Per Lidén 4dc240f785 8079792: GC directory structure cleanup
Reviewed-by: brutisso, stefank, david
2015-05-13 15:16:06 +02:00

1626 lines
46 KiB
C++

/*
* Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "classfile/classLoader.hpp"
#include "code/codeCache.hpp"
#include "code/vtableStubs.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/allocation.inline.hpp"
#include "memory/universe.inline.hpp"
#include "oops/oop.inline.hpp"
#include "oops/symbol.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/mutexLocker.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/task.hpp"
#include "runtime/thread.inline.hpp"
#include "runtime/vframe.hpp"
#include "utilities/macros.hpp"
PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
// Static fields of FlatProfiler
int FlatProfiler::received_gc_ticks = 0;
int FlatProfiler::vm_operation_ticks = 0;
int FlatProfiler::threads_lock_ticks = 0;
int FlatProfiler::class_loader_ticks = 0;
int FlatProfiler::extra_ticks = 0;
int FlatProfiler::blocked_ticks = 0;
int FlatProfiler::deopt_ticks = 0;
int FlatProfiler::unknown_ticks = 0;
int FlatProfiler::interpreter_ticks = 0;
int FlatProfiler::compiler_ticks = 0;
int FlatProfiler::received_ticks = 0;
int FlatProfiler::delivered_ticks = 0;
int* FlatProfiler::bytecode_ticks = NULL;
int* FlatProfiler::bytecode_ticks_stub = NULL;
int FlatProfiler::all_int_ticks = 0;
int FlatProfiler::all_comp_ticks = 0;
int FlatProfiler::all_ticks = 0;
bool FlatProfiler::full_profile_flag = false;
ThreadProfiler* FlatProfiler::thread_profiler = NULL;
ThreadProfiler* FlatProfiler::vm_thread_profiler = NULL;
FlatProfilerTask* FlatProfiler::task = NULL;
elapsedTimer FlatProfiler::timer;
int FlatProfiler::interval_ticks_previous = 0;
IntervalData* FlatProfiler::interval_data = NULL;
ThreadProfiler::ThreadProfiler() {
// Space for the ProfilerNodes
const int area_size = 1 * ProfilerNodeSize * 1024;
area_bottom = AllocateHeap(area_size, mtInternal);
area_top = area_bottom;
area_limit = area_bottom + area_size;
// ProfilerNode pointer table
table = NEW_C_HEAP_ARRAY(ProfilerNode*, table_size, mtInternal);
initialize();
engaged = false;
}
ThreadProfiler::~ThreadProfiler() {
FreeHeap(area_bottom);
area_bottom = NULL;
area_top = NULL;
area_limit = NULL;
FreeHeap(table);
table = NULL;
}
// Statics for ThreadProfiler
int ThreadProfiler::table_size = 1024;
int ThreadProfiler::entry(int value) {
value = (value > 0) ? value : -value;
return value % table_size;
}
ThreadProfilerMark::ThreadProfilerMark(ThreadProfilerMark::Region r) {
_r = r;
_pp = NULL;
assert(((r > ThreadProfilerMark::noRegion) && (r < ThreadProfilerMark::maxRegion)), "ThreadProfilerMark::Region out of bounds");
Thread* tp = Thread::current();
if (tp != NULL && tp->is_Java_thread()) {
JavaThread* jtp = (JavaThread*) tp;
ThreadProfiler* pp = jtp->get_thread_profiler();
_pp = pp;
if (pp != NULL) {
pp->region_flag[r] = true;
}
}
}
ThreadProfilerMark::~ThreadProfilerMark() {
if (_pp != NULL) {
_pp->region_flag[_r] = false;
}
_pp = NULL;
}
// Random other statics
static const int col1 = 2; // position of output column 1
static const int col2 = 11; // position of output column 2
static const int col3 = 25; // position of output column 3
static const int col4 = 55; // position of output column 4
// Used for detailed profiling of nmethods.
class PCRecorder : AllStatic {
private:
static int* counters;
static address base;
enum {
bucket_size = 16
};
static int index_for(address pc) { return (pc - base)/bucket_size; }
static address pc_for(int index) { return base + (index * bucket_size); }
static int size() {
return ((int)CodeCache::max_capacity())/bucket_size * BytesPerWord;
}
public:
static address bucket_start_for(address pc) {
if (counters == NULL) return NULL;
return pc_for(index_for(pc));
}
static int bucket_count_for(address pc) { return counters[index_for(pc)]; }
static void init();
static void record(address pc);
static void print();
static void print_blobs(CodeBlob* cb);
};
int* PCRecorder::counters = NULL;
address PCRecorder::base = NULL;
void PCRecorder::init() {
MutexLockerEx lm(CodeCache_lock, Mutex::_no_safepoint_check_flag);
int s = size();
counters = NEW_C_HEAP_ARRAY(int, s, mtInternal);
for (int index = 0; index < s; index++) {
counters[index] = 0;
}
base = CodeCache::low_bound();
}
void PCRecorder::record(address pc) {
if (counters == NULL) return;
assert(CodeCache::contains(pc), "must be in CodeCache");
counters[index_for(pc)]++;
}
address FlatProfiler::bucket_start_for(address pc) {
return PCRecorder::bucket_start_for(pc);
}
int FlatProfiler::bucket_count_for(address pc) {
return PCRecorder::bucket_count_for(pc);
}
void PCRecorder::print() {
if (counters == NULL) return;
tty->cr();
tty->print_cr("Printing compiled methods with PC buckets having more than %d ticks", ProfilerPCTickThreshold);
tty->print_cr("===================================================================");
tty->cr();
GrowableArray<CodeBlob*>* candidates = new GrowableArray<CodeBlob*>(20);
int s;
{
MutexLockerEx lm(CodeCache_lock, Mutex::_no_safepoint_check_flag);
s = size();
}
for (int index = 0; index < s; index++) {
int count = counters[index];
if (count > ProfilerPCTickThreshold) {
address pc = pc_for(index);
CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
if (cb != NULL && candidates->find(cb) < 0) {
candidates->push(cb);
}
}
}
for (int i = 0; i < candidates->length(); i++) {
print_blobs(candidates->at(i));
}
}
void PCRecorder::print_blobs(CodeBlob* cb) {
if (cb != NULL) {
cb->print();
if (cb->is_nmethod()) {
((nmethod*)cb)->print_code();
}
tty->cr();
} else {
tty->print_cr("stub code");
}
}
class tick_counter { // holds tick info for one node
public:
int ticks_in_code;
int ticks_in_native;
tick_counter() { ticks_in_code = ticks_in_native = 0; }
tick_counter(int code, int native) { ticks_in_code = code; ticks_in_native = native; }
int total() const {
return (ticks_in_code + ticks_in_native);
}
void add(tick_counter* a) {
ticks_in_code += a->ticks_in_code;
ticks_in_native += a->ticks_in_native;
}
void update(TickPosition where) {
switch(where) {
case tp_code: ticks_in_code++; break;
case tp_native: ticks_in_native++; break;
}
}
void print_code(outputStream* st, int total_ticks) {
st->print("%5.1f%% %5d ", total() * 100.0 / total_ticks, ticks_in_code);
}
void print_native(outputStream* st) {
st->print(" + %5d ", ticks_in_native);
}
};
class ProfilerNode {
private:
ProfilerNode* _next;
public:
tick_counter ticks;
public:
void* operator new(size_t size, ThreadProfiler* tp) throw();
void operator delete(void* p);
ProfilerNode() {
_next = NULL;
}
virtual ~ProfilerNode() {
if (_next)
delete _next;
}
void set_next(ProfilerNode* n) { _next = n; }
ProfilerNode* next() { return _next; }
void update(TickPosition where) { ticks.update(where);}
int total_ticks() { return ticks.total(); }
virtual bool is_interpreted() const { return false; }
virtual bool is_compiled() const { return false; }
virtual bool is_stub() const { return false; }
virtual bool is_runtime_stub() const{ return false; }
virtual void oops_do(OopClosure* f) = 0;
virtual bool interpreted_match(Method* m) const { return false; }
virtual bool compiled_match(Method* m ) const { return false; }
virtual bool stub_match(Method* m, const char* name) const { return false; }
virtual bool adapter_match() const { return false; }
virtual bool runtimeStub_match(const CodeBlob* stub, const char* name) const { return false; }
virtual bool unknown_compiled_match(const CodeBlob* cb) const { return false; }
static void print_title(outputStream* st) {
st->print(" + native");
st->fill_to(col3);
st->print("Method");
st->fill_to(col4);
st->cr();
}
static void print_total(outputStream* st, tick_counter* t, int total, const char* msg) {
t->print_code(st, total);
st->fill_to(col2);
t->print_native(st);
st->fill_to(col3);
st->print("%s", msg);
st->cr();
}
virtual Method* method() = 0;
virtual void print_method_on(outputStream* st) {
int limit;
int i;
Method* m = method();
Symbol* k = m->klass_name();
// Print the class name with dots instead of slashes
limit = k->utf8_length();
for (i = 0 ; i < limit ; i += 1) {
char c = (char) k->byte_at(i);
if (c == '/') {
c = '.';
}
st->print("%c", c);
}
if (limit > 0) {
st->print(".");
}
Symbol* n = m->name();
limit = n->utf8_length();
for (i = 0 ; i < limit ; i += 1) {
char c = (char) n->byte_at(i);
st->print("%c", c);
}
if (Verbose || WizardMode) {
// Disambiguate overloaded methods
Symbol* sig = m->signature();
sig->print_symbol_on(st);
} else if (MethodHandles::is_signature_polymorphic(m->intrinsic_id()))
// compare with Method::print_short_name
MethodHandles::print_as_basic_type_signature_on(st, m->signature(), true);
}
virtual void print(outputStream* st, int total_ticks) {
ticks.print_code(st, total_ticks);
st->fill_to(col2);
ticks.print_native(st);
st->fill_to(col3);
print_method_on(st);
st->cr();
}
// for hashing into the table
static int hash(Method* method) {
// The point here is to try to make something fairly unique
// out of the fields we can read without grabbing any locks
// since the method may be locked when we need the hash.
return (
method->code_size() ^
method->max_stack() ^
method->max_locals() ^
method->size_of_parameters());
}
// for sorting
static int compare(ProfilerNode** a, ProfilerNode** b) {
return (*b)->total_ticks() - (*a)->total_ticks();
}
};
void* ProfilerNode::operator new(size_t size, ThreadProfiler* tp) throw() {
void* result = (void*) tp->area_top;
tp->area_top += size;
if (tp->area_top > tp->area_limit) {
fatal("flat profiler buffer overflow");
}
return result;
}
void ProfilerNode::operator delete(void* p){
}
class interpretedNode : public ProfilerNode {
private:
Method* _method;
oop _class_loader; // needed to keep metadata for the method alive
public:
interpretedNode(Method* method, TickPosition where) : ProfilerNode() {
_method = method;
_class_loader = method->method_holder()->class_loader();
update(where);
}
bool is_interpreted() const { return true; }
bool interpreted_match(Method* m) const {
return _method == m;
}
void oops_do(OopClosure* f) {
f->do_oop(&_class_loader);
}
Method* method() { return _method; }
static void print_title(outputStream* st) {
st->fill_to(col1);
st->print("%11s", "Interpreted");
ProfilerNode::print_title(st);
}
void print(outputStream* st, int total_ticks) {
ProfilerNode::print(st, total_ticks);
}
void print_method_on(outputStream* st) {
ProfilerNode::print_method_on(st);
MethodCounters* mcs = method()->method_counters();
if (Verbose && mcs != NULL) mcs->invocation_counter()->print_short();
}
};
class compiledNode : public ProfilerNode {
private:
Method* _method;
oop _class_loader; // needed to keep metadata for the method alive
public:
compiledNode(Method* method, TickPosition where) : ProfilerNode() {
_method = method;
_class_loader = method->method_holder()->class_loader();
update(where);
}
bool is_compiled() const { return true; }
bool compiled_match(Method* m) const {
return _method == m;
}
Method* method() { return _method; }
void oops_do(OopClosure* f) {
f->do_oop(&_class_loader);
}
static void print_title(outputStream* st) {
st->fill_to(col1);
st->print("%11s", "Compiled");
ProfilerNode::print_title(st);
}
void print(outputStream* st, int total_ticks) {
ProfilerNode::print(st, total_ticks);
}
void print_method_on(outputStream* st) {
ProfilerNode::print_method_on(st);
}
};
class stubNode : public ProfilerNode {
private:
Method* _method;
oop _class_loader; // needed to keep metadata for the method alive
const char* _symbol; // The name of the nearest VM symbol (for +ProfileVM). Points to a unique string
public:
stubNode(Method* method, const char* name, TickPosition where) : ProfilerNode() {
_method = method;
_class_loader = method->method_holder()->class_loader();
_symbol = name;
update(where);
}
bool is_stub() const { return true; }
void oops_do(OopClosure* f) {
f->do_oop(&_class_loader);
}
bool stub_match(Method* m, const char* name) const {
return (_method == m) && (_symbol == name);
}
Method* method() { return _method; }
static void print_title(outputStream* st) {
st->fill_to(col1);
st->print("%11s", "Stub");
ProfilerNode::print_title(st);
}
void print(outputStream* st, int total_ticks) {
ProfilerNode::print(st, total_ticks);
}
void print_method_on(outputStream* st) {
ProfilerNode::print_method_on(st);
print_symbol_on(st);
}
void print_symbol_on(outputStream* st) {
if(_symbol) {
st->print(" (%s)", _symbol);
}
}
};
class adapterNode : public ProfilerNode {
public:
adapterNode(TickPosition where) : ProfilerNode() {
update(where);
}
bool is_compiled() const { return true; }
bool adapter_match() const { return true; }
Method* method() { return NULL; }
void oops_do(OopClosure* f) {
;
}
void print(outputStream* st, int total_ticks) {
ProfilerNode::print(st, total_ticks);
}
void print_method_on(outputStream* st) {
st->print("%s", "adapters");
}
};
class runtimeStubNode : public ProfilerNode {
private:
const CodeBlob* _stub;
const char* _symbol; // The name of the nearest VM symbol when ProfileVM is on. Points to a unique string.
public:
runtimeStubNode(const CodeBlob* stub, const char* name, TickPosition where) : ProfilerNode(), _stub(stub), _symbol(name) {
assert(stub->is_runtime_stub(), "wrong code blob");
update(where);
}
bool is_runtime_stub() const { return true; }
bool runtimeStub_match(const CodeBlob* stub, const char* name) const {
assert(stub->is_runtime_stub(), "wrong code blob");
return ((RuntimeStub*)_stub)->entry_point() == ((RuntimeStub*)stub)->entry_point() &&
(_symbol == name);
}
Method* method() { return NULL; }
static void print_title(outputStream* st) {
st->fill_to(col1);
st->print("%11s", "Runtime stub");
ProfilerNode::print_title(st);
}
void oops_do(OopClosure* f) {
;
}
void print(outputStream* st, int total_ticks) {
ProfilerNode::print(st, total_ticks);
}
void print_method_on(outputStream* st) {
st->print("%s", ((RuntimeStub*)_stub)->name());
print_symbol_on(st);
}
void print_symbol_on(outputStream* st) {
if(_symbol) {
st->print(" (%s)", _symbol);
}
}
};
class unknown_compiledNode : public ProfilerNode {
const char *_name;
public:
unknown_compiledNode(const CodeBlob* cb, TickPosition where) : ProfilerNode() {
if ( cb->is_buffer_blob() )
_name = ((BufferBlob*)cb)->name();
else
_name = ((SingletonBlob*)cb)->name();
update(where);
}
bool is_compiled() const { return true; }
bool unknown_compiled_match(const CodeBlob* cb) const {
if ( cb->is_buffer_blob() )
return !strcmp(((BufferBlob*)cb)->name(), _name);
else
return !strcmp(((SingletonBlob*)cb)->name(), _name);
}
Method* method() { return NULL; }
void oops_do(OopClosure* f) {
;
}
void print(outputStream* st, int total_ticks) {
ProfilerNode::print(st, total_ticks);
}
void print_method_on(outputStream* st) {
st->print("%s", _name);
}
};
class vmNode : public ProfilerNode {
private:
const char* _name; // "optional" name obtained by os means such as dll lookup
public:
vmNode(const TickPosition where) : ProfilerNode() {
_name = NULL;
update(where);
}
vmNode(const char* name, const TickPosition where) : ProfilerNode() {
_name = os::strdup(name);
update(where);
}
~vmNode() {
if (_name != NULL) {
os::free((void*)_name);
}
}
const char *name() const { return _name; }
bool is_compiled() const { return true; }
bool vm_match(const char* name) const { return strcmp(name, _name) == 0; }
Method* method() { return NULL; }
static int hash(const char* name){
// Compute a simple hash
const char* cp = name;
int h = 0;
if(name != NULL){
while(*cp != '\0'){
h = (h << 1) ^ *cp;
cp++;
}
}
return h;
}
void oops_do(OopClosure* f) {
;
}
void print(outputStream* st, int total_ticks) {
ProfilerNode::print(st, total_ticks);
}
void print_method_on(outputStream* st) {
if(_name==NULL){
st->print("%s", "unknown code");
}
else {
st->print("%s", _name);
}
}
};
void ThreadProfiler::interpreted_update(Method* method, TickPosition where) {
int index = entry(ProfilerNode::hash(method));
if (!table[index]) {
table[index] = new (this) interpretedNode(method, where);
} else {
ProfilerNode* prev = table[index];
for(ProfilerNode* node = prev; node; node = node->next()) {
if (node->interpreted_match(method)) {
node->update(where);
return;
}
prev = node;
}
prev->set_next(new (this) interpretedNode(method, where));
}
}
void ThreadProfiler::compiled_update(Method* method, TickPosition where) {
int index = entry(ProfilerNode::hash(method));
if (!table[index]) {
table[index] = new (this) compiledNode(method, where);
} else {
ProfilerNode* prev = table[index];
for(ProfilerNode* node = prev; node; node = node->next()) {
if (node->compiled_match(method)) {
node->update(where);
return;
}
prev = node;
}
prev->set_next(new (this) compiledNode(method, where));
}
}
void ThreadProfiler::stub_update(Method* method, const char* name, TickPosition where) {
int index = entry(ProfilerNode::hash(method));
if (!table[index]) {
table[index] = new (this) stubNode(method, name, where);
} else {
ProfilerNode* prev = table[index];
for(ProfilerNode* node = prev; node; node = node->next()) {
if (node->stub_match(method, name)) {
node->update(where);
return;
}
prev = node;
}
prev->set_next(new (this) stubNode(method, name, where));
}
}
void ThreadProfiler::adapter_update(TickPosition where) {
int index = 0;
if (!table[index]) {
table[index] = new (this) adapterNode(where);
} else {
ProfilerNode* prev = table[index];
for(ProfilerNode* node = prev; node; node = node->next()) {
if (node->adapter_match()) {
node->update(where);
return;
}
prev = node;
}
prev->set_next(new (this) adapterNode(where));
}
}
void ThreadProfiler::runtime_stub_update(const CodeBlob* stub, const char* name, TickPosition where) {
int index = 0;
if (!table[index]) {
table[index] = new (this) runtimeStubNode(stub, name, where);
} else {
ProfilerNode* prev = table[index];
for(ProfilerNode* node = prev; node; node = node->next()) {
if (node->runtimeStub_match(stub, name)) {
node->update(where);
return;
}
prev = node;
}
prev->set_next(new (this) runtimeStubNode(stub, name, where));
}
}
void ThreadProfiler::unknown_compiled_update(const CodeBlob* cb, TickPosition where) {
int index = 0;
if (!table[index]) {
table[index] = new (this) unknown_compiledNode(cb, where);
} else {
ProfilerNode* prev = table[index];
for(ProfilerNode* node = prev; node; node = node->next()) {
if (node->unknown_compiled_match(cb)) {
node->update(where);
return;
}
prev = node;
}
prev->set_next(new (this) unknown_compiledNode(cb, where));
}
}
void ThreadProfiler::vm_update(TickPosition where) {
vm_update(NULL, where);
}
void ThreadProfiler::vm_update(const char* name, TickPosition where) {
int index = entry(vmNode::hash(name));
assert(index >= 0, "Must be positive");
// Note that we call strdup below since the symbol may be resource allocated
if (!table[index]) {
table[index] = new (this) vmNode(name, where);
} else {
ProfilerNode* prev = table[index];
for(ProfilerNode* node = prev; node; node = node->next()) {
if (((vmNode *)node)->vm_match(name)) {
node->update(where);
return;
}
prev = node;
}
prev->set_next(new (this) vmNode(name, where));
}
}
class FlatProfilerTask : public PeriodicTask {
public:
FlatProfilerTask(int interval_time) : PeriodicTask(interval_time) {}
void task();
};
void FlatProfiler::record_vm_operation() {
if (Universe::heap()->is_gc_active()) {
FlatProfiler::received_gc_ticks += 1;
return;
}
if (DeoptimizationMarker::is_active()) {
FlatProfiler::deopt_ticks += 1;
return;
}
FlatProfiler::vm_operation_ticks += 1;
}
void FlatProfiler::record_vm_tick() {
// Profile the VM Thread itself if needed
// This is done without getting the Threads_lock and we can go deep
// inside Safepoint, etc.
if( ProfileVM ) {
ResourceMark rm;
ExtendedPC epc;
const char *name = NULL;
char buf[256];
buf[0] = '\0';
vm_thread_profiler->inc_thread_ticks();
// Get a snapshot of a current VMThread pc (and leave it running!)
// The call may fail if, for instance the VM thread is interrupted while
// holding the Interrupt_lock or for other reasons.
epc = os::get_thread_pc(VMThread::vm_thread());
if(epc.pc() != NULL) {
if (os::dll_address_to_function_name(epc.pc(), buf, sizeof(buf), NULL)) {
name = buf;
}
}
if (name != NULL) {
vm_thread_profiler->vm_update(name, tp_native);
}
}
}
void FlatProfiler::record_thread_ticks() {
int maxthreads, suspendedthreadcount;
JavaThread** threadsList;
bool interval_expired = false;
if (ProfileIntervals &&
(FlatProfiler::received_ticks >= interval_ticks_previous + ProfileIntervalsTicks)) {
interval_expired = true;
interval_ticks_previous = FlatProfiler::received_ticks;
}
// Try not to wait for the Threads_lock
if (Threads_lock->try_lock()) {
{ // Threads_lock scope
maxthreads = Threads::number_of_threads();
threadsList = NEW_C_HEAP_ARRAY(JavaThread *, maxthreads, mtInternal);
suspendedthreadcount = 0;
for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
if (tp->is_Compiler_thread()) {
// Only record ticks for active compiler threads
CompilerThread* cthread = (CompilerThread*)tp;
if (cthread->task() != NULL) {
// The compiler is active. If we need to access any of the fields
// of the compiler task we should suspend the CompilerThread first.
FlatProfiler::compiler_ticks += 1;
continue;
}
}
// First externally suspend all threads by marking each for
// external suspension - so it will stop at its next transition
// Then do a safepoint
ThreadProfiler* pp = tp->get_thread_profiler();
if (pp != NULL && pp->engaged) {
MutexLockerEx ml(tp->SR_lock(), Mutex::_no_safepoint_check_flag);
if (!tp->is_external_suspend() && !tp->is_exiting()) {
tp->set_external_suspend();
threadsList[suspendedthreadcount++] = tp;
}
}
}
Threads_lock->unlock();
}
// Suspend each thread. This call should just return
// for any threads that have already self-suspended
// Net result should be one safepoint
for (int j = 0; j < suspendedthreadcount; j++) {
JavaThread *tp = threadsList[j];
if (tp) {
tp->java_suspend();
}
}
// We are responsible for resuming any thread on this list
for (int i = 0; i < suspendedthreadcount; i++) {
JavaThread *tp = threadsList[i];
if (tp) {
ThreadProfiler* pp = tp->get_thread_profiler();
if (pp != NULL && pp->engaged) {
HandleMark hm;
FlatProfiler::delivered_ticks += 1;
if (interval_expired) {
FlatProfiler::interval_record_thread(pp);
}
// This is the place where we check to see if a user thread is
// blocked waiting for compilation.
if (tp->blocked_on_compilation()) {
pp->compiler_ticks += 1;
pp->interval_data_ref()->inc_compiling();
} else {
pp->record_tick(tp);
}
}
MutexLocker ml(Threads_lock);
tp->java_resume();
}
}
if (interval_expired) {
FlatProfiler::interval_print();
FlatProfiler::interval_reset();
}
FREE_C_HEAP_ARRAY(JavaThread *, threadsList);
} else {
// Couldn't get the threads lock, just record that rather than blocking
FlatProfiler::threads_lock_ticks += 1;
}
}
void FlatProfilerTask::task() {
FlatProfiler::received_ticks += 1;
if (ProfileVM) {
FlatProfiler::record_vm_tick();
}
VM_Operation* op = VMThread::vm_operation();
if (op != NULL) {
FlatProfiler::record_vm_operation();
if (SafepointSynchronize::is_at_safepoint()) {
return;
}
}
FlatProfiler::record_thread_ticks();
}
void ThreadProfiler::record_interpreted_tick(JavaThread* thread, frame fr, TickPosition where, int* ticks) {
FlatProfiler::all_int_ticks++;
if (!FlatProfiler::full_profile()) {
return;
}
if (!fr.is_interpreted_frame_valid(thread)) {
// tick came at a bad time
interpreter_ticks += 1;
FlatProfiler::interpreter_ticks += 1;
return;
}
// The frame has been fully validated so we can trust the method and bci
Method* method = *fr.interpreter_frame_method_addr();
interpreted_update(method, where);
// update byte code table
InterpreterCodelet* desc = Interpreter::codelet_containing(fr.pc());
if (desc != NULL && desc->bytecode() >= 0) {
ticks[desc->bytecode()]++;
}
}
void ThreadProfiler::record_compiled_tick(JavaThread* thread, frame fr, TickPosition where) {
const char *name = NULL;
TickPosition localwhere = where;
FlatProfiler::all_comp_ticks++;
if (!FlatProfiler::full_profile()) return;
CodeBlob* cb = fr.cb();
// For runtime stubs, record as native rather than as compiled
if (cb->is_runtime_stub()) {
RegisterMap map(thread, false);
fr = fr.sender(&map);
cb = fr.cb();
localwhere = tp_native;
}
Method* method = (cb->is_nmethod()) ? ((nmethod *)cb)->method() :
(Method*)NULL;
if (method == NULL) {
if (cb->is_runtime_stub())
runtime_stub_update(cb, name, localwhere);
else
unknown_compiled_update(cb, localwhere);
}
else {
if (method->is_native()) {
stub_update(method, name, localwhere);
} else {
compiled_update(method, localwhere);
}
}
}
extern "C" void find(int x);
void ThreadProfiler::record_tick_for_running_frame(JavaThread* thread, frame fr) {
// The tick happened in real code -> non VM code
if (fr.is_interpreted_frame()) {
interval_data_ref()->inc_interpreted();
record_interpreted_tick(thread, fr, tp_code, FlatProfiler::bytecode_ticks);
return;
}
if (CodeCache::contains(fr.pc())) {
interval_data_ref()->inc_compiled();
PCRecorder::record(fr.pc());
record_compiled_tick(thread, fr, tp_code);
return;
}
if (VtableStubs::stub_containing(fr.pc()) != NULL) {
unknown_ticks_array[ut_vtable_stubs] += 1;
return;
}
frame caller = fr.profile_find_Java_sender_frame(thread);
if (caller.sp() != NULL && caller.pc() != NULL) {
record_tick_for_calling_frame(thread, caller);
return;
}
unknown_ticks_array[ut_running_frame] += 1;
FlatProfiler::unknown_ticks += 1;
}
void ThreadProfiler::record_tick_for_calling_frame(JavaThread* thread, frame fr) {
// The tick happened in VM code
interval_data_ref()->inc_native();
if (fr.is_interpreted_frame()) {
record_interpreted_tick(thread, fr, tp_native, FlatProfiler::bytecode_ticks_stub);
return;
}
if (CodeCache::contains(fr.pc())) {
record_compiled_tick(thread, fr, tp_native);
return;
}
frame caller = fr.profile_find_Java_sender_frame(thread);
if (caller.sp() != NULL && caller.pc() != NULL) {
record_tick_for_calling_frame(thread, caller);
return;
}
unknown_ticks_array[ut_calling_frame] += 1;
FlatProfiler::unknown_ticks += 1;
}
void ThreadProfiler::record_tick(JavaThread* thread) {
FlatProfiler::all_ticks++;
thread_ticks += 1;
// Here's another way to track global state changes.
// When the class loader starts it marks the ThreadProfiler to tell it it is in the class loader
// and we check that here.
// This is more direct, and more than one thread can be in the class loader at a time,
// but it does mean the class loader has to know about the profiler.
if (region_flag[ThreadProfilerMark::classLoaderRegion]) {
class_loader_ticks += 1;
FlatProfiler::class_loader_ticks += 1;
return;
} else if (region_flag[ThreadProfilerMark::extraRegion]) {
extra_ticks += 1;
FlatProfiler::extra_ticks += 1;
return;
}
// Note that the WatcherThread can now stop for safepoints
uint32_t debug_bits = 0;
if (!thread->wait_for_ext_suspend_completion(SuspendRetryCount,
SuspendRetryDelay, &debug_bits)) {
unknown_ticks_array[ut_unknown_thread_state] += 1;
FlatProfiler::unknown_ticks += 1;
return;
}
frame fr;
switch (thread->thread_state()) {
case _thread_in_native:
case _thread_in_native_trans:
case _thread_in_vm:
case _thread_in_vm_trans:
if (thread->profile_last_Java_frame(&fr)) {
if (fr.is_runtime_frame()) {
RegisterMap map(thread, false);
fr = fr.sender(&map);
}
record_tick_for_calling_frame(thread, fr);
} else {
unknown_ticks_array[ut_no_last_Java_frame] += 1;
FlatProfiler::unknown_ticks += 1;
}
break;
// handle_special_runtime_exit_condition self-suspends threads in Java
case _thread_in_Java:
case _thread_in_Java_trans:
if (thread->profile_last_Java_frame(&fr)) {
if (fr.is_safepoint_blob_frame()) {
RegisterMap map(thread, false);
fr = fr.sender(&map);
}
record_tick_for_running_frame(thread, fr);
} else {
unknown_ticks_array[ut_no_last_Java_frame] += 1;
FlatProfiler::unknown_ticks += 1;
}
break;
case _thread_blocked:
case _thread_blocked_trans:
if (thread->osthread() && thread->osthread()->get_state() == RUNNABLE) {
if (thread->profile_last_Java_frame(&fr)) {
if (fr.is_safepoint_blob_frame()) {
RegisterMap map(thread, false);
fr = fr.sender(&map);
record_tick_for_running_frame(thread, fr);
} else {
record_tick_for_calling_frame(thread, fr);
}
} else {
unknown_ticks_array[ut_no_last_Java_frame] += 1;
FlatProfiler::unknown_ticks += 1;
}
} else {
blocked_ticks += 1;
FlatProfiler::blocked_ticks += 1;
}
break;
case _thread_uninitialized:
case _thread_new:
// not used, included for completeness
case _thread_new_trans:
unknown_ticks_array[ut_no_last_Java_frame] += 1;
FlatProfiler::unknown_ticks += 1;
break;
default:
unknown_ticks_array[ut_unknown_thread_state] += 1;
FlatProfiler::unknown_ticks += 1;
break;
}
return;
}
void ThreadProfiler::engage() {
engaged = true;
timer.start();
}
void ThreadProfiler::disengage() {
engaged = false;
timer.stop();
}
void ThreadProfiler::initialize() {
for (int index = 0; index < table_size; index++) {
table[index] = NULL;
}
thread_ticks = 0;
blocked_ticks = 0;
compiler_ticks = 0;
interpreter_ticks = 0;
for (int ut = 0; ut < ut_end; ut += 1) {
unknown_ticks_array[ut] = 0;
}
region_flag[ThreadProfilerMark::classLoaderRegion] = false;
class_loader_ticks = 0;
region_flag[ThreadProfilerMark::extraRegion] = false;
extra_ticks = 0;
timer.start();
interval_data_ref()->reset();
}
void ThreadProfiler::reset() {
timer.stop();
if (table != NULL) {
for (int index = 0; index < table_size; index++) {
ProfilerNode* n = table[index];
if (n != NULL) {
delete n;
}
}
}
initialize();
}
void FlatProfiler::allocate_table() {
{ // Bytecode table
bytecode_ticks = NEW_C_HEAP_ARRAY(int, Bytecodes::number_of_codes, mtInternal);
bytecode_ticks_stub = NEW_C_HEAP_ARRAY(int, Bytecodes::number_of_codes, mtInternal);
for(int index = 0; index < Bytecodes::number_of_codes; index++) {
bytecode_ticks[index] = 0;
bytecode_ticks_stub[index] = 0;
}
}
if (ProfilerRecordPC) PCRecorder::init();
interval_data = NEW_C_HEAP_ARRAY(IntervalData, interval_print_size, mtInternal);
FlatProfiler::interval_reset();
}
void FlatProfiler::engage(JavaThread* mainThread, bool fullProfile) {
full_profile_flag = fullProfile;
if (bytecode_ticks == NULL) {
allocate_table();
}
if(ProfileVM && (vm_thread_profiler == NULL)){
vm_thread_profiler = new ThreadProfiler();
}
if (task == NULL) {
task = new FlatProfilerTask(WatcherThread::delay_interval);
task->enroll();
}
timer.start();
if (mainThread != NULL) {
// When mainThread was created, it might not have a ThreadProfiler
ThreadProfiler* pp = mainThread->get_thread_profiler();
if (pp == NULL) {
mainThread->set_thread_profiler(new ThreadProfiler());
} else {
pp->reset();
}
mainThread->get_thread_profiler()->engage();
}
// This is where we would assign thread_profiler
// if we wanted only one thread_profiler for all threads.
thread_profiler = NULL;
}
void FlatProfiler::disengage() {
if (!task) {
return;
}
timer.stop();
task->disenroll();
delete task;
task = NULL;
if (thread_profiler != NULL) {
thread_profiler->disengage();
} else {
MutexLocker tl(Threads_lock);
for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
ThreadProfiler* pp = tp->get_thread_profiler();
if (pp != NULL) {
pp->disengage();
}
}
}
}
void FlatProfiler::reset() {
if (task) {
disengage();
}
class_loader_ticks = 0;
extra_ticks = 0;
received_gc_ticks = 0;
vm_operation_ticks = 0;
compiler_ticks = 0;
deopt_ticks = 0;
interpreter_ticks = 0;
blocked_ticks = 0;
unknown_ticks = 0;
received_ticks = 0;
delivered_ticks = 0;
timer.stop();
}
bool FlatProfiler::is_active() {
return task != NULL;
}
void FlatProfiler::print_byte_code_statistics() {
GrowableArray <ProfilerNode*>* array = new GrowableArray<ProfilerNode*>(200);
tty->print_cr(" Bytecode ticks:");
for (int index = 0; index < Bytecodes::number_of_codes; index++) {
if (FlatProfiler::bytecode_ticks[index] > 0 || FlatProfiler::bytecode_ticks_stub[index] > 0) {
tty->print_cr(" %4d %4d = %s",
FlatProfiler::bytecode_ticks[index],
FlatProfiler::bytecode_ticks_stub[index],
Bytecodes::name( (Bytecodes::Code) index));
}
}
tty->cr();
}
void print_ticks(const char* title, int ticks, int total) {
if (ticks > 0) {
tty->print("%5.1f%% %5d", ticks * 100.0 / total, ticks);
tty->fill_to(col3);
tty->print("%s", title);
tty->cr();
}
}
void ThreadProfiler::print(const char* thread_name) {
ResourceMark rm;
MutexLocker ppl(ProfilePrint_lock);
int index = 0; // Declared outside for loops for portability
if (table == NULL) {
return;
}
if (thread_ticks <= 0) {
return;
}
const char* title = "too soon to tell";
double secs = timer.seconds();
GrowableArray <ProfilerNode*>* array = new GrowableArray<ProfilerNode*>(200);
for(index = 0; index < table_size; index++) {
for(ProfilerNode* node = table[index]; node; node = node->next())
array->append(node);
}
array->sort(&ProfilerNode::compare);
// compute total (sanity check)
int active =
class_loader_ticks +
compiler_ticks +
interpreter_ticks +
unknown_ticks();
for (index = 0; index < array->length(); index++) {
active += array->at(index)->ticks.total();
}
int total = active + blocked_ticks;
tty->cr();
tty->print_cr("Flat profile of %3.2f secs (%d total ticks): %s", secs, total, thread_name);
if (total != thread_ticks) {
print_ticks("Lost ticks", thread_ticks-total, thread_ticks);
}
tty->cr();
// print interpreted methods
tick_counter interpreted_ticks;
bool has_interpreted_ticks = false;
int print_count = 0;
for (index = 0; index < array->length(); index++) {
ProfilerNode* n = array->at(index);
if (n->is_interpreted()) {
interpreted_ticks.add(&n->ticks);
if (!has_interpreted_ticks) {
interpretedNode::print_title(tty);
has_interpreted_ticks = true;
}
if (print_count++ < ProfilerNumberOfInterpretedMethods) {
n->print(tty, active);
}
}
}
if (has_interpreted_ticks) {
if (print_count <= ProfilerNumberOfInterpretedMethods) {
title = "Total interpreted";
} else {
title = "Total interpreted (including elided)";
}
interpretedNode::print_total(tty, &interpreted_ticks, active, title);
tty->cr();
}
// print compiled methods
tick_counter compiled_ticks;
bool has_compiled_ticks = false;
print_count = 0;
for (index = 0; index < array->length(); index++) {
ProfilerNode* n = array->at(index);
if (n->is_compiled()) {
compiled_ticks.add(&n->ticks);
if (!has_compiled_ticks) {
compiledNode::print_title(tty);
has_compiled_ticks = true;
}
if (print_count++ < ProfilerNumberOfCompiledMethods) {
n->print(tty, active);
}
}
}
if (has_compiled_ticks) {
if (print_count <= ProfilerNumberOfCompiledMethods) {
title = "Total compiled";
} else {
title = "Total compiled (including elided)";
}
compiledNode::print_total(tty, &compiled_ticks, active, title);
tty->cr();
}
// print stub methods
tick_counter stub_ticks;
bool has_stub_ticks = false;
print_count = 0;
for (index = 0; index < array->length(); index++) {
ProfilerNode* n = array->at(index);
if (n->is_stub()) {
stub_ticks.add(&n->ticks);
if (!has_stub_ticks) {
stubNode::print_title(tty);
has_stub_ticks = true;
}
if (print_count++ < ProfilerNumberOfStubMethods) {
n->print(tty, active);
}
}
}
if (has_stub_ticks) {
if (print_count <= ProfilerNumberOfStubMethods) {
title = "Total stub";
} else {
title = "Total stub (including elided)";
}
stubNode::print_total(tty, &stub_ticks, active, title);
tty->cr();
}
// print runtime stubs
tick_counter runtime_stub_ticks;
bool has_runtime_stub_ticks = false;
print_count = 0;
for (index = 0; index < array->length(); index++) {
ProfilerNode* n = array->at(index);
if (n->is_runtime_stub()) {
runtime_stub_ticks.add(&n->ticks);
if (!has_runtime_stub_ticks) {
runtimeStubNode::print_title(tty);
has_runtime_stub_ticks = true;
}
if (print_count++ < ProfilerNumberOfRuntimeStubNodes) {
n->print(tty, active);
}
}
}
if (has_runtime_stub_ticks) {
if (print_count <= ProfilerNumberOfRuntimeStubNodes) {
title = "Total runtime stubs";
} else {
title = "Total runtime stubs (including elided)";
}
runtimeStubNode::print_total(tty, &runtime_stub_ticks, active, title);
tty->cr();
}
if (blocked_ticks + class_loader_ticks + interpreter_ticks + compiler_ticks + unknown_ticks() != 0) {
tty->fill_to(col1);
tty->print_cr("Thread-local ticks:");
print_ticks("Blocked (of total)", blocked_ticks, total);
print_ticks("Class loader", class_loader_ticks, active);
print_ticks("Extra", extra_ticks, active);
print_ticks("Interpreter", interpreter_ticks, active);
print_ticks("Compilation", compiler_ticks, active);
print_ticks("Unknown: vtable stubs", unknown_ticks_array[ut_vtable_stubs], active);
print_ticks("Unknown: null method", unknown_ticks_array[ut_null_method], active);
print_ticks("Unknown: running frame", unknown_ticks_array[ut_running_frame], active);
print_ticks("Unknown: calling frame", unknown_ticks_array[ut_calling_frame], active);
print_ticks("Unknown: no pc", unknown_ticks_array[ut_no_pc], active);
print_ticks("Unknown: no last frame", unknown_ticks_array[ut_no_last_Java_frame], active);
print_ticks("Unknown: thread_state", unknown_ticks_array[ut_unknown_thread_state], active);
tty->cr();
}
if (WizardMode) {
tty->print_cr("Node area used: %dKb", (area_top - area_bottom) / 1024);
}
reset();
}
/*
ThreadProfiler::print_unknown(){
if (table == NULL) {
return;
}
if (thread_ticks <= 0) {
return;
}
} */
void FlatProfiler::print(int unused) {
ResourceMark rm;
if (thread_profiler != NULL) {
thread_profiler->print("All threads");
} else {
MutexLocker tl(Threads_lock);
for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
ThreadProfiler* pp = tp->get_thread_profiler();
if (pp != NULL) {
pp->print(tp->get_thread_name());
}
}
}
if (ProfilerPrintByteCodeStatistics) {
print_byte_code_statistics();
}
if (non_method_ticks() > 0) {
tty->cr();
tty->print_cr("Global summary of %3.2f seconds:", timer.seconds());
print_ticks("Received ticks", received_ticks, received_ticks);
print_ticks("Received GC ticks", received_gc_ticks, received_ticks);
print_ticks("Compilation", compiler_ticks, received_ticks);
print_ticks("Deoptimization", deopt_ticks, received_ticks);
print_ticks("Other VM operations", vm_operation_ticks, received_ticks);
#ifndef PRODUCT
print_ticks("Blocked ticks", blocked_ticks, received_ticks);
print_ticks("Threads_lock blocks", threads_lock_ticks, received_ticks);
print_ticks("Delivered ticks", delivered_ticks, received_ticks);
print_ticks("All ticks", all_ticks, received_ticks);
#endif
print_ticks("Class loader", class_loader_ticks, received_ticks);
print_ticks("Extra ", extra_ticks, received_ticks);
print_ticks("Interpreter", interpreter_ticks, received_ticks);
print_ticks("Unknown code", unknown_ticks, received_ticks);
}
PCRecorder::print();
if(ProfileVM){
tty->cr();
vm_thread_profiler->print("VM Thread");
}
}
void IntervalData::print_header(outputStream* st) {
st->print("i/c/n/g");
}
void IntervalData::print_data(outputStream* st) {
st->print("%d/%d/%d/%d", interpreted(), compiled(), native(), compiling());
}
void FlatProfiler::interval_record_thread(ThreadProfiler* tp) {
IntervalData id = tp->interval_data();
int total = id.total();
tp->interval_data_ref()->reset();
// Insertion sort the data, if it's relevant.
for (int i = 0; i < interval_print_size; i += 1) {
if (total > interval_data[i].total()) {
for (int j = interval_print_size - 1; j > i; j -= 1) {
interval_data[j] = interval_data[j-1];
}
interval_data[i] = id;
break;
}
}
}
void FlatProfiler::interval_print() {
if ((interval_data[0].total() > 0)) {
tty->stamp();
tty->print("\t");
IntervalData::print_header(tty);
for (int i = 0; i < interval_print_size; i += 1) {
if (interval_data[i].total() > 0) {
tty->print("\t");
interval_data[i].print_data(tty);
}
}
tty->cr();
}
}
void FlatProfiler::interval_reset() {
for (int i = 0; i < interval_print_size; i += 1) {
interval_data[i].reset();
}
}
void ThreadProfiler::oops_do(OopClosure* f) {
if (table == NULL) return;
for(int index = 0; index < table_size; index++) {
for(ProfilerNode* node = table[index]; node; node = node->next())
node->oops_do(f);
}
}
void FlatProfiler::oops_do(OopClosure* f) {
if (thread_profiler != NULL) {
thread_profiler->oops_do(f);
} else {
for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
ThreadProfiler* pp = tp->get_thread_profiler();
if (pp != NULL) {
pp->oops_do(f);
}
}
}
}