jdk-24/test/hotspot/jtreg/gc/survivorAlignment/SurvivorAlignmentTestMain.java
Leo Korinth 1fc67ab002 8232365: Implementation for JEP 363: Remove the Concurrent Mark Sweep (CMS) Garbage Collector
Reviewed-by: kbarrett, tschatzl, erikj, coleenp, dholmes
2019-11-13 11:37:29 +01:00

396 lines
16 KiB
Java

/*
* Copyright (c) 2014, 2019, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package gc.survivorAlignment;
import java.lang.management.ManagementFactory;
import java.lang.management.MemoryPoolMXBean;
import java.util.Objects;
import java.util.Optional;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import jdk.test.lib.Asserts;
import com.sun.management.ThreadMXBean;
import sun.hotspot.WhiteBox;
import jdk.internal.misc.Unsafe;
/**
* Main class for tests on {@code SurvivorAlignmentInBytes} option.
*
* Typical usage is to obtain instance using fromArgs method, allocate objects
* and verify that actual memory usage in tested heap space is close to
* expected.
*/
public class SurvivorAlignmentTestMain {
enum HeapSpace {
EDEN,
SURVIVOR,
TENURED
}
public static final WhiteBox WHITE_BOX = WhiteBox.getWhiteBox();
public static final long MAX_TENURING_THRESHOLD = Optional.ofNullable(
SurvivorAlignmentTestMain.WHITE_BOX.getIntxVMFlag(
"MaxTenuringThreshold")).orElse(15L);
/**
* Regexp used to parse memory size params, like 2G, 34m or 15k.
*/
private static final Pattern SIZE_REGEX
= Pattern.compile("(?<size>[0-9]+)(?<multiplier>[GMKgmk])?");
// Names of different heap spaces.
private static final String DEF_NEW_EDEN = "Eden Space";
private static final String DEF_NEW_SURVIVOR = "Survivor Space";
private static final String PAR_NEW_EDEN = "Par Eden Space";
private static final String PAR_NEW_SURVIVOR = "Par Survivor Space";
private static final String PS_EDEN = "PS Eden Space";
private static final String PS_SURVIVOR = "PS Survivor Space";
private static final String G1_EDEN = "G1 Eden Space";
private static final String G1_SURVIVOR = "G1 Survivor Space";
private static final String SERIAL_TENURED = "Tenured Gen";
private static final String PS_TENURED = "PS Old Gen";
private static final String G1_TENURED = "G1 Old Gen";
private static final long G1_HEAP_REGION_SIZE = Optional.ofNullable(
SurvivorAlignmentTestMain.WHITE_BOX.getUintxVMFlag(
"G1HeapRegionSize")).orElse(-1L);
private static final AlignmentHelper EDEN_SPACE_HELPER;
private static final AlignmentHelper SURVIVOR_SPACE_HELPER;
private static final AlignmentHelper TENURED_SPACE_HELPER;
/**
* Amount of memory that should be filled during a test run.
*/
private final long memoryToFill;
/**
* The size of an objects that will be allocated during a test run.
*/
private final long objectSize;
/**
* Amount of memory that will be actually occupied by an object in eden
* space.
*/
private final long actualObjectSize;
/**
* Storage for allocated objects.
*/
private final Object[] garbage;
/**
* Heap space whose memory usage is a subject of assertions during the test
* run.
*/
private final HeapSpace testedSpace;
private long[] baselinedThreadMemoryUsage = null;
private long[] threadIds = null;
/**
* Initialize {@code EDEN_SPACE_HELPER}, {@code SURVIVOR_SPACE_HELPER} and
* {@code TENURED_SPACE_HELPER} to represent heap spaces in use.
*
* Note that regardless to GC object's alignment in survivor space is
* expected to be equal to {@code SurvivorAlignmentInBytes} value and
* alignment in other spaces is expected to be equal to
* {@code ObjectAlignmentInBytes} value.
*
* For G1 GC MXBeans could report memory usage only with region size
* precision (if an object allocated in some G1 heap region, then all region
* will claimed as used), so for G1's spaces precision is equal to
* {@code G1HeapRegionSize} value.
*/
static {
AlignmentHelper edenHelper = null;
AlignmentHelper survivorHelper = null;
AlignmentHelper tenuredHelper = null;
for (MemoryPoolMXBean pool : ManagementFactory.getMemoryPoolMXBeans()) {
switch (pool.getName()) {
case SurvivorAlignmentTestMain.DEF_NEW_EDEN:
case SurvivorAlignmentTestMain.PAR_NEW_EDEN:
case SurvivorAlignmentTestMain.PS_EDEN:
Asserts.assertNull(edenHelper,
"Only one bean for eden space is expected.");
edenHelper = new AlignmentHelper(
AlignmentHelper.OBJECT_ALIGNMENT_IN_BYTES,
AlignmentHelper.OBJECT_ALIGNMENT_IN_BYTES,
AlignmentHelper.MIN_OBJECT_SIZE, pool);
break;
case SurvivorAlignmentTestMain.G1_EDEN:
Asserts.assertNull(edenHelper,
"Only one bean for eden space is expected.");
edenHelper = new AlignmentHelper(
SurvivorAlignmentTestMain.G1_HEAP_REGION_SIZE,
AlignmentHelper.OBJECT_ALIGNMENT_IN_BYTES,
AlignmentHelper.MIN_OBJECT_SIZE, pool);
break;
case SurvivorAlignmentTestMain.DEF_NEW_SURVIVOR:
case SurvivorAlignmentTestMain.PAR_NEW_SURVIVOR:
case SurvivorAlignmentTestMain.PS_SURVIVOR:
Asserts.assertNull(survivorHelper,
"Only one bean for survivor space is expected.");
survivorHelper = new AlignmentHelper(
AlignmentHelper.OBJECT_ALIGNMENT_IN_BYTES,
AlignmentHelper.SURVIVOR_ALIGNMENT_IN_BYTES,
AlignmentHelper.MIN_OBJECT_SIZE, pool);
break;
case SurvivorAlignmentTestMain.G1_SURVIVOR:
Asserts.assertNull(survivorHelper,
"Only one bean for survivor space is expected.");
survivorHelper = new AlignmentHelper(
SurvivorAlignmentTestMain.G1_HEAP_REGION_SIZE,
AlignmentHelper.SURVIVOR_ALIGNMENT_IN_BYTES,
AlignmentHelper.MIN_OBJECT_SIZE, pool);
break;
case SurvivorAlignmentTestMain.SERIAL_TENURED:
case SurvivorAlignmentTestMain.PS_TENURED:
case SurvivorAlignmentTestMain.G1_TENURED:
Asserts.assertNull(tenuredHelper,
"Only one bean for tenured space is expected.");
tenuredHelper = new AlignmentHelper(
AlignmentHelper.OBJECT_ALIGNMENT_IN_BYTES,
AlignmentHelper.OBJECT_ALIGNMENT_IN_BYTES,
AlignmentHelper.MIN_OBJECT_SIZE, pool);
break;
}
}
EDEN_SPACE_HELPER = Objects.requireNonNull(edenHelper,
"AlignmentHelper for eden space should be initialized.");
SURVIVOR_SPACE_HELPER = Objects.requireNonNull(survivorHelper,
"AlignmentHelper for survivor space should be initialized.");
TENURED_SPACE_HELPER = Objects.requireNonNull(tenuredHelper,
"AlignmentHelper for tenured space should be initialized.");
}
/**
* Returns an SurvivorAlignmentTestMain instance constructed using CLI
* options.
*
* Following options are expected:
* <ul>
* <li>memoryToFill</li>
* <li>objectSize</li>
* </ul>
*
* Both argument may contain multiplier suffix k, m or g.
*/
public static SurvivorAlignmentTestMain fromArgs(String[] args) {
Asserts.assertEQ(args.length, 3, "Expected three arguments: "
+ "memory size, object size and tested heap space name.");
long memoryToFill = parseSize(args[0]);
long objectSize = Math.max(parseSize(args[1]),
AlignmentHelper.MIN_ARRAY_SIZE);
HeapSpace testedSpace = HeapSpace.valueOf(args[2]);
return new SurvivorAlignmentTestMain(memoryToFill, objectSize,
testedSpace);
}
/**
* Returns a value parsed from a string with format
* &lt;integer&gt;&lt;multiplier&gt;.
*/
private static long parseSize(String sizeString) {
Matcher matcher = SIZE_REGEX.matcher(sizeString);
Asserts.assertTrue(matcher.matches(),
"sizeString should have following format \"[0-9]+([MBK])?\"");
long size = Long.valueOf(matcher.group("size"));
if (matcher.group("multiplier") != null) {
long K = 1024L;
// fall through multipliers
switch (matcher.group("multiplier").toLowerCase()) {
case "g":
size *= K;
case "m":
size *= K;
case "k":
size *= K;
}
}
return size;
}
private SurvivorAlignmentTestMain(long memoryToFill, long objectSize,
HeapSpace testedSpace) {
this.objectSize = objectSize;
this.memoryToFill = memoryToFill;
this.testedSpace = testedSpace;
AlignmentHelper helper = SurvivorAlignmentTestMain.EDEN_SPACE_HELPER;
this.actualObjectSize = helper.getObjectSizeInThisSpace(
this.objectSize);
int arrayLength = helper.getObjectsCount(memoryToFill, this.objectSize);
garbage = new Object[arrayLength];
}
/**
* Allocate byte arrays to fill {@code memoryToFill} memory.
*/
public void allocate() {
int byteArrayLength = Math.max((int) (objectSize
- Unsafe.ARRAY_BYTE_BASE_OFFSET), 0);
for (int i = 0; i < garbage.length; i++) {
garbage[i] = new byte[byteArrayLength];
}
}
/**
* Release memory occupied after {@code allocate} call.
*/
public void release() {
for (int i = 0; i < garbage.length; i++) {
garbage[i] = null;
}
}
/**
* Returns expected amount of memory occupied in a {@code heapSpace} by
* objects referenced from {@code garbage} array.
*/
public long getExpectedMemoryUsage() {
AlignmentHelper alignmentHelper = getAlignmentHelper(testedSpace);
return alignmentHelper.getExpectedMemoryUsage(objectSize,
garbage.length);
}
/**
* Verifies that memory usage in a {@code heapSpace} deviates from
* {@code expectedUsage} for no more than {@code MAX_RELATIVE_DEVIATION}.
*/
public void verifyMemoryUsage(long expectedUsage) {
AlignmentHelper alignmentHelper = getAlignmentHelper(testedSpace);
long actualMemoryUsage = alignmentHelper.getActualMemoryUsage();
boolean otherThreadsAllocatedMemory = areOtherThreadsAllocatedMemory();
long memoryUsageDiff = Math.abs(actualMemoryUsage - expectedUsage);
long maxAllowedUsageDiff
= alignmentHelper.getAllowedMemoryUsageDeviation(expectedUsage);
System.out.println("Verifying memory usage in space: " + testedSpace);
System.out.println("Allocated objects count: " + garbage.length);
System.out.println("Desired object size: " + objectSize);
System.out.println("Actual object size: " + actualObjectSize);
System.out.println("Expected object size in space: "
+ alignmentHelper.getObjectSizeInThisSpace(objectSize));
System.out.println("Expected memory usage: " + expectedUsage);
System.out.println("Actual memory usage: " + actualMemoryUsage);
System.out.println("Memory usage diff: " + memoryUsageDiff);
System.out.println("Max allowed usage diff: " + maxAllowedUsageDiff);
if (memoryUsageDiff > maxAllowedUsageDiff
&& otherThreadsAllocatedMemory) {
System.out.println("Memory usage diff is incorrect, but it seems "
+ "like someone else allocated objects");
return;
}
Asserts.assertLTE(memoryUsageDiff, maxAllowedUsageDiff,
"Actual memory usage should not deviate from expected for " +
"more then " + maxAllowedUsageDiff);
}
/**
* Baselines amount of memory allocated by each thread.
*/
public void baselineMemoryAllocation() {
ThreadMXBean bean = (ThreadMXBean) ManagementFactory.getThreadMXBean();
threadIds = bean.getAllThreadIds();
baselinedThreadMemoryUsage = bean.getThreadAllocatedBytes(threadIds);
}
/**
* Checks if threads other then the current thread were allocating objects
* after baselinedThreadMemoryUsage call.
*
* If baselinedThreadMemoryUsage was not called, then this method will return
* {@code false}.
*/
public boolean areOtherThreadsAllocatedMemory() {
if (baselinedThreadMemoryUsage == null) {
return false;
}
ThreadMXBean bean = (ThreadMXBean) ManagementFactory.getThreadMXBean();
long currentMemoryAllocation[]
= bean.getThreadAllocatedBytes(threadIds);
boolean otherThreadsAllocatedMemory = false;
System.out.println("Verifying amount of memory allocated by threads:");
for (int i = 0; i < threadIds.length; i++) {
System.out.format("Thread %d%nbaseline allocation: %d"
+ "%ncurrent allocation:%d%n", threadIds[i],
baselinedThreadMemoryUsage[i], currentMemoryAllocation[i]);
System.out.println(bean.getThreadInfo(threadIds[i]));
long bytesAllocated = Math.abs(currentMemoryAllocation[i]
- baselinedThreadMemoryUsage[i]);
if (bytesAllocated > 0
&& threadIds[i] != Thread.currentThread().getId()) {
otherThreadsAllocatedMemory = true;
}
}
return otherThreadsAllocatedMemory;
}
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
builder.append(String.format("SurvivorAlignmentTestMain info:%n"));
builder.append(String.format("Desired object size: %d%n", objectSize));
builder.append(String.format("Memory to fill: %d%n", memoryToFill));
builder.append(String.format("Objects to be allocated: %d%n",
garbage.length));
builder.append(String.format("Alignment helpers to be used: %n"));
for (HeapSpace heapSpace: HeapSpace.values()) {
builder.append(String.format("For space %s:%n%s%n", heapSpace,
getAlignmentHelper(heapSpace)));
}
return builder.toString();
}
/**
* Returns {@code AlignmentHelper} for a space {@code heapSpace}.
*/
public static AlignmentHelper getAlignmentHelper(HeapSpace heapSpace) {
switch (heapSpace) {
case EDEN:
return SurvivorAlignmentTestMain.EDEN_SPACE_HELPER;
case SURVIVOR:
return SurvivorAlignmentTestMain.SURVIVOR_SPACE_HELPER;
case TENURED:
return SurvivorAlignmentTestMain.TENURED_SPACE_HELPER;
default:
throw new Error("Unexpected heap space: " + heapSpace);
}
}
}