b085ebe7b7
Change the type of symbolic constant badAddressVal and introduce specific casts to fix multiple type cast conversion compilation errors. Reviewed-by: coleenp, kbarrett
2154 lines
75 KiB
C++
2154 lines
75 KiB
C++
/*
|
|
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "libadt/vectset.hpp"
|
|
#include "memory/allocation.inline.hpp"
|
|
#include "memory/resourceArea.hpp"
|
|
#include "opto/block.hpp"
|
|
#include "opto/c2compiler.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/machnode.hpp"
|
|
#include "opto/opcodes.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "opto/chaitin.hpp"
|
|
#include "runtime/deoptimization.hpp"
|
|
|
|
// Portions of code courtesy of Clifford Click
|
|
|
|
// Optimization - Graph Style
|
|
|
|
// To avoid float value underflow
|
|
#define MIN_BLOCK_FREQUENCY 1.e-35f
|
|
|
|
//----------------------------schedule_node_into_block-------------------------
|
|
// Insert node n into block b. Look for projections of n and make sure they
|
|
// are in b also.
|
|
void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
|
|
// Set basic block of n, Add n to b,
|
|
map_node_to_block(n, b);
|
|
b->add_inst(n);
|
|
|
|
// After Matching, nearly any old Node may have projections trailing it.
|
|
// These are usually machine-dependent flags. In any case, they might
|
|
// float to another block below this one. Move them up.
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
Node* use = n->fast_out(i);
|
|
if (use->is_Proj()) {
|
|
Block* buse = get_block_for_node(use);
|
|
if (buse != b) { // In wrong block?
|
|
if (buse != NULL) {
|
|
buse->find_remove(use); // Remove from wrong block
|
|
}
|
|
map_node_to_block(use, b);
|
|
b->add_inst(use);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//----------------------------replace_block_proj_ctrl-------------------------
|
|
// Nodes that have is_block_proj() nodes as their control need to use
|
|
// the appropriate Region for their actual block as their control since
|
|
// the projection will be in a predecessor block.
|
|
void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
|
|
const Node *in0 = n->in(0);
|
|
assert(in0 != NULL, "Only control-dependent");
|
|
const Node *p = in0->is_block_proj();
|
|
if (p != NULL && p != n) { // Control from a block projection?
|
|
assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
|
|
// Find trailing Region
|
|
Block *pb = get_block_for_node(in0); // Block-projection already has basic block
|
|
uint j = 0;
|
|
if (pb->_num_succs != 1) { // More then 1 successor?
|
|
// Search for successor
|
|
uint max = pb->number_of_nodes();
|
|
assert( max > 1, "" );
|
|
uint start = max - pb->_num_succs;
|
|
// Find which output path belongs to projection
|
|
for (j = start; j < max; j++) {
|
|
if( pb->get_node(j) == in0 )
|
|
break;
|
|
}
|
|
assert( j < max, "must find" );
|
|
// Change control to match head of successor basic block
|
|
j -= start;
|
|
}
|
|
n->set_req(0, pb->_succs[j]->head());
|
|
}
|
|
}
|
|
|
|
bool PhaseCFG::is_dominator(Node* dom_node, Node* node) {
|
|
if (dom_node == node) {
|
|
return true;
|
|
}
|
|
Block* d = get_block_for_node(dom_node);
|
|
Block* n = get_block_for_node(node);
|
|
if (d == n) {
|
|
if (dom_node->is_block_start()) {
|
|
return true;
|
|
}
|
|
if (node->is_block_start()) {
|
|
return false;
|
|
}
|
|
if (dom_node->is_block_proj()) {
|
|
return false;
|
|
}
|
|
if (node->is_block_proj()) {
|
|
return true;
|
|
}
|
|
#ifdef ASSERT
|
|
node->dump();
|
|
dom_node->dump();
|
|
#endif
|
|
fatal("unhandled");
|
|
return false;
|
|
}
|
|
return d->dom_lca(n) == d;
|
|
}
|
|
|
|
//------------------------------schedule_pinned_nodes--------------------------
|
|
// Set the basic block for Nodes pinned into blocks
|
|
void PhaseCFG::schedule_pinned_nodes(VectorSet &visited) {
|
|
// Allocate node stack of size C->live_nodes()+8 to avoid frequent realloc
|
|
GrowableArray <Node *> spstack(C->live_nodes() + 8);
|
|
spstack.push(_root);
|
|
while (spstack.is_nonempty()) {
|
|
Node* node = spstack.pop();
|
|
if (!visited.test_set(node->_idx)) { // Test node and flag it as visited
|
|
if (node->pinned() && !has_block(node)) { // Pinned? Nail it down!
|
|
assert(node->in(0), "pinned Node must have Control");
|
|
// Before setting block replace block_proj control edge
|
|
replace_block_proj_ctrl(node);
|
|
Node* input = node->in(0);
|
|
while (!input->is_block_start()) {
|
|
input = input->in(0);
|
|
}
|
|
Block* block = get_block_for_node(input); // Basic block of controlling input
|
|
schedule_node_into_block(node, block);
|
|
}
|
|
|
|
// If the node has precedence edges (added when CastPP nodes are
|
|
// removed in final_graph_reshaping), fix the control of the
|
|
// node to cover the precedence edges and remove the
|
|
// dependencies.
|
|
Node* n = NULL;
|
|
for (uint i = node->len()-1; i >= node->req(); i--) {
|
|
Node* m = node->in(i);
|
|
if (m == NULL) continue;
|
|
// Skip the precedence edge if the test that guarded a CastPP:
|
|
// - was optimized out during escape analysis
|
|
// (OptimizePtrCompare): the CastPP's control isn't an end of
|
|
// block.
|
|
// - is moved in the branch of a dominating If: the control of
|
|
// the CastPP is then a Region.
|
|
if (m->is_block_proj() || m->is_block_start()) {
|
|
node->rm_prec(i);
|
|
if (n == NULL) {
|
|
n = m;
|
|
} else {
|
|
assert(is_dominator(n, m) || is_dominator(m, n), "one must dominate the other");
|
|
n = is_dominator(n, m) ? m : n;
|
|
}
|
|
}
|
|
}
|
|
if (n != NULL) {
|
|
assert(node->in(0), "control should have been set");
|
|
assert(is_dominator(n, node->in(0)) || is_dominator(node->in(0), n), "one must dominate the other");
|
|
if (!is_dominator(n, node->in(0))) {
|
|
node->set_req(0, n);
|
|
}
|
|
}
|
|
|
|
// process all inputs that are non NULL
|
|
for (int i = node->req() - 1; i >= 0; --i) {
|
|
if (node->in(i) != NULL) {
|
|
spstack.push(node->in(i));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
// Assert that new input b2 is dominated by all previous inputs.
|
|
// Check this by by seeing that it is dominated by b1, the deepest
|
|
// input observed until b2.
|
|
static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
|
|
if (b1 == NULL) return;
|
|
assert(b1->_dom_depth < b2->_dom_depth, "sanity");
|
|
Block* tmp = b2;
|
|
while (tmp != b1 && tmp != NULL) {
|
|
tmp = tmp->_idom;
|
|
}
|
|
if (tmp != b1) {
|
|
// Detected an unschedulable graph. Print some nice stuff and die.
|
|
tty->print_cr("!!! Unschedulable graph !!!");
|
|
for (uint j=0; j<n->len(); j++) { // For all inputs
|
|
Node* inn = n->in(j); // Get input
|
|
if (inn == NULL) continue; // Ignore NULL, missing inputs
|
|
Block* inb = cfg->get_block_for_node(inn);
|
|
tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
|
|
inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
|
|
inn->dump();
|
|
}
|
|
tty->print("Failing node: ");
|
|
n->dump();
|
|
assert(false, "unscheduable graph");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
|
|
// Find the last input dominated by all other inputs.
|
|
Block* deepb = NULL; // Deepest block so far
|
|
int deepb_dom_depth = 0;
|
|
for (uint k = 0; k < n->len(); k++) { // For all inputs
|
|
Node* inn = n->in(k); // Get input
|
|
if (inn == NULL) continue; // Ignore NULL, missing inputs
|
|
Block* inb = cfg->get_block_for_node(inn);
|
|
assert(inb != NULL, "must already have scheduled this input");
|
|
if (deepb_dom_depth < (int) inb->_dom_depth) {
|
|
// The new inb must be dominated by the previous deepb.
|
|
// The various inputs must be linearly ordered in the dom
|
|
// tree, or else there will not be a unique deepest block.
|
|
DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
|
|
deepb = inb; // Save deepest block
|
|
deepb_dom_depth = deepb->_dom_depth;
|
|
}
|
|
}
|
|
assert(deepb != NULL, "must be at least one input to n");
|
|
return deepb;
|
|
}
|
|
|
|
|
|
//------------------------------schedule_early---------------------------------
|
|
// Find the earliest Block any instruction can be placed in. Some instructions
|
|
// are pinned into Blocks. Unpinned instructions can appear in last block in
|
|
// which all their inputs occur.
|
|
bool PhaseCFG::schedule_early(VectorSet &visited, Node_Stack &roots) {
|
|
// Allocate stack with enough space to avoid frequent realloc
|
|
Node_Stack nstack(roots.size() + 8);
|
|
// _root will be processed among C->top() inputs
|
|
roots.push(C->top(), 0);
|
|
visited.set(C->top()->_idx);
|
|
|
|
while (roots.size() != 0) {
|
|
// Use local variables nstack_top_n & nstack_top_i to cache values
|
|
// on stack's top.
|
|
Node* parent_node = roots.node();
|
|
uint input_index = 0;
|
|
roots.pop();
|
|
|
|
while (true) {
|
|
if (input_index == 0) {
|
|
// Fixup some control. Constants without control get attached
|
|
// to root and nodes that use is_block_proj() nodes should be attached
|
|
// to the region that starts their block.
|
|
const Node* control_input = parent_node->in(0);
|
|
if (control_input != NULL) {
|
|
replace_block_proj_ctrl(parent_node);
|
|
} else {
|
|
// Is a constant with NO inputs?
|
|
if (parent_node->req() == 1) {
|
|
parent_node->set_req(0, _root);
|
|
}
|
|
}
|
|
}
|
|
|
|
// First, visit all inputs and force them to get a block. If an
|
|
// input is already in a block we quit following inputs (to avoid
|
|
// cycles). Instead we put that Node on a worklist to be handled
|
|
// later (since IT'S inputs may not have a block yet).
|
|
|
|
// Assume all n's inputs will be processed
|
|
bool done = true;
|
|
|
|
while (input_index < parent_node->len()) {
|
|
Node* in = parent_node->in(input_index++);
|
|
if (in == NULL) {
|
|
continue;
|
|
}
|
|
|
|
int is_visited = visited.test_set(in->_idx);
|
|
if (!has_block(in)) {
|
|
if (is_visited) {
|
|
assert(false, "graph should be schedulable");
|
|
return false;
|
|
}
|
|
// Save parent node and next input's index.
|
|
nstack.push(parent_node, input_index);
|
|
// Process current input now.
|
|
parent_node = in;
|
|
input_index = 0;
|
|
// Not all n's inputs processed.
|
|
done = false;
|
|
break;
|
|
} else if (!is_visited) {
|
|
// Visit this guy later, using worklist
|
|
roots.push(in, 0);
|
|
}
|
|
}
|
|
|
|
if (done) {
|
|
// All of n's inputs have been processed, complete post-processing.
|
|
|
|
// Some instructions are pinned into a block. These include Region,
|
|
// Phi, Start, Return, and other control-dependent instructions and
|
|
// any projections which depend on them.
|
|
if (!parent_node->pinned()) {
|
|
// Set earliest legal block.
|
|
Block* earliest_block = find_deepest_input(parent_node, this);
|
|
map_node_to_block(parent_node, earliest_block);
|
|
} else {
|
|
assert(get_block_for_node(parent_node) == get_block_for_node(parent_node->in(0)), "Pinned Node should be at the same block as its control edge");
|
|
}
|
|
|
|
if (nstack.is_empty()) {
|
|
// Finished all nodes on stack.
|
|
// Process next node on the worklist 'roots'.
|
|
break;
|
|
}
|
|
// Get saved parent node and next input's index.
|
|
parent_node = nstack.node();
|
|
input_index = nstack.index();
|
|
nstack.pop();
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//------------------------------dom_lca----------------------------------------
|
|
// Find least common ancestor in dominator tree
|
|
// LCA is a current notion of LCA, to be raised above 'this'.
|
|
// As a convenient boundary condition, return 'this' if LCA is NULL.
|
|
// Find the LCA of those two nodes.
|
|
Block* Block::dom_lca(Block* LCA) {
|
|
if (LCA == NULL || LCA == this) return this;
|
|
|
|
Block* anc = this;
|
|
while (anc->_dom_depth > LCA->_dom_depth)
|
|
anc = anc->_idom; // Walk up till anc is as high as LCA
|
|
|
|
while (LCA->_dom_depth > anc->_dom_depth)
|
|
LCA = LCA->_idom; // Walk up till LCA is as high as anc
|
|
|
|
while (LCA != anc) { // Walk both up till they are the same
|
|
LCA = LCA->_idom;
|
|
anc = anc->_idom;
|
|
}
|
|
|
|
return LCA;
|
|
}
|
|
|
|
//--------------------------raise_LCA_above_use--------------------------------
|
|
// We are placing a definition, and have been given a def->use edge.
|
|
// The definition must dominate the use, so move the LCA upward in the
|
|
// dominator tree to dominate the use. If the use is a phi, adjust
|
|
// the LCA only with the phi input paths which actually use this def.
|
|
static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
|
|
Block* buse = cfg->get_block_for_node(use);
|
|
if (buse == NULL) return LCA; // Unused killing Projs have no use block
|
|
if (!use->is_Phi()) return buse->dom_lca(LCA);
|
|
uint pmax = use->req(); // Number of Phi inputs
|
|
// Why does not this loop just break after finding the matching input to
|
|
// the Phi? Well...it's like this. I do not have true def-use/use-def
|
|
// chains. Means I cannot distinguish, from the def-use direction, which
|
|
// of many use-defs lead from the same use to the same def. That is, this
|
|
// Phi might have several uses of the same def. Each use appears in a
|
|
// different predecessor block. But when I enter here, I cannot distinguish
|
|
// which use-def edge I should find the predecessor block for. So I find
|
|
// them all. Means I do a little extra work if a Phi uses the same value
|
|
// more than once.
|
|
for (uint j=1; j<pmax; j++) { // For all inputs
|
|
if (use->in(j) == def) { // Found matching input?
|
|
Block* pred = cfg->get_block_for_node(buse->pred(j));
|
|
LCA = pred->dom_lca(LCA);
|
|
}
|
|
}
|
|
return LCA;
|
|
}
|
|
|
|
//----------------------------raise_LCA_above_marks----------------------------
|
|
// Return a new LCA that dominates LCA and any of its marked predecessors.
|
|
// Search all my parents up to 'early' (exclusive), looking for predecessors
|
|
// which are marked with the given index. Return the LCA (in the dom tree)
|
|
// of all marked blocks. If there are none marked, return the original
|
|
// LCA.
|
|
static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {
|
|
Block_List worklist;
|
|
worklist.push(LCA);
|
|
while (worklist.size() > 0) {
|
|
Block* mid = worklist.pop();
|
|
if (mid == early) continue; // stop searching here
|
|
|
|
// Test and set the visited bit.
|
|
if (mid->raise_LCA_visited() == mark) continue; // already visited
|
|
|
|
// Don't process the current LCA, otherwise the search may terminate early
|
|
if (mid != LCA && mid->raise_LCA_mark() == mark) {
|
|
// Raise the LCA.
|
|
LCA = mid->dom_lca(LCA);
|
|
if (LCA == early) break; // stop searching everywhere
|
|
assert(early->dominates(LCA), "early is high enough");
|
|
// Resume searching at that point, skipping intermediate levels.
|
|
worklist.push(LCA);
|
|
if (LCA == mid)
|
|
continue; // Don't mark as visited to avoid early termination.
|
|
} else {
|
|
// Keep searching through this block's predecessors.
|
|
for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
|
|
Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
|
|
worklist.push(mid_parent);
|
|
}
|
|
}
|
|
mid->set_raise_LCA_visited(mark);
|
|
}
|
|
return LCA;
|
|
}
|
|
|
|
//--------------------------memory_early_block--------------------------------
|
|
// This is a variation of find_deepest_input, the heart of schedule_early.
|
|
// Find the "early" block for a load, if we considered only memory and
|
|
// address inputs, that is, if other data inputs were ignored.
|
|
//
|
|
// Because a subset of edges are considered, the resulting block will
|
|
// be earlier (at a shallower dom_depth) than the true schedule_early
|
|
// point of the node. We compute this earlier block as a more permissive
|
|
// site for anti-dependency insertion, but only if subsume_loads is enabled.
|
|
static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
|
|
Node* base;
|
|
Node* index;
|
|
Node* store = load->in(MemNode::Memory);
|
|
load->as_Mach()->memory_inputs(base, index);
|
|
|
|
assert(base != NodeSentinel && index != NodeSentinel,
|
|
"unexpected base/index inputs");
|
|
|
|
Node* mem_inputs[4];
|
|
int mem_inputs_length = 0;
|
|
if (base != NULL) mem_inputs[mem_inputs_length++] = base;
|
|
if (index != NULL) mem_inputs[mem_inputs_length++] = index;
|
|
if (store != NULL) mem_inputs[mem_inputs_length++] = store;
|
|
|
|
// In the comparision below, add one to account for the control input,
|
|
// which may be null, but always takes up a spot in the in array.
|
|
if (mem_inputs_length + 1 < (int) load->req()) {
|
|
// This "load" has more inputs than just the memory, base and index inputs.
|
|
// For purposes of checking anti-dependences, we need to start
|
|
// from the early block of only the address portion of the instruction,
|
|
// and ignore other blocks that may have factored into the wider
|
|
// schedule_early calculation.
|
|
if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
|
|
|
|
Block* deepb = NULL; // Deepest block so far
|
|
int deepb_dom_depth = 0;
|
|
for (int i = 0; i < mem_inputs_length; i++) {
|
|
Block* inb = cfg->get_block_for_node(mem_inputs[i]);
|
|
if (deepb_dom_depth < (int) inb->_dom_depth) {
|
|
// The new inb must be dominated by the previous deepb.
|
|
// The various inputs must be linearly ordered in the dom
|
|
// tree, or else there will not be a unique deepest block.
|
|
DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
|
|
deepb = inb; // Save deepest block
|
|
deepb_dom_depth = deepb->_dom_depth;
|
|
}
|
|
}
|
|
early = deepb;
|
|
}
|
|
|
|
return early;
|
|
}
|
|
|
|
//--------------------------insert_anti_dependences---------------------------
|
|
// A load may need to witness memory that nearby stores can overwrite.
|
|
// For each nearby store, either insert an "anti-dependence" edge
|
|
// from the load to the store, or else move LCA upward to force the
|
|
// load to (eventually) be scheduled in a block above the store.
|
|
//
|
|
// Do not add edges to stores on distinct control-flow paths;
|
|
// only add edges to stores which might interfere.
|
|
//
|
|
// Return the (updated) LCA. There will not be any possibly interfering
|
|
// store between the load's "early block" and the updated LCA.
|
|
// Any stores in the updated LCA will have new precedence edges
|
|
// back to the load. The caller is expected to schedule the load
|
|
// in the LCA, in which case the precedence edges will make LCM
|
|
// preserve anti-dependences. The caller may also hoist the load
|
|
// above the LCA, if it is not the early block.
|
|
Block* PhaseCFG::insert_anti_dependences(Block* LCA, Node* load, bool verify) {
|
|
assert(load->needs_anti_dependence_check(), "must be a load of some sort");
|
|
assert(LCA != NULL, "");
|
|
DEBUG_ONLY(Block* LCA_orig = LCA);
|
|
|
|
// Compute the alias index. Loads and stores with different alias indices
|
|
// do not need anti-dependence edges.
|
|
int load_alias_idx = C->get_alias_index(load->adr_type());
|
|
#ifdef ASSERT
|
|
if (load_alias_idx == Compile::AliasIdxBot && C->AliasLevel() > 0 &&
|
|
(PrintOpto || VerifyAliases ||
|
|
(PrintMiscellaneous && (WizardMode || Verbose)))) {
|
|
// Load nodes should not consume all of memory.
|
|
// Reporting a bottom type indicates a bug in adlc.
|
|
// If some particular type of node validly consumes all of memory,
|
|
// sharpen the preceding "if" to exclude it, so we can catch bugs here.
|
|
tty->print_cr("*** Possible Anti-Dependence Bug: Load consumes all of memory.");
|
|
load->dump(2);
|
|
if (VerifyAliases) assert(load_alias_idx != Compile::AliasIdxBot, "");
|
|
}
|
|
#endif
|
|
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrComp),
|
|
"String compare is only known 'load' that does not conflict with any stores");
|
|
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrEquals),
|
|
"String equals is a 'load' that does not conflict with any stores");
|
|
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
|
|
"String indexOf is a 'load' that does not conflict with any stores");
|
|
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOfChar),
|
|
"String indexOfChar is a 'load' that does not conflict with any stores");
|
|
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
|
|
"Arrays equals is a 'load' that does not conflict with any stores");
|
|
assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_HasNegatives),
|
|
"HasNegatives is a 'load' that does not conflict with any stores");
|
|
|
|
if (!C->alias_type(load_alias_idx)->is_rewritable()) {
|
|
// It is impossible to spoil this load by putting stores before it,
|
|
// because we know that the stores will never update the value
|
|
// which 'load' must witness.
|
|
return LCA;
|
|
}
|
|
|
|
node_idx_t load_index = load->_idx;
|
|
|
|
// Note the earliest legal placement of 'load', as determined by
|
|
// by the unique point in the dom tree where all memory effects
|
|
// and other inputs are first available. (Computed by schedule_early.)
|
|
// For normal loads, 'early' is the shallowest place (dom graph wise)
|
|
// to look for anti-deps between this load and any store.
|
|
Block* early = get_block_for_node(load);
|
|
|
|
// If we are subsuming loads, compute an "early" block that only considers
|
|
// memory or address inputs. This block may be different than the
|
|
// schedule_early block in that it could be at an even shallower depth in the
|
|
// dominator tree, and allow for a broader discovery of anti-dependences.
|
|
if (C->subsume_loads()) {
|
|
early = memory_early_block(load, early, this);
|
|
}
|
|
|
|
ResourceArea *area = Thread::current()->resource_area();
|
|
Node_List worklist_mem(area); // prior memory state to store
|
|
Node_List worklist_store(area); // possible-def to explore
|
|
Node_List worklist_visited(area); // visited mergemem nodes
|
|
Node_List non_early_stores(area); // all relevant stores outside of early
|
|
bool must_raise_LCA = false;
|
|
|
|
#ifdef TRACK_PHI_INPUTS
|
|
// %%% This extra checking fails because MergeMem nodes are not GVNed.
|
|
// Provide "phi_inputs" to check if every input to a PhiNode is from the
|
|
// original memory state. This indicates a PhiNode for which should not
|
|
// prevent the load from sinking. For such a block, set_raise_LCA_mark
|
|
// may be overly conservative.
|
|
// Mechanism: count inputs seen for each Phi encountered in worklist_store.
|
|
DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
|
|
#endif
|
|
|
|
// 'load' uses some memory state; look for users of the same state.
|
|
// Recurse through MergeMem nodes to the stores that use them.
|
|
|
|
// Each of these stores is a possible definition of memory
|
|
// that 'load' needs to use. We need to force 'load'
|
|
// to occur before each such store. When the store is in
|
|
// the same block as 'load', we insert an anti-dependence
|
|
// edge load->store.
|
|
|
|
// The relevant stores "nearby" the load consist of a tree rooted
|
|
// at initial_mem, with internal nodes of type MergeMem.
|
|
// Therefore, the branches visited by the worklist are of this form:
|
|
// initial_mem -> (MergeMem ->)* store
|
|
// The anti-dependence constraints apply only to the fringe of this tree.
|
|
|
|
Node* initial_mem = load->in(MemNode::Memory);
|
|
worklist_store.push(initial_mem);
|
|
worklist_visited.push(initial_mem);
|
|
worklist_mem.push(NULL);
|
|
while (worklist_store.size() > 0) {
|
|
// Examine a nearby store to see if it might interfere with our load.
|
|
Node* mem = worklist_mem.pop();
|
|
Node* store = worklist_store.pop();
|
|
uint op = store->Opcode();
|
|
|
|
// MergeMems do not directly have anti-deps.
|
|
// Treat them as internal nodes in a forward tree of memory states,
|
|
// the leaves of which are each a 'possible-def'.
|
|
if (store == initial_mem // root (exclusive) of tree we are searching
|
|
|| op == Op_MergeMem // internal node of tree we are searching
|
|
) {
|
|
mem = store; // It's not a possibly interfering store.
|
|
if (store == initial_mem)
|
|
initial_mem = NULL; // only process initial memory once
|
|
|
|
for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
|
|
store = mem->fast_out(i);
|
|
if (store->is_MergeMem()) {
|
|
// Be sure we don't get into combinatorial problems.
|
|
// (Allow phis to be repeated; they can merge two relevant states.)
|
|
uint j = worklist_visited.size();
|
|
for (; j > 0; j--) {
|
|
if (worklist_visited.at(j-1) == store) break;
|
|
}
|
|
if (j > 0) continue; // already on work list; do not repeat
|
|
worklist_visited.push(store);
|
|
}
|
|
worklist_mem.push(mem);
|
|
worklist_store.push(store);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (op == Op_MachProj || op == Op_Catch) continue;
|
|
if (store->needs_anti_dependence_check()) continue; // not really a store
|
|
|
|
// Compute the alias index. Loads and stores with different alias
|
|
// indices do not need anti-dependence edges. Wide MemBar's are
|
|
// anti-dependent on everything (except immutable memories).
|
|
const TypePtr* adr_type = store->adr_type();
|
|
if (!C->can_alias(adr_type, load_alias_idx)) continue;
|
|
|
|
// Most slow-path runtime calls do NOT modify Java memory, but
|
|
// they can block and so write Raw memory.
|
|
if (store->is_Mach()) {
|
|
MachNode* mstore = store->as_Mach();
|
|
if (load_alias_idx != Compile::AliasIdxRaw) {
|
|
// Check for call into the runtime using the Java calling
|
|
// convention (and from there into a wrapper); it has no
|
|
// _method. Can't do this optimization for Native calls because
|
|
// they CAN write to Java memory.
|
|
if (mstore->ideal_Opcode() == Op_CallStaticJava) {
|
|
assert(mstore->is_MachSafePoint(), "");
|
|
MachSafePointNode* ms = (MachSafePointNode*) mstore;
|
|
assert(ms->is_MachCallJava(), "");
|
|
MachCallJavaNode* mcj = (MachCallJavaNode*) ms;
|
|
if (mcj->_method == NULL) {
|
|
// These runtime calls do not write to Java visible memory
|
|
// (other than Raw) and so do not require anti-dependence edges.
|
|
continue;
|
|
}
|
|
}
|
|
// Same for SafePoints: they read/write Raw but only read otherwise.
|
|
// This is basically a workaround for SafePoints only defining control
|
|
// instead of control + memory.
|
|
if (mstore->ideal_Opcode() == Op_SafePoint)
|
|
continue;
|
|
} else {
|
|
// Some raw memory, such as the load of "top" at an allocation,
|
|
// can be control dependent on the previous safepoint. See
|
|
// comments in GraphKit::allocate_heap() about control input.
|
|
// Inserting an anti-dep between such a safepoint and a use
|
|
// creates a cycle, and will cause a subsequent failure in
|
|
// local scheduling. (BugId 4919904)
|
|
// (%%% How can a control input be a safepoint and not a projection??)
|
|
if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Identify a block that the current load must be above,
|
|
// or else observe that 'store' is all the way up in the
|
|
// earliest legal block for 'load'. In the latter case,
|
|
// immediately insert an anti-dependence edge.
|
|
Block* store_block = get_block_for_node(store);
|
|
assert(store_block != NULL, "unused killing projections skipped above");
|
|
|
|
if (store->is_Phi()) {
|
|
// 'load' uses memory which is one (or more) of the Phi's inputs.
|
|
// It must be scheduled not before the Phi, but rather before
|
|
// each of the relevant Phi inputs.
|
|
//
|
|
// Instead of finding the LCA of all inputs to a Phi that match 'mem',
|
|
// we mark each corresponding predecessor block and do a combined
|
|
// hoisting operation later (raise_LCA_above_marks).
|
|
//
|
|
// Do not assert(store_block != early, "Phi merging memory after access")
|
|
// PhiNode may be at start of block 'early' with backedge to 'early'
|
|
DEBUG_ONLY(bool found_match = false);
|
|
for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
|
|
if (store->in(j) == mem) { // Found matching input?
|
|
DEBUG_ONLY(found_match = true);
|
|
Block* pred_block = get_block_for_node(store_block->pred(j));
|
|
if (pred_block != early) {
|
|
// If any predecessor of the Phi matches the load's "early block",
|
|
// we do not need a precedence edge between the Phi and 'load'
|
|
// since the load will be forced into a block preceding the Phi.
|
|
pred_block->set_raise_LCA_mark(load_index);
|
|
assert(!LCA_orig->dominates(pred_block) ||
|
|
early->dominates(pred_block), "early is high enough");
|
|
must_raise_LCA = true;
|
|
} else {
|
|
// anti-dependent upon PHI pinned below 'early', no edge needed
|
|
LCA = early; // but can not schedule below 'early'
|
|
}
|
|
}
|
|
}
|
|
assert(found_match, "no worklist bug");
|
|
#ifdef TRACK_PHI_INPUTS
|
|
#ifdef ASSERT
|
|
// This assert asks about correct handling of PhiNodes, which may not
|
|
// have all input edges directly from 'mem'. See BugId 4621264
|
|
int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;
|
|
// Increment by exactly one even if there are multiple copies of 'mem'
|
|
// coming into the phi, because we will run this block several times
|
|
// if there are several copies of 'mem'. (That's how DU iterators work.)
|
|
phi_inputs.at_put(store->_idx, num_mem_inputs);
|
|
assert(PhiNode::Input + num_mem_inputs < store->req(),
|
|
"Expect at least one phi input will not be from original memory state");
|
|
#endif //ASSERT
|
|
#endif //TRACK_PHI_INPUTS
|
|
} else if (store_block != early) {
|
|
// 'store' is between the current LCA and earliest possible block.
|
|
// Label its block, and decide later on how to raise the LCA
|
|
// to include the effect on LCA of this store.
|
|
// If this store's block gets chosen as the raised LCA, we
|
|
// will find him on the non_early_stores list and stick him
|
|
// with a precedence edge.
|
|
// (But, don't bother if LCA is already raised all the way.)
|
|
if (LCA != early) {
|
|
store_block->set_raise_LCA_mark(load_index);
|
|
must_raise_LCA = true;
|
|
non_early_stores.push(store);
|
|
}
|
|
} else {
|
|
// Found a possibly-interfering store in the load's 'early' block.
|
|
// This means 'load' cannot sink at all in the dominator tree.
|
|
// Add an anti-dep edge, and squeeze 'load' into the highest block.
|
|
assert(store != load->in(0), "dependence cycle found");
|
|
if (verify) {
|
|
assert(store->find_edge(load) != -1, "missing precedence edge");
|
|
} else {
|
|
store->add_prec(load);
|
|
}
|
|
LCA = early;
|
|
// This turns off the process of gathering non_early_stores.
|
|
}
|
|
}
|
|
// (Worklist is now empty; all nearby stores have been visited.)
|
|
|
|
// Finished if 'load' must be scheduled in its 'early' block.
|
|
// If we found any stores there, they have already been given
|
|
// precedence edges.
|
|
if (LCA == early) return LCA;
|
|
|
|
// We get here only if there are no possibly-interfering stores
|
|
// in the load's 'early' block. Move LCA up above all predecessors
|
|
// which contain stores we have noted.
|
|
//
|
|
// The raised LCA block can be a home to such interfering stores,
|
|
// but its predecessors must not contain any such stores.
|
|
//
|
|
// The raised LCA will be a lower bound for placing the load,
|
|
// preventing the load from sinking past any block containing
|
|
// a store that may invalidate the memory state required by 'load'.
|
|
if (must_raise_LCA)
|
|
LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
|
|
if (LCA == early) return LCA;
|
|
|
|
// Insert anti-dependence edges from 'load' to each store
|
|
// in the non-early LCA block.
|
|
// Mine the non_early_stores list for such stores.
|
|
if (LCA->raise_LCA_mark() == load_index) {
|
|
while (non_early_stores.size() > 0) {
|
|
Node* store = non_early_stores.pop();
|
|
Block* store_block = get_block_for_node(store);
|
|
if (store_block == LCA) {
|
|
// add anti_dependence from store to load in its own block
|
|
assert(store != load->in(0), "dependence cycle found");
|
|
if (verify) {
|
|
assert(store->find_edge(load) != -1, "missing precedence edge");
|
|
} else {
|
|
store->add_prec(load);
|
|
}
|
|
} else {
|
|
assert(store_block->raise_LCA_mark() == load_index, "block was marked");
|
|
// Any other stores we found must be either inside the new LCA
|
|
// or else outside the original LCA. In the latter case, they
|
|
// did not interfere with any use of 'load'.
|
|
assert(LCA->dominates(store_block)
|
|
|| !LCA_orig->dominates(store_block), "no stray stores");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the highest block containing stores; any stores
|
|
// within that block have been given anti-dependence edges.
|
|
return LCA;
|
|
}
|
|
|
|
// This class is used to iterate backwards over the nodes in the graph.
|
|
|
|
class Node_Backward_Iterator {
|
|
|
|
private:
|
|
Node_Backward_Iterator();
|
|
|
|
public:
|
|
// Constructor for the iterator
|
|
Node_Backward_Iterator(Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg);
|
|
|
|
// Postincrement operator to iterate over the nodes
|
|
Node *next();
|
|
|
|
private:
|
|
VectorSet &_visited;
|
|
Node_Stack &_stack;
|
|
PhaseCFG &_cfg;
|
|
};
|
|
|
|
// Constructor for the Node_Backward_Iterator
|
|
Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_Stack &stack, PhaseCFG &cfg)
|
|
: _visited(visited), _stack(stack), _cfg(cfg) {
|
|
// The stack should contain exactly the root
|
|
stack.clear();
|
|
stack.push(root, root->outcnt());
|
|
|
|
// Clear the visited bits
|
|
visited.Clear();
|
|
}
|
|
|
|
// Iterator for the Node_Backward_Iterator
|
|
Node *Node_Backward_Iterator::next() {
|
|
|
|
// If the _stack is empty, then just return NULL: finished.
|
|
if ( !_stack.size() )
|
|
return NULL;
|
|
|
|
// I visit unvisited not-anti-dependence users first, then anti-dependent
|
|
// children next. I iterate backwards to support removal of nodes.
|
|
// The stack holds states consisting of 3 values:
|
|
// current Def node, flag which indicates 1st/2nd pass, index of current out edge
|
|
Node *self = (Node*)(((uintptr_t)_stack.node()) & ~1);
|
|
bool iterate_anti_dep = (((uintptr_t)_stack.node()) & 1);
|
|
uint idx = MIN2(_stack.index(), self->outcnt()); // Support removal of nodes.
|
|
_stack.pop();
|
|
|
|
// I cycle here when I am entering a deeper level of recursion.
|
|
// The key variable 'self' was set prior to jumping here.
|
|
while( 1 ) {
|
|
|
|
_visited.set(self->_idx);
|
|
|
|
// Now schedule all uses as late as possible.
|
|
const Node* src = self->is_Proj() ? self->in(0) : self;
|
|
uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
|
|
|
|
// Schedule all nodes in a post-order visit
|
|
Node *unvisited = NULL; // Unvisited anti-dependent Node, if any
|
|
|
|
// Scan for unvisited nodes
|
|
while (idx > 0) {
|
|
// For all uses, schedule late
|
|
Node* n = self->raw_out(--idx); // Use
|
|
|
|
// Skip already visited children
|
|
if ( _visited.test(n->_idx) )
|
|
continue;
|
|
|
|
// do not traverse backward control edges
|
|
Node *use = n->is_Proj() ? n->in(0) : n;
|
|
uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
|
|
|
|
if ( use_rpo < src_rpo )
|
|
continue;
|
|
|
|
// Phi nodes always precede uses in a basic block
|
|
if ( use_rpo == src_rpo && use->is_Phi() )
|
|
continue;
|
|
|
|
unvisited = n; // Found unvisited
|
|
|
|
// Check for possible-anti-dependent
|
|
// 1st pass: No such nodes, 2nd pass: Only such nodes.
|
|
if (n->needs_anti_dependence_check() == iterate_anti_dep) {
|
|
unvisited = n; // Found unvisited
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Did I find an unvisited not-anti-dependent Node?
|
|
if (!unvisited) {
|
|
if (!iterate_anti_dep) {
|
|
// 2nd pass: Iterate over nodes which needs_anti_dependence_check.
|
|
iterate_anti_dep = true;
|
|
idx = self->outcnt();
|
|
continue;
|
|
}
|
|
break; // All done with children; post-visit 'self'
|
|
}
|
|
|
|
// Visit the unvisited Node. Contains the obvious push to
|
|
// indicate I'm entering a deeper level of recursion. I push the
|
|
// old state onto the _stack and set a new state and loop (recurse).
|
|
_stack.push((Node*)((uintptr_t)self | (uintptr_t)iterate_anti_dep), idx);
|
|
self = unvisited;
|
|
iterate_anti_dep = false;
|
|
idx = self->outcnt();
|
|
} // End recursion loop
|
|
|
|
return self;
|
|
}
|
|
|
|
//------------------------------ComputeLatenciesBackwards----------------------
|
|
// Compute the latency of all the instructions.
|
|
void PhaseCFG::compute_latencies_backwards(VectorSet &visited, Node_Stack &stack) {
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining())
|
|
tty->print("\n#---- ComputeLatenciesBackwards ----\n");
|
|
#endif
|
|
|
|
Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
|
|
Node *n;
|
|
|
|
// Walk over all the nodes from last to first
|
|
while ((n = iter.next())) {
|
|
// Set the latency for the definitions of this instruction
|
|
partial_latency_of_defs(n);
|
|
}
|
|
} // end ComputeLatenciesBackwards
|
|
|
|
//------------------------------partial_latency_of_defs------------------------
|
|
// Compute the latency impact of this node on all defs. This computes
|
|
// a number that increases as we approach the beginning of the routine.
|
|
void PhaseCFG::partial_latency_of_defs(Node *n) {
|
|
// Set the latency for this instruction
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("# latency_to_inputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
|
|
dump();
|
|
}
|
|
#endif
|
|
|
|
if (n->is_Proj()) {
|
|
n = n->in(0);
|
|
}
|
|
|
|
if (n->is_Root()) {
|
|
return;
|
|
}
|
|
|
|
uint nlen = n->len();
|
|
uint use_latency = get_latency_for_node(n);
|
|
uint use_pre_order = get_block_for_node(n)->_pre_order;
|
|
|
|
for (uint j = 0; j < nlen; j++) {
|
|
Node *def = n->in(j);
|
|
|
|
if (!def || def == n) {
|
|
continue;
|
|
}
|
|
|
|
// Walk backwards thru projections
|
|
if (def->is_Proj()) {
|
|
def = def->in(0);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("# in(%2d): ", j);
|
|
def->dump();
|
|
}
|
|
#endif
|
|
|
|
// If the defining block is not known, assume it is ok
|
|
Block *def_block = get_block_for_node(def);
|
|
uint def_pre_order = def_block ? def_block->_pre_order : 0;
|
|
|
|
if ((use_pre_order < def_pre_order) || (use_pre_order == def_pre_order && n->is_Phi())) {
|
|
continue;
|
|
}
|
|
|
|
uint delta_latency = n->latency(j);
|
|
uint current_latency = delta_latency + use_latency;
|
|
|
|
if (get_latency_for_node(def) < current_latency) {
|
|
set_latency_for_node(def, current_latency);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d", use_latency, j, delta_latency, current_latency, def->_idx, get_latency_for_node(def));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
//------------------------------latency_from_use-------------------------------
|
|
// Compute the latency of a specific use
|
|
int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
|
|
// If self-reference, return no latency
|
|
if (use == n || use->is_Root()) {
|
|
return 0;
|
|
}
|
|
|
|
uint def_pre_order = get_block_for_node(def)->_pre_order;
|
|
uint latency = 0;
|
|
|
|
// If the use is not a projection, then it is simple...
|
|
if (!use->is_Proj()) {
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("# out(): ");
|
|
use->dump();
|
|
}
|
|
#endif
|
|
|
|
uint use_pre_order = get_block_for_node(use)->_pre_order;
|
|
|
|
if (use_pre_order < def_pre_order)
|
|
return 0;
|
|
|
|
if (use_pre_order == def_pre_order && use->is_Phi())
|
|
return 0;
|
|
|
|
uint nlen = use->len();
|
|
uint nl = get_latency_for_node(use);
|
|
|
|
for ( uint j=0; j<nlen; j++ ) {
|
|
if (use->in(j) == n) {
|
|
// Change this if we want local latencies
|
|
uint ul = use->latency(j);
|
|
uint l = ul + nl;
|
|
if (latency < l) latency = l;
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print_cr("# %d + edge_latency(%d) == %d -> %d, latency = %d",
|
|
nl, j, ul, l, latency);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
} else {
|
|
// This is a projection, just grab the latency of the use(s)
|
|
for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
|
|
uint l = latency_from_use(use, def, use->fast_out(j));
|
|
if (latency < l) latency = l;
|
|
}
|
|
}
|
|
|
|
return latency;
|
|
}
|
|
|
|
//------------------------------latency_from_uses------------------------------
|
|
// Compute the latency of this instruction relative to all of it's uses.
|
|
// This computes a number that increases as we approach the beginning of the
|
|
// routine.
|
|
void PhaseCFG::latency_from_uses(Node *n) {
|
|
// Set the latency for this instruction
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("# latency_from_outputs: node_latency[%d] = %d for node", n->_idx, get_latency_for_node(n));
|
|
dump();
|
|
}
|
|
#endif
|
|
uint latency=0;
|
|
const Node *def = n->is_Proj() ? n->in(0): n;
|
|
|
|
for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
|
|
uint l = latency_from_use(n, def, n->fast_out(i));
|
|
|
|
if (latency < l) latency = l;
|
|
}
|
|
|
|
set_latency_for_node(n, latency);
|
|
}
|
|
|
|
//------------------------------hoist_to_cheaper_block-------------------------
|
|
// Pick a block for node self, between early and LCA, that is a cheaper
|
|
// alternative to LCA.
|
|
Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
|
|
const double delta = 1+PROB_UNLIKELY_MAG(4);
|
|
Block* least = LCA;
|
|
double least_freq = least->_freq;
|
|
uint target = get_latency_for_node(self);
|
|
uint start_latency = get_latency_for_node(LCA->head());
|
|
uint end_latency = get_latency_for_node(LCA->get_node(LCA->end_idx()));
|
|
bool in_latency = (target <= start_latency);
|
|
const Block* root_block = get_block_for_node(_root);
|
|
|
|
// Turn off latency scheduling if scheduling is just plain off
|
|
if (!C->do_scheduling())
|
|
in_latency = true;
|
|
|
|
// Do not hoist (to cover latency) instructions which target a
|
|
// single register. Hoisting stretches the live range of the
|
|
// single register and may force spilling.
|
|
MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
|
|
if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
|
|
in_latency = true;
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("# Find cheaper block for latency %d: ", get_latency_for_node(self));
|
|
self->dump();
|
|
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
|
|
LCA->_pre_order,
|
|
LCA->head()->_idx,
|
|
start_latency,
|
|
LCA->get_node(LCA->end_idx())->_idx,
|
|
end_latency,
|
|
least_freq);
|
|
}
|
|
#endif
|
|
|
|
int cand_cnt = 0; // number of candidates tried
|
|
|
|
// Walk up the dominator tree from LCA (Lowest common ancestor) to
|
|
// the earliest legal location. Capture the least execution frequency.
|
|
while (LCA != early) {
|
|
LCA = LCA->_idom; // Follow up the dominator tree
|
|
|
|
if (LCA == NULL) {
|
|
// Bailout without retry
|
|
assert(false, "graph should be schedulable");
|
|
C->record_method_not_compilable("late schedule failed: LCA == NULL");
|
|
return least;
|
|
}
|
|
|
|
// Don't hoist machine instructions to the root basic block
|
|
if (mach && LCA == root_block)
|
|
break;
|
|
|
|
uint start_lat = get_latency_for_node(LCA->head());
|
|
uint end_idx = LCA->end_idx();
|
|
uint end_lat = get_latency_for_node(LCA->get_node(end_idx));
|
|
double LCA_freq = LCA->_freq;
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print_cr("# B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
|
|
LCA->_pre_order, LCA->head()->_idx, start_lat, end_idx, end_lat, LCA_freq);
|
|
}
|
|
#endif
|
|
cand_cnt++;
|
|
if (LCA_freq < least_freq || // Better Frequency
|
|
(StressGCM && Compile::randomized_select(cand_cnt)) || // Should be randomly accepted in stress mode
|
|
(!StressGCM && // Otherwise, choose with latency
|
|
!in_latency && // No block containing latency
|
|
LCA_freq < least_freq * delta && // No worse frequency
|
|
target >= end_lat && // within latency range
|
|
!self->is_iteratively_computed() ) // But don't hoist IV increments
|
|
// because they may end up above other uses of their phi forcing
|
|
// their result register to be different from their input.
|
|
) {
|
|
least = LCA; // Found cheaper block
|
|
least_freq = LCA_freq;
|
|
start_latency = start_lat;
|
|
end_latency = end_lat;
|
|
if (target <= start_lat)
|
|
in_latency = true;
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print_cr("# Choose block B%d with start latency=%d and freq=%g",
|
|
least->_pre_order, start_latency, least_freq);
|
|
}
|
|
#endif
|
|
|
|
// See if the latency needs to be updated
|
|
if (target < end_latency) {
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print_cr("# Change latency for [%4d] from %d to %d", self->_idx, target, end_latency);
|
|
}
|
|
#endif
|
|
set_latency_for_node(self, end_latency);
|
|
partial_latency_of_defs(self);
|
|
}
|
|
|
|
return least;
|
|
}
|
|
|
|
|
|
//------------------------------schedule_late-----------------------------------
|
|
// Now schedule all codes as LATE as possible. This is the LCA in the
|
|
// dominator tree of all USES of a value. Pick the block with the least
|
|
// loop nesting depth that is lowest in the dominator tree.
|
|
extern const char must_clone[];
|
|
void PhaseCFG::schedule_late(VectorSet &visited, Node_Stack &stack) {
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining())
|
|
tty->print("\n#---- schedule_late ----\n");
|
|
#endif
|
|
|
|
Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
|
|
Node *self;
|
|
|
|
// Walk over all the nodes from last to first
|
|
while ((self = iter.next())) {
|
|
Block* early = get_block_for_node(self); // Earliest legal placement
|
|
|
|
if (self->is_top()) {
|
|
// Top node goes in bb #2 with other constants.
|
|
// It must be special-cased, because it has no out edges.
|
|
early->add_inst(self);
|
|
continue;
|
|
}
|
|
|
|
// No uses, just terminate
|
|
if (self->outcnt() == 0) {
|
|
assert(self->is_MachProj(), "sanity");
|
|
continue; // Must be a dead machine projection
|
|
}
|
|
|
|
// If node is pinned in the block, then no scheduling can be done.
|
|
if( self->pinned() ) // Pinned in block?
|
|
continue;
|
|
|
|
MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
|
|
if (mach) {
|
|
switch (mach->ideal_Opcode()) {
|
|
case Op_CreateEx:
|
|
// Don't move exception creation
|
|
early->add_inst(self);
|
|
continue;
|
|
break;
|
|
case Op_CheckCastPP: {
|
|
// Don't move CheckCastPP nodes away from their input, if the input
|
|
// is a rawptr (5071820).
|
|
Node *def = self->in(1);
|
|
if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
|
|
early->add_inst(self);
|
|
#ifdef ASSERT
|
|
_raw_oops.push(def);
|
|
#endif
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Gather LCA of all uses
|
|
Block *LCA = NULL;
|
|
{
|
|
for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
|
|
// For all uses, find LCA
|
|
Node* use = self->fast_out(i);
|
|
LCA = raise_LCA_above_use(LCA, use, self, this);
|
|
}
|
|
} // (Hide defs of imax, i from rest of block.)
|
|
|
|
// Place temps in the block of their use. This isn't a
|
|
// requirement for correctness but it reduces useless
|
|
// interference between temps and other nodes.
|
|
if (mach != NULL && mach->is_MachTemp()) {
|
|
map_node_to_block(self, LCA);
|
|
LCA->add_inst(self);
|
|
continue;
|
|
}
|
|
|
|
// Check if 'self' could be anti-dependent on memory
|
|
if (self->needs_anti_dependence_check()) {
|
|
// Hoist LCA above possible-defs and insert anti-dependences to
|
|
// defs in new LCA block.
|
|
LCA = insert_anti_dependences(LCA, self);
|
|
}
|
|
|
|
if (early->_dom_depth > LCA->_dom_depth) {
|
|
// Somehow the LCA has moved above the earliest legal point.
|
|
// (One way this can happen is via memory_early_block.)
|
|
if (C->subsume_loads() == true && !C->failing()) {
|
|
// Retry with subsume_loads == false
|
|
// If this is the first failure, the sentinel string will "stick"
|
|
// to the Compile object, and the C2Compiler will see it and retry.
|
|
C->record_failure(C2Compiler::retry_no_subsuming_loads());
|
|
} else {
|
|
// Bailout without retry when (early->_dom_depth > LCA->_dom_depth)
|
|
assert(false, "graph should be schedulable");
|
|
C->record_method_not_compilable("late schedule failed: incorrect graph");
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If there is no opportunity to hoist, then we're done.
|
|
// In stress mode, try to hoist even the single operations.
|
|
bool try_to_hoist = StressGCM || (LCA != early);
|
|
|
|
// Must clone guys stay next to use; no hoisting allowed.
|
|
// Also cannot hoist guys that alter memory or are otherwise not
|
|
// allocatable (hoisting can make a value live longer, leading to
|
|
// anti and output dependency problems which are normally resolved
|
|
// by the register allocator giving everyone a different register).
|
|
if (mach != NULL && must_clone[mach->ideal_Opcode()])
|
|
try_to_hoist = false;
|
|
|
|
Block* late = NULL;
|
|
if (try_to_hoist) {
|
|
// Now find the block with the least execution frequency.
|
|
// Start at the latest schedule and work up to the earliest schedule
|
|
// in the dominator tree. Thus the Node will dominate all its uses.
|
|
late = hoist_to_cheaper_block(LCA, early, self);
|
|
} else {
|
|
// Just use the LCA of the uses.
|
|
late = LCA;
|
|
}
|
|
|
|
// Put the node into target block
|
|
schedule_node_into_block(self, late);
|
|
|
|
#ifdef ASSERT
|
|
if (self->needs_anti_dependence_check()) {
|
|
// since precedence edges are only inserted when we're sure they
|
|
// are needed make sure that after placement in a block we don't
|
|
// need any new precedence edges.
|
|
verify_anti_dependences(late, self);
|
|
}
|
|
#endif
|
|
} // Loop until all nodes have been visited
|
|
|
|
} // end ScheduleLate
|
|
|
|
//------------------------------GlobalCodeMotion-------------------------------
|
|
void PhaseCFG::global_code_motion() {
|
|
ResourceMark rm;
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("\n---- Start GlobalCodeMotion ----\n");
|
|
}
|
|
#endif
|
|
|
|
// Initialize the node to block mapping for things on the proj_list
|
|
for (uint i = 0; i < _matcher.number_of_projections(); i++) {
|
|
unmap_node_from_block(_matcher.get_projection(i));
|
|
}
|
|
|
|
// Set the basic block for Nodes pinned into blocks
|
|
Arena* arena = Thread::current()->resource_area();
|
|
VectorSet visited(arena);
|
|
schedule_pinned_nodes(visited);
|
|
|
|
// Find the earliest Block any instruction can be placed in. Some
|
|
// instructions are pinned into Blocks. Unpinned instructions can
|
|
// appear in last block in which all their inputs occur.
|
|
visited.Clear();
|
|
Node_Stack stack(arena, (C->live_nodes() >> 2) + 16); // pre-grow
|
|
if (!schedule_early(visited, stack)) {
|
|
// Bailout without retry
|
|
C->record_method_not_compilable("early schedule failed");
|
|
return;
|
|
}
|
|
|
|
// Build Def-Use edges.
|
|
// Compute the latency information (via backwards walk) for all the
|
|
// instructions in the graph
|
|
_node_latency = new GrowableArray<uint>(); // resource_area allocation
|
|
|
|
if (C->do_scheduling()) {
|
|
compute_latencies_backwards(visited, stack);
|
|
}
|
|
|
|
// Now schedule all codes as LATE as possible. This is the LCA in the
|
|
// dominator tree of all USES of a value. Pick the block with the least
|
|
// loop nesting depth that is lowest in the dominator tree.
|
|
// ( visited.Clear() called in schedule_late()->Node_Backward_Iterator() )
|
|
schedule_late(visited, stack);
|
|
if (C->failing()) {
|
|
// schedule_late fails only when graph is incorrect.
|
|
assert(!VerifyGraphEdges, "verification should have failed");
|
|
return;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("\n---- Detect implicit null checks ----\n");
|
|
}
|
|
#endif
|
|
|
|
// Detect implicit-null-check opportunities. Basically, find NULL checks
|
|
// with suitable memory ops nearby. Use the memory op to do the NULL check.
|
|
// I can generate a memory op if there is not one nearby.
|
|
if (C->is_method_compilation()) {
|
|
// By reversing the loop direction we get a very minor gain on mpegaudio.
|
|
// Feel free to revert to a forward loop for clarity.
|
|
// for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
|
|
for (int i = _matcher._null_check_tests.size() - 2; i >= 0; i -= 2) {
|
|
Node* proj = _matcher._null_check_tests[i];
|
|
Node* val = _matcher._null_check_tests[i + 1];
|
|
Block* block = get_block_for_node(proj);
|
|
implicit_null_check(block, proj, val, C->allowed_deopt_reasons());
|
|
// The implicit_null_check will only perform the transformation
|
|
// if the null branch is truly uncommon, *and* it leads to an
|
|
// uncommon trap. Combined with the too_many_traps guards
|
|
// above, this prevents SEGV storms reported in 6366351,
|
|
// by recompiling offending methods without this optimization.
|
|
}
|
|
}
|
|
|
|
bool block_size_threshold_ok = false;
|
|
intptr_t *recalc_pressure_nodes = NULL;
|
|
if (OptoRegScheduling) {
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
if (block->number_of_nodes() > 10) {
|
|
block_size_threshold_ok = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Enabling the scheduler for register pressure plus finding blocks of size to schedule for it
|
|
// is key to enabling this feature.
|
|
PhaseChaitin regalloc(C->unique(), *this, _matcher, true);
|
|
ResourceArea live_arena(mtCompiler); // Arena for liveness
|
|
ResourceMark rm_live(&live_arena);
|
|
PhaseLive live(*this, regalloc._lrg_map.names(), &live_arena, true);
|
|
PhaseIFG ifg(&live_arena);
|
|
if (OptoRegScheduling && block_size_threshold_ok) {
|
|
regalloc.mark_ssa();
|
|
Compile::TracePhase tp("computeLive", &timers[_t_computeLive]);
|
|
rm_live.reset_to_mark(); // Reclaim working storage
|
|
IndexSet::reset_memory(C, &live_arena);
|
|
uint node_size = regalloc._lrg_map.max_lrg_id();
|
|
ifg.init(node_size); // Empty IFG
|
|
regalloc.set_ifg(ifg);
|
|
regalloc.set_live(live);
|
|
regalloc.gather_lrg_masks(false); // Collect LRG masks
|
|
live.compute(node_size); // Compute liveness
|
|
|
|
recalc_pressure_nodes = NEW_RESOURCE_ARRAY(intptr_t, node_size);
|
|
for (uint i = 0; i < node_size; i++) {
|
|
recalc_pressure_nodes[i] = 0;
|
|
}
|
|
}
|
|
_regalloc = ®alloc;
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("\n---- Start Local Scheduling ----\n");
|
|
}
|
|
#endif
|
|
|
|
// Schedule locally. Right now a simple topological sort.
|
|
// Later, do a real latency aware scheduler.
|
|
GrowableArray<int> ready_cnt(C->unique(), C->unique(), -1);
|
|
visited.Clear();
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
if (!schedule_local(block, ready_cnt, visited, recalc_pressure_nodes)) {
|
|
if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
|
|
C->record_method_not_compilable("local schedule failed");
|
|
}
|
|
_regalloc = NULL;
|
|
return;
|
|
}
|
|
}
|
|
_regalloc = NULL;
|
|
|
|
// If we inserted any instructions between a Call and his CatchNode,
|
|
// clone the instructions on all paths below the Catch.
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
call_catch_cleanup(block);
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (trace_opto_pipelining()) {
|
|
tty->print("\n---- After GlobalCodeMotion ----\n");
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
block->dump();
|
|
}
|
|
}
|
|
#endif
|
|
// Dead.
|
|
_node_latency = (GrowableArray<uint> *)((intptr_t)0xdeadbeef);
|
|
}
|
|
|
|
bool PhaseCFG::do_global_code_motion() {
|
|
|
|
build_dominator_tree();
|
|
if (C->failing()) {
|
|
return false;
|
|
}
|
|
|
|
NOT_PRODUCT( C->verify_graph_edges(); )
|
|
|
|
estimate_block_frequency();
|
|
|
|
global_code_motion();
|
|
|
|
if (C->failing()) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//------------------------------Estimate_Block_Frequency-----------------------
|
|
// Estimate block frequencies based on IfNode probabilities.
|
|
void PhaseCFG::estimate_block_frequency() {
|
|
|
|
// Force conditional branches leading to uncommon traps to be unlikely,
|
|
// not because we get to the uncommon_trap with less relative frequency,
|
|
// but because an uncommon_trap typically causes a deopt, so we only get
|
|
// there once.
|
|
if (C->do_freq_based_layout()) {
|
|
Block_List worklist;
|
|
Block* root_blk = get_block(0);
|
|
for (uint i = 1; i < root_blk->num_preds(); i++) {
|
|
Block *pb = get_block_for_node(root_blk->pred(i));
|
|
if (pb->has_uncommon_code()) {
|
|
worklist.push(pb);
|
|
}
|
|
}
|
|
while (worklist.size() > 0) {
|
|
Block* uct = worklist.pop();
|
|
if (uct == get_root_block()) {
|
|
continue;
|
|
}
|
|
for (uint i = 1; i < uct->num_preds(); i++) {
|
|
Block *pb = get_block_for_node(uct->pred(i));
|
|
if (pb->_num_succs == 1) {
|
|
worklist.push(pb);
|
|
} else if (pb->num_fall_throughs() == 2) {
|
|
pb->update_uncommon_branch(uct);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create the loop tree and calculate loop depth.
|
|
_root_loop = create_loop_tree();
|
|
_root_loop->compute_loop_depth(0);
|
|
|
|
// Compute block frequency of each block, relative to a single loop entry.
|
|
_root_loop->compute_freq();
|
|
|
|
// Adjust all frequencies to be relative to a single method entry
|
|
_root_loop->_freq = 1.0;
|
|
_root_loop->scale_freq();
|
|
|
|
// Save outmost loop frequency for LRG frequency threshold
|
|
_outer_loop_frequency = _root_loop->outer_loop_freq();
|
|
|
|
// force paths ending at uncommon traps to be infrequent
|
|
if (!C->do_freq_based_layout()) {
|
|
Block_List worklist;
|
|
Block* root_blk = get_block(0);
|
|
for (uint i = 1; i < root_blk->num_preds(); i++) {
|
|
Block *pb = get_block_for_node(root_blk->pred(i));
|
|
if (pb->has_uncommon_code()) {
|
|
worklist.push(pb);
|
|
}
|
|
}
|
|
while (worklist.size() > 0) {
|
|
Block* uct = worklist.pop();
|
|
uct->_freq = PROB_MIN;
|
|
for (uint i = 1; i < uct->num_preds(); i++) {
|
|
Block *pb = get_block_for_node(uct->pred(i));
|
|
if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
|
|
worklist.push(pb);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef ASSERT
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* b = get_block(i);
|
|
assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
|
|
}
|
|
#endif
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintCFGBlockFreq) {
|
|
tty->print_cr("CFG Block Frequencies");
|
|
_root_loop->dump_tree();
|
|
if (Verbose) {
|
|
tty->print_cr("PhaseCFG dump");
|
|
dump();
|
|
tty->print_cr("Node dump");
|
|
_root->dump(99999);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//----------------------------create_loop_tree--------------------------------
|
|
// Create a loop tree from the CFG
|
|
CFGLoop* PhaseCFG::create_loop_tree() {
|
|
|
|
#ifdef ASSERT
|
|
assert(get_block(0) == get_root_block(), "first block should be root block");
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
// Check that _loop field are clear...we could clear them if not.
|
|
assert(block->_loop == NULL, "clear _loop expected");
|
|
// Sanity check that the RPO numbering is reflected in the _blocks array.
|
|
// It doesn't have to be for the loop tree to be built, but if it is not,
|
|
// then the blocks have been reordered since dom graph building...which
|
|
// may question the RPO numbering
|
|
assert(block->_rpo == i, "unexpected reverse post order number");
|
|
}
|
|
#endif
|
|
|
|
int idct = 0;
|
|
CFGLoop* root_loop = new CFGLoop(idct++);
|
|
|
|
Block_List worklist;
|
|
|
|
// Assign blocks to loops
|
|
for(uint i = number_of_blocks() - 1; i > 0; i-- ) { // skip Root block
|
|
Block* block = get_block(i);
|
|
|
|
if (block->head()->is_Loop()) {
|
|
Block* loop_head = block;
|
|
assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
|
|
Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
|
|
Block* tail = get_block_for_node(tail_n);
|
|
|
|
// Defensively filter out Loop nodes for non-single-entry loops.
|
|
// For all reasonable loops, the head occurs before the tail in RPO.
|
|
if (i <= tail->_rpo) {
|
|
|
|
// The tail and (recursive) predecessors of the tail
|
|
// are made members of a new loop.
|
|
|
|
assert(worklist.size() == 0, "nonempty worklist");
|
|
CFGLoop* nloop = new CFGLoop(idct++);
|
|
assert(loop_head->_loop == NULL, "just checking");
|
|
loop_head->_loop = nloop;
|
|
// Add to nloop so push_pred() will skip over inner loops
|
|
nloop->add_member(loop_head);
|
|
nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
|
|
|
|
while (worklist.size() > 0) {
|
|
Block* member = worklist.pop();
|
|
if (member != loop_head) {
|
|
for (uint j = 1; j < member->num_preds(); j++) {
|
|
nloop->push_pred(member, j, worklist, this);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a member list for each loop consisting
|
|
// of both blocks and (immediate child) loops.
|
|
for (uint i = 0; i < number_of_blocks(); i++) {
|
|
Block* block = get_block(i);
|
|
CFGLoop* lp = block->_loop;
|
|
if (lp == NULL) {
|
|
// Not assigned to a loop. Add it to the method's pseudo loop.
|
|
block->_loop = root_loop;
|
|
lp = root_loop;
|
|
}
|
|
if (lp == root_loop || block != lp->head()) { // loop heads are already members
|
|
lp->add_member(block);
|
|
}
|
|
if (lp != root_loop) {
|
|
if (lp->parent() == NULL) {
|
|
// Not a nested loop. Make it a child of the method's pseudo loop.
|
|
root_loop->add_nested_loop(lp);
|
|
}
|
|
if (block == lp->head()) {
|
|
// Add nested loop to member list of parent loop.
|
|
lp->parent()->add_member(lp);
|
|
}
|
|
}
|
|
}
|
|
|
|
return root_loop;
|
|
}
|
|
|
|
//------------------------------push_pred--------------------------------------
|
|
void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
|
|
Node* pred_n = blk->pred(i);
|
|
Block* pred = cfg->get_block_for_node(pred_n);
|
|
CFGLoop *pred_loop = pred->_loop;
|
|
if (pred_loop == NULL) {
|
|
// Filter out blocks for non-single-entry loops.
|
|
// For all reasonable loops, the head occurs before the tail in RPO.
|
|
if (pred->_rpo > head()->_rpo) {
|
|
pred->_loop = this;
|
|
worklist.push(pred);
|
|
}
|
|
} else if (pred_loop != this) {
|
|
// Nested loop.
|
|
while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
|
|
pred_loop = pred_loop->_parent;
|
|
}
|
|
// Make pred's loop be a child
|
|
if (pred_loop->_parent == NULL) {
|
|
add_nested_loop(pred_loop);
|
|
// Continue with loop entry predecessor.
|
|
Block* pred_head = pred_loop->head();
|
|
assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
|
|
assert(pred_head != head(), "loop head in only one loop");
|
|
push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
|
|
} else {
|
|
assert(pred_loop->_parent == this && _parent == NULL, "just checking");
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------add_nested_loop--------------------------------
|
|
// Make cl a child of the current loop in the loop tree.
|
|
void CFGLoop::add_nested_loop(CFGLoop* cl) {
|
|
assert(_parent == NULL, "no parent yet");
|
|
assert(cl != this, "not my own parent");
|
|
cl->_parent = this;
|
|
CFGLoop* ch = _child;
|
|
if (ch == NULL) {
|
|
_child = cl;
|
|
} else {
|
|
while (ch->_sibling != NULL) { ch = ch->_sibling; }
|
|
ch->_sibling = cl;
|
|
}
|
|
}
|
|
|
|
//------------------------------compute_loop_depth-----------------------------
|
|
// Store the loop depth in each CFGLoop object.
|
|
// Recursively walk the children to do the same for them.
|
|
void CFGLoop::compute_loop_depth(int depth) {
|
|
_depth = depth;
|
|
CFGLoop* ch = _child;
|
|
while (ch != NULL) {
|
|
ch->compute_loop_depth(depth + 1);
|
|
ch = ch->_sibling;
|
|
}
|
|
}
|
|
|
|
//------------------------------compute_freq-----------------------------------
|
|
// Compute the frequency of each block and loop, relative to a single entry
|
|
// into the dominating loop head.
|
|
void CFGLoop::compute_freq() {
|
|
// Bottom up traversal of loop tree (visit inner loops first.)
|
|
// Set loop head frequency to 1.0, then transitively
|
|
// compute frequency for all successors in the loop,
|
|
// as well as for each exit edge. Inner loops are
|
|
// treated as single blocks with loop exit targets
|
|
// as the successor blocks.
|
|
|
|
// Nested loops first
|
|
CFGLoop* ch = _child;
|
|
while (ch != NULL) {
|
|
ch->compute_freq();
|
|
ch = ch->_sibling;
|
|
}
|
|
assert (_members.length() > 0, "no empty loops");
|
|
Block* hd = head();
|
|
hd->_freq = 1.0;
|
|
for (int i = 0; i < _members.length(); i++) {
|
|
CFGElement* s = _members.at(i);
|
|
double freq = s->_freq;
|
|
if (s->is_block()) {
|
|
Block* b = s->as_Block();
|
|
for (uint j = 0; j < b->_num_succs; j++) {
|
|
Block* sb = b->_succs[j];
|
|
update_succ_freq(sb, freq * b->succ_prob(j));
|
|
}
|
|
} else {
|
|
CFGLoop* lp = s->as_CFGLoop();
|
|
assert(lp->_parent == this, "immediate child");
|
|
for (int k = 0; k < lp->_exits.length(); k++) {
|
|
Block* eb = lp->_exits.at(k).get_target();
|
|
double prob = lp->_exits.at(k).get_prob();
|
|
update_succ_freq(eb, freq * prob);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For all loops other than the outer, "method" loop,
|
|
// sum and normalize the exit probability. The "method" loop
|
|
// should keep the initial exit probability of 1, so that
|
|
// inner blocks do not get erroneously scaled.
|
|
if (_depth != 0) {
|
|
// Total the exit probabilities for this loop.
|
|
double exits_sum = 0.0f;
|
|
for (int i = 0; i < _exits.length(); i++) {
|
|
exits_sum += _exits.at(i).get_prob();
|
|
}
|
|
|
|
// Normalize the exit probabilities. Until now, the
|
|
// probabilities estimate the possibility of exit per
|
|
// a single loop iteration; afterward, they estimate
|
|
// the probability of exit per loop entry.
|
|
for (int i = 0; i < _exits.length(); i++) {
|
|
Block* et = _exits.at(i).get_target();
|
|
float new_prob = 0.0f;
|
|
if (_exits.at(i).get_prob() > 0.0f) {
|
|
new_prob = _exits.at(i).get_prob() / exits_sum;
|
|
}
|
|
BlockProbPair bpp(et, new_prob);
|
|
_exits.at_put(i, bpp);
|
|
}
|
|
|
|
// Save the total, but guard against unreasonable probability,
|
|
// as the value is used to estimate the loop trip count.
|
|
// An infinite trip count would blur relative block
|
|
// frequencies.
|
|
if (exits_sum > 1.0f) exits_sum = 1.0;
|
|
if (exits_sum < PROB_MIN) exits_sum = PROB_MIN;
|
|
_exit_prob = exits_sum;
|
|
}
|
|
}
|
|
|
|
//------------------------------succ_prob-------------------------------------
|
|
// Determine the probability of reaching successor 'i' from the receiver block.
|
|
float Block::succ_prob(uint i) {
|
|
int eidx = end_idx();
|
|
Node *n = get_node(eidx); // Get ending Node
|
|
|
|
int op = n->Opcode();
|
|
if (n->is_Mach()) {
|
|
if (n->is_MachNullCheck()) {
|
|
// Can only reach here if called after lcm. The original Op_If is gone,
|
|
// so we attempt to infer the probability from one or both of the
|
|
// successor blocks.
|
|
assert(_num_succs == 2, "expecting 2 successors of a null check");
|
|
// If either successor has only one predecessor, then the
|
|
// probability estimate can be derived using the
|
|
// relative frequency of the successor and this block.
|
|
if (_succs[i]->num_preds() == 2) {
|
|
return _succs[i]->_freq / _freq;
|
|
} else if (_succs[1-i]->num_preds() == 2) {
|
|
return 1 - (_succs[1-i]->_freq / _freq);
|
|
} else {
|
|
// Estimate using both successor frequencies
|
|
float freq = _succs[i]->_freq;
|
|
return freq / (freq + _succs[1-i]->_freq);
|
|
}
|
|
}
|
|
op = n->as_Mach()->ideal_Opcode();
|
|
}
|
|
|
|
|
|
// Switch on branch type
|
|
switch( op ) {
|
|
case Op_CountedLoopEnd:
|
|
case Op_If: {
|
|
assert (i < 2, "just checking");
|
|
// Conditionals pass on only part of their frequency
|
|
float prob = n->as_MachIf()->_prob;
|
|
assert(prob >= 0.0 && prob <= 1.0, "out of range probability");
|
|
// If succ[i] is the FALSE branch, invert path info
|
|
if( get_node(i + eidx + 1)->Opcode() == Op_IfFalse ) {
|
|
return 1.0f - prob; // not taken
|
|
} else {
|
|
return prob; // taken
|
|
}
|
|
}
|
|
|
|
case Op_Jump:
|
|
// Divide the frequency between all successors evenly
|
|
return 1.0f/_num_succs;
|
|
|
|
case Op_Catch: {
|
|
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
|
|
if (ci->_con == CatchProjNode::fall_through_index) {
|
|
// Fall-thru path gets the lion's share.
|
|
return 1.0f - PROB_UNLIKELY_MAG(5)*_num_succs;
|
|
} else {
|
|
// Presume exceptional paths are equally unlikely
|
|
return PROB_UNLIKELY_MAG(5);
|
|
}
|
|
}
|
|
|
|
case Op_Root:
|
|
case Op_Goto:
|
|
// Pass frequency straight thru to target
|
|
return 1.0f;
|
|
|
|
case Op_NeverBranch:
|
|
return 0.0f;
|
|
|
|
case Op_TailCall:
|
|
case Op_TailJump:
|
|
case Op_Return:
|
|
case Op_Halt:
|
|
case Op_Rethrow:
|
|
// Do not push out freq to root block
|
|
return 0.0f;
|
|
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
return 0.0f;
|
|
}
|
|
|
|
//------------------------------num_fall_throughs-----------------------------
|
|
// Return the number of fall-through candidates for a block
|
|
int Block::num_fall_throughs() {
|
|
int eidx = end_idx();
|
|
Node *n = get_node(eidx); // Get ending Node
|
|
|
|
int op = n->Opcode();
|
|
if (n->is_Mach()) {
|
|
if (n->is_MachNullCheck()) {
|
|
// In theory, either side can fall-thru, for simplicity sake,
|
|
// let's say only the false branch can now.
|
|
return 1;
|
|
}
|
|
op = n->as_Mach()->ideal_Opcode();
|
|
}
|
|
|
|
// Switch on branch type
|
|
switch( op ) {
|
|
case Op_CountedLoopEnd:
|
|
case Op_If:
|
|
return 2;
|
|
|
|
case Op_Root:
|
|
case Op_Goto:
|
|
return 1;
|
|
|
|
case Op_Catch: {
|
|
for (uint i = 0; i < _num_succs; i++) {
|
|
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
|
|
if (ci->_con == CatchProjNode::fall_through_index) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
case Op_Jump:
|
|
case Op_NeverBranch:
|
|
case Op_TailCall:
|
|
case Op_TailJump:
|
|
case Op_Return:
|
|
case Op_Halt:
|
|
case Op_Rethrow:
|
|
return 0;
|
|
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
//------------------------------succ_fall_through-----------------------------
|
|
// Return true if a specific successor could be fall-through target.
|
|
bool Block::succ_fall_through(uint i) {
|
|
int eidx = end_idx();
|
|
Node *n = get_node(eidx); // Get ending Node
|
|
|
|
int op = n->Opcode();
|
|
if (n->is_Mach()) {
|
|
if (n->is_MachNullCheck()) {
|
|
// In theory, either side can fall-thru, for simplicity sake,
|
|
// let's say only the false branch can now.
|
|
return get_node(i + eidx + 1)->Opcode() == Op_IfFalse;
|
|
}
|
|
op = n->as_Mach()->ideal_Opcode();
|
|
}
|
|
|
|
// Switch on branch type
|
|
switch( op ) {
|
|
case Op_CountedLoopEnd:
|
|
case Op_If:
|
|
case Op_Root:
|
|
case Op_Goto:
|
|
return true;
|
|
|
|
case Op_Catch: {
|
|
const CatchProjNode *ci = get_node(i + eidx + 1)->as_CatchProj();
|
|
return ci->_con == CatchProjNode::fall_through_index;
|
|
}
|
|
|
|
case Op_Jump:
|
|
case Op_NeverBranch:
|
|
case Op_TailCall:
|
|
case Op_TailJump:
|
|
case Op_Return:
|
|
case Op_Halt:
|
|
case Op_Rethrow:
|
|
return false;
|
|
|
|
default:
|
|
ShouldNotReachHere();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//------------------------------update_uncommon_branch------------------------
|
|
// Update the probability of a two-branch to be uncommon
|
|
void Block::update_uncommon_branch(Block* ub) {
|
|
int eidx = end_idx();
|
|
Node *n = get_node(eidx); // Get ending Node
|
|
|
|
int op = n->as_Mach()->ideal_Opcode();
|
|
|
|
assert(op == Op_CountedLoopEnd || op == Op_If, "must be a If");
|
|
assert(num_fall_throughs() == 2, "must be a two way branch block");
|
|
|
|
// Which successor is ub?
|
|
uint s;
|
|
for (s = 0; s <_num_succs; s++) {
|
|
if (_succs[s] == ub) break;
|
|
}
|
|
assert(s < 2, "uncommon successor must be found");
|
|
|
|
// If ub is the true path, make the proability small, else
|
|
// ub is the false path, and make the probability large
|
|
bool invert = (get_node(s + eidx + 1)->Opcode() == Op_IfFalse);
|
|
|
|
// Get existing probability
|
|
float p = n->as_MachIf()->_prob;
|
|
|
|
if (invert) p = 1.0 - p;
|
|
if (p > PROB_MIN) {
|
|
p = PROB_MIN;
|
|
}
|
|
if (invert) p = 1.0 - p;
|
|
|
|
n->as_MachIf()->_prob = p;
|
|
}
|
|
|
|
//------------------------------update_succ_freq-------------------------------
|
|
// Update the appropriate frequency associated with block 'b', a successor of
|
|
// a block in this loop.
|
|
void CFGLoop::update_succ_freq(Block* b, double freq) {
|
|
if (b->_loop == this) {
|
|
if (b == head()) {
|
|
// back branch within the loop
|
|
// Do nothing now, the loop carried frequency will be
|
|
// adjust later in scale_freq().
|
|
} else {
|
|
// simple branch within the loop
|
|
b->_freq += freq;
|
|
}
|
|
} else if (!in_loop_nest(b)) {
|
|
// branch is exit from this loop
|
|
BlockProbPair bpp(b, freq);
|
|
_exits.append(bpp);
|
|
} else {
|
|
// branch into nested loop
|
|
CFGLoop* ch = b->_loop;
|
|
ch->_freq += freq;
|
|
}
|
|
}
|
|
|
|
//------------------------------in_loop_nest-----------------------------------
|
|
// Determine if block b is in the receiver's loop nest.
|
|
bool CFGLoop::in_loop_nest(Block* b) {
|
|
int depth = _depth;
|
|
CFGLoop* b_loop = b->_loop;
|
|
int b_depth = b_loop->_depth;
|
|
if (depth == b_depth) {
|
|
return true;
|
|
}
|
|
while (b_depth > depth) {
|
|
b_loop = b_loop->_parent;
|
|
b_depth = b_loop->_depth;
|
|
}
|
|
return b_loop == this;
|
|
}
|
|
|
|
//------------------------------scale_freq-------------------------------------
|
|
// Scale frequency of loops and blocks by trip counts from outer loops
|
|
// Do a top down traversal of loop tree (visit outer loops first.)
|
|
void CFGLoop::scale_freq() {
|
|
double loop_freq = _freq * trip_count();
|
|
_freq = loop_freq;
|
|
for (int i = 0; i < _members.length(); i++) {
|
|
CFGElement* s = _members.at(i);
|
|
double block_freq = s->_freq * loop_freq;
|
|
if (g_isnan(block_freq) || block_freq < MIN_BLOCK_FREQUENCY)
|
|
block_freq = MIN_BLOCK_FREQUENCY;
|
|
s->_freq = block_freq;
|
|
}
|
|
CFGLoop* ch = _child;
|
|
while (ch != NULL) {
|
|
ch->scale_freq();
|
|
ch = ch->_sibling;
|
|
}
|
|
}
|
|
|
|
// Frequency of outer loop
|
|
double CFGLoop::outer_loop_freq() const {
|
|
if (_child != NULL) {
|
|
return _child->_freq;
|
|
}
|
|
return _freq;
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
//------------------------------dump_tree--------------------------------------
|
|
void CFGLoop::dump_tree() const {
|
|
dump();
|
|
if (_child != NULL) _child->dump_tree();
|
|
if (_sibling != NULL) _sibling->dump_tree();
|
|
}
|
|
|
|
//------------------------------dump-------------------------------------------
|
|
void CFGLoop::dump() const {
|
|
for (int i = 0; i < _depth; i++) tty->print(" ");
|
|
tty->print("%s: %d trip_count: %6.0f freq: %6.0f\n",
|
|
_depth == 0 ? "Method" : "Loop", _id, trip_count(), _freq);
|
|
for (int i = 0; i < _depth; i++) tty->print(" ");
|
|
tty->print(" members:");
|
|
int k = 0;
|
|
for (int i = 0; i < _members.length(); i++) {
|
|
if (k++ >= 6) {
|
|
tty->print("\n ");
|
|
for (int j = 0; j < _depth+1; j++) tty->print(" ");
|
|
k = 0;
|
|
}
|
|
CFGElement *s = _members.at(i);
|
|
if (s->is_block()) {
|
|
Block *b = s->as_Block();
|
|
tty->print(" B%d(%6.3f)", b->_pre_order, b->_freq);
|
|
} else {
|
|
CFGLoop* lp = s->as_CFGLoop();
|
|
tty->print(" L%d(%6.3f)", lp->_id, lp->_freq);
|
|
}
|
|
}
|
|
tty->print("\n");
|
|
for (int i = 0; i < _depth; i++) tty->print(" ");
|
|
tty->print(" exits: ");
|
|
k = 0;
|
|
for (int i = 0; i < _exits.length(); i++) {
|
|
if (k++ >= 7) {
|
|
tty->print("\n ");
|
|
for (int j = 0; j < _depth+1; j++) tty->print(" ");
|
|
k = 0;
|
|
}
|
|
Block *blk = _exits.at(i).get_target();
|
|
double prob = _exits.at(i).get_prob();
|
|
tty->print(" ->%d@%d%%", blk->_pre_order, (int)(prob*100));
|
|
}
|
|
tty->print("\n");
|
|
}
|
|
#endif
|