jdk-24/src/hotspot/share/opto/mathexactnode.cpp
Rickard Bäckman 6f1c27a2c9 8191915: JCK tests produce incorrect results with C2
Reviewed-by: thartmann, vlivanov, goetz
2018-01-18 19:21:11 +01:00

268 lines
8.1 KiB
C++

/*
* Copyright (c) 2013, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "memory/allocation.inline.hpp"
#include "opto/addnode.hpp"
#include "opto/cfgnode.hpp"
#include "opto/machnode.hpp"
#include "opto/matcher.hpp"
#include "opto/mathexactnode.hpp"
#include "opto/subnode.hpp"
template <typename OverflowOp>
class AddHelper {
public:
typedef typename OverflowOp::TypeClass TypeClass;
typedef typename TypeClass::NativeType NativeType;
static bool will_overflow(NativeType value1, NativeType value2) {
NativeType result = value1 + value2;
// Hacker's Delight 2-12 Overflow if both arguments have the opposite sign of the result
if (((value1 ^ result) & (value2 ^ result)) >= 0) {
return false;
}
return true;
}
static bool can_overflow(const Type* type1, const Type* type2) {
if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) {
return false;
}
return true;
}
};
template <typename OverflowOp>
class SubHelper {
public:
typedef typename OverflowOp::TypeClass TypeClass;
typedef typename TypeClass::NativeType NativeType;
static bool will_overflow(NativeType value1, NativeType value2) {
NativeType result = value1 - value2;
// hacker's delight 2-12 overflow iff the arguments have different signs and
// the sign of the result is different than the sign of arg1
if (((value1 ^ value2) & (value1 ^ result)) >= 0) {
return false;
}
return true;
}
static bool can_overflow(const Type* type1, const Type* type2) {
if (type2 == TypeClass::ZERO) {
return false;
}
return true;
}
};
template <typename OverflowOp>
class MulHelper {
public:
typedef typename OverflowOp::TypeClass TypeClass;
static bool can_overflow(const Type* type1, const Type* type2) {
if (type1 == TypeClass::ZERO || type2 == TypeClass::ZERO) {
return false;
} else if (type1 == TypeClass::ONE || type2 == TypeClass::ONE) {
return false;
}
return true;
}
};
bool OverflowAddINode::will_overflow(jint v1, jint v2) const {
return AddHelper<OverflowAddINode>::will_overflow(v1, v2);
}
bool OverflowSubINode::will_overflow(jint v1, jint v2) const {
return SubHelper<OverflowSubINode>::will_overflow(v1, v2);
}
bool OverflowMulINode::will_overflow(jint v1, jint v2) const {
jlong result = (jlong) v1 * (jlong) v2;
if ((jint) result == result) {
return false;
}
return true;
}
bool OverflowAddLNode::will_overflow(jlong v1, jlong v2) const {
return AddHelper<OverflowAddLNode>::will_overflow(v1, v2);
}
bool OverflowSubLNode::will_overflow(jlong v1, jlong v2) const {
return SubHelper<OverflowSubLNode>::will_overflow(v1, v2);
}
bool OverflowMulLNode::is_overflow(jlong val1, jlong val2) {
// x * { 0, 1 } will never overflow. Even for x = min_jlong
if (val1 == 0 || val2 == 0 || val1 == 1 || val2 == 1) {
return false;
}
// x * min_jlong for x not in { 0, 1 } overflows
// even -1 as -1 * min_jlong is an overflow
if (val1 == min_jlong || val2 == min_jlong) {
return true;
}
// if (x * y) / y == x there is no overflow
//
// the multiplication here is done as unsigned to avoid undefined behaviour which
// can be used by the compiler to assume that the check further down (result / val2 != val1)
// is always false and breaks the overflow check
julong v1 = (julong) val1;
julong v2 = (julong) val2;
julong tmp = v1 * v2;
jlong result = (jlong) tmp;
if (result / val2 != val1) {
return true;
}
return false;
}
bool OverflowAddINode::can_overflow(const Type* t1, const Type* t2) const {
return AddHelper<OverflowAddINode>::can_overflow(t1, t2);
}
bool OverflowSubINode::can_overflow(const Type* t1, const Type* t2) const {
if (in(1) == in(2)) {
return false;
}
return SubHelper<OverflowSubINode>::can_overflow(t1, t2);
}
bool OverflowMulINode::can_overflow(const Type* t1, const Type* t2) const {
return MulHelper<OverflowMulINode>::can_overflow(t1, t2);
}
bool OverflowAddLNode::can_overflow(const Type* t1, const Type* t2) const {
return AddHelper<OverflowAddLNode>::can_overflow(t1, t2);
}
bool OverflowSubLNode::can_overflow(const Type* t1, const Type* t2) const {
if (in(1) == in(2)) {
return false;
}
return SubHelper<OverflowSubLNode>::can_overflow(t1, t2);
}
bool OverflowMulLNode::can_overflow(const Type* t1, const Type* t2) const {
return MulHelper<OverflowMulLNode>::can_overflow(t1, t2);
}
const Type* OverflowNode::sub(const Type* t1, const Type* t2) const {
fatal("sub() should not be called for '%s'", NodeClassNames[this->Opcode()]);
return TypeInt::CC;
}
template <typename OverflowOp>
struct IdealHelper {
typedef typename OverflowOp::TypeClass TypeClass; // TypeInt, TypeLong
typedef typename TypeClass::NativeType NativeType;
static Node* Ideal(const OverflowOp* node, PhaseGVN* phase, bool can_reshape) {
Node* arg1 = node->in(1);
Node* arg2 = node->in(2);
const Type* type1 = phase->type(arg1);
const Type* type2 = phase->type(arg2);
if (type1 == NULL || type2 == NULL) {
return NULL;
}
if (type1 != Type::TOP && type1->singleton() &&
type2 != Type::TOP && type2->singleton()) {
NativeType val1 = TypeClass::as_self(type1)->get_con();
NativeType val2 = TypeClass::as_self(type2)->get_con();
if (node->will_overflow(val1, val2) == false) {
Node* con_result = ConINode::make(0);
return con_result;
}
return NULL;
}
return NULL;
}
static const Type* Value(const OverflowOp* node, PhaseTransform* phase) {
const Type *t1 = phase->type( node->in(1) );
const Type *t2 = phase->type( node->in(2) );
if( t1 == Type::TOP ) return Type::TOP;
if( t2 == Type::TOP ) return Type::TOP;
const TypeClass* i1 = TypeClass::as_self(t1);
const TypeClass* i2 = TypeClass::as_self(t2);
if (i1 == NULL || i2 == NULL) {
return TypeInt::CC;
}
if (t1->singleton() && t2->singleton()) {
NativeType val1 = i1->get_con();
NativeType val2 = i2->get_con();
if (node->will_overflow(val1, val2)) {
return TypeInt::CC;
}
return TypeInt::ZERO;
} else if (i1 != TypeClass::TYPE_DOMAIN && i2 != TypeClass::TYPE_DOMAIN) {
if (node->will_overflow(i1->_lo, i2->_lo)) {
return TypeInt::CC;
} else if (node->will_overflow(i1->_lo, i2->_hi)) {
return TypeInt::CC;
} else if (node->will_overflow(i1->_hi, i2->_lo)) {
return TypeInt::CC;
} else if (node->will_overflow(i1->_hi, i2->_hi)) {
return TypeInt::CC;
}
return TypeInt::ZERO;
}
if (!node->can_overflow(t1, t2)) {
return TypeInt::ZERO;
}
return TypeInt::CC;
}
};
Node* OverflowINode::Ideal(PhaseGVN* phase, bool can_reshape) {
return IdealHelper<OverflowINode>::Ideal(this, phase, can_reshape);
}
Node* OverflowLNode::Ideal(PhaseGVN* phase, bool can_reshape) {
return IdealHelper<OverflowLNode>::Ideal(this, phase, can_reshape);
}
const Type* OverflowINode::Value(PhaseGVN* phase) const {
return IdealHelper<OverflowINode>::Value(this, phase);
}
const Type* OverflowLNode::Value(PhaseGVN* phase) const {
return IdealHelper<OverflowLNode>::Value(this, phase);
}