierSet::barrier_set()->barrier_set_c2()->matcher_is_store_load_barrier(x, xop)) {
|
|
return true;
|
|
}
|
|
|
|
// Op_FastLock previously appeared in the Op_* list above.
|
|
// With biased locking we're no longer guaranteed that a monitor
|
|
// enter operation contains a serializing instruction.
|
|
if ((xop == Op_FastLock) && !UseBiasedLocking) {
|
|
return true;
|
|
}
|
|
|
|
if (x->is_MemBar()) {
|
|
// We must retain this membar if there is an upcoming volatile
|
|
// load, which will be followed by acquire membar.
|
|
if (xop == Op_MemBarAcquire || xop == Op_LoadFence) {
|
|
return false;
|
|
} else {
|
|
// For other kinds of barriers, check by pretending we
|
|
// are them, and seeing if we can be removed.
|
|
return post_store_load_barrier(x->as_MemBar());
|
|
}
|
|
}
|
|
|
|
// probably not necessary to check for these
|
|
if (x->is_Call() || x->is_SafePoint() || x->is_block_proj()) {
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check whether node n is a branch to an uncommon trap that we could
|
|
// optimize as test with very high branch costs in case of going to
|
|
// the uncommon trap. The code must be able to be recompiled to use
|
|
// a cheaper test.
|
|
bool Matcher::branches_to_uncommon_trap(const Node *n) {
|
|
// Don't do it for natives, adapters, or runtime stubs
|
|
Compile *C = Compile::current();
|
|
if (!C->is_method_compilation()) return false;
|
|
|
|
assert(n->is_If(), "You should only call this on if nodes.");
|
|
IfNode *ifn = n->as_If();
|
|
|
|
Node *ifFalse = NULL;
|
|
for (DUIterator_Fast imax, i = ifn->fast_outs(imax); i < imax; i++) {
|
|
if (ifn->fast_out(i)->is_IfFalse()) {
|
|
ifFalse = ifn->fast_out(i);
|
|
break;
|
|
}
|
|
}
|
|
assert(ifFalse, "An If should have an ifFalse. Graph is broken.");
|
|
|
|
Node *reg = ifFalse;
|
|
int cnt = 4; // We must protect against cycles. Limit to 4 iterations.
|
|
// Alternatively use visited set? Seems too expensive.
|
|
while (reg != NULL && cnt > 0) {
|
|
CallNode *call = NULL;
|
|
RegionNode *nxt_reg = NULL;
|
|
for (DUIterator_Fast imax, i = reg->fast_outs(imax); i < imax; i++) {
|
|
Node *o = reg->fast_out(i);
|
|
if (o->is_Call()) {
|
|
call = o->as_Call();
|
|
}
|
|
if (o->is_Region()) {
|
|
nxt_reg = o->as_Region();
|
|
}
|
|
}
|
|
|
|
if (call &&
|
|
call->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
|
|
const Type* trtype = call->in(TypeFunc::Parms)->bottom_type();
|
|
if (trtype->isa_int() && trtype->is_int()->is_con()) {
|
|
jint tr_con = trtype->is_int()->get_con();
|
|
Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
|
|
Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
|
|
assert((int)reason < (int)BitsPerInt, "recode bit map");
|
|
|
|
if (is_set_nth_bit(C->allowed_deopt_reasons(), (int)reason)
|
|
&& action != Deoptimization::Action_none) {
|
|
// This uncommon trap is sure to recompile, eventually.
|
|
// When that happens, C->too_many_traps will prevent
|
|
// this transformation from happening again.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
reg = nxt_reg;
|
|
cnt--;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//=============================================================================
|
|
//---------------------------State---------------------------------------------
|
|
State::State(void) : _rule() {
|
|
#ifdef ASSERT
|
|
_id = 0;
|
|
_kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
|
|
_leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
|
|
#endif
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
State::~State() {
|
|
_id = 99;
|
|
_kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
|
|
_leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
|
|
memset(_cost, -3, sizeof(_cost));
|
|
memset(_rule, -3, sizeof(_rule));
|
|
}
|
|
#endif
|
|
|
|
#ifndef PRODUCT
|
|
//---------------------------dump----------------------------------------------
|
|
void State::dump() {
|
|
tty->print("\n");
|
|
dump(0);
|
|
}
|
|
|
|
void State::dump(int depth) {
|
|
for (int j = 0; j < depth; j++) {
|
|
tty->print(" ");
|
|
}
|
|
tty->print("--N: ");
|
|
_leaf->dump();
|
|
uint i;
|
|
for (i = 0; i < _LAST_MACH_OPER; i++) {
|
|
// Check for valid entry
|
|
if (valid(i)) {
|
|
for (int j = 0; j < depth; j++) {
|
|
tty->print(" ");
|
|
}
|
|
assert(cost(i) != max_juint, "cost must be a valid value");
|
|
assert(rule(i) < _last_Mach_Node, "rule[i] must be valid rule");
|
|
tty->print_cr("%s %d %s",
|
|
ruleName[i], cost(i), ruleName[rule(i)] );
|
|
}
|
|
}
|
|
tty->cr();
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if (_kids[i]) {
|
|
_kids[i]->dump(depth + 1);
|
|
}
|
|
}
|
|
}
|
|
#endif
|