5793b0633a
Use the memory input instead of the control input to find the membar. Reviewed-by: kvn, neliasso
2827 lines
110 KiB
C++
2827 lines
110 KiB
C++
/*
|
|
* Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 only, as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* version 2 for more details (a copy is included in the LICENSE file that
|
|
* accompanied this code).
|
|
*
|
|
* You should have received a copy of the GNU General Public License version
|
|
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
* or visit www.oracle.com if you need additional information or have any
|
|
* questions.
|
|
*
|
|
*/
|
|
|
|
#include "precompiled.hpp"
|
|
#include "compiler/compileLog.hpp"
|
|
#include "gc/shared/collectedHeap.inline.hpp"
|
|
#include "libadt/vectset.hpp"
|
|
#include "memory/universe.hpp"
|
|
#include "opto/addnode.hpp"
|
|
#include "opto/arraycopynode.hpp"
|
|
#include "opto/callnode.hpp"
|
|
#include "opto/castnode.hpp"
|
|
#include "opto/cfgnode.hpp"
|
|
#include "opto/compile.hpp"
|
|
#include "opto/convertnode.hpp"
|
|
#include "opto/graphKit.hpp"
|
|
#include "opto/intrinsicnode.hpp"
|
|
#include "opto/locknode.hpp"
|
|
#include "opto/loopnode.hpp"
|
|
#include "opto/macro.hpp"
|
|
#include "opto/memnode.hpp"
|
|
#include "opto/narrowptrnode.hpp"
|
|
#include "opto/node.hpp"
|
|
#include "opto/opaquenode.hpp"
|
|
#include "opto/phaseX.hpp"
|
|
#include "opto/rootnode.hpp"
|
|
#include "opto/runtime.hpp"
|
|
#include "opto/subnode.hpp"
|
|
#include "opto/subtypenode.hpp"
|
|
#include "opto/type.hpp"
|
|
#include "runtime/sharedRuntime.hpp"
|
|
#include "utilities/macros.hpp"
|
|
#include "utilities/powerOfTwo.hpp"
|
|
#if INCLUDE_G1GC
|
|
#include "gc/g1/g1ThreadLocalData.hpp"
|
|
#endif // INCLUDE_G1GC
|
|
#if INCLUDE_SHENANDOAHGC
|
|
#include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
|
|
#endif
|
|
|
|
|
|
//
|
|
// Replace any references to "oldref" in inputs to "use" with "newref".
|
|
// Returns the number of replacements made.
|
|
//
|
|
int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
|
|
int nreplacements = 0;
|
|
uint req = use->req();
|
|
for (uint j = 0; j < use->len(); j++) {
|
|
Node *uin = use->in(j);
|
|
if (uin == oldref) {
|
|
if (j < req)
|
|
use->set_req(j, newref);
|
|
else
|
|
use->set_prec(j, newref);
|
|
nreplacements++;
|
|
} else if (j >= req && uin == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
return nreplacements;
|
|
}
|
|
|
|
void PhaseMacroExpand::migrate_outs(Node *old, Node *target) {
|
|
assert(old != NULL, "sanity");
|
|
for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) {
|
|
Node* use = old->fast_out(i);
|
|
_igvn.rehash_node_delayed(use);
|
|
imax -= replace_input(use, old, target);
|
|
// back up iterator
|
|
--i;
|
|
}
|
|
assert(old->outcnt() == 0, "all uses must be deleted");
|
|
}
|
|
|
|
void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
|
|
// Copy debug information and adjust JVMState information
|
|
uint old_dbg_start = oldcall->tf()->domain()->cnt();
|
|
uint new_dbg_start = newcall->tf()->domain()->cnt();
|
|
int jvms_adj = new_dbg_start - old_dbg_start;
|
|
assert (new_dbg_start == newcall->req(), "argument count mismatch");
|
|
|
|
// SafePointScalarObject node could be referenced several times in debug info.
|
|
// Use Dict to record cloned nodes.
|
|
Dict* sosn_map = new Dict(cmpkey,hashkey);
|
|
for (uint i = old_dbg_start; i < oldcall->req(); i++) {
|
|
Node* old_in = oldcall->in(i);
|
|
// Clone old SafePointScalarObjectNodes, adjusting their field contents.
|
|
if (old_in != NULL && old_in->is_SafePointScalarObject()) {
|
|
SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
|
|
uint old_unique = C->unique();
|
|
Node* new_in = old_sosn->clone(sosn_map);
|
|
if (old_unique != C->unique()) { // New node?
|
|
new_in->set_req(0, C->root()); // reset control edge
|
|
new_in = transform_later(new_in); // Register new node.
|
|
}
|
|
old_in = new_in;
|
|
}
|
|
newcall->add_req(old_in);
|
|
}
|
|
|
|
// JVMS may be shared so clone it before we modify it
|
|
newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
|
|
for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
|
|
jvms->set_map(newcall);
|
|
jvms->set_locoff(jvms->locoff()+jvms_adj);
|
|
jvms->set_stkoff(jvms->stkoff()+jvms_adj);
|
|
jvms->set_monoff(jvms->monoff()+jvms_adj);
|
|
jvms->set_scloff(jvms->scloff()+jvms_adj);
|
|
jvms->set_endoff(jvms->endoff()+jvms_adj);
|
|
}
|
|
}
|
|
|
|
Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
|
|
Node* cmp;
|
|
if (mask != 0) {
|
|
Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
|
|
cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
|
|
} else {
|
|
cmp = word;
|
|
}
|
|
Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
|
|
IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
|
|
transform_later(iff);
|
|
|
|
// Fast path taken.
|
|
Node *fast_taken = transform_later(new IfFalseNode(iff));
|
|
|
|
// Fast path not-taken, i.e. slow path
|
|
Node *slow_taken = transform_later(new IfTrueNode(iff));
|
|
|
|
if (return_fast_path) {
|
|
region->init_req(edge, slow_taken); // Capture slow-control
|
|
return fast_taken;
|
|
} else {
|
|
region->init_req(edge, fast_taken); // Capture fast-control
|
|
return slow_taken;
|
|
}
|
|
}
|
|
|
|
//--------------------copy_predefined_input_for_runtime_call--------------------
|
|
void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
|
|
// Set fixed predefined input arguments
|
|
call->init_req( TypeFunc::Control, ctrl );
|
|
call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) );
|
|
call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
|
|
call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
|
|
call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
|
|
}
|
|
|
|
//------------------------------make_slow_call---------------------------------
|
|
CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
|
|
address slow_call, const char* leaf_name, Node* slow_path,
|
|
Node* parm0, Node* parm1, Node* parm2) {
|
|
|
|
// Slow-path call
|
|
CallNode *call = leaf_name
|
|
? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
|
|
: (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
|
|
|
|
// Slow path call has no side-effects, uses few values
|
|
copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
|
|
if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0);
|
|
if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1);
|
|
if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2);
|
|
copy_call_debug_info(oldcall, call);
|
|
call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
|
|
_igvn.replace_node(oldcall, call);
|
|
transform_later(call);
|
|
|
|
return call;
|
|
}
|
|
|
|
void PhaseMacroExpand::extract_call_projections(CallNode *call) {
|
|
_fallthroughproj = NULL;
|
|
_fallthroughcatchproj = NULL;
|
|
_ioproj_fallthrough = NULL;
|
|
_ioproj_catchall = NULL;
|
|
_catchallcatchproj = NULL;
|
|
_memproj_fallthrough = NULL;
|
|
_memproj_catchall = NULL;
|
|
_resproj = NULL;
|
|
for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
|
|
ProjNode *pn = call->fast_out(i)->as_Proj();
|
|
switch (pn->_con) {
|
|
case TypeFunc::Control:
|
|
{
|
|
// For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
|
|
_fallthroughproj = pn;
|
|
DUIterator_Fast jmax, j = pn->fast_outs(jmax);
|
|
const Node *cn = pn->fast_out(j);
|
|
if (cn->is_Catch()) {
|
|
ProjNode *cpn = NULL;
|
|
for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
|
|
cpn = cn->fast_out(k)->as_Proj();
|
|
assert(cpn->is_CatchProj(), "must be a CatchProjNode");
|
|
if (cpn->_con == CatchProjNode::fall_through_index)
|
|
_fallthroughcatchproj = cpn;
|
|
else {
|
|
assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
|
|
_catchallcatchproj = cpn;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case TypeFunc::I_O:
|
|
if (pn->_is_io_use)
|
|
_ioproj_catchall = pn;
|
|
else
|
|
_ioproj_fallthrough = pn;
|
|
break;
|
|
case TypeFunc::Memory:
|
|
if (pn->_is_io_use)
|
|
_memproj_catchall = pn;
|
|
else
|
|
_memproj_fallthrough = pn;
|
|
break;
|
|
case TypeFunc::Parms:
|
|
_resproj = pn;
|
|
break;
|
|
default:
|
|
assert(false, "unexpected projection from allocation node.");
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) {
|
|
BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
bs->eliminate_gc_barrier(this, p2x);
|
|
}
|
|
|
|
// Search for a memory operation for the specified memory slice.
|
|
static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
|
|
Node *orig_mem = mem;
|
|
Node *alloc_mem = alloc->in(TypeFunc::Memory);
|
|
const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
|
|
while (true) {
|
|
if (mem == alloc_mem || mem == start_mem ) {
|
|
return mem; // hit one of our sentinels
|
|
} else if (mem->is_MergeMem()) {
|
|
mem = mem->as_MergeMem()->memory_at(alias_idx);
|
|
} else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
|
|
Node *in = mem->in(0);
|
|
// we can safely skip over safepoints, calls, locks and membars because we
|
|
// already know that the object is safe to eliminate.
|
|
if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
|
|
return in;
|
|
} else if (in->is_Call()) {
|
|
CallNode *call = in->as_Call();
|
|
if (call->may_modify(tinst, phase)) {
|
|
assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
|
|
if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
|
|
return in;
|
|
}
|
|
}
|
|
mem = in->in(TypeFunc::Memory);
|
|
} else if (in->is_MemBar()) {
|
|
ArrayCopyNode* ac = NULL;
|
|
if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
|
|
assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
|
|
return ac;
|
|
}
|
|
mem = in->in(TypeFunc::Memory);
|
|
} else {
|
|
assert(false, "unexpected projection");
|
|
}
|
|
} else if (mem->is_Store()) {
|
|
const TypePtr* atype = mem->as_Store()->adr_type();
|
|
int adr_idx = phase->C->get_alias_index(atype);
|
|
if (adr_idx == alias_idx) {
|
|
assert(atype->isa_oopptr(), "address type must be oopptr");
|
|
int adr_offset = atype->offset();
|
|
uint adr_iid = atype->is_oopptr()->instance_id();
|
|
// Array elements references have the same alias_idx
|
|
// but different offset and different instance_id.
|
|
if (adr_offset == offset && adr_iid == alloc->_idx)
|
|
return mem;
|
|
} else {
|
|
assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
|
|
}
|
|
mem = mem->in(MemNode::Memory);
|
|
} else if (mem->is_ClearArray()) {
|
|
if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
|
|
// Can not bypass initialization of the instance
|
|
// we are looking.
|
|
debug_only(intptr_t offset;)
|
|
assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
|
|
InitializeNode* init = alloc->as_Allocate()->initialization();
|
|
// We are looking for stored value, return Initialize node
|
|
// or memory edge from Allocate node.
|
|
if (init != NULL)
|
|
return init;
|
|
else
|
|
return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
|
|
}
|
|
// Otherwise skip it (the call updated 'mem' value).
|
|
} else if (mem->Opcode() == Op_SCMemProj) {
|
|
mem = mem->in(0);
|
|
Node* adr = NULL;
|
|
if (mem->is_LoadStore()) {
|
|
adr = mem->in(MemNode::Address);
|
|
} else {
|
|
assert(mem->Opcode() == Op_EncodeISOArray ||
|
|
mem->Opcode() == Op_StrCompressedCopy, "sanity");
|
|
adr = mem->in(3); // Destination array
|
|
}
|
|
const TypePtr* atype = adr->bottom_type()->is_ptr();
|
|
int adr_idx = phase->C->get_alias_index(atype);
|
|
if (adr_idx == alias_idx) {
|
|
DEBUG_ONLY(mem->dump();)
|
|
assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
|
|
return NULL;
|
|
}
|
|
mem = mem->in(MemNode::Memory);
|
|
} else if (mem->Opcode() == Op_StrInflatedCopy) {
|
|
Node* adr = mem->in(3); // Destination array
|
|
const TypePtr* atype = adr->bottom_type()->is_ptr();
|
|
int adr_idx = phase->C->get_alias_index(atype);
|
|
if (adr_idx == alias_idx) {
|
|
DEBUG_ONLY(mem->dump();)
|
|
assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
|
|
return NULL;
|
|
}
|
|
mem = mem->in(MemNode::Memory);
|
|
} else {
|
|
return mem;
|
|
}
|
|
assert(mem != orig_mem, "dead memory loop");
|
|
}
|
|
}
|
|
|
|
// Generate loads from source of the arraycopy for fields of
|
|
// destination needed at a deoptimization point
|
|
Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
|
|
BasicType bt = ft;
|
|
const Type *type = ftype;
|
|
if (ft == T_NARROWOOP) {
|
|
bt = T_OBJECT;
|
|
type = ftype->make_oopptr();
|
|
}
|
|
Node* res = NULL;
|
|
if (ac->is_clonebasic()) {
|
|
assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination");
|
|
Node* base = ac->in(ArrayCopyNode::Src);
|
|
Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
|
|
const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
|
|
res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::UnknownControl);
|
|
} else {
|
|
if (ac->modifies(offset, offset, &_igvn, true)) {
|
|
assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
|
|
uint shift = exact_log2(type2aelembytes(bt));
|
|
Node* src_pos = ac->in(ArrayCopyNode::SrcPos);
|
|
Node* dest_pos = ac->in(ArrayCopyNode::DestPos);
|
|
const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int();
|
|
const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int();
|
|
|
|
Node* adr = NULL;
|
|
const TypePtr* adr_type = NULL;
|
|
if (src_pos_t->is_con() && dest_pos_t->is_con()) {
|
|
intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset;
|
|
Node* base = ac->in(ArrayCopyNode::Src);
|
|
adr = _igvn.transform(new AddPNode(base, base, MakeConX(off)));
|
|
adr_type = _igvn.type(base)->is_ptr()->add_offset(off);
|
|
if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
|
|
// Don't emit a new load from src if src == dst but try to get the value from memory instead
|
|
return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc);
|
|
}
|
|
} else {
|
|
Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
|
|
#ifdef _LP64
|
|
diff = _igvn.transform(new ConvI2LNode(diff));
|
|
#endif
|
|
diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
|
|
|
|
Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
|
|
Node* base = ac->in(ArrayCopyNode::Src);
|
|
adr = _igvn.transform(new AddPNode(base, base, off));
|
|
adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot);
|
|
if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) {
|
|
// Non constant offset in the array: we can't statically
|
|
// determine the value
|
|
return NULL;
|
|
}
|
|
}
|
|
res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::UnknownControl);
|
|
}
|
|
}
|
|
if (res != NULL) {
|
|
res = _igvn.transform(res);
|
|
if (ftype->isa_narrowoop()) {
|
|
// PhaseMacroExpand::scalar_replacement adds DecodeN nodes
|
|
res = _igvn.transform(new EncodePNode(res, ftype));
|
|
}
|
|
return res;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// Given a Memory Phi, compute a value Phi containing the values from stores
|
|
// on the input paths.
|
|
// Note: this function is recursive, its depth is limited by the "level" argument
|
|
// Returns the computed Phi, or NULL if it cannot compute it.
|
|
Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
|
|
assert(mem->is_Phi(), "sanity");
|
|
int alias_idx = C->get_alias_index(adr_t);
|
|
int offset = adr_t->offset();
|
|
int instance_id = adr_t->instance_id();
|
|
|
|
// Check if an appropriate value phi already exists.
|
|
Node* region = mem->in(0);
|
|
for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
|
|
Node* phi = region->fast_out(k);
|
|
if (phi->is_Phi() && phi != mem &&
|
|
phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
|
|
return phi;
|
|
}
|
|
}
|
|
// Check if an appropriate new value phi already exists.
|
|
Node* new_phi = value_phis->find(mem->_idx);
|
|
if (new_phi != NULL)
|
|
return new_phi;
|
|
|
|
if (level <= 0) {
|
|
return NULL; // Give up: phi tree too deep
|
|
}
|
|
Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
|
|
Node *alloc_mem = alloc->in(TypeFunc::Memory);
|
|
|
|
uint length = mem->req();
|
|
GrowableArray <Node *> values(length, length, NULL, false);
|
|
|
|
// create a new Phi for the value
|
|
PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
|
|
transform_later(phi);
|
|
value_phis->push(phi, mem->_idx);
|
|
|
|
for (uint j = 1; j < length; j++) {
|
|
Node *in = mem->in(j);
|
|
if (in == NULL || in->is_top()) {
|
|
values.at_put(j, in);
|
|
} else {
|
|
Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
|
|
if (val == start_mem || val == alloc_mem) {
|
|
// hit a sentinel, return appropriate 0 value
|
|
values.at_put(j, _igvn.zerocon(ft));
|
|
continue;
|
|
}
|
|
if (val->is_Initialize()) {
|
|
val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
|
|
}
|
|
if (val == NULL) {
|
|
return NULL; // can't find a value on this path
|
|
}
|
|
if (val == mem) {
|
|
values.at_put(j, mem);
|
|
} else if (val->is_Store()) {
|
|
Node* n = val->in(MemNode::ValueIn);
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
n = bs->step_over_gc_barrier(n);
|
|
values.at_put(j, n);
|
|
} else if(val->is_Proj() && val->in(0) == alloc) {
|
|
values.at_put(j, _igvn.zerocon(ft));
|
|
} else if (val->is_Phi()) {
|
|
val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
|
|
if (val == NULL) {
|
|
return NULL;
|
|
}
|
|
values.at_put(j, val);
|
|
} else if (val->Opcode() == Op_SCMemProj) {
|
|
assert(val->in(0)->is_LoadStore() ||
|
|
val->in(0)->Opcode() == Op_EncodeISOArray ||
|
|
val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
|
|
assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
|
|
return NULL;
|
|
} else if (val->is_ArrayCopy()) {
|
|
Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
|
|
if (res == NULL) {
|
|
return NULL;
|
|
}
|
|
values.at_put(j, res);
|
|
} else {
|
|
#ifdef ASSERT
|
|
val->dump();
|
|
assert(false, "unknown node on this path");
|
|
#endif
|
|
return NULL; // unknown node on this path
|
|
}
|
|
}
|
|
}
|
|
// Set Phi's inputs
|
|
for (uint j = 1; j < length; j++) {
|
|
if (values.at(j) == mem) {
|
|
phi->init_req(j, phi);
|
|
} else {
|
|
phi->init_req(j, values.at(j));
|
|
}
|
|
}
|
|
return phi;
|
|
}
|
|
|
|
// Search the last value stored into the object's field.
|
|
Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
|
|
assert(adr_t->is_known_instance_field(), "instance required");
|
|
int instance_id = adr_t->instance_id();
|
|
assert((uint)instance_id == alloc->_idx, "wrong allocation");
|
|
|
|
int alias_idx = C->get_alias_index(adr_t);
|
|
int offset = adr_t->offset();
|
|
Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
|
|
Node *alloc_ctrl = alloc->in(TypeFunc::Control);
|
|
Node *alloc_mem = alloc->in(TypeFunc::Memory);
|
|
Arena *a = Thread::current()->resource_area();
|
|
VectorSet visited(a);
|
|
|
|
bool done = sfpt_mem == alloc_mem;
|
|
Node *mem = sfpt_mem;
|
|
while (!done) {
|
|
if (visited.test_set(mem->_idx)) {
|
|
return NULL; // found a loop, give up
|
|
}
|
|
mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
|
|
if (mem == start_mem || mem == alloc_mem) {
|
|
done = true; // hit a sentinel, return appropriate 0 value
|
|
} else if (mem->is_Initialize()) {
|
|
mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
|
|
if (mem == NULL) {
|
|
done = true; // Something go wrong.
|
|
} else if (mem->is_Store()) {
|
|
const TypePtr* atype = mem->as_Store()->adr_type();
|
|
assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
|
|
done = true;
|
|
}
|
|
} else if (mem->is_Store()) {
|
|
const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
|
|
assert(atype != NULL, "address type must be oopptr");
|
|
assert(C->get_alias_index(atype) == alias_idx &&
|
|
atype->is_known_instance_field() && atype->offset() == offset &&
|
|
atype->instance_id() == instance_id, "store is correct memory slice");
|
|
done = true;
|
|
} else if (mem->is_Phi()) {
|
|
// try to find a phi's unique input
|
|
Node *unique_input = NULL;
|
|
Node *top = C->top();
|
|
for (uint i = 1; i < mem->req(); i++) {
|
|
Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
|
|
if (n == NULL || n == top || n == mem) {
|
|
continue;
|
|
} else if (unique_input == NULL) {
|
|
unique_input = n;
|
|
} else if (unique_input != n) {
|
|
unique_input = top;
|
|
break;
|
|
}
|
|
}
|
|
if (unique_input != NULL && unique_input != top) {
|
|
mem = unique_input;
|
|
} else {
|
|
done = true;
|
|
}
|
|
} else if (mem->is_ArrayCopy()) {
|
|
done = true;
|
|
} else {
|
|
assert(false, "unexpected node");
|
|
}
|
|
}
|
|
if (mem != NULL) {
|
|
if (mem == start_mem || mem == alloc_mem) {
|
|
// hit a sentinel, return appropriate 0 value
|
|
return _igvn.zerocon(ft);
|
|
} else if (mem->is_Store()) {
|
|
Node* n = mem->in(MemNode::ValueIn);
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
n = bs->step_over_gc_barrier(n);
|
|
return n;
|
|
} else if (mem->is_Phi()) {
|
|
// attempt to produce a Phi reflecting the values on the input paths of the Phi
|
|
Node_Stack value_phis(a, 8);
|
|
Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
|
|
if (phi != NULL) {
|
|
return phi;
|
|
} else {
|
|
// Kill all new Phis
|
|
while(value_phis.is_nonempty()) {
|
|
Node* n = value_phis.node();
|
|
_igvn.replace_node(n, C->top());
|
|
value_phis.pop();
|
|
}
|
|
}
|
|
} else if (mem->is_ArrayCopy()) {
|
|
Node* ctl = mem->in(0);
|
|
Node* m = mem->in(TypeFunc::Memory);
|
|
if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
|
|
// pin the loads in the uncommon trap path
|
|
ctl = sfpt_ctl;
|
|
m = sfpt_mem;
|
|
}
|
|
return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
|
|
}
|
|
}
|
|
// Something go wrong.
|
|
return NULL;
|
|
}
|
|
|
|
// Check the possibility of scalar replacement.
|
|
bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
|
|
// Scan the uses of the allocation to check for anything that would
|
|
// prevent us from eliminating it.
|
|
NOT_PRODUCT( const char* fail_eliminate = NULL; )
|
|
DEBUG_ONLY( Node* disq_node = NULL; )
|
|
bool can_eliminate = true;
|
|
|
|
Node* res = alloc->result_cast();
|
|
const TypeOopPtr* res_type = NULL;
|
|
if (res == NULL) {
|
|
// All users were eliminated.
|
|
} else if (!res->is_CheckCastPP()) {
|
|
NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
|
|
can_eliminate = false;
|
|
} else {
|
|
res_type = _igvn.type(res)->isa_oopptr();
|
|
if (res_type == NULL) {
|
|
NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
|
|
can_eliminate = false;
|
|
} else if (res_type->isa_aryptr()) {
|
|
int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
|
|
if (length < 0) {
|
|
NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
|
|
can_eliminate = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (can_eliminate && res != NULL) {
|
|
for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
|
|
j < jmax && can_eliminate; j++) {
|
|
Node* use = res->fast_out(j);
|
|
|
|
if (use->is_AddP()) {
|
|
const TypePtr* addp_type = _igvn.type(use)->is_ptr();
|
|
int offset = addp_type->offset();
|
|
|
|
if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
|
|
NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
|
|
can_eliminate = false;
|
|
break;
|
|
}
|
|
for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
|
|
k < kmax && can_eliminate; k++) {
|
|
Node* n = use->fast_out(k);
|
|
if (!n->is_Store() && n->Opcode() != Op_CastP2X
|
|
SHENANDOAHGC_ONLY(&& (!UseShenandoahGC || !ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(n))) ) {
|
|
DEBUG_ONLY(disq_node = n;)
|
|
if (n->is_Load() || n->is_LoadStore()) {
|
|
NOT_PRODUCT(fail_eliminate = "Field load";)
|
|
} else {
|
|
NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
|
|
}
|
|
can_eliminate = false;
|
|
}
|
|
}
|
|
} else if (use->is_ArrayCopy() &&
|
|
(use->as_ArrayCopy()->is_clonebasic() ||
|
|
use->as_ArrayCopy()->is_arraycopy_validated() ||
|
|
use->as_ArrayCopy()->is_copyof_validated() ||
|
|
use->as_ArrayCopy()->is_copyofrange_validated()) &&
|
|
use->in(ArrayCopyNode::Dest) == res) {
|
|
// ok to eliminate
|
|
} else if (use->is_SafePoint()) {
|
|
SafePointNode* sfpt = use->as_SafePoint();
|
|
if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
|
|
// Object is passed as argument.
|
|
DEBUG_ONLY(disq_node = use;)
|
|
NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
|
|
can_eliminate = false;
|
|
}
|
|
Node* sfptMem = sfpt->memory();
|
|
if (sfptMem == NULL || sfptMem->is_top()) {
|
|
DEBUG_ONLY(disq_node = use;)
|
|
NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
|
|
can_eliminate = false;
|
|
} else {
|
|
safepoints.append_if_missing(sfpt);
|
|
}
|
|
} else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
|
|
if (use->is_Phi()) {
|
|
if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
|
|
NOT_PRODUCT(fail_eliminate = "Object is return value";)
|
|
} else {
|
|
NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
|
|
}
|
|
DEBUG_ONLY(disq_node = use;)
|
|
} else {
|
|
if (use->Opcode() == Op_Return) {
|
|
NOT_PRODUCT(fail_eliminate = "Object is return value";)
|
|
}else {
|
|
NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
|
|
}
|
|
DEBUG_ONLY(disq_node = use;)
|
|
}
|
|
can_eliminate = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintEliminateAllocations) {
|
|
if (can_eliminate) {
|
|
tty->print("Scalar ");
|
|
if (res == NULL)
|
|
alloc->dump();
|
|
else
|
|
res->dump();
|
|
} else if (alloc->_is_scalar_replaceable) {
|
|
tty->print("NotScalar (%s)", fail_eliminate);
|
|
if (res == NULL)
|
|
alloc->dump();
|
|
else
|
|
res->dump();
|
|
#ifdef ASSERT
|
|
if (disq_node != NULL) {
|
|
tty->print(" >>>> ");
|
|
disq_node->dump();
|
|
}
|
|
#endif /*ASSERT*/
|
|
}
|
|
}
|
|
#endif
|
|
return can_eliminate;
|
|
}
|
|
|
|
// Do scalar replacement.
|
|
bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
|
|
GrowableArray <SafePointNode *> safepoints_done;
|
|
|
|
ciKlass* klass = NULL;
|
|
ciInstanceKlass* iklass = NULL;
|
|
int nfields = 0;
|
|
int array_base = 0;
|
|
int element_size = 0;
|
|
BasicType basic_elem_type = T_ILLEGAL;
|
|
ciType* elem_type = NULL;
|
|
|
|
Node* res = alloc->result_cast();
|
|
assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
|
|
const TypeOopPtr* res_type = NULL;
|
|
if (res != NULL) { // Could be NULL when there are no users
|
|
res_type = _igvn.type(res)->isa_oopptr();
|
|
}
|
|
|
|
if (res != NULL) {
|
|
klass = res_type->klass();
|
|
if (res_type->isa_instptr()) {
|
|
// find the fields of the class which will be needed for safepoint debug information
|
|
assert(klass->is_instance_klass(), "must be an instance klass.");
|
|
iklass = klass->as_instance_klass();
|
|
nfields = iklass->nof_nonstatic_fields();
|
|
} else {
|
|
// find the array's elements which will be needed for safepoint debug information
|
|
nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
|
|
assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
|
|
elem_type = klass->as_array_klass()->element_type();
|
|
basic_elem_type = elem_type->basic_type();
|
|
array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
|
|
element_size = type2aelembytes(basic_elem_type);
|
|
}
|
|
}
|
|
//
|
|
// Process the safepoint uses
|
|
//
|
|
while (safepoints.length() > 0) {
|
|
SafePointNode* sfpt = safepoints.pop();
|
|
Node* mem = sfpt->memory();
|
|
Node* ctl = sfpt->control();
|
|
assert(sfpt->jvms() != NULL, "missed JVMS");
|
|
// Fields of scalar objs are referenced only at the end
|
|
// of regular debuginfo at the last (youngest) JVMS.
|
|
// Record relative start index.
|
|
uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
|
|
SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
|
|
#ifdef ASSERT
|
|
alloc,
|
|
#endif
|
|
first_ind, nfields);
|
|
sobj->init_req(0, C->root());
|
|
transform_later(sobj);
|
|
|
|
// Scan object's fields adding an input to the safepoint for each field.
|
|
for (int j = 0; j < nfields; j++) {
|
|
intptr_t offset;
|
|
ciField* field = NULL;
|
|
if (iklass != NULL) {
|
|
field = iklass->nonstatic_field_at(j);
|
|
offset = field->offset();
|
|
elem_type = field->type();
|
|
basic_elem_type = field->layout_type();
|
|
} else {
|
|
offset = array_base + j * (intptr_t)element_size;
|
|
}
|
|
|
|
const Type *field_type;
|
|
// The next code is taken from Parse::do_get_xxx().
|
|
if (is_reference_type(basic_elem_type)) {
|
|
if (!elem_type->is_loaded()) {
|
|
field_type = TypeInstPtr::BOTTOM;
|
|
} else if (field != NULL && field->is_static_constant()) {
|
|
// This can happen if the constant oop is non-perm.
|
|
ciObject* con = field->constant_value().as_object();
|
|
// Do not "join" in the previous type; it doesn't add value,
|
|
// and may yield a vacuous result if the field is of interface type.
|
|
field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
|
|
assert(field_type != NULL, "field singleton type must be consistent");
|
|
} else {
|
|
field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
|
|
}
|
|
if (UseCompressedOops) {
|
|
field_type = field_type->make_narrowoop();
|
|
basic_elem_type = T_NARROWOOP;
|
|
}
|
|
} else {
|
|
field_type = Type::get_const_basic_type(basic_elem_type);
|
|
}
|
|
|
|
const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
|
|
|
|
Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
|
|
if (field_val == NULL) {
|
|
// We weren't able to find a value for this field,
|
|
// give up on eliminating this allocation.
|
|
|
|
// Remove any extra entries we added to the safepoint.
|
|
uint last = sfpt->req() - 1;
|
|
for (int k = 0; k < j; k++) {
|
|
sfpt->del_req(last--);
|
|
}
|
|
_igvn._worklist.push(sfpt);
|
|
// rollback processed safepoints
|
|
while (safepoints_done.length() > 0) {
|
|
SafePointNode* sfpt_done = safepoints_done.pop();
|
|
// remove any extra entries we added to the safepoint
|
|
last = sfpt_done->req() - 1;
|
|
for (int k = 0; k < nfields; k++) {
|
|
sfpt_done->del_req(last--);
|
|
}
|
|
JVMState *jvms = sfpt_done->jvms();
|
|
jvms->set_endoff(sfpt_done->req());
|
|
// Now make a pass over the debug information replacing any references
|
|
// to SafePointScalarObjectNode with the allocated object.
|
|
int start = jvms->debug_start();
|
|
int end = jvms->debug_end();
|
|
for (int i = start; i < end; i++) {
|
|
if (sfpt_done->in(i)->is_SafePointScalarObject()) {
|
|
SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
|
|
if (scobj->first_index(jvms) == sfpt_done->req() &&
|
|
scobj->n_fields() == (uint)nfields) {
|
|
assert(scobj->alloc() == alloc, "sanity");
|
|
sfpt_done->set_req(i, res);
|
|
}
|
|
}
|
|
}
|
|
_igvn._worklist.push(sfpt_done);
|
|
}
|
|
#ifndef PRODUCT
|
|
if (PrintEliminateAllocations) {
|
|
if (field != NULL) {
|
|
tty->print("=== At SafePoint node %d can't find value of Field: ",
|
|
sfpt->_idx);
|
|
field->print();
|
|
int field_idx = C->get_alias_index(field_addr_type);
|
|
tty->print(" (alias_idx=%d)", field_idx);
|
|
} else { // Array's element
|
|
tty->print("=== At SafePoint node %d can't find value of array element [%d]",
|
|
sfpt->_idx, j);
|
|
}
|
|
tty->print(", which prevents elimination of: ");
|
|
if (res == NULL)
|
|
alloc->dump();
|
|
else
|
|
res->dump();
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
if (UseCompressedOops && field_type->isa_narrowoop()) {
|
|
// Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
|
|
// to be able scalar replace the allocation.
|
|
if (field_val->is_EncodeP()) {
|
|
field_val = field_val->in(1);
|
|
} else {
|
|
field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
|
|
}
|
|
}
|
|
sfpt->add_req(field_val);
|
|
}
|
|
JVMState *jvms = sfpt->jvms();
|
|
jvms->set_endoff(sfpt->req());
|
|
// Now make a pass over the debug information replacing any references
|
|
// to the allocated object with "sobj"
|
|
int start = jvms->debug_start();
|
|
int end = jvms->debug_end();
|
|
sfpt->replace_edges_in_range(res, sobj, start, end);
|
|
_igvn._worklist.push(sfpt);
|
|
safepoints_done.append_if_missing(sfpt); // keep it for rollback
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
|
|
Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
|
|
Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
|
|
if (ctl_proj != NULL) {
|
|
igvn.replace_node(ctl_proj, n->in(0));
|
|
}
|
|
if (mem_proj != NULL) {
|
|
igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
|
|
}
|
|
}
|
|
|
|
// Process users of eliminated allocation.
|
|
void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
|
|
Node* res = alloc->result_cast();
|
|
if (res != NULL) {
|
|
for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
|
|
Node *use = res->last_out(j);
|
|
uint oc1 = res->outcnt();
|
|
|
|
if (use->is_AddP()) {
|
|
for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
|
|
Node *n = use->last_out(k);
|
|
uint oc2 = use->outcnt();
|
|
if (n->is_Store()) {
|
|
#ifdef ASSERT
|
|
// Verify that there is no dependent MemBarVolatile nodes,
|
|
// they should be removed during IGVN, see MemBarNode::Ideal().
|
|
for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
|
|
p < pmax; p++) {
|
|
Node* mb = n->fast_out(p);
|
|
assert(mb->is_Initialize() || !mb->is_MemBar() ||
|
|
mb->req() <= MemBarNode::Precedent ||
|
|
mb->in(MemBarNode::Precedent) != n,
|
|
"MemBarVolatile should be eliminated for non-escaping object");
|
|
}
|
|
#endif
|
|
_igvn.replace_node(n, n->in(MemNode::Memory));
|
|
} else {
|
|
eliminate_gc_barrier(n);
|
|
}
|
|
k -= (oc2 - use->outcnt());
|
|
}
|
|
_igvn.remove_dead_node(use);
|
|
} else if (use->is_ArrayCopy()) {
|
|
// Disconnect ArrayCopy node
|
|
ArrayCopyNode* ac = use->as_ArrayCopy();
|
|
if (ac->is_clonebasic()) {
|
|
Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
|
|
disconnect_projections(ac, _igvn);
|
|
assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
|
|
Node* membar_before = alloc->in(TypeFunc::Memory)->in(0);
|
|
disconnect_projections(membar_before->as_MemBar(), _igvn);
|
|
if (membar_after->is_MemBar()) {
|
|
disconnect_projections(membar_after->as_MemBar(), _igvn);
|
|
}
|
|
} else {
|
|
assert(ac->is_arraycopy_validated() ||
|
|
ac->is_copyof_validated() ||
|
|
ac->is_copyofrange_validated(), "unsupported");
|
|
CallProjections callprojs;
|
|
ac->extract_projections(&callprojs, true);
|
|
|
|
_igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O));
|
|
_igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory));
|
|
_igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control));
|
|
|
|
// Set control to top. IGVN will remove the remaining projections
|
|
ac->set_req(0, top());
|
|
ac->replace_edge(res, top());
|
|
|
|
// Disconnect src right away: it can help find new
|
|
// opportunities for allocation elimination
|
|
Node* src = ac->in(ArrayCopyNode::Src);
|
|
ac->replace_edge(src, top());
|
|
// src can be top at this point if src and dest of the
|
|
// arraycopy were the same
|
|
if (src->outcnt() == 0 && !src->is_top()) {
|
|
_igvn.remove_dead_node(src);
|
|
}
|
|
}
|
|
_igvn._worklist.push(ac);
|
|
} else {
|
|
eliminate_gc_barrier(use);
|
|
}
|
|
j -= (oc1 - res->outcnt());
|
|
}
|
|
assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
|
|
_igvn.remove_dead_node(res);
|
|
}
|
|
|
|
//
|
|
// Process other users of allocation's projections
|
|
//
|
|
if (_resproj != NULL && _resproj->outcnt() != 0) {
|
|
// First disconnect stores captured by Initialize node.
|
|
// If Initialize node is eliminated first in the following code,
|
|
// it will kill such stores and DUIterator_Last will assert.
|
|
for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax); j < jmax; j++) {
|
|
Node *use = _resproj->fast_out(j);
|
|
if (use->is_AddP()) {
|
|
// raw memory addresses used only by the initialization
|
|
_igvn.replace_node(use, C->top());
|
|
--j; --jmax;
|
|
}
|
|
}
|
|
for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
|
|
Node *use = _resproj->last_out(j);
|
|
uint oc1 = _resproj->outcnt();
|
|
if (use->is_Initialize()) {
|
|
// Eliminate Initialize node.
|
|
InitializeNode *init = use->as_Initialize();
|
|
assert(init->outcnt() <= 2, "only a control and memory projection expected");
|
|
Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
|
|
if (ctrl_proj != NULL) {
|
|
_igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control));
|
|
#ifdef ASSERT
|
|
Node* tmp = init->in(TypeFunc::Control);
|
|
assert(tmp == _fallthroughcatchproj, "allocation control projection");
|
|
#endif
|
|
}
|
|
Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
|
|
if (mem_proj != NULL) {
|
|
Node *mem = init->in(TypeFunc::Memory);
|
|
#ifdef ASSERT
|
|
if (mem->is_MergeMem()) {
|
|
assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
|
|
} else {
|
|
assert(mem == _memproj_fallthrough, "allocation memory projection");
|
|
}
|
|
#endif
|
|
_igvn.replace_node(mem_proj, mem);
|
|
}
|
|
} else {
|
|
assert(false, "only Initialize or AddP expected");
|
|
}
|
|
j -= (oc1 - _resproj->outcnt());
|
|
}
|
|
}
|
|
if (_fallthroughcatchproj != NULL) {
|
|
_igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
|
|
}
|
|
if (_memproj_fallthrough != NULL) {
|
|
_igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
|
|
}
|
|
if (_memproj_catchall != NULL) {
|
|
_igvn.replace_node(_memproj_catchall, C->top());
|
|
}
|
|
if (_ioproj_fallthrough != NULL) {
|
|
_igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
|
|
}
|
|
if (_ioproj_catchall != NULL) {
|
|
_igvn.replace_node(_ioproj_catchall, C->top());
|
|
}
|
|
if (_catchallcatchproj != NULL) {
|
|
_igvn.replace_node(_catchallcatchproj, C->top());
|
|
}
|
|
}
|
|
|
|
bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
|
|
// Don't do scalar replacement if the frame can be popped by JVMTI:
|
|
// if reallocation fails during deoptimization we'll pop all
|
|
// interpreter frames for this compiled frame and that won't play
|
|
// nice with JVMTI popframe.
|
|
if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
|
|
return false;
|
|
}
|
|
Node* klass = alloc->in(AllocateNode::KlassNode);
|
|
const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
|
|
Node* res = alloc->result_cast();
|
|
// Eliminate boxing allocations which are not used
|
|
// regardless scalar replacable status.
|
|
bool boxing_alloc = C->eliminate_boxing() &&
|
|
tklass->klass()->is_instance_klass() &&
|
|
tklass->klass()->as_instance_klass()->is_box_klass();
|
|
if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
|
|
return false;
|
|
}
|
|
|
|
extract_call_projections(alloc);
|
|
|
|
GrowableArray <SafePointNode *> safepoints;
|
|
if (!can_eliminate_allocation(alloc, safepoints)) {
|
|
return false;
|
|
}
|
|
|
|
if (!alloc->_is_scalar_replaceable) {
|
|
assert(res == NULL, "sanity");
|
|
// We can only eliminate allocation if all debug info references
|
|
// are already replaced with SafePointScalarObject because
|
|
// we can't search for a fields value without instance_id.
|
|
if (safepoints.length() > 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!scalar_replacement(alloc, safepoints)) {
|
|
return false;
|
|
}
|
|
|
|
CompileLog* log = C->log();
|
|
if (log != NULL) {
|
|
log->head("eliminate_allocation type='%d'",
|
|
log->identify(tklass->klass()));
|
|
JVMState* p = alloc->jvms();
|
|
while (p != NULL) {
|
|
log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
|
|
p = p->caller();
|
|
}
|
|
log->tail("eliminate_allocation");
|
|
}
|
|
|
|
process_users_of_allocation(alloc);
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintEliminateAllocations) {
|
|
if (alloc->is_AllocateArray())
|
|
tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
|
|
else
|
|
tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
|
|
// EA should remove all uses of non-escaping boxing node.
|
|
if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) {
|
|
return false;
|
|
}
|
|
|
|
assert(boxing->result_cast() == NULL, "unexpected boxing node result");
|
|
|
|
extract_call_projections(boxing);
|
|
|
|
const TypeTuple* r = boxing->tf()->range();
|
|
assert(r->cnt() > TypeFunc::Parms, "sanity");
|
|
const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
|
|
assert(t != NULL, "sanity");
|
|
|
|
CompileLog* log = C->log();
|
|
if (log != NULL) {
|
|
log->head("eliminate_boxing type='%d'",
|
|
log->identify(t->klass()));
|
|
JVMState* p = boxing->jvms();
|
|
while (p != NULL) {
|
|
log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
|
|
p = p->caller();
|
|
}
|
|
log->tail("eliminate_boxing");
|
|
}
|
|
|
|
process_users_of_allocation(boxing);
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintEliminateAllocations) {
|
|
tty->print("++++ Eliminated: %d ", boxing->_idx);
|
|
boxing->method()->print_short_name(tty);
|
|
tty->cr();
|
|
}
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
//---------------------------set_eden_pointers-------------------------
|
|
void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
|
|
if (UseTLAB) { // Private allocation: load from TLS
|
|
Node* thread = transform_later(new ThreadLocalNode());
|
|
int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
|
|
int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
|
|
eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
|
|
eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
|
|
} else { // Shared allocation: load from globals
|
|
CollectedHeap* ch = Universe::heap();
|
|
address top_adr = (address)ch->top_addr();
|
|
address end_adr = (address)ch->end_addr();
|
|
eden_top_adr = makecon(TypeRawPtr::make(top_adr));
|
|
eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
|
|
}
|
|
}
|
|
|
|
|
|
Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
|
|
Node* adr = basic_plus_adr(base, offset);
|
|
const TypePtr* adr_type = adr->bottom_type()->is_ptr();
|
|
Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
|
|
transform_later(value);
|
|
return value;
|
|
}
|
|
|
|
|
|
Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
|
|
Node* adr = basic_plus_adr(base, offset);
|
|
mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
|
|
transform_later(mem);
|
|
return mem;
|
|
}
|
|
|
|
//=============================================================================
|
|
//
|
|
// A L L O C A T I O N
|
|
//
|
|
// Allocation attempts to be fast in the case of frequent small objects.
|
|
// It breaks down like this:
|
|
//
|
|
// 1) Size in doublewords is computed. This is a constant for objects and
|
|
// variable for most arrays. Doubleword units are used to avoid size
|
|
// overflow of huge doubleword arrays. We need doublewords in the end for
|
|
// rounding.
|
|
//
|
|
// 2) Size is checked for being 'too large'. Too-large allocations will go
|
|
// the slow path into the VM. The slow path can throw any required
|
|
// exceptions, and does all the special checks for very large arrays. The
|
|
// size test can constant-fold away for objects. For objects with
|
|
// finalizers it constant-folds the otherway: you always go slow with
|
|
// finalizers.
|
|
//
|
|
// 3) If NOT using TLABs, this is the contended loop-back point.
|
|
// Load-Locked the heap top. If using TLABs normal-load the heap top.
|
|
//
|
|
// 4) Check that heap top + size*8 < max. If we fail go the slow ` route.
|
|
// NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish
|
|
// "size*8" we always enter the VM, where "largish" is a constant picked small
|
|
// enough that there's always space between the eden max and 4Gig (old space is
|
|
// there so it's quite large) and large enough that the cost of entering the VM
|
|
// is dwarfed by the cost to initialize the space.
|
|
//
|
|
// 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
|
|
// down. If contended, repeat at step 3. If using TLABs normal-store
|
|
// adjusted heap top back down; there is no contention.
|
|
//
|
|
// 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark
|
|
// fields.
|
|
//
|
|
// 7) Merge with the slow-path; cast the raw memory pointer to the correct
|
|
// oop flavor.
|
|
//
|
|
//=============================================================================
|
|
// FastAllocateSizeLimit value is in DOUBLEWORDS.
|
|
// Allocations bigger than this always go the slow route.
|
|
// This value must be small enough that allocation attempts that need to
|
|
// trigger exceptions go the slow route. Also, it must be small enough so
|
|
// that heap_top + size_in_bytes does not wrap around the 4Gig limit.
|
|
//=============================================================================j//
|
|
// %%% Here is an old comment from parseHelper.cpp; is it outdated?
|
|
// The allocator will coalesce int->oop copies away. See comment in
|
|
// coalesce.cpp about how this works. It depends critically on the exact
|
|
// code shape produced here, so if you are changing this code shape
|
|
// make sure the GC info for the heap-top is correct in and around the
|
|
// slow-path call.
|
|
//
|
|
|
|
void PhaseMacroExpand::expand_allocate_common(
|
|
AllocateNode* alloc, // allocation node to be expanded
|
|
Node* length, // array length for an array allocation
|
|
const TypeFunc* slow_call_type, // Type of slow call
|
|
address slow_call_address // Address of slow call
|
|
)
|
|
{
|
|
Node* ctrl = alloc->in(TypeFunc::Control);
|
|
Node* mem = alloc->in(TypeFunc::Memory);
|
|
Node* i_o = alloc->in(TypeFunc::I_O);
|
|
Node* size_in_bytes = alloc->in(AllocateNode::AllocSize);
|
|
Node* klass_node = alloc->in(AllocateNode::KlassNode);
|
|
Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
|
|
assert(ctrl != NULL, "must have control");
|
|
|
|
// We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
|
|
// they will not be used if "always_slow" is set
|
|
enum { slow_result_path = 1, fast_result_path = 2 };
|
|
Node *result_region = NULL;
|
|
Node *result_phi_rawmem = NULL;
|
|
Node *result_phi_rawoop = NULL;
|
|
Node *result_phi_i_o = NULL;
|
|
|
|
// The initial slow comparison is a size check, the comparison
|
|
// we want to do is a BoolTest::gt
|
|
bool expand_fast_path = true;
|
|
int tv = _igvn.find_int_con(initial_slow_test, -1);
|
|
if (tv >= 0) {
|
|
// InitialTest has constant result
|
|
// 0 - can fit in TLAB
|
|
// 1 - always too big or negative
|
|
assert(tv <= 1, "0 or 1 if a constant");
|
|
expand_fast_path = (tv == 0);
|
|
initial_slow_test = NULL;
|
|
} else {
|
|
initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
|
|
}
|
|
|
|
if (C->env()->dtrace_alloc_probes() ||
|
|
(!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
|
|
// Force slow-path allocation
|
|
expand_fast_path = false;
|
|
initial_slow_test = NULL;
|
|
}
|
|
|
|
bool allocation_has_use = (alloc->result_cast() != NULL);
|
|
if (!allocation_has_use) {
|
|
InitializeNode* init = alloc->initialization();
|
|
if (init != NULL) {
|
|
init->remove(&_igvn);
|
|
}
|
|
if (expand_fast_path && (initial_slow_test == NULL)) {
|
|
// Remove allocation node and return.
|
|
// Size is a non-negative constant -> no initial check needed -> directly to fast path.
|
|
// Also, no usages -> empty fast path -> no fall out to slow path -> nothing left.
|
|
#ifndef PRODUCT
|
|
if (PrintEliminateAllocations) {
|
|
tty->print("NotUsed ");
|
|
Node* res = alloc->proj_out_or_null(TypeFunc::Parms);
|
|
if (res != NULL) {
|
|
res->dump();
|
|
} else {
|
|
alloc->dump();
|
|
}
|
|
}
|
|
#endif
|
|
yank_alloc_node(alloc);
|
|
return;
|
|
}
|
|
}
|
|
|
|
enum { too_big_or_final_path = 1, need_gc_path = 2 };
|
|
Node *slow_region = NULL;
|
|
Node *toobig_false = ctrl;
|
|
|
|
// generate the initial test if necessary
|
|
if (initial_slow_test != NULL ) {
|
|
assert (expand_fast_path, "Only need test if there is a fast path");
|
|
slow_region = new RegionNode(3);
|
|
|
|
// Now make the initial failure test. Usually a too-big test but
|
|
// might be a TRUE for finalizers or a fancy class check for
|
|
// newInstance0.
|
|
IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
|
|
transform_later(toobig_iff);
|
|
// Plug the failing-too-big test into the slow-path region
|
|
Node *toobig_true = new IfTrueNode( toobig_iff );
|
|
transform_later(toobig_true);
|
|
slow_region ->init_req( too_big_or_final_path, toobig_true );
|
|
toobig_false = new IfFalseNode( toobig_iff );
|
|
transform_later(toobig_false);
|
|
} else {
|
|
// No initial test, just fall into next case
|
|
assert(allocation_has_use || !expand_fast_path, "Should already have been handled");
|
|
toobig_false = ctrl;
|
|
debug_only(slow_region = NodeSentinel);
|
|
}
|
|
|
|
// If we are here there are several possibilities
|
|
// - expand_fast_path is false - then only a slow path is expanded. That's it.
|
|
// no_initial_check means a constant allocation.
|
|
// - If check always evaluates to false -> expand_fast_path is false (see above)
|
|
// - If check always evaluates to true -> directly into fast path (but may bailout to slowpath)
|
|
// if !allocation_has_use the fast path is empty
|
|
// if !allocation_has_use && no_initial_check
|
|
// - Then there are no fastpath that can fall out to slowpath -> no allocation code at all.
|
|
// removed by yank_alloc_node above.
|
|
|
|
Node *slow_mem = mem; // save the current memory state for slow path
|
|
// generate the fast allocation code unless we know that the initial test will always go slow
|
|
if (expand_fast_path) {
|
|
// Fast path modifies only raw memory.
|
|
if (mem->is_MergeMem()) {
|
|
mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
|
|
}
|
|
|
|
// allocate the Region and Phi nodes for the result
|
|
result_region = new RegionNode(3);
|
|
result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
|
|
result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
|
|
|
|
// Grab regular I/O before optional prefetch may change it.
|
|
// Slow-path does no I/O so just set it to the original I/O.
|
|
result_phi_i_o->init_req(slow_result_path, i_o);
|
|
|
|
// Name successful fast-path variables
|
|
Node* fast_oop_ctrl;
|
|
Node* fast_oop_rawmem;
|
|
if (allocation_has_use) {
|
|
Node* needgc_ctrl = NULL;
|
|
result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
|
|
|
|
intx prefetch_lines = length != NULL ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
|
|
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
|
|
Node* fast_oop = bs->obj_allocate(this, ctrl, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl,
|
|
fast_oop_ctrl, fast_oop_rawmem,
|
|
prefetch_lines);
|
|
|
|
if (initial_slow_test != NULL) {
|
|
// This completes all paths into the slow merge point
|
|
slow_region->init_req(need_gc_path, needgc_ctrl);
|
|
transform_later(slow_region);
|
|
} else {
|
|
// No initial slow path needed!
|
|
// Just fall from the need-GC path straight into the VM call.
|
|
slow_region = needgc_ctrl;
|
|
}
|
|
|
|
InitializeNode* init = alloc->initialization();
|
|
fast_oop_rawmem = initialize_object(alloc,
|
|
fast_oop_ctrl, fast_oop_rawmem, fast_oop,
|
|
klass_node, length, size_in_bytes);
|
|
expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem);
|
|
expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem);
|
|
|
|
result_phi_rawoop->init_req(fast_result_path, fast_oop);
|
|
} else {
|
|
assert (initial_slow_test != NULL, "sanity");
|
|
fast_oop_ctrl = toobig_false;
|
|
fast_oop_rawmem = mem;
|
|
transform_later(slow_region);
|
|
}
|
|
|
|
// Plug in the successful fast-path into the result merge point
|
|
result_region ->init_req(fast_result_path, fast_oop_ctrl);
|
|
result_phi_i_o ->init_req(fast_result_path, i_o);
|
|
result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
|
|
} else {
|
|
slow_region = ctrl;
|
|
result_phi_i_o = i_o; // Rename it to use in the following code.
|
|
}
|
|
|
|
// Generate slow-path call
|
|
CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
|
|
OptoRuntime::stub_name(slow_call_address),
|
|
alloc->jvms()->bci(),
|
|
TypePtr::BOTTOM);
|
|
call->init_req(TypeFunc::Control, slow_region);
|
|
call->init_req(TypeFunc::I_O, top()); // does no i/o
|
|
call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs
|
|
call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
|
|
call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
|
|
|
|
call->init_req(TypeFunc::Parms+0, klass_node);
|
|
if (length != NULL) {
|
|
call->init_req(TypeFunc::Parms+1, length);
|
|
}
|
|
|
|
// Copy debug information and adjust JVMState information, then replace
|
|
// allocate node with the call
|
|
copy_call_debug_info((CallNode *) alloc, call);
|
|
if (expand_fast_path) {
|
|
call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON.
|
|
} else {
|
|
// Hook i_o projection to avoid its elimination during allocation
|
|
// replacement (when only a slow call is generated).
|
|
call->set_req(TypeFunc::I_O, result_phi_i_o);
|
|
}
|
|
_igvn.replace_node(alloc, call);
|
|
transform_later(call);
|
|
|
|
// Identify the output projections from the allocate node and
|
|
// adjust any references to them.
|
|
// The control and io projections look like:
|
|
//
|
|
// v---Proj(ctrl) <-----+ v---CatchProj(ctrl)
|
|
// Allocate Catch
|
|
// ^---Proj(io) <-------+ ^---CatchProj(io)
|
|
//
|
|
// We are interested in the CatchProj nodes.
|
|
//
|
|
extract_call_projections(call);
|
|
|
|
// An allocate node has separate memory projections for the uses on
|
|
// the control and i_o paths. Replace the control memory projection with
|
|
// result_phi_rawmem (unless we are only generating a slow call when
|
|
// both memory projections are combined)
|
|
if (expand_fast_path && _memproj_fallthrough != NULL) {
|
|
migrate_outs(_memproj_fallthrough, result_phi_rawmem);
|
|
}
|
|
// Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
|
|
// _memproj_catchall so we end up with a call that has only 1 memory projection.
|
|
if (_memproj_catchall != NULL ) {
|
|
if (_memproj_fallthrough == NULL) {
|
|
_memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
|
|
transform_later(_memproj_fallthrough);
|
|
}
|
|
migrate_outs(_memproj_catchall, _memproj_fallthrough);
|
|
_igvn.remove_dead_node(_memproj_catchall);
|
|
}
|
|
|
|
// An allocate node has separate i_o projections for the uses on the control
|
|
// and i_o paths. Always replace the control i_o projection with result i_o
|
|
// otherwise incoming i_o become dead when only a slow call is generated
|
|
// (it is different from memory projections where both projections are
|
|
// combined in such case).
|
|
if (_ioproj_fallthrough != NULL) {
|
|
migrate_outs(_ioproj_fallthrough, result_phi_i_o);
|
|
}
|
|
// Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
|
|
// _ioproj_catchall so we end up with a call that has only 1 i_o projection.
|
|
if (_ioproj_catchall != NULL ) {
|
|
if (_ioproj_fallthrough == NULL) {
|
|
_ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
|
|
transform_later(_ioproj_fallthrough);
|
|
}
|
|
migrate_outs(_ioproj_catchall, _ioproj_fallthrough);
|
|
_igvn.remove_dead_node(_ioproj_catchall);
|
|
}
|
|
|
|
// if we generated only a slow call, we are done
|
|
if (!expand_fast_path) {
|
|
// Now we can unhook i_o.
|
|
if (result_phi_i_o->outcnt() > 1) {
|
|
call->set_req(TypeFunc::I_O, top());
|
|
} else {
|
|
assert(result_phi_i_o->unique_ctrl_out() == call, "sanity");
|
|
// Case of new array with negative size known during compilation.
|
|
// AllocateArrayNode::Ideal() optimization disconnect unreachable
|
|
// following code since call to runtime will throw exception.
|
|
// As result there will be no users of i_o after the call.
|
|
// Leave i_o attached to this call to avoid problems in preceding graph.
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (_fallthroughcatchproj != NULL) {
|
|
ctrl = _fallthroughcatchproj->clone();
|
|
transform_later(ctrl);
|
|
_igvn.replace_node(_fallthroughcatchproj, result_region);
|
|
} else {
|
|
ctrl = top();
|
|
}
|
|
Node *slow_result;
|
|
if (_resproj == NULL) {
|
|
// no uses of the allocation result
|
|
slow_result = top();
|
|
} else {
|
|
slow_result = _resproj->clone();
|
|
transform_later(slow_result);
|
|
_igvn.replace_node(_resproj, result_phi_rawoop);
|
|
}
|
|
|
|
// Plug slow-path into result merge point
|
|
result_region->init_req( slow_result_path, ctrl);
|
|
transform_later(result_region);
|
|
if (allocation_has_use) {
|
|
result_phi_rawoop->init_req(slow_result_path, slow_result);
|
|
transform_later(result_phi_rawoop);
|
|
}
|
|
result_phi_rawmem->init_req(slow_result_path, _memproj_fallthrough);
|
|
transform_later(result_phi_rawmem);
|
|
transform_later(result_phi_i_o);
|
|
// This completes all paths into the result merge point
|
|
}
|
|
|
|
// Remove alloc node that has no uses.
|
|
void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) {
|
|
Node* ctrl = alloc->in(TypeFunc::Control);
|
|
Node* mem = alloc->in(TypeFunc::Memory);
|
|
Node* i_o = alloc->in(TypeFunc::I_O);
|
|
|
|
extract_call_projections(alloc);
|
|
if (_resproj != NULL) {
|
|
for (DUIterator_Fast imax, i = _resproj->fast_outs(imax); i < imax; i++) {
|
|
Node* use = _resproj->fast_out(i);
|
|
use->isa_MemBar()->remove(&_igvn);
|
|
--imax;
|
|
--i; // back up iterator
|
|
}
|
|
assert(_resproj->outcnt() == 0, "all uses must be deleted");
|
|
_igvn.remove_dead_node(_resproj);
|
|
}
|
|
if (_fallthroughcatchproj != NULL) {
|
|
migrate_outs(_fallthroughcatchproj, ctrl);
|
|
_igvn.remove_dead_node(_fallthroughcatchproj);
|
|
}
|
|
if (_catchallcatchproj != NULL) {
|
|
_igvn.rehash_node_delayed(_catchallcatchproj);
|
|
_catchallcatchproj->set_req(0, top());
|
|
}
|
|
if (_fallthroughproj != NULL) {
|
|
Node* catchnode = _fallthroughproj->unique_ctrl_out();
|
|
_igvn.remove_dead_node(catchnode);
|
|
_igvn.remove_dead_node(_fallthroughproj);
|
|
}
|
|
if (_memproj_fallthrough != NULL) {
|
|
migrate_outs(_memproj_fallthrough, mem);
|
|
_igvn.remove_dead_node(_memproj_fallthrough);
|
|
}
|
|
if (_ioproj_fallthrough != NULL) {
|
|
migrate_outs(_ioproj_fallthrough, i_o);
|
|
_igvn.remove_dead_node(_ioproj_fallthrough);
|
|
}
|
|
if (_memproj_catchall != NULL) {
|
|
_igvn.rehash_node_delayed(_memproj_catchall);
|
|
_memproj_catchall->set_req(0, top());
|
|
}
|
|
if (_ioproj_catchall != NULL) {
|
|
_igvn.rehash_node_delayed(_ioproj_catchall);
|
|
_ioproj_catchall->set_req(0, top());
|
|
}
|
|
#ifndef PRODUCT
|
|
if (PrintEliminateAllocations) {
|
|
if (alloc->is_AllocateArray()) {
|
|
tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
|
|
} else {
|
|
tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
|
|
}
|
|
}
|
|
#endif
|
|
_igvn.remove_dead_node(alloc);
|
|
}
|
|
|
|
void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init,
|
|
Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) {
|
|
// If initialization is performed by an array copy, any required
|
|
// MemBarStoreStore was already added. If the object does not
|
|
// escape no need for a MemBarStoreStore. If the object does not
|
|
// escape in its initializer and memory barrier (MemBarStoreStore or
|
|
// stronger) is already added at exit of initializer, also no need
|
|
// for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
|
|
// so that stores that initialize this object can't be reordered
|
|
// with a subsequent store that makes this object accessible by
|
|
// other threads.
|
|
// Other threads include java threads and JVM internal threads
|
|
// (for example concurrent GC threads). Current concurrent GC
|
|
// implementation: G1 will not scan newly created object,
|
|
// so it's safe to skip storestore barrier when allocation does
|
|
// not escape.
|
|
if (!alloc->does_not_escape_thread() &&
|
|
!alloc->is_allocation_MemBar_redundant() &&
|
|
(init == NULL || !init->is_complete_with_arraycopy())) {
|
|
if (init == NULL || init->req() < InitializeNode::RawStores) {
|
|
// No InitializeNode or no stores captured by zeroing
|
|
// elimination. Simply add the MemBarStoreStore after object
|
|
// initialization.
|
|
MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
|
|
transform_later(mb);
|
|
|
|
mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
|
|
mb->init_req(TypeFunc::Control, fast_oop_ctrl);
|
|
fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control);
|
|
transform_later(fast_oop_ctrl);
|
|
fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory);
|
|
transform_later(fast_oop_rawmem);
|
|
} else {
|
|
// Add the MemBarStoreStore after the InitializeNode so that
|
|
// all stores performing the initialization that were moved
|
|
// before the InitializeNode happen before the storestore
|
|
// barrier.
|
|
|
|
Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
|
|
Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
|
|
|
|
MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
|
|
transform_later(mb);
|
|
|
|
Node* ctrl = new ProjNode(init, TypeFunc::Control);
|
|
transform_later(ctrl);
|
|
Node* mem = new ProjNode(init, TypeFunc::Memory);
|
|
transform_later(mem);
|
|
|
|
// The MemBarStoreStore depends on control and memory coming
|
|
// from the InitializeNode
|
|
mb->init_req(TypeFunc::Memory, mem);
|
|
mb->init_req(TypeFunc::Control, ctrl);
|
|
|
|
ctrl = new ProjNode(mb, TypeFunc::Control);
|
|
transform_later(ctrl);
|
|
mem = new ProjNode(mb, TypeFunc::Memory);
|
|
transform_later(mem);
|
|
|
|
// All nodes that depended on the InitializeNode for control
|
|
// and memory must now depend on the MemBarNode that itself
|
|
// depends on the InitializeNode
|
|
if (init_ctrl != NULL) {
|
|
_igvn.replace_node(init_ctrl, ctrl);
|
|
}
|
|
if (init_mem != NULL) {
|
|
_igvn.replace_node(init_mem, mem);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop,
|
|
Node*& ctrl, Node*& rawmem) {
|
|
if (C->env()->dtrace_extended_probes()) {
|
|
// Slow-path call
|
|
int size = TypeFunc::Parms + 2;
|
|
CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
|
|
"dtrace_object_alloc",
|
|
TypeRawPtr::BOTTOM);
|
|
|
|
// Get base of thread-local storage area
|
|
Node* thread = new ThreadLocalNode();
|
|
transform_later(thread);
|
|
|
|
call->init_req(TypeFunc::Parms + 0, thread);
|
|
call->init_req(TypeFunc::Parms + 1, oop);
|
|
call->init_req(TypeFunc::Control, ctrl);
|
|
call->init_req(TypeFunc::I_O , top()); // does no i/o
|
|
call->init_req(TypeFunc::Memory , ctrl);
|
|
call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
|
|
call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
|
|
transform_later(call);
|
|
ctrl = new ProjNode(call, TypeFunc::Control);
|
|
transform_later(ctrl);
|
|
rawmem = new ProjNode(call, TypeFunc::Memory);
|
|
transform_later(rawmem);
|
|
}
|
|
}
|
|
|
|
// Helper for PhaseMacroExpand::expand_allocate_common.
|
|
// Initializes the newly-allocated storage.
|
|
Node*
|
|
PhaseMacroExpand::initialize_object(AllocateNode* alloc,
|
|
Node* control, Node* rawmem, Node* object,
|
|
Node* klass_node, Node* length,
|
|
Node* size_in_bytes) {
|
|
InitializeNode* init = alloc->initialization();
|
|
// Store the klass & mark bits
|
|
Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem);
|
|
if (!mark_node->is_Con()) {
|
|
transform_later(mark_node);
|
|
}
|
|
rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type());
|
|
|
|
rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
|
|
int header_size = alloc->minimum_header_size(); // conservatively small
|
|
|
|
// Array length
|
|
if (length != NULL) { // Arrays need length field
|
|
rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
|
|
// conservatively small header size:
|
|
header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
|
|
ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
|
|
if (k->is_array_klass()) // we know the exact header size in most cases:
|
|
header_size = Klass::layout_helper_header_size(k->layout_helper());
|
|
}
|
|
|
|
// Clear the object body, if necessary.
|
|
if (init == NULL) {
|
|
// The init has somehow disappeared; be cautious and clear everything.
|
|
//
|
|
// This can happen if a node is allocated but an uncommon trap occurs
|
|
// immediately. In this case, the Initialize gets associated with the
|
|
// trap, and may be placed in a different (outer) loop, if the Allocate
|
|
// is in a loop. If (this is rare) the inner loop gets unrolled, then
|
|
// there can be two Allocates to one Initialize. The answer in all these
|
|
// edge cases is safety first. It is always safe to clear immediately
|
|
// within an Allocate, and then (maybe or maybe not) clear some more later.
|
|
if (!(UseTLAB && ZeroTLAB)) {
|
|
rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
|
|
header_size, size_in_bytes,
|
|
&_igvn);
|
|
}
|
|
} else {
|
|
if (!init->is_complete()) {
|
|
// Try to win by zeroing only what the init does not store.
|
|
// We can also try to do some peephole optimizations,
|
|
// such as combining some adjacent subword stores.
|
|
rawmem = init->complete_stores(control, rawmem, object,
|
|
header_size, size_in_bytes, &_igvn);
|
|
}
|
|
// We have no more use for this link, since the AllocateNode goes away:
|
|
init->set_req(InitializeNode::RawAddress, top());
|
|
// (If we keep the link, it just confuses the register allocator,
|
|
// who thinks he sees a real use of the address by the membar.)
|
|
}
|
|
|
|
return rawmem;
|
|
}
|
|
|
|
// Generate prefetch instructions for next allocations.
|
|
Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
|
|
Node*& contended_phi_rawmem,
|
|
Node* old_eden_top, Node* new_eden_top,
|
|
intx lines) {
|
|
enum { fall_in_path = 1, pf_path = 2 };
|
|
if( UseTLAB && AllocatePrefetchStyle == 2 ) {
|
|
// Generate prefetch allocation with watermark check.
|
|
// As an allocation hits the watermark, we will prefetch starting
|
|
// at a "distance" away from watermark.
|
|
|
|
Node *pf_region = new RegionNode(3);
|
|
Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
|
|
TypeRawPtr::BOTTOM );
|
|
// I/O is used for Prefetch
|
|
Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
|
|
|
|
Node *thread = new ThreadLocalNode();
|
|
transform_later(thread);
|
|
|
|
Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
|
|
_igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
|
|
transform_later(eden_pf_adr);
|
|
|
|
Node *old_pf_wm = new LoadPNode(needgc_false,
|
|
contended_phi_rawmem, eden_pf_adr,
|
|
TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
|
|
MemNode::unordered);
|
|
transform_later(old_pf_wm);
|
|
|
|
// check against new_eden_top
|
|
Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
|
|
transform_later(need_pf_cmp);
|
|
Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
|
|
transform_later(need_pf_bol);
|
|
IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
|
|
PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
|
|
transform_later(need_pf_iff);
|
|
|
|
// true node, add prefetchdistance
|
|
Node *need_pf_true = new IfTrueNode( need_pf_iff );
|
|
transform_later(need_pf_true);
|
|
|
|
Node *need_pf_false = new IfFalseNode( need_pf_iff );
|
|
transform_later(need_pf_false);
|
|
|
|
Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
|
|
_igvn.MakeConX(AllocatePrefetchDistance) );
|
|
transform_later(new_pf_wmt );
|
|
new_pf_wmt->set_req(0, need_pf_true);
|
|
|
|
Node *store_new_wmt = new StorePNode(need_pf_true,
|
|
contended_phi_rawmem, eden_pf_adr,
|
|
TypeRawPtr::BOTTOM, new_pf_wmt,
|
|
MemNode::unordered);
|
|
transform_later(store_new_wmt);
|
|
|
|
// adding prefetches
|
|
pf_phi_abio->init_req( fall_in_path, i_o );
|
|
|
|
Node *prefetch_adr;
|
|
Node *prefetch;
|
|
uint step_size = AllocatePrefetchStepSize;
|
|
uint distance = 0;
|
|
|
|
for ( intx i = 0; i < lines; i++ ) {
|
|
prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
|
|
_igvn.MakeConX(distance) );
|
|
transform_later(prefetch_adr);
|
|
prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
|
|
transform_later(prefetch);
|
|
distance += step_size;
|
|
i_o = prefetch;
|
|
}
|
|
pf_phi_abio->set_req( pf_path, i_o );
|
|
|
|
pf_region->init_req( fall_in_path, need_pf_false );
|
|
pf_region->init_req( pf_path, need_pf_true );
|
|
|
|
pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
|
|
pf_phi_rawmem->init_req( pf_path, store_new_wmt );
|
|
|
|
transform_later(pf_region);
|
|
transform_later(pf_phi_rawmem);
|
|
transform_later(pf_phi_abio);
|
|
|
|
needgc_false = pf_region;
|
|
contended_phi_rawmem = pf_phi_rawmem;
|
|
i_o = pf_phi_abio;
|
|
} else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
|
|
// Insert a prefetch instruction for each allocation.
|
|
// This code is used to generate 1 prefetch instruction per cache line.
|
|
|
|
// Generate several prefetch instructions.
|
|
uint step_size = AllocatePrefetchStepSize;
|
|
uint distance = AllocatePrefetchDistance;
|
|
|
|
// Next cache address.
|
|
Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
|
|
_igvn.MakeConX(step_size + distance));
|
|
transform_later(cache_adr);
|
|
cache_adr = new CastP2XNode(needgc_false, cache_adr);
|
|
transform_later(cache_adr);
|
|
// Address is aligned to execute prefetch to the beginning of cache line size
|
|
// (it is important when BIS instruction is used on SPARC as prefetch).
|
|
Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
|
|
cache_adr = new AndXNode(cache_adr, mask);
|
|
transform_later(cache_adr);
|
|
cache_adr = new CastX2PNode(cache_adr);
|
|
transform_later(cache_adr);
|
|
|
|
// Prefetch
|
|
Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
|
|
prefetch->set_req(0, needgc_false);
|
|
transform_later(prefetch);
|
|
contended_phi_rawmem = prefetch;
|
|
Node *prefetch_adr;
|
|
distance = step_size;
|
|
for ( intx i = 1; i < lines; i++ ) {
|
|
prefetch_adr = new AddPNode( cache_adr, cache_adr,
|
|
_igvn.MakeConX(distance) );
|
|
transform_later(prefetch_adr);
|
|
prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
|
|
transform_later(prefetch);
|
|
distance += step_size;
|
|
contended_phi_rawmem = prefetch;
|
|
}
|
|
} else if( AllocatePrefetchStyle > 0 ) {
|
|
// Insert a prefetch for each allocation only on the fast-path
|
|
Node *prefetch_adr;
|
|
Node *prefetch;
|
|
// Generate several prefetch instructions.
|
|
uint step_size = AllocatePrefetchStepSize;
|
|
uint distance = AllocatePrefetchDistance;
|
|
for ( intx i = 0; i < lines; i++ ) {
|
|
prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
|
|
_igvn.MakeConX(distance) );
|
|
transform_later(prefetch_adr);
|
|
prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
|
|
// Do not let it float too high, since if eden_top == eden_end,
|
|
// both might be null.
|
|
if( i == 0 ) { // Set control for first prefetch, next follows it
|
|
prefetch->init_req(0, needgc_false);
|
|
}
|
|
transform_later(prefetch);
|
|
distance += step_size;
|
|
i_o = prefetch;
|
|
}
|
|
}
|
|
return i_o;
|
|
}
|
|
|
|
|
|
void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
|
|
expand_allocate_common(alloc, NULL,
|
|
OptoRuntime::new_instance_Type(),
|
|
OptoRuntime::new_instance_Java());
|
|
}
|
|
|
|
void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
|
|
Node* length = alloc->in(AllocateNode::ALength);
|
|
InitializeNode* init = alloc->initialization();
|
|
Node* klass_node = alloc->in(AllocateNode::KlassNode);
|
|
ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
|
|
address slow_call_address; // Address of slow call
|
|
if (init != NULL && init->is_complete_with_arraycopy() &&
|
|
k->is_type_array_klass()) {
|
|
// Don't zero type array during slow allocation in VM since
|
|
// it will be initialized later by arraycopy in compiled code.
|
|
slow_call_address = OptoRuntime::new_array_nozero_Java();
|
|
} else {
|
|
slow_call_address = OptoRuntime::new_array_Java();
|
|
}
|
|
expand_allocate_common(alloc, length,
|
|
OptoRuntime::new_array_Type(),
|
|
slow_call_address);
|
|
}
|
|
|
|
//-------------------mark_eliminated_box----------------------------------
|
|
//
|
|
// During EA obj may point to several objects but after few ideal graph
|
|
// transformations (CCP) it may point to only one non escaping object
|
|
// (but still using phi), corresponding locks and unlocks will be marked
|
|
// for elimination. Later obj could be replaced with a new node (new phi)
|
|
// and which does not have escape information. And later after some graph
|
|
// reshape other locks and unlocks (which were not marked for elimination
|
|
// before) are connected to this new obj (phi) but they still will not be
|
|
// marked for elimination since new obj has no escape information.
|
|
// Mark all associated (same box and obj) lock and unlock nodes for
|
|
// elimination if some of them marked already.
|
|
void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
|
|
if (oldbox->as_BoxLock()->is_eliminated())
|
|
return; // This BoxLock node was processed already.
|
|
|
|
// New implementation (EliminateNestedLocks) has separate BoxLock
|
|
// node for each locked region so mark all associated locks/unlocks as
|
|
// eliminated even if different objects are referenced in one locked region
|
|
// (for example, OSR compilation of nested loop inside locked scope).
|
|
if (EliminateNestedLocks ||
|
|
oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
|
|
// Box is used only in one lock region. Mark this box as eliminated.
|
|
_igvn.hash_delete(oldbox);
|
|
oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
|
|
_igvn.hash_insert(oldbox);
|
|
|
|
for (uint i = 0; i < oldbox->outcnt(); i++) {
|
|
Node* u = oldbox->raw_out(i);
|
|
if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
|
|
AbstractLockNode* alock = u->as_AbstractLock();
|
|
// Check lock's box since box could be referenced by Lock's debug info.
|
|
if (alock->box_node() == oldbox) {
|
|
// Mark eliminated all related locks and unlocks.
|
|
#ifdef ASSERT
|
|
alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
|
|
#endif
|
|
alock->set_non_esc_obj();
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Create new "eliminated" BoxLock node and use it in monitor debug info
|
|
// instead of oldbox for the same object.
|
|
BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
|
|
|
|
// Note: BoxLock node is marked eliminated only here and it is used
|
|
// to indicate that all associated lock and unlock nodes are marked
|
|
// for elimination.
|
|
newbox->set_eliminated();
|
|
transform_later(newbox);
|
|
|
|
// Replace old box node with new box for all users of the same object.
|
|
for (uint i = 0; i < oldbox->outcnt();) {
|
|
bool next_edge = true;
|
|
|
|
Node* u = oldbox->raw_out(i);
|
|
if (u->is_AbstractLock()) {
|
|
AbstractLockNode* alock = u->as_AbstractLock();
|
|
if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
|
|
// Replace Box and mark eliminated all related locks and unlocks.
|
|
#ifdef ASSERT
|
|
alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
|
|
#endif
|
|
alock->set_non_esc_obj();
|
|
_igvn.rehash_node_delayed(alock);
|
|
alock->set_box_node(newbox);
|
|
next_edge = false;
|
|
}
|
|
}
|
|
if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
|
|
FastLockNode* flock = u->as_FastLock();
|
|
assert(flock->box_node() == oldbox, "sanity");
|
|
_igvn.rehash_node_delayed(flock);
|
|
flock->set_box_node(newbox);
|
|
next_edge = false;
|
|
}
|
|
|
|
// Replace old box in monitor debug info.
|
|
if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
|
|
SafePointNode* sfn = u->as_SafePoint();
|
|
JVMState* youngest_jvms = sfn->jvms();
|
|
int max_depth = youngest_jvms->depth();
|
|
for (int depth = 1; depth <= max_depth; depth++) {
|
|
JVMState* jvms = youngest_jvms->of_depth(depth);
|
|
int num_mon = jvms->nof_monitors();
|
|
// Loop over monitors
|
|
for (int idx = 0; idx < num_mon; idx++) {
|
|
Node* obj_node = sfn->monitor_obj(jvms, idx);
|
|
Node* box_node = sfn->monitor_box(jvms, idx);
|
|
if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
|
|
int j = jvms->monitor_box_offset(idx);
|
|
_igvn.replace_input_of(u, j, newbox);
|
|
next_edge = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (next_edge) i++;
|
|
}
|
|
}
|
|
|
|
//-----------------------mark_eliminated_locking_nodes-----------------------
|
|
void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
|
|
if (EliminateNestedLocks) {
|
|
if (alock->is_nested()) {
|
|
assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
|
|
return;
|
|
} else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
|
|
// Only Lock node has JVMState needed here.
|
|
// Not that preceding claim is documented anywhere else.
|
|
if (alock->jvms() != NULL) {
|
|
if (alock->as_Lock()->is_nested_lock_region()) {
|
|
// Mark eliminated related nested locks and unlocks.
|
|
Node* obj = alock->obj_node();
|
|
BoxLockNode* box_node = alock->box_node()->as_BoxLock();
|
|
assert(!box_node->is_eliminated(), "should not be marked yet");
|
|
// Note: BoxLock node is marked eliminated only here
|
|
// and it is used to indicate that all associated lock
|
|
// and unlock nodes are marked for elimination.
|
|
box_node->set_eliminated(); // Box's hash is always NO_HASH here
|
|
for (uint i = 0; i < box_node->outcnt(); i++) {
|
|
Node* u = box_node->raw_out(i);
|
|
if (u->is_AbstractLock()) {
|
|
alock = u->as_AbstractLock();
|
|
if (alock->box_node() == box_node) {
|
|
// Verify that this Box is referenced only by related locks.
|
|
assert(alock->obj_node()->eqv_uncast(obj), "");
|
|
// Mark all related locks and unlocks.
|
|
#ifdef ASSERT
|
|
alock->log_lock_optimization(C, "eliminate_lock_set_nested");
|
|
#endif
|
|
alock->set_nested();
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
#ifdef ASSERT
|
|
alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
|
|
if (C->log() != NULL)
|
|
alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
|
|
#endif
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// Process locks for non escaping object
|
|
assert(alock->is_non_esc_obj(), "");
|
|
} // EliminateNestedLocks
|
|
|
|
if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
|
|
// Look for all locks of this object and mark them and
|
|
// corresponding BoxLock nodes as eliminated.
|
|
Node* obj = alock->obj_node();
|
|
for (uint j = 0; j < obj->outcnt(); j++) {
|
|
Node* o = obj->raw_out(j);
|
|
if (o->is_AbstractLock() &&
|
|
o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
|
|
alock = o->as_AbstractLock();
|
|
Node* box = alock->box_node();
|
|
// Replace old box node with new eliminated box for all users
|
|
// of the same object and mark related locks as eliminated.
|
|
mark_eliminated_box(box, obj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// we have determined that this lock/unlock can be eliminated, we simply
|
|
// eliminate the node without expanding it.
|
|
//
|
|
// Note: The membar's associated with the lock/unlock are currently not
|
|
// eliminated. This should be investigated as a future enhancement.
|
|
//
|
|
bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
|
|
|
|
if (!alock->is_eliminated()) {
|
|
return false;
|
|
}
|
|
#ifdef ASSERT
|
|
if (!alock->is_coarsened()) {
|
|
// Check that new "eliminated" BoxLock node is created.
|
|
BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
|
|
assert(oldbox->is_eliminated(), "should be done already");
|
|
}
|
|
#endif
|
|
|
|
alock->log_lock_optimization(C, "eliminate_lock");
|
|
|
|
#ifndef PRODUCT
|
|
if (PrintEliminateLocks) {
|
|
if (alock->is_Lock()) {
|
|
tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
|
|
} else {
|
|
tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
Node* mem = alock->in(TypeFunc::Memory);
|
|
Node* ctrl = alock->in(TypeFunc::Control);
|
|
guarantee(ctrl != NULL, "missing control projection, cannot replace_node() with NULL");
|
|
|
|
extract_call_projections(alock);
|
|
// There are 2 projections from the lock. The lock node will
|
|
// be deleted when its last use is subsumed below.
|
|
assert(alock->outcnt() == 2 &&
|
|
_fallthroughproj != NULL &&
|
|
_memproj_fallthrough != NULL,
|
|
"Unexpected projections from Lock/Unlock");
|
|
|
|
Node* fallthroughproj = _fallthroughproj;
|
|
Node* memproj_fallthrough = _memproj_fallthrough;
|
|
|
|
// The memory projection from a lock/unlock is RawMem
|
|
// The input to a Lock is merged memory, so extract its RawMem input
|
|
// (unless the MergeMem has been optimized away.)
|
|
if (alock->is_Lock()) {
|
|
// Seach for MemBarAcquireLock node and delete it also.
|
|
MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
|
|
assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
|
|
Node* ctrlproj = membar->proj_out(TypeFunc::Control);
|
|
Node* memproj = membar->proj_out(TypeFunc::Memory);
|
|
_igvn.replace_node(ctrlproj, fallthroughproj);
|
|
_igvn.replace_node(memproj, memproj_fallthrough);
|
|
|
|
// Delete FastLock node also if this Lock node is unique user
|
|
// (a loop peeling may clone a Lock node).
|
|
Node* flock = alock->as_Lock()->fastlock_node();
|
|
if (flock->outcnt() == 1) {
|
|
assert(flock->unique_out() == alock, "sanity");
|
|
_igvn.replace_node(flock, top());
|
|
}
|
|
}
|
|
|
|
// Seach for MemBarReleaseLock node and delete it also.
|
|
if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) {
|
|
MemBarNode* membar = ctrl->in(0)->as_MemBar();
|
|
assert(membar->Opcode() == Op_MemBarReleaseLock &&
|
|
mem->is_Proj() && membar == mem->in(0), "");
|
|
_igvn.replace_node(fallthroughproj, ctrl);
|
|
_igvn.replace_node(memproj_fallthrough, mem);
|
|
fallthroughproj = ctrl;
|
|
memproj_fallthrough = mem;
|
|
ctrl = membar->in(TypeFunc::Control);
|
|
mem = membar->in(TypeFunc::Memory);
|
|
}
|
|
|
|
_igvn.replace_node(fallthroughproj, ctrl);
|
|
_igvn.replace_node(memproj_fallthrough, mem);
|
|
return true;
|
|
}
|
|
|
|
|
|
//------------------------------expand_lock_node----------------------
|
|
void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
|
|
|
|
Node* ctrl = lock->in(TypeFunc::Control);
|
|
Node* mem = lock->in(TypeFunc::Memory);
|
|
Node* obj = lock->obj_node();
|
|
Node* box = lock->box_node();
|
|
Node* flock = lock->fastlock_node();
|
|
|
|
assert(!box->as_BoxLock()->is_eliminated(), "sanity");
|
|
|
|
// Make the merge point
|
|
Node *region;
|
|
Node *mem_phi;
|
|
Node *slow_path;
|
|
|
|
if (UseOptoBiasInlining) {
|
|
/*
|
|
* See the full description in MacroAssembler::biased_locking_enter().
|
|
*
|
|
* if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
|
|
* // The object is biased.
|
|
* proto_node = klass->prototype_header;
|
|
* o_node = thread | proto_node;
|
|
* x_node = o_node ^ mark_word;
|
|
* if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
|
|
* // Done.
|
|
* } else {
|
|
* if( (x_node & biased_lock_mask) != 0 ) {
|
|
* // The klass's prototype header is no longer biased.
|
|
* cas(&mark_word, mark_word, proto_node)
|
|
* goto cas_lock;
|
|
* } else {
|
|
* // The klass's prototype header is still biased.
|
|
* if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
|
|
* old = mark_word;
|
|
* new = o_node;
|
|
* } else {
|
|
* // Different thread or anonymous biased.
|
|
* old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
|
|
* new = thread | old;
|
|
* }
|
|
* // Try to rebias.
|
|
* if( cas(&mark_word, old, new) == 0 ) {
|
|
* // Done.
|
|
* } else {
|
|
* goto slow_path; // Failed.
|
|
* }
|
|
* }
|
|
* }
|
|
* } else {
|
|
* // The object is not biased.
|
|
* cas_lock:
|
|
* if( FastLock(obj) == 0 ) {
|
|
* // Done.
|
|
* } else {
|
|
* slow_path:
|
|
* OptoRuntime::complete_monitor_locking_Java(obj);
|
|
* }
|
|
* }
|
|
*/
|
|
|
|
region = new RegionNode(5);
|
|
// create a Phi for the memory state
|
|
mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
|
|
|
|
Node* fast_lock_region = new RegionNode(3);
|
|
Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
|
|
|
|
// First, check mark word for the biased lock pattern.
|
|
Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
|
|
|
|
// Get fast path - mark word has the biased lock pattern.
|
|
ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
|
|
markWord::biased_lock_mask_in_place,
|
|
markWord::biased_lock_pattern, true);
|
|
// fast_lock_region->in(1) is set to slow path.
|
|
fast_lock_mem_phi->init_req(1, mem);
|
|
|
|
// Now check that the lock is biased to the current thread and has
|
|
// the same epoch and bias as Klass::_prototype_header.
|
|
|
|
// Special-case a fresh allocation to avoid building nodes:
|
|
Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
|
|
if (klass_node == NULL) {
|
|
Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
|
|
klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
|
|
#ifdef _LP64
|
|
if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
|
|
assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
|
|
klass_node->in(1)->init_req(0, ctrl);
|
|
} else
|
|
#endif
|
|
klass_node->init_req(0, ctrl);
|
|
}
|
|
Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
|
|
|
|
Node* thread = transform_later(new ThreadLocalNode());
|
|
Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
|
|
Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
|
|
Node* x_node = transform_later(new XorXNode(o_node, mark_node));
|
|
|
|
// Get slow path - mark word does NOT match the value.
|
|
STATIC_ASSERT(markWord::age_mask_in_place <= INT_MAX);
|
|
Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node,
|
|
(~(int)markWord::age_mask_in_place), 0);
|
|
// region->in(3) is set to fast path - the object is biased to the current thread.
|
|
mem_phi->init_req(3, mem);
|
|
|
|
|
|
// Mark word does NOT match the value (thread | Klass::_prototype_header).
|
|
|
|
|
|
// First, check biased pattern.
|
|
// Get fast path - _prototype_header has the same biased lock pattern.
|
|
ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
|
|
markWord::biased_lock_mask_in_place, 0, true);
|
|
|
|
not_biased_ctrl = fast_lock_region->in(2); // Slow path
|
|
// fast_lock_region->in(2) - the prototype header is no longer biased
|
|
// and we have to revoke the bias on this object.
|
|
// We are going to try to reset the mark of this object to the prototype
|
|
// value and fall through to the CAS-based locking scheme.
|
|
Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
|
|
Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
|
|
proto_node, mark_node);
|
|
transform_later(cas);
|
|
Node* proj = transform_later(new SCMemProjNode(cas));
|
|
fast_lock_mem_phi->init_req(2, proj);
|
|
|
|
|
|
// Second, check epoch bits.
|
|
Node* rebiased_region = new RegionNode(3);
|
|
Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
|
|
Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
|
|
|
|
// Get slow path - mark word does NOT match epoch bits.
|
|
Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node,
|
|
markWord::epoch_mask_in_place, 0);
|
|
// The epoch of the current bias is not valid, attempt to rebias the object
|
|
// toward the current thread.
|
|
rebiased_region->init_req(2, epoch_ctrl);
|
|
old_phi->init_req(2, mark_node);
|
|
new_phi->init_req(2, o_node);
|
|
|
|
// rebiased_region->in(1) is set to fast path.
|
|
// The epoch of the current bias is still valid but we know
|
|
// nothing about the owner; it might be set or it might be clear.
|
|
Node* cmask = MakeConX(markWord::biased_lock_mask_in_place |
|
|
markWord::age_mask_in_place |
|
|
markWord::epoch_mask_in_place);
|
|
Node* old = transform_later(new AndXNode(mark_node, cmask));
|
|
cast_thread = transform_later(new CastP2XNode(ctrl, thread));
|
|
Node* new_mark = transform_later(new OrXNode(cast_thread, old));
|
|
old_phi->init_req(1, old);
|
|
new_phi->init_req(1, new_mark);
|
|
|
|
transform_later(rebiased_region);
|
|
transform_later(old_phi);
|
|
transform_later(new_phi);
|
|
|
|
// Try to acquire the bias of the object using an atomic operation.
|
|
// If this fails we will go in to the runtime to revoke the object's bias.
|
|
cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
|
|
transform_later(cas);
|
|
proj = transform_later(new SCMemProjNode(cas));
|
|
|
|
// Get slow path - Failed to CAS.
|
|
not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
|
|
mem_phi->init_req(4, proj);
|
|
// region->in(4) is set to fast path - the object is rebiased to the current thread.
|
|
|
|
// Failed to CAS.
|
|
slow_path = new RegionNode(3);
|
|
Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
|
|
|
|
slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
|
|
slow_mem->init_req(1, proj);
|
|
|
|
// Call CAS-based locking scheme (FastLock node).
|
|
|
|
transform_later(fast_lock_region);
|
|
transform_later(fast_lock_mem_phi);
|
|
|
|
// Get slow path - FastLock failed to lock the object.
|
|
ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
|
|
mem_phi->init_req(2, fast_lock_mem_phi);
|
|
// region->in(2) is set to fast path - the object is locked to the current thread.
|
|
|
|
slow_path->init_req(2, ctrl); // Capture slow-control
|
|
slow_mem->init_req(2, fast_lock_mem_phi);
|
|
|
|
transform_later(slow_path);
|
|
transform_later(slow_mem);
|
|
// Reset lock's memory edge.
|
|
lock->set_req(TypeFunc::Memory, slow_mem);
|
|
|
|
} else {
|
|
region = new RegionNode(3);
|
|
// create a Phi for the memory state
|
|
mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
|
|
|
|
// Optimize test; set region slot 2
|
|
slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
|
|
mem_phi->init_req(2, mem);
|
|
}
|
|
|
|
// Make slow path call
|
|
CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
|
|
OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
|
|
obj, box, NULL);
|
|
|
|
extract_call_projections(call);
|
|
|
|
// Slow path can only throw asynchronous exceptions, which are always
|
|
// de-opted. So the compiler thinks the slow-call can never throw an
|
|
// exception. If it DOES throw an exception we would need the debug
|
|
// info removed first (since if it throws there is no monitor).
|
|
assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
|
|
_memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
|
|
|
|
// Capture slow path
|
|
// disconnect fall-through projection from call and create a new one
|
|
// hook up users of fall-through projection to region
|
|
Node *slow_ctrl = _fallthroughproj->clone();
|
|
transform_later(slow_ctrl);
|
|
_igvn.hash_delete(_fallthroughproj);
|
|
_fallthroughproj->disconnect_inputs(NULL, C);
|
|
region->init_req(1, slow_ctrl);
|
|
// region inputs are now complete
|
|
transform_later(region);
|
|
_igvn.replace_node(_fallthroughproj, region);
|
|
|
|
Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
|
|
mem_phi->init_req(1, memproj );
|
|
transform_later(mem_phi);
|
|
_igvn.replace_node(_memproj_fallthrough, mem_phi);
|
|
}
|
|
|
|
//------------------------------expand_unlock_node----------------------
|
|
void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
|
|
|
|
Node* ctrl = unlock->in(TypeFunc::Control);
|
|
Node* mem = unlock->in(TypeFunc::Memory);
|
|
Node* obj = unlock->obj_node();
|
|
Node* box = unlock->box_node();
|
|
|
|
assert(!box->as_BoxLock()->is_eliminated(), "sanity");
|
|
|
|
// No need for a null check on unlock
|
|
|
|
// Make the merge point
|
|
Node *region;
|
|
Node *mem_phi;
|
|
|
|
if (UseOptoBiasInlining) {
|
|
// Check for biased locking unlock case, which is a no-op.
|
|
// See the full description in MacroAssembler::biased_locking_exit().
|
|
region = new RegionNode(4);
|
|
// create a Phi for the memory state
|
|
mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
|
|
mem_phi->init_req(3, mem);
|
|
|
|
Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
|
|
ctrl = opt_bits_test(ctrl, region, 3, mark_node,
|
|
markWord::biased_lock_mask_in_place,
|
|
markWord::biased_lock_pattern);
|
|
} else {
|
|
region = new RegionNode(3);
|
|
// create a Phi for the memory state
|
|
mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
|
|
}
|
|
|
|
FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
|
|
funlock = transform_later( funlock )->as_FastUnlock();
|
|
// Optimize test; set region slot 2
|
|
Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
|
|
Node *thread = transform_later(new ThreadLocalNode());
|
|
|
|
CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
|
|
CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
|
|
"complete_monitor_unlocking_C", slow_path, obj, box, thread);
|
|
|
|
extract_call_projections(call);
|
|
|
|
assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
|
|
_memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
|
|
|
|
// No exceptions for unlocking
|
|
// Capture slow path
|
|
// disconnect fall-through projection from call and create a new one
|
|
// hook up users of fall-through projection to region
|
|
Node *slow_ctrl = _fallthroughproj->clone();
|
|
transform_later(slow_ctrl);
|
|
_igvn.hash_delete(_fallthroughproj);
|
|
_fallthroughproj->disconnect_inputs(NULL, C);
|
|
region->init_req(1, slow_ctrl);
|
|
// region inputs are now complete
|
|
transform_later(region);
|
|
_igvn.replace_node(_fallthroughproj, region);
|
|
|
|
Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
|
|
mem_phi->init_req(1, memproj );
|
|
mem_phi->init_req(2, mem);
|
|
transform_later(mem_phi);
|
|
_igvn.replace_node(_memproj_fallthrough, mem_phi);
|
|
}
|
|
|
|
void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) {
|
|
assert(check->in(SubTypeCheckNode::Control) == NULL, "should be pinned");
|
|
Node* bol = check->unique_out();
|
|
Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass);
|
|
Node* superklass = check->in(SubTypeCheckNode::SuperKlass);
|
|
assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node");
|
|
|
|
for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) {
|
|
Node* iff = bol->last_out(i);
|
|
assert(iff->is_If(), "where's the if?");
|
|
|
|
if (iff->in(0)->is_top()) {
|
|
_igvn.replace_input_of(iff, 1, C->top());
|
|
continue;
|
|
}
|
|
|
|
Node* iftrue = iff->as_If()->proj_out(1);
|
|
Node* iffalse = iff->as_If()->proj_out(0);
|
|
Node* ctrl = iff->in(0);
|
|
|
|
Node* subklass = NULL;
|
|
if (_igvn.type(obj_or_subklass)->isa_klassptr()) {
|
|
subklass = obj_or_subklass;
|
|
} else {
|
|
Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes());
|
|
subklass = _igvn.transform(LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), k_adr, TypeInstPtr::KLASS));
|
|
}
|
|
|
|
Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, NULL, _igvn);
|
|
|
|
_igvn.replace_input_of(iff, 0, C->top());
|
|
_igvn.replace_node(iftrue, not_subtype_ctrl);
|
|
_igvn.replace_node(iffalse, ctrl);
|
|
}
|
|
_igvn.replace_node(check, C->top());
|
|
}
|
|
|
|
//---------------------------eliminate_macro_nodes----------------------
|
|
// Eliminate scalar replaced allocations and associated locks.
|
|
void PhaseMacroExpand::eliminate_macro_nodes() {
|
|
if (C->macro_count() == 0)
|
|
return;
|
|
|
|
// First, attempt to eliminate locks
|
|
int cnt = C->macro_count();
|
|
for (int i=0; i < cnt; i++) {
|
|
Node *n = C->macro_node(i);
|
|
if (n->is_AbstractLock()) { // Lock and Unlock nodes
|
|
// Before elimination mark all associated (same box and obj)
|
|
// lock and unlock nodes.
|
|
mark_eliminated_locking_nodes(n->as_AbstractLock());
|
|
}
|
|
}
|
|
bool progress = true;
|
|
while (progress) {
|
|
progress = false;
|
|
for (int i = C->macro_count(); i > 0; i--) {
|
|
Node * n = C->macro_node(i-1);
|
|
bool success = false;
|
|
debug_only(int old_macro_count = C->macro_count(););
|
|
if (n->is_AbstractLock()) {
|
|
success = eliminate_locking_node(n->as_AbstractLock());
|
|
}
|
|
assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
|
|
progress = progress || success;
|
|
}
|
|
}
|
|
// Next, attempt to eliminate allocations
|
|
_has_locks = false;
|
|
progress = true;
|
|
while (progress) {
|
|
progress = false;
|
|
for (int i = C->macro_count(); i > 0; i--) {
|
|
Node * n = C->macro_node(i-1);
|
|
bool success = false;
|
|
debug_only(int old_macro_count = C->macro_count(););
|
|
switch (n->class_id()) {
|
|
case Node::Class_Allocate:
|
|
case Node::Class_AllocateArray:
|
|
success = eliminate_allocate_node(n->as_Allocate());
|
|
break;
|
|
case Node::Class_CallStaticJava:
|
|
success = eliminate_boxing_node(n->as_CallStaticJava());
|
|
break;
|
|
case Node::Class_Lock:
|
|
case Node::Class_Unlock:
|
|
assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
|
|
_has_locks = true;
|
|
break;
|
|
case Node::Class_ArrayCopy:
|
|
break;
|
|
case Node::Class_OuterStripMinedLoop:
|
|
break;
|
|
case Node::Class_SubTypeCheck:
|
|
break;
|
|
default:
|
|
assert(n->Opcode() == Op_LoopLimit ||
|
|
n->Opcode() == Op_Opaque1 ||
|
|
n->Opcode() == Op_Opaque2 ||
|
|
n->Opcode() == Op_Opaque3 ||
|
|
BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n),
|
|
"unknown node type in macro list");
|
|
}
|
|
assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
|
|
progress = progress || success;
|
|
}
|
|
}
|
|
}
|
|
|
|
//------------------------------expand_macro_nodes----------------------
|
|
// Returns true if a failure occurred.
|
|
bool PhaseMacroExpand::expand_macro_nodes() {
|
|
// Last attempt to eliminate macro nodes.
|
|
eliminate_macro_nodes();
|
|
|
|
// Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
|
|
bool progress = true;
|
|
while (progress) {
|
|
progress = false;
|
|
for (int i = C->macro_count(); i > 0; i--) {
|
|
Node* n = C->macro_node(i-1);
|
|
bool success = false;
|
|
debug_only(int old_macro_count = C->macro_count(););
|
|
if (n->Opcode() == Op_LoopLimit) {
|
|
// Remove it from macro list and put on IGVN worklist to optimize.
|
|
C->remove_macro_node(n);
|
|
_igvn._worklist.push(n);
|
|
success = true;
|
|
} else if (n->Opcode() == Op_CallStaticJava) {
|
|
// Remove it from macro list and put on IGVN worklist to optimize.
|
|
C->remove_macro_node(n);
|
|
_igvn._worklist.push(n);
|
|
success = true;
|
|
} else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
|
|
_igvn.replace_node(n, n->in(1));
|
|
success = true;
|
|
#if INCLUDE_RTM_OPT
|
|
} else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
|
|
assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
|
|
assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
|
|
Node* cmp = n->unique_out();
|
|
#ifdef ASSERT
|
|
// Validate graph.
|
|
assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
|
|
BoolNode* bol = cmp->unique_out()->as_Bool();
|
|
assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
|
|
(bol->_test._test == BoolTest::ne), "");
|
|
IfNode* ifn = bol->unique_out()->as_If();
|
|
assert((ifn->outcnt() == 2) &&
|
|
ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
|
|
#endif
|
|
Node* repl = n->in(1);
|
|
if (!_has_locks) {
|
|
// Remove RTM state check if there are no locks in the code.
|
|
// Replace input to compare the same value.
|
|
repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
|
|
}
|
|
_igvn.replace_node(n, repl);
|
|
success = true;
|
|
#endif
|
|
} else if (n->Opcode() == Op_OuterStripMinedLoop) {
|
|
n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
|
|
C->remove_macro_node(n);
|
|
success = true;
|
|
}
|
|
assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list");
|
|
progress = progress || success;
|
|
}
|
|
}
|
|
|
|
// Clean up the graph so we're less likely to hit the maximum node
|
|
// limit
|
|
_igvn.set_delay_transform(false);
|
|
_igvn.optimize();
|
|
if (C->failing()) return true;
|
|
_igvn.set_delay_transform(true);
|
|
|
|
|
|
// Because we run IGVN after each expansion, some macro nodes may go
|
|
// dead and be removed from the list as we iterate over it. Move
|
|
// Allocate nodes (processed in a second pass) at the beginning of
|
|
// the list and then iterate from the last element of the list until
|
|
// an Allocate node is seen. This is robust to random deletion in
|
|
// the list due to nodes going dead.
|
|
C->sort_macro_nodes();
|
|
|
|
// expand arraycopy "macro" nodes first
|
|
// For ReduceBulkZeroing, we must first process all arraycopy nodes
|
|
// before the allocate nodes are expanded.
|
|
while (C->macro_count() > 0) {
|
|
int macro_count = C->macro_count();
|
|
Node * n = C->macro_node(macro_count-1);
|
|
assert(n->is_macro(), "only macro nodes expected here");
|
|
if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
|
|
// node is unreachable, so don't try to expand it
|
|
C->remove_macro_node(n);
|
|
continue;
|
|
}
|
|
if (n->is_Allocate()) {
|
|
break;
|
|
}
|
|
// Make sure expansion will not cause node limit to be exceeded.
|
|
// Worst case is a macro node gets expanded into about 200 nodes.
|
|
// Allow 50% more for optimization.
|
|
if (C->check_node_count(300, "out of nodes before macro expansion")) {
|
|
return true;
|
|
}
|
|
|
|
debug_only(int old_macro_count = C->macro_count(););
|
|
switch (n->class_id()) {
|
|
case Node::Class_Lock:
|
|
expand_lock_node(n->as_Lock());
|
|
assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
|
|
break;
|
|
case Node::Class_Unlock:
|
|
expand_unlock_node(n->as_Unlock());
|
|
assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
|
|
break;
|
|
case Node::Class_ArrayCopy:
|
|
expand_arraycopy_node(n->as_ArrayCopy());
|
|
assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
|
|
break;
|
|
case Node::Class_SubTypeCheck:
|
|
expand_subtypecheck_node(n->as_SubTypeCheck());
|
|
assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list");
|
|
break;
|
|
default:
|
|
assert(false, "unknown node type in macro list");
|
|
}
|
|
assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
|
|
if (C->failing()) return true;
|
|
|
|
// Clean up the graph so we're less likely to hit the maximum node
|
|
// limit
|
|
_igvn.set_delay_transform(false);
|
|
_igvn.optimize();
|
|
if (C->failing()) return true;
|
|
_igvn.set_delay_transform(true);
|
|
}
|
|
|
|
// All nodes except Allocate nodes are expanded now. There could be
|
|
// new optimization opportunities (such as folding newly created
|
|
// load from a just allocated object). Run IGVN.
|
|
|
|
// expand "macro" nodes
|
|
// nodes are removed from the macro list as they are processed
|
|
while (C->macro_count() > 0) {
|
|
int macro_count = C->macro_count();
|
|
Node * n = C->macro_node(macro_count-1);
|
|
assert(n->is_macro(), "only macro nodes expected here");
|
|
if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) {
|
|
// node is unreachable, so don't try to expand it
|
|
C->remove_macro_node(n);
|
|
continue;
|
|
}
|
|
// Make sure expansion will not cause node limit to be exceeded.
|
|
// Worst case is a macro node gets expanded into about 200 nodes.
|
|
// Allow 50% more for optimization.
|
|
if (C->check_node_count(300, "out of nodes before macro expansion")) {
|
|
return true;
|
|
}
|
|
switch (n->class_id()) {
|
|
case Node::Class_Allocate:
|
|
expand_allocate(n->as_Allocate());
|
|
break;
|
|
case Node::Class_AllocateArray:
|
|
expand_allocate_array(n->as_AllocateArray());
|
|
break;
|
|
default:
|
|
assert(false, "unknown node type in macro list");
|
|
}
|
|
assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
|
|
if (C->failing()) return true;
|
|
|
|
// Clean up the graph so we're less likely to hit the maximum node
|
|
// limit
|
|
_igvn.set_delay_transform(false);
|
|
_igvn.optimize();
|
|
if (C->failing()) return true;
|
|
_igvn.set_delay_transform(true);
|
|
}
|
|
|
|
_igvn.set_delay_transform(false);
|
|
return false;
|
|
}
|