jdk-24/test/jdk/java/foreign/callarranger/TestRISCV64CallArranger.java
Jorn Vernee 32ac72c3d3 8312522: Implementation of Foreign Function & Memory API
Co-authored-by: Maurizio Cimadamore <mcimadamore@openjdk.org>
Co-authored-by: Jorn Vernee <jvernee@openjdk.org>
Co-authored-by: Per Minborg <pminborg@openjdk.org>
Reviewed-by: dholmes, psandoz, mcimadamore, alanb
2023-10-12 19:50:08 +00:00

523 lines
23 KiB
Java

/*
* Copyright (c) 2020, 2023, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2023, Institute of Software, Chinese Academy of Sciences.
* All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
/*
* @test
* @requires sun.arch.data.model == "64"
* @compile platform/PlatformLayouts.java
* @modules java.base/jdk.internal.foreign
* java.base/jdk.internal.foreign.abi
* java.base/jdk.internal.foreign.abi.riscv64
* java.base/jdk.internal.foreign.abi.riscv64.linux
* @build CallArrangerTestBase
* @run testng TestRISCV64CallArranger
*/
import java.lang.foreign.FunctionDescriptor;
import java.lang.foreign.MemoryLayout;
import java.lang.foreign.MemorySegment;
import jdk.internal.foreign.abi.Binding;
import jdk.internal.foreign.abi.CallingSequence;
import jdk.internal.foreign.abi.LinkerOptions;
import jdk.internal.foreign.abi.riscv64.linux.LinuxRISCV64CallArranger;
import jdk.internal.foreign.abi.StubLocations;
import jdk.internal.foreign.abi.VMStorage;
import org.testng.annotations.DataProvider;
import org.testng.annotations.Test;
import java.lang.foreign.ValueLayout;
import java.lang.invoke.MethodType;
import static java.lang.foreign.Linker.Option.firstVariadicArg;
import static java.lang.foreign.ValueLayout.ADDRESS;
import static jdk.internal.foreign.abi.Binding.*;
import static jdk.internal.foreign.abi.riscv64.RISCV64Architecture.*;
import static jdk.internal.foreign.abi.riscv64.RISCV64Architecture.Regs.*;
import static platform.PlatformLayouts.RISCV64.*;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertFalse;
import static org.testng.Assert.assertTrue;
public class TestRISCV64CallArranger extends CallArrangerTestBase {
private static final short STACK_SLOT_SIZE = 8;
private static final VMStorage TARGET_ADDRESS_STORAGE = StubLocations.TARGET_ADDRESS.storage(StorageType.PLACEHOLDER);
private static final VMStorage RETURN_BUFFER_STORAGE = StubLocations.RETURN_BUFFER.storage(StorageType.PLACEHOLDER);
@Test
public void testEmpty() {
MethodType mt = MethodType.methodType(void.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid();
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testInteger() {
MethodType mt = MethodType.methodType(void.class,
byte.class, short.class, int.class, int.class,
int.class, int.class, long.class, int.class,
int.class, byte.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(
C_CHAR, C_SHORT, C_INT, C_INT,
C_INT, C_INT, C_LONG, C_INT,
C_INT, C_CHAR);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ cast(byte.class, int.class), vmStore(x10, int.class) },
{ cast(short.class, int.class), vmStore(x11, int.class) },
{ vmStore(x12, int.class) },
{ vmStore(x13, int.class) },
{ vmStore(x14, int.class) },
{ vmStore(x15, int.class) },
{ vmStore(x16, long.class) },
{ vmStore(x17, int.class) },
{ vmStore(stackStorage(STACK_SLOT_SIZE, 0), int.class) },
{ cast(byte.class, int.class), vmStore(stackStorage(STACK_SLOT_SIZE, 8), int.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testTwoIntTwoFloat() {
MethodType mt = MethodType.methodType(void.class, int.class, int.class, float.class, float.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT, C_INT, C_FLOAT, C_FLOAT);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(x10, int.class) },
{ vmStore(x11, int.class) },
{ vmStore(f10, float.class) },
{ vmStore(f11, float.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test(dataProvider = "structs")
public void testStruct(MemoryLayout struct, Binding[] expectedBindings) {
MethodType mt = MethodType.methodType(void.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
expectedBindings
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@DataProvider
public static Object[][] structs() {
MemoryLayout struct1 = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT);
return new Object[][]{
// struct s { void* a; double c; };
{
MemoryLayout.structLayout(C_POINTER, C_DOUBLE),
new Binding[]{
dup(),
bufferLoad(0, long.class), vmStore(x10, long.class),
bufferLoad(8, long.class), vmStore(x11, long.class)
}
},
// struct s { int32_t a, b; double c; };
{ MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE),
new Binding[]{
dup(),
// s.a & s.b
bufferLoad(0, long.class), vmStore(x10, long.class),
// s.c
bufferLoad(8, long.class), vmStore(x11, long.class)
}
},
// struct s { int32_t a, b; double c; int32_t d; };
{ struct1,
new Binding[]{
copy(struct1),
unboxAddress(),
vmStore(x10, long.class)
}
},
// struct s { int32_t a[1]; float b[1]; };
{ MemoryLayout.structLayout(MemoryLayout.sequenceLayout(1, C_INT),
MemoryLayout.sequenceLayout(1, C_FLOAT)),
new Binding[]{
dup(),
// s.a[0]
bufferLoad(0, int.class), vmStore(x10, int.class),
// s.b[0]
bufferLoad(4, float.class), vmStore(f10, float.class)
}
},
// struct s { float a; /* padding */ double b };
{ MemoryLayout.structLayout(C_FLOAT, MemoryLayout.paddingLayout(4), C_DOUBLE),
new Binding[]{
dup(),
// s.a
bufferLoad(0, float.class), vmStore(f10, float.class),
// s.b
bufferLoad(8, double.class), vmStore(f11, double.class),
}
}
};
}
@Test
public void testStructFA1() {
MemoryLayout fa = MemoryLayout.structLayout(C_FLOAT, C_FLOAT);
MethodType mt = MethodType.methodType(MemorySegment.class, float.class, int.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.of(fa, C_FLOAT, C_INT, fa);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) },
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(f10, float.class) },
{ vmStore(x10, int.class) },
{
dup(),
bufferLoad(0, float.class),
vmStore(f11, float.class),
bufferLoad(4, float.class),
vmStore(f12, float.class)
}
});
checkReturnBindings(callingSequence, new Binding[]{
allocate(fa),
dup(),
vmLoad(f10, float.class),
bufferStore(0, float.class),
dup(),
vmLoad(f11, float.class),
bufferStore(4, float.class)
});
}
@Test
public void testStructFA2() {
MemoryLayout fa = MemoryLayout.structLayout(C_FLOAT, MemoryLayout.paddingLayout(4), C_DOUBLE);
MethodType mt = MethodType.methodType(MemorySegment.class, float.class, int.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.of(fa, C_FLOAT, C_INT, fa);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) },
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(f10, float.class) },
{ vmStore(x10, int.class) },
{
dup(),
bufferLoad(0, float.class),
vmStore(f11, float.class),
bufferLoad(8, double.class),
vmStore(f12, double.class)
}
});
checkReturnBindings(callingSequence, new Binding[]{
allocate(fa),
dup(),
vmLoad(f10, float.class),
bufferStore(0, float.class),
dup(),
vmLoad(f11, double.class),
bufferStore(8, double.class)
});
}
@Test
void spillFloatingPointStruct() {
MemoryLayout struct = MemoryLayout.structLayout(C_FLOAT, C_FLOAT);
// void f(float, float, float, float, float, float, float, struct)
MethodType mt = MethodType.methodType(void.class, float.class, float.class,
float.class, float.class, float.class,
float.class, float.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_FLOAT, C_FLOAT, C_FLOAT, C_FLOAT,
C_FLOAT, C_FLOAT, C_FLOAT, struct);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(f10, float.class) },
{ vmStore(f11, float.class) },
{ vmStore(f12, float.class) },
{ vmStore(f13, float.class) },
{ vmStore(f14, float.class) },
{ vmStore(f15, float.class) },
{ vmStore(f16, float.class) },
{
bufferLoad(0, long.class),
vmStore(x10, long.class)
}
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testStructBoth() {
MemoryLayout struct = MemoryLayout.structLayout(C_INT, C_FLOAT);
MethodType mt = MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class, MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(struct, struct, struct);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{
dup(),
bufferLoad(0, int.class),
vmStore(x10, int.class),
bufferLoad(4, float.class),
vmStore(f10, float.class)
},
{
dup(),
bufferLoad(0, int.class),
vmStore(x11, int.class),
bufferLoad(4, float.class),
vmStore(f11, float.class)
},
{
dup(),
bufferLoad(0, int.class),
vmStore(x12, int.class),
bufferLoad(4, float.class),
vmStore(f12, float.class)
}
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testStructStackSpill() {
// A large (> 16 byte) struct argument that is spilled to the
// stack should be passed as a pointer to a copy and occupy one
// stack slot.
MemoryLayout struct = MemoryLayout.structLayout(C_INT, C_INT, C_DOUBLE, C_INT);
MethodType mt = MethodType.methodType(
void.class, MemorySegment.class, MemorySegment.class, int.class, int.class,
int.class, int.class, int.class, int.class, MemorySegment.class, int.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(
struct, struct, C_INT, C_INT, C_INT, C_INT, C_INT, C_INT, struct, C_INT);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ copy(struct), unboxAddress(), vmStore(x10, long.class) },
{ copy(struct), unboxAddress(), vmStore(x11, long.class) },
{ vmStore(x12, int.class) },
{ vmStore(x13, int.class) },
{ vmStore(x14, int.class) },
{ vmStore(x15, int.class) },
{ vmStore(x16, int.class) },
{ vmStore(x17, int.class) },
{ copy(struct), unboxAddress(), vmStore(stackStorage(STACK_SLOT_SIZE, 0), long.class) },
{ vmStore(stackStorage(STACK_SLOT_SIZE, 8), int.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testVarArgsInRegs() {
MethodType mt = MethodType.methodType(void.class, int.class, int.class, float.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT, C_INT, C_FLOAT);
FunctionDescriptor fdExpected = FunctionDescriptor.ofVoid(ADDRESS, C_INT, C_INT, C_FLOAT);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false, LinkerOptions.forDowncall(fd, firstVariadicArg(1)));
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fdExpected);
// This is identical to the non-variadic calling sequence
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(x10, int.class) },
{ vmStore(x11, int.class) },
{ vmStore(x12, float.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testVarArgsLong() {
MethodType mt = MethodType.methodType(void.class, int.class, int.class, int.class, double.class,
double.class, long.class, long.class, int.class,
double.class, double.class, long.class);
FunctionDescriptor fd = FunctionDescriptor.ofVoid(C_INT, C_INT, C_INT, C_DOUBLE, C_DOUBLE,
C_LONG, C_LONG, C_INT, C_DOUBLE,
C_DOUBLE, C_LONG);
FunctionDescriptor fdExpected = FunctionDescriptor.ofVoid(ADDRESS, C_INT, C_INT, C_INT, C_DOUBLE,
C_DOUBLE, C_LONG, C_LONG, C_INT,
C_DOUBLE, C_DOUBLE, C_LONG);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false, LinkerOptions.forDowncall(fd, firstVariadicArg(1)));
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fdExpected);
// This is identical to the non-variadic calling sequence
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ vmStore(x10, int.class) },
{ vmStore(x11, int.class) },
{ vmStore(x12, int.class) },
{ vmStore(x13, double.class) },
{ vmStore(x14, double.class) },
{ vmStore(x15, long.class) },
{ vmStore(x16, long.class) },
{ vmStore(x17, int.class) },
{ vmStore(stackStorage(STACK_SLOT_SIZE, 0), double.class) },
{ vmStore(stackStorage(STACK_SLOT_SIZE, 8), double.class) },
{ vmStore(stackStorage(STACK_SLOT_SIZE, 16), long.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testReturnStruct1() {
MemoryLayout struct = MemoryLayout.structLayout(C_LONG, C_LONG, C_FLOAT);
MethodType mt = MethodType.methodType(MemorySegment.class, int.class, int.class, float.class);
FunctionDescriptor fd = FunctionDescriptor.of(struct, C_INT, C_INT, C_FLOAT);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertTrue(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(),
MethodType.methodType(void.class, MemorySegment.class, MemorySegment.class,
int.class, int.class, float.class));
assertEquals(callingSequence.functionDesc(),
FunctionDescriptor.ofVoid(ADDRESS, C_POINTER, C_INT, C_INT, C_FLOAT));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) },
{ unboxAddress(), vmStore(x10, long.class) },
{ vmStore(x11, int.class) },
{ vmStore(x12, int.class) },
{ vmStore(f10, float.class) }
});
checkReturnBindings(callingSequence, new Binding[]{});
}
@Test
public void testReturnStruct2() {
MemoryLayout struct = MemoryLayout.structLayout(C_LONG, C_LONG);
MethodType mt = MethodType.methodType(MemorySegment.class);
FunctionDescriptor fd = FunctionDescriptor.of(struct);
LinuxRISCV64CallArranger.Bindings bindings = LinuxRISCV64CallArranger.getBindings(mt, fd, false);
assertFalse(bindings.isInMemoryReturn());
CallingSequence callingSequence = bindings.callingSequence();
assertEquals(callingSequence.callerMethodType(), mt.insertParameterTypes(0, MemorySegment.class, MemorySegment.class));
assertEquals(callingSequence.functionDesc(), fd.insertArgumentLayouts(0, ADDRESS, ADDRESS));
checkArgumentBindings(callingSequence, new Binding[][]{
{ unboxAddress(), vmStore(RETURN_BUFFER_STORAGE, long.class) },
{ unboxAddress(), vmStore(TARGET_ADDRESS_STORAGE, long.class) }
});
checkReturnBindings(callingSequence, new Binding[]{
allocate(struct),
dup(),
vmLoad(x10, long.class),
bufferStore(0, long.class),
dup(),
vmLoad(x11, long.class),
bufferStore(8, long.class)
});
}
}