19bade0280
Reviewed-by: thartmann, chagedorn
1659 lines
63 KiB
C++
1659 lines
63 KiB
C++
/*
|
|
* Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "classfile/systemDictionary.hpp"
|
|
#include "classfile/vmSymbols.hpp"
|
|
#include "code/codeCache.hpp"
|
|
#include "code/compiledMethod.inline.hpp"
|
|
#include "code/compiledIC.hpp"
|
|
#include "code/icBuffer.hpp"
|
|
#include "code/nmethod.hpp"
|
|
#include "code/pcDesc.hpp"
|
|
#include "code/scopeDesc.hpp"
|
|
#include "code/vtableStubs.hpp"
|
|
#include "compiler/compileBroker.hpp"
|
|
#include "compiler/oopMap.hpp"
|
|
#include "gc/g1/heapRegion.hpp"
|
|
#include "gc/shared/barrierSet.hpp"
|
|
#include "gc/shared/collectedHeap.hpp"
|
|
#include "gc/shared/gcLocker.hpp"
|
|
#include "interpreter/bytecode.hpp"
|
|
#include "interpreter/interpreter.hpp"
|
|
#include "interpreter/linkResolver.hpp"
|
|
#include "logging/log.hpp"
|
|
#include "logging/logStream.hpp"
|
|
#include "memory/oopFactory.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "oops/objArrayKlass.hpp"
|
|
#include "oops/oop.inline.hpp"
|
|
#include "oops/typeArrayOop.inline.hpp"
|
|
#include "opto/ad.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/graphKit.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/matcher.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/mulnode.hpp"
|
|
#include "opto/output.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "prims/jvmtiExport.hpp"
|
|
#include "runtime/atomic.hpp"
|
|
#include "runtime/frame.inline.hpp"
|
|
#include "runtime/handles.inline.hpp"
|
|
#include "runtime/interfaceSupport.inline.hpp"
|
|
#include "runtime/javaCalls.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "runtime/signature.hpp"
|
|
#include "runtime/stackWatermarkSet.hpp"
|
|
#include "runtime/threadCritical.hpp"
|
|
#include "runtime/vframe.hpp"
|
|
#include "runtime/vframeArray.hpp"
|
|
#include "runtime/vframe_hp.hpp"
|
|
#include "utilities/copy.hpp"
|
|
#include "utilities/preserveException.hpp"
|
|
|
|
|
|
// For debugging purposes:
|
|
// To force FullGCALot inside a runtime function, add the following two lines
|
|
//
|
|
// Universe::release_fullgc_alot_dummy();
|
|
// MarkSweep::invoke(0, "Debugging");
|
|
//
|
|
// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
|
|
|
|
|
|
|
|
|
|
// Compiled code entry points
|
|
address OptoRuntime::_new_instance_Java = NULL;
|
|
address OptoRuntime::_new_array_Java = NULL;
|
|
address OptoRuntime::_new_array_nozero_Java = NULL;
|
|
address OptoRuntime::_multianewarray2_Java = NULL;
|
|
address OptoRuntime::_multianewarray3_Java = NULL;
|
|
address OptoRuntime::_multianewarray4_Java = NULL;
|
|
address OptoRuntime::_multianewarray5_Java = NULL;
|
|
address OptoRuntime::_multianewarrayN_Java = NULL;
|
|
address OptoRuntime::_vtable_must_compile_Java = NULL;
|
|
address OptoRuntime::_complete_monitor_locking_Java = NULL;
|
|
address OptoRuntime::_monitor_notify_Java = NULL;
|
|
address OptoRuntime::_monitor_notifyAll_Java = NULL;
|
|
address OptoRuntime::_rethrow_Java = NULL;
|
|
|
|
address OptoRuntime::_slow_arraycopy_Java = NULL;
|
|
address OptoRuntime::_register_finalizer_Java = NULL;
|
|
|
|
ExceptionBlob* OptoRuntime::_exception_blob;
|
|
|
|
// This should be called in an assertion at the start of OptoRuntime routines
|
|
// which are entered from compiled code (all of them)
|
|
#ifdef ASSERT
|
|
static bool check_compiled_frame(JavaThread* thread) {
|
|
assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
|
|
RegisterMap map(thread, false);
|
|
frame caller = thread->last_frame().sender(&map);
|
|
assert(caller.is_compiled_frame(), "not being called from compiled like code");
|
|
return true;
|
|
}
|
|
#endif // ASSERT
|
|
|
|
|
|
#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
|
|
var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
|
|
if (var == NULL) { return false; }
|
|
|
|
bool OptoRuntime::generate(ciEnv* env) {
|
|
|
|
generate_exception_blob();
|
|
|
|
// Note: tls: Means fetching the return oop out of the thread-local storage
|
|
//
|
|
// variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
|
|
// -------------------------------------------------------------------------------------------------------------------------------
|
|
gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
|
|
gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
|
|
gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
|
|
gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
|
|
gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
|
|
gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
|
|
gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
|
|
gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
|
|
gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
|
|
gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false, false);
|
|
gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false, false);
|
|
gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
|
|
|
|
gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
|
|
gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
|
|
|
|
return true;
|
|
}
|
|
|
|
#undef gen
|
|
|
|
|
|
// Helper method to do generation of RunTimeStub's
|
|
address OptoRuntime::generate_stub( ciEnv* env,
|
|
TypeFunc_generator gen, address C_function,
|
|
const char *name, int is_fancy_jump,
|
|
bool pass_tls,
|
|
bool save_argument_registers,
|
|
bool return_pc) {
|
|
|
|
// Matching the default directive, we currently have no method to match.
|
|
DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
|
|
ResourceMark rm;
|
|
Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
|
|
DirectivesStack::release(directive);
|
|
return C.stub_entry_point();
|
|
}
|
|
|
|
const char* OptoRuntime::stub_name(address entry) {
|
|
#ifndef PRODUCT
|
|
CodeBlob* cb = CodeCache::find_blob(entry);
|
|
RuntimeStub* rs =(RuntimeStub *)cb;
|
|
assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
|
|
return rs->name();
|
|
#else
|
|
// Fast implementation for product mode (maybe it should be inlined too)
|
|
return "runtime stub";
|
|
#endif
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
// Opto compiler runtime routines
|
|
//=============================================================================
|
|
|
|
|
|
//=============================allocation======================================
|
|
// We failed the fast-path allocation. Now we need to do a scavenge or GC
|
|
// and try allocation again.
|
|
|
|
// object allocation
|
|
JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
|
|
JRT_BLOCK;
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_new_instance_ctr++; // new instance requires GC
|
|
#endif
|
|
assert(check_compiled_frame(thread), "incorrect caller");
|
|
|
|
// These checks are cheap to make and support reflective allocation.
|
|
int lh = klass->layout_helper();
|
|
if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
|
|
Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
|
|
klass->check_valid_for_instantiation(false, THREAD);
|
|
if (!HAS_PENDING_EXCEPTION) {
|
|
InstanceKlass::cast(klass)->initialize(THREAD);
|
|
}
|
|
}
|
|
|
|
if (!HAS_PENDING_EXCEPTION) {
|
|
// Scavenge and allocate an instance.
|
|
Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
|
|
oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
|
|
thread->set_vm_result(result);
|
|
|
|
// Pass oops back through thread local storage. Our apparent type to Java
|
|
// is that we return an oop, but we can block on exit from this routine and
|
|
// a GC can trash the oop in C's return register. The generated stub will
|
|
// fetch the oop from TLS after any possible GC.
|
|
}
|
|
|
|
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
|
|
JRT_BLOCK_END;
|
|
|
|
// inform GC that we won't do card marks for initializing writes.
|
|
SharedRuntime::on_slowpath_allocation_exit(thread);
|
|
JRT_END
|
|
|
|
|
|
// array allocation
|
|
JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
|
|
JRT_BLOCK;
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_new_array_ctr++; // new array requires GC
|
|
#endif
|
|
assert(check_compiled_frame(thread), "incorrect caller");
|
|
|
|
// Scavenge and allocate an instance.
|
|
oop result;
|
|
|
|
if (array_type->is_typeArray_klass()) {
|
|
// The oopFactory likes to work with the element type.
|
|
// (We could bypass the oopFactory, since it doesn't add much value.)
|
|
BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
|
|
result = oopFactory::new_typeArray(elem_type, len, THREAD);
|
|
} else {
|
|
// Although the oopFactory likes to work with the elem_type,
|
|
// the compiler prefers the array_type, since it must already have
|
|
// that latter value in hand for the fast path.
|
|
Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
|
|
Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
|
|
result = oopFactory::new_objArray(elem_type, len, THREAD);
|
|
}
|
|
|
|
// Pass oops back through thread local storage. Our apparent type to Java
|
|
// is that we return an oop, but we can block on exit from this routine and
|
|
// a GC can trash the oop in C's return register. The generated stub will
|
|
// fetch the oop from TLS after any possible GC.
|
|
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
|
|
thread->set_vm_result(result);
|
|
JRT_BLOCK_END;
|
|
|
|
// inform GC that we won't do card marks for initializing writes.
|
|
SharedRuntime::on_slowpath_allocation_exit(thread);
|
|
JRT_END
|
|
|
|
// array allocation without zeroing
|
|
JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
|
|
JRT_BLOCK;
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_new_array_ctr++; // new array requires GC
|
|
#endif
|
|
assert(check_compiled_frame(thread), "incorrect caller");
|
|
|
|
// Scavenge and allocate an instance.
|
|
oop result;
|
|
|
|
assert(array_type->is_typeArray_klass(), "should be called only for type array");
|
|
// The oopFactory likes to work with the element type.
|
|
BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
|
|
result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
|
|
|
|
// Pass oops back through thread local storage. Our apparent type to Java
|
|
// is that we return an oop, but we can block on exit from this routine and
|
|
// a GC can trash the oop in C's return register. The generated stub will
|
|
// fetch the oop from TLS after any possible GC.
|
|
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
|
|
thread->set_vm_result(result);
|
|
JRT_BLOCK_END;
|
|
|
|
|
|
// inform GC that we won't do card marks for initializing writes.
|
|
SharedRuntime::on_slowpath_allocation_exit(thread);
|
|
|
|
oop result = thread->vm_result();
|
|
if ((len > 0) && (result != NULL) &&
|
|
is_deoptimized_caller_frame(thread)) {
|
|
// Zero array here if the caller is deoptimized.
|
|
int size = ((typeArrayOop)result)->object_size();
|
|
BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
|
|
const size_t hs = arrayOopDesc::header_size(elem_type);
|
|
// Align to next 8 bytes to avoid trashing arrays's length.
|
|
const size_t aligned_hs = align_object_offset(hs);
|
|
HeapWord* obj = cast_from_oop<HeapWord*>(result);
|
|
if (aligned_hs > hs) {
|
|
Copy::zero_to_words(obj+hs, aligned_hs-hs);
|
|
}
|
|
// Optimized zeroing.
|
|
Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
|
|
}
|
|
|
|
JRT_END
|
|
|
|
// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
|
|
|
|
// multianewarray for 2 dimensions
|
|
JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
|
|
#endif
|
|
assert(check_compiled_frame(thread), "incorrect caller");
|
|
assert(elem_type->is_klass(), "not a class");
|
|
jint dims[2];
|
|
dims[0] = len1;
|
|
dims[1] = len2;
|
|
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
|
|
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
|
|
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
|
|
thread->set_vm_result(obj);
|
|
JRT_END
|
|
|
|
// multianewarray for 3 dimensions
|
|
JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
|
|
#endif
|
|
assert(check_compiled_frame(thread), "incorrect caller");
|
|
assert(elem_type->is_klass(), "not a class");
|
|
jint dims[3];
|
|
dims[0] = len1;
|
|
dims[1] = len2;
|
|
dims[2] = len3;
|
|
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
|
|
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
|
|
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
|
|
thread->set_vm_result(obj);
|
|
JRT_END
|
|
|
|
// multianewarray for 4 dimensions
|
|
JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
|
|
#endif
|
|
assert(check_compiled_frame(thread), "incorrect caller");
|
|
assert(elem_type->is_klass(), "not a class");
|
|
jint dims[4];
|
|
dims[0] = len1;
|
|
dims[1] = len2;
|
|
dims[2] = len3;
|
|
dims[3] = len4;
|
|
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
|
|
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
|
|
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
|
|
thread->set_vm_result(obj);
|
|
JRT_END
|
|
|
|
// multianewarray for 5 dimensions
|
|
JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
|
|
#endif
|
|
assert(check_compiled_frame(thread), "incorrect caller");
|
|
assert(elem_type->is_klass(), "not a class");
|
|
jint dims[5];
|
|
dims[0] = len1;
|
|
dims[1] = len2;
|
|
dims[2] = len3;
|
|
dims[3] = len4;
|
|
dims[4] = len5;
|
|
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
|
|
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
|
|
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
|
|
thread->set_vm_result(obj);
|
|
JRT_END
|
|
|
|
JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
|
|
assert(check_compiled_frame(thread), "incorrect caller");
|
|
assert(elem_type->is_klass(), "not a class");
|
|
assert(oop(dims)->is_typeArray(), "not an array");
|
|
|
|
ResourceMark rm;
|
|
jint len = dims->length();
|
|
assert(len > 0, "Dimensions array should contain data");
|
|
jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
|
|
ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
|
|
c_dims, len);
|
|
|
|
Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
|
|
oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
|
|
deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
|
|
thread->set_vm_result(obj);
|
|
JRT_END
|
|
|
|
JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
|
|
|
|
// Very few notify/notifyAll operations find any threads on the waitset, so
|
|
// the dominant fast-path is to simply return.
|
|
// Relatedly, it's critical that notify/notifyAll be fast in order to
|
|
// reduce lock hold times.
|
|
if (!SafepointSynchronize::is_synchronizing()) {
|
|
if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// This is the case the fast-path above isn't provisioned to handle.
|
|
// The fast-path is designed to handle frequently arising cases in an efficient manner.
|
|
// (The fast-path is just a degenerate variant of the slow-path).
|
|
// Perform the dreaded state transition and pass control into the slow-path.
|
|
JRT_BLOCK;
|
|
Handle h_obj(THREAD, obj);
|
|
ObjectSynchronizer::notify(h_obj, CHECK);
|
|
JRT_BLOCK_END;
|
|
JRT_END
|
|
|
|
JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
|
|
|
|
if (!SafepointSynchronize::is_synchronizing() ) {
|
|
if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// This is the case the fast-path above isn't provisioned to handle.
|
|
// The fast-path is designed to handle frequently arising cases in an efficient manner.
|
|
// (The fast-path is just a degenerate variant of the slow-path).
|
|
// Perform the dreaded state transition and pass control into the slow-path.
|
|
JRT_BLOCK;
|
|
Handle h_obj(THREAD, obj);
|
|
ObjectSynchronizer::notifyall(h_obj, CHECK);
|
|
JRT_BLOCK_END;
|
|
JRT_END
|
|
|
|
const TypeFunc *OptoRuntime::new_instance_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
|
|
const TypeFunc *OptoRuntime::athrow_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
|
|
const TypeFunc *OptoRuntime::new_array_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
|
|
fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
|
|
// create input type (domain)
|
|
const int nargs = ndim + 1;
|
|
const Type **fields = TypeTuple::fields(nargs);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
|
|
for( int i = 1; i < nargs; i++ )
|
|
fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::multianewarray2_Type() {
|
|
return multianewarray_Type(2);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::multianewarray3_Type() {
|
|
return multianewarray_Type(3);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::multianewarray4_Type() {
|
|
return multianewarray_Type(4);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::multianewarray5_Type() {
|
|
return multianewarray_Type(5);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::multianewarrayN_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
|
|
fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::uncommon_trap_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Monitor Handling
|
|
const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
|
|
fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
|
|
|
|
return TypeFunc::make(domain,range);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(3);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
|
|
fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
|
|
fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::monitor_notify_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::flush_windows_Type() {
|
|
// create input type (domain)
|
|
const Type** fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = NULL; // void
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
|
|
|
|
// create result type
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = NULL; // void
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::l2f_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeLong::LONG;
|
|
fields[TypeFunc::Parms+1] = Type::HALF;
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = Type::FLOAT;
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::modf_Type() {
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = Type::FLOAT;
|
|
fields[TypeFunc::Parms+1] = Type::FLOAT;
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = Type::FLOAT;
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::Math_D_D_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(2);
|
|
// Symbol* name of class to be loaded
|
|
fields[TypeFunc::Parms+0] = Type::DOUBLE;
|
|
fields[TypeFunc::Parms+1] = Type::HALF;
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = Type::DOUBLE;
|
|
fields[TypeFunc::Parms+1] = Type::HALF;
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::Math_DD_D_Type() {
|
|
const Type **fields = TypeTuple::fields(4);
|
|
fields[TypeFunc::Parms+0] = Type::DOUBLE;
|
|
fields[TypeFunc::Parms+1] = Type::HALF;
|
|
fields[TypeFunc::Parms+2] = Type::DOUBLE;
|
|
fields[TypeFunc::Parms+3] = Type::HALF;
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = Type::DOUBLE;
|
|
fields[TypeFunc::Parms+1] = Type::HALF;
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
//-------------- currentTimeMillis, currentTimeNanos, etc
|
|
|
|
const TypeFunc* OptoRuntime::void_long_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(0);
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeLong::LONG;
|
|
fields[TypeFunc::Parms+1] = Type::HALF;
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
// arraycopy stub variations:
|
|
enum ArrayCopyType {
|
|
ac_fast, // void(ptr, ptr, size_t)
|
|
ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
|
|
ac_slow, // void(ptr, int, ptr, int, int)
|
|
ac_generic // int(ptr, int, ptr, int, int)
|
|
};
|
|
|
|
static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
|
|
// create input type (domain)
|
|
int num_args = (act == ac_fast ? 3 : 5);
|
|
int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
|
|
int argcnt = num_args;
|
|
LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // src
|
|
if (num_size_args == 0) {
|
|
fields[argp++] = TypeInt::INT; // src_pos
|
|
}
|
|
fields[argp++] = TypePtr::NOTNULL; // dest
|
|
if (num_size_args == 0) {
|
|
fields[argp++] = TypeInt::INT; // dest_pos
|
|
fields[argp++] = TypeInt::INT; // length
|
|
}
|
|
while (num_size_args-- > 0) {
|
|
fields[argp++] = TypeX_X; // size in whatevers (size_t)
|
|
LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
|
|
}
|
|
if (act == ac_checkcast) {
|
|
fields[argp++] = TypePtr::NOTNULL; // super_klass
|
|
}
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// create result type if needed
|
|
int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
|
|
fields = TypeTuple::fields(1);
|
|
if (retcnt == 0)
|
|
fields[TypeFunc::Parms+0] = NULL; // void
|
|
else
|
|
fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
|
|
// This signature is simple: Two base pointers and a size_t.
|
|
return make_arraycopy_Type(ac_fast);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
|
|
// An extension of fast_arraycopy_Type which adds type checking.
|
|
return make_arraycopy_Type(ac_checkcast);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
|
|
// This signature is exactly the same as System.arraycopy.
|
|
// There are no intptr_t (int/long) arguments.
|
|
return make_arraycopy_Type(ac_slow);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
|
|
// This signature is like System.arraycopy, except that it returns status.
|
|
return make_arraycopy_Type(ac_generic);
|
|
}
|
|
|
|
|
|
const TypeFunc* OptoRuntime::array_fill_Type() {
|
|
const Type** fields;
|
|
int argp = TypeFunc::Parms;
|
|
// create input type (domain): pointer, int, size_t
|
|
fields = TypeTuple::fields(3 LP64_ONLY( + 1));
|
|
fields[argp++] = TypePtr::NOTNULL;
|
|
fields[argp++] = TypeInt::INT;
|
|
fields[argp++] = TypeX_X; // size in whatevers (size_t)
|
|
LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
|
|
const TypeTuple *domain = TypeTuple::make(argp, fields);
|
|
|
|
// create result type
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = NULL; // void
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
// for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
|
|
const TypeFunc* OptoRuntime::aescrypt_block_Type() {
|
|
// create input type (domain)
|
|
int num_args = 3;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // src
|
|
fields[argp++] = TypePtr::NOTNULL; // dest
|
|
fields[argp++] = TypePtr::NOTNULL; // k array
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// no result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = NULL; // void
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
/**
|
|
* int updateBytesCRC32(int crc, byte* b, int len)
|
|
*/
|
|
const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
|
|
// create input type (domain)
|
|
int num_args = 3;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypeInt::INT; // crc
|
|
fields[argp++] = TypePtr::NOTNULL; // src
|
|
fields[argp++] = TypeInt::INT; // len
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
/**
|
|
* int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
|
|
*/
|
|
const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
|
|
// create input type (domain)
|
|
int num_args = 4;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypeInt::INT; // crc
|
|
fields[argp++] = TypePtr::NOTNULL; // buf
|
|
fields[argp++] = TypeInt::INT; // len
|
|
fields[argp++] = TypePtr::NOTNULL; // table
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
/**
|
|
* int updateBytesAdler32(int adler, bytes* b, int off, int len)
|
|
*/
|
|
const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
|
|
// create input type (domain)
|
|
int num_args = 3;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypeInt::INT; // crc
|
|
fields[argp++] = TypePtr::NOTNULL; // src + offset
|
|
fields[argp++] = TypeInt::INT; // len
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
// for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
|
|
const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
|
|
// create input type (domain)
|
|
int num_args = 5;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // src
|
|
fields[argp++] = TypePtr::NOTNULL; // dest
|
|
fields[argp++] = TypePtr::NOTNULL; // k array
|
|
fields[argp++] = TypePtr::NOTNULL; // r array
|
|
fields[argp++] = TypeInt::INT; // src len
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// returning cipher len (int)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInt::INT;
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
// for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
|
|
const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
|
|
// create input type (domain)
|
|
int num_args = 4;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // src
|
|
fields[argp++] = TypePtr::NOTNULL; // dest
|
|
fields[argp++] = TypePtr::NOTNULL; // k array
|
|
fields[argp++] = TypeInt::INT; // src len
|
|
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
|
|
|
|
// returning cipher len (int)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms + 0] = TypeInt::INT;
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
//for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
|
|
const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
|
|
// create input type (domain)
|
|
int num_args = 7;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // src
|
|
fields[argp++] = TypePtr::NOTNULL; // dest
|
|
fields[argp++] = TypePtr::NOTNULL; // k array
|
|
fields[argp++] = TypePtr::NOTNULL; // counter array
|
|
fields[argp++] = TypeInt::INT; // src len
|
|
fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
|
|
fields[argp++] = TypePtr::NOTNULL; // saved used addr
|
|
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
|
|
// returning cipher len (int)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms + 0] = TypeInt::INT;
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
/*
|
|
* void implCompress(byte[] buf, int ofs)
|
|
*/
|
|
const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
|
|
// create input type (domain)
|
|
int num_args = is_sha3 ? 3 : 2;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // buf
|
|
fields[argp++] = TypePtr::NOTNULL; // state
|
|
if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// no result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = NULL; // void
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
/*
|
|
* int implCompressMultiBlock(byte[] b, int ofs, int limit)
|
|
*/
|
|
const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
|
|
// create input type (domain)
|
|
int num_args = is_sha3 ? 5 : 4;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // buf
|
|
fields[argp++] = TypePtr::NOTNULL; // state
|
|
if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length
|
|
fields[argp++] = TypeInt::INT; // ofs
|
|
fields[argp++] = TypeInt::INT; // limit
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// returning ofs (int)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::multiplyToLen_Type() {
|
|
// create input type (domain)
|
|
int num_args = 6;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // x
|
|
fields[argp++] = TypeInt::INT; // xlen
|
|
fields[argp++] = TypePtr::NOTNULL; // y
|
|
fields[argp++] = TypeInt::INT; // ylen
|
|
fields[argp++] = TypePtr::NOTNULL; // z
|
|
fields[argp++] = TypeInt::INT; // zlen
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// no result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = NULL;
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::squareToLen_Type() {
|
|
// create input type (domain)
|
|
int num_args = 4;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // x
|
|
fields[argp++] = TypeInt::INT; // len
|
|
fields[argp++] = TypePtr::NOTNULL; // z
|
|
fields[argp++] = TypeInt::INT; // zlen
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// no result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = NULL;
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
// for mulAdd calls, 2 pointers and 3 ints, returning int
|
|
const TypeFunc* OptoRuntime::mulAdd_Type() {
|
|
// create input type (domain)
|
|
int num_args = 5;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // out
|
|
fields[argp++] = TypePtr::NOTNULL; // in
|
|
fields[argp++] = TypeInt::INT; // offset
|
|
fields[argp++] = TypeInt::INT; // len
|
|
fields[argp++] = TypeInt::INT; // k
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// returning carry (int)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInt::INT;
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
|
|
// create input type (domain)
|
|
int num_args = 7;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // a
|
|
fields[argp++] = TypePtr::NOTNULL; // b
|
|
fields[argp++] = TypePtr::NOTNULL; // n
|
|
fields[argp++] = TypeInt::INT; // len
|
|
fields[argp++] = TypeLong::LONG; // inv
|
|
fields[argp++] = Type::HALF;
|
|
fields[argp++] = TypePtr::NOTNULL; // result
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
|
|
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::montgomerySquare_Type() {
|
|
// create input type (domain)
|
|
int num_args = 6;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // a
|
|
fields[argp++] = TypePtr::NOTNULL; // n
|
|
fields[argp++] = TypeInt::INT; // len
|
|
fields[argp++] = TypeLong::LONG; // inv
|
|
fields[argp++] = Type::HALF;
|
|
fields[argp++] = TypePtr::NOTNULL; // result
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
|
|
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
|
|
int argcnt = 5;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // newArr
|
|
fields[argp++] = TypePtr::NOTNULL; // oldArr
|
|
fields[argp++] = TypeInt::INT; // newIdx
|
|
fields[argp++] = TypeInt::INT; // shiftCount
|
|
fields[argp++] = TypeInt::INT; // numIter
|
|
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
|
|
|
|
// no result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms + 0] = NULL;
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
|
|
// create input type (domain)
|
|
int num_args = 4;
|
|
int argcnt = num_args;
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // obja
|
|
fields[argp++] = TypePtr::NOTNULL; // objb
|
|
fields[argp++] = TypeInt::INT; // length, number of elements
|
|
fields[argp++] = TypeInt::INT; // log2scale, element size
|
|
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
|
|
|
|
//return mismatch index (int)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms + 0] = TypeInt::INT;
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
// GHASH block processing
|
|
const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
|
|
int argcnt = 4;
|
|
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // state
|
|
fields[argp++] = TypePtr::NOTNULL; // subkeyH
|
|
fields[argp++] = TypePtr::NOTNULL; // data
|
|
fields[argp++] = TypeInt::INT; // blocks
|
|
assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = NULL; // void
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
// Base64 encode function
|
|
const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
|
|
int argcnt = 6;
|
|
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // src array
|
|
fields[argp++] = TypeInt::INT; // offset
|
|
fields[argp++] = TypeInt::INT; // length
|
|
fields[argp++] = TypePtr::NOTNULL; // dest array
|
|
fields[argp++] = TypeInt::INT; // dp
|
|
fields[argp++] = TypeInt::BOOL; // isURL
|
|
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms + 0] = NULL; // void
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
// Base64 decode function
|
|
const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
|
|
int argcnt = 6;
|
|
|
|
const Type** fields = TypeTuple::fields(argcnt);
|
|
int argp = TypeFunc::Parms;
|
|
fields[argp++] = TypePtr::NOTNULL; // src array
|
|
fields[argp++] = TypeInt::INT; // src offset
|
|
fields[argp++] = TypeInt::INT; // src length
|
|
fields[argp++] = TypePtr::NOTNULL; // dest array
|
|
fields[argp++] = TypeInt::INT; // dest offset
|
|
fields[argp++] = TypeInt::BOOL; // isURL
|
|
assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
|
|
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
|
|
|
|
// result type needed
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
|
|
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
//------------- Interpreter state access for on stack replacement
|
|
const TypeFunc* OptoRuntime::osr_end_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
// create result type
|
|
fields = TypeTuple::fields(1);
|
|
// fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
|
|
fields[TypeFunc::Parms+0] = NULL; // void
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
//-------------------------------------------------------------------------------------
|
|
// register policy
|
|
|
|
bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
|
|
assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
|
|
switch (register_save_policy[reg]) {
|
|
case 'C': return false; //SOC
|
|
case 'E': return true ; //SOE
|
|
case 'N': return false; //NS
|
|
case 'A': return false; //AS
|
|
}
|
|
ShouldNotReachHere();
|
|
return false;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------
|
|
// Exceptions
|
|
//
|
|
|
|
static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
|
|
|
|
// The method is an entry that is always called by a C++ method not
|
|
// directly from compiled code. Compiled code will call the C++ method following.
|
|
// We can't allow async exception to be installed during exception processing.
|
|
JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
|
|
// Do not confuse exception_oop with pending_exception. The exception_oop
|
|
// is only used to pass arguments into the method. Not for general
|
|
// exception handling. DO NOT CHANGE IT to use pending_exception, since
|
|
// the runtime stubs checks this on exit.
|
|
assert(thread->exception_oop() != NULL, "exception oop is found");
|
|
address handler_address = NULL;
|
|
|
|
Handle exception(thread, thread->exception_oop());
|
|
address pc = thread->exception_pc();
|
|
|
|
// Clear out the exception oop and pc since looking up an
|
|
// exception handler can cause class loading, which might throw an
|
|
// exception and those fields are expected to be clear during
|
|
// normal bytecode execution.
|
|
thread->clear_exception_oop_and_pc();
|
|
|
|
LogTarget(Info, exceptions) lt;
|
|
if (lt.is_enabled()) {
|
|
ResourceMark rm;
|
|
LogStream ls(lt);
|
|
trace_exception(&ls, exception(), pc, "");
|
|
}
|
|
|
|
// for AbortVMOnException flag
|
|
Exceptions::debug_check_abort(exception);
|
|
|
|
#ifdef ASSERT
|
|
if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
|
|
// should throw an exception here
|
|
ShouldNotReachHere();
|
|
}
|
|
#endif
|
|
|
|
// new exception handling: this method is entered only from adapters
|
|
// exceptions from compiled java methods are handled in compiled code
|
|
// using rethrow node
|
|
|
|
nm = CodeCache::find_nmethod(pc);
|
|
assert(nm != NULL, "No NMethod found");
|
|
if (nm->is_native_method()) {
|
|
fatal("Native method should not have path to exception handling");
|
|
} else {
|
|
// we are switching to old paradigm: search for exception handler in caller_frame
|
|
// instead in exception handler of caller_frame.sender()
|
|
|
|
if (JvmtiExport::can_post_on_exceptions()) {
|
|
// "Full-speed catching" is not necessary here,
|
|
// since we're notifying the VM on every catch.
|
|
// Force deoptimization and the rest of the lookup
|
|
// will be fine.
|
|
deoptimize_caller_frame(thread);
|
|
}
|
|
|
|
// Check the stack guard pages. If enabled, look for handler in this frame;
|
|
// otherwise, forcibly unwind the frame.
|
|
//
|
|
// 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
|
|
bool force_unwind = !thread->stack_overflow_state()->reguard_stack();
|
|
bool deopting = false;
|
|
if (nm->is_deopt_pc(pc)) {
|
|
deopting = true;
|
|
RegisterMap map(thread, false);
|
|
frame deoptee = thread->last_frame().sender(&map);
|
|
assert(deoptee.is_deoptimized_frame(), "must be deopted");
|
|
// Adjust the pc back to the original throwing pc
|
|
pc = deoptee.pc();
|
|
}
|
|
|
|
// If we are forcing an unwind because of stack overflow then deopt is
|
|
// irrelevant since we are throwing the frame away anyway.
|
|
|
|
if (deopting && !force_unwind) {
|
|
handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
|
|
} else {
|
|
|
|
handler_address =
|
|
force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
|
|
|
|
if (handler_address == NULL) {
|
|
bool recursive_exception = false;
|
|
handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
|
|
assert (handler_address != NULL, "must have compiled handler");
|
|
// Update the exception cache only when the unwind was not forced
|
|
// and there didn't happen another exception during the computation of the
|
|
// compiled exception handler. Checking for exception oop equality is not
|
|
// sufficient because some exceptions are pre-allocated and reused.
|
|
if (!force_unwind && !recursive_exception) {
|
|
nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
|
|
}
|
|
} else {
|
|
#ifdef ASSERT
|
|
bool recursive_exception = false;
|
|
address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
|
|
vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
|
|
p2i(handler_address), p2i(computed_address));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
thread->set_exception_pc(pc);
|
|
thread->set_exception_handler_pc(handler_address);
|
|
|
|
// Check if the exception PC is a MethodHandle call site.
|
|
thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
|
|
}
|
|
|
|
// Restore correct return pc. Was saved above.
|
|
thread->set_exception_oop(exception());
|
|
return handler_address;
|
|
|
|
JRT_END
|
|
|
|
// We are entering here from exception_blob
|
|
// If there is a compiled exception handler in this method, we will continue there;
|
|
// otherwise we will unwind the stack and continue at the caller of top frame method
|
|
// Note we enter without the usual JRT wrapper. We will call a helper routine that
|
|
// will do the normal VM entry. We do it this way so that we can see if the nmethod
|
|
// we looked up the handler for has been deoptimized in the meantime. If it has been
|
|
// we must not use the handler and instead return the deopt blob.
|
|
address OptoRuntime::handle_exception_C(JavaThread* thread) {
|
|
//
|
|
// We are in Java not VM and in debug mode we have a NoHandleMark
|
|
//
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_find_handler_ctr++; // find exception handler
|
|
#endif
|
|
debug_only(NoHandleMark __hm;)
|
|
nmethod* nm = NULL;
|
|
address handler_address = NULL;
|
|
{
|
|
// Enter the VM
|
|
|
|
ResetNoHandleMark rnhm;
|
|
handler_address = handle_exception_C_helper(thread, nm);
|
|
}
|
|
|
|
// Back in java: Use no oops, DON'T safepoint
|
|
|
|
// Now check to see if the handler we are returning is in a now
|
|
// deoptimized frame
|
|
|
|
if (nm != NULL) {
|
|
RegisterMap map(thread, false);
|
|
frame caller = thread->last_frame().sender(&map);
|
|
#ifdef ASSERT
|
|
assert(caller.is_compiled_frame(), "must be");
|
|
#endif // ASSERT
|
|
if (caller.is_deoptimized_frame()) {
|
|
handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
|
|
}
|
|
}
|
|
return handler_address;
|
|
}
|
|
|
|
//------------------------------rethrow----------------------------------------
|
|
// We get here after compiled code has executed a 'RethrowNode'. The callee
|
|
// is either throwing or rethrowing an exception. The callee-save registers
|
|
// have been restored, synchronized objects have been unlocked and the callee
|
|
// stack frame has been removed. The return address was passed in.
|
|
// Exception oop is passed as the 1st argument. This routine is then called
|
|
// from the stub. On exit, we know where to jump in the caller's code.
|
|
// After this C code exits, the stub will pop his frame and end in a jump
|
|
// (instead of a return). We enter the caller's default handler.
|
|
//
|
|
// This must be JRT_LEAF:
|
|
// - caller will not change its state as we cannot block on exit,
|
|
// therefore raw_exception_handler_for_return_address is all it takes
|
|
// to handle deoptimized blobs
|
|
//
|
|
// However, there needs to be a safepoint check in the middle! So compiled
|
|
// safepoints are completely watertight.
|
|
//
|
|
// Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
|
|
//
|
|
// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
|
|
//
|
|
address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
|
|
// The frame we rethrow the exception to might not have been processed by the GC yet.
|
|
// The stack watermark barrier takes care of detecting that and ensuring the frame
|
|
// has updated oops.
|
|
StackWatermarkSet::after_unwind(thread);
|
|
|
|
#ifndef PRODUCT
|
|
SharedRuntime::_rethrow_ctr++; // count rethrows
|
|
#endif
|
|
assert (exception != NULL, "should have thrown a NULLPointerException");
|
|
#ifdef ASSERT
|
|
if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
|
|
// should throw an exception here
|
|
ShouldNotReachHere();
|
|
}
|
|
#endif
|
|
|
|
thread->set_vm_result(exception);
|
|
// Frame not compiled (handles deoptimization blob)
|
|
return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
|
|
}
|
|
|
|
|
|
const TypeFunc *OptoRuntime::rethrow_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
|
|
|
|
return TypeFunc::make(domain, range);
|
|
}
|
|
|
|
|
|
void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
|
|
// Deoptimize the caller before continuing, as the compiled
|
|
// exception handler table may not be valid.
|
|
if (!StressCompiledExceptionHandlers && doit) {
|
|
deoptimize_caller_frame(thread);
|
|
}
|
|
}
|
|
|
|
void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
|
|
// Called from within the owner thread, so no need for safepoint
|
|
RegisterMap reg_map(thread);
|
|
frame stub_frame = thread->last_frame();
|
|
assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
|
|
frame caller_frame = stub_frame.sender(®_map);
|
|
|
|
// Deoptimize the caller frame.
|
|
Deoptimization::deoptimize_frame(thread, caller_frame.id());
|
|
}
|
|
|
|
|
|
bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
|
|
// Called from within the owner thread, so no need for safepoint
|
|
RegisterMap reg_map(thread);
|
|
frame stub_frame = thread->last_frame();
|
|
assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
|
|
frame caller_frame = stub_frame.sender(®_map);
|
|
return caller_frame.is_deoptimized_frame();
|
|
}
|
|
|
|
|
|
const TypeFunc *OptoRuntime::register_finalizer_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(1);
|
|
fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
|
|
// // The JavaThread* is passed to each routine as the last argument
|
|
// fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
|
|
|
|
return TypeFunc::make(domain,range);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Dtrace support. entry and exit probes have the same signature
|
|
const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
|
|
fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
|
|
|
|
return TypeFunc::make(domain,range);
|
|
}
|
|
|
|
const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
|
|
// create input type (domain)
|
|
const Type **fields = TypeTuple::fields(2);
|
|
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
|
|
fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
|
|
|
|
const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
|
|
|
|
// create result type (range)
|
|
fields = TypeTuple::fields(0);
|
|
|
|
const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
|
|
|
|
return TypeFunc::make(domain,range);
|
|
}
|
|
|
|
|
|
JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
|
|
assert(oopDesc::is_oop(obj), "must be a valid oop");
|
|
assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
|
|
InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
|
|
JRT_END
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
NamedCounter * volatile OptoRuntime::_named_counters = NULL;
|
|
|
|
//
|
|
// dump the collected NamedCounters.
|
|
//
|
|
void OptoRuntime::print_named_counters() {
|
|
int total_lock_count = 0;
|
|
int eliminated_lock_count = 0;
|
|
|
|
NamedCounter* c = _named_counters;
|
|
while (c) {
|
|
if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
|
|
int count = c->count();
|
|
if (count > 0) {
|
|
bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
|
|
if (Verbose) {
|
|
tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
|
|
}
|
|
total_lock_count += count;
|
|
if (eliminated) {
|
|
eliminated_lock_count += count;
|
|
}
|
|
}
|
|
} else if (c->tag() == NamedCounter::BiasedLockingCounter) {
|
|
BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
|
|
if (blc->nonzero()) {
|
|
tty->print_cr("%s", c->name());
|
|
blc->print_on(tty);
|
|
}
|
|
#if INCLUDE_RTM_OPT
|
|
} else if (c->tag() == NamedCounter::RTMLockingCounter) {
|
|
RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
|
|
if (rlc->nonzero()) {
|
|
tty->print_cr("%s", c->name());
|
|
rlc->print_on(tty);
|
|
}
|
|
#endif
|
|
}
|
|
c = c->next();
|
|
}
|
|
if (total_lock_count > 0) {
|
|
tty->print_cr("dynamic locks: %d", total_lock_count);
|
|
if (eliminated_lock_count) {
|
|
tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
|
|
(int)(eliminated_lock_count * 100.0 / total_lock_count));
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Allocate a new NamedCounter. The JVMState is used to generate the
|
|
// name which consists of method@line for the inlining tree.
|
|
//
|
|
|
|
NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
|
|
int max_depth = youngest_jvms->depth();
|
|
|
|
// Visit scopes from youngest to oldest.
|
|
bool first = true;
|
|
stringStream st;
|
|
for (int depth = max_depth; depth >= 1; depth--) {
|
|
JVMState* jvms = youngest_jvms->of_depth(depth);
|
|
ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
|
|
if (!first) {
|
|
st.print(" ");
|
|
} else {
|
|
first = false;
|
|
}
|
|
int bci = jvms->bci();
|
|
if (bci < 0) bci = 0;
|
|
if (m != NULL) {
|
|
st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
|
|
} else {
|
|
st.print("no method");
|
|
}
|
|
st.print("@%d", bci);
|
|
// To print linenumbers instead of bci use: m->line_number_from_bci(bci)
|
|
}
|
|
NamedCounter* c;
|
|
if (tag == NamedCounter::BiasedLockingCounter) {
|
|
c = new BiasedLockingNamedCounter(st.as_string());
|
|
} else if (tag == NamedCounter::RTMLockingCounter) {
|
|
c = new RTMLockingNamedCounter(st.as_string());
|
|
} else {
|
|
c = new NamedCounter(st.as_string(), tag);
|
|
}
|
|
|
|
// atomically add the new counter to the head of the list. We only
|
|
// add counters so this is safe.
|
|
NamedCounter* head;
|
|
do {
|
|
c->set_next(NULL);
|
|
head = _named_counters;
|
|
c->set_next(head);
|
|
} while (Atomic::cmpxchg(&_named_counters, head, c) != head);
|
|
return c;
|
|
}
|
|
|
|
int trace_exception_counter = 0;
|
|
static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
|
|
trace_exception_counter++;
|
|
stringStream tempst;
|
|
|
|
tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
|
|
exception_oop->print_value_on(&tempst);
|
|
tempst.print(" in ");
|
|
CodeBlob* blob = CodeCache::find_blob(exception_pc);
|
|
if (blob->is_compiled()) {
|
|
CompiledMethod* cm = blob->as_compiled_method_or_null();
|
|
cm->method()->print_value_on(&tempst);
|
|
} else if (blob->is_runtime_stub()) {
|
|
tempst.print("<runtime-stub>");
|
|
} else {
|
|
tempst.print("<unknown>");
|
|
}
|
|
tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
|
|
tempst.print("]");
|
|
|
|
st->print_raw_cr(tempst.as_string());
|
|
}
|